sched: Create more preempt_count accessors
[linux-2.6-block.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
969c7921 1016struct migration_arg {
36c8b586 1017 struct task_struct *task;
1da177e4 1018 int dest_cpu;
70b97a7f 1019};
1da177e4 1020
969c7921
TH
1021static int migration_cpu_stop(void *data);
1022
1da177e4
LT
1023/*
1024 * wait_task_inactive - wait for a thread to unschedule.
1025 *
85ba2d86
RM
1026 * If @match_state is nonzero, it's the @p->state value just checked and
1027 * not expected to change. If it changes, i.e. @p might have woken up,
1028 * then return zero. When we succeed in waiting for @p to be off its CPU,
1029 * we return a positive number (its total switch count). If a second call
1030 * a short while later returns the same number, the caller can be sure that
1031 * @p has remained unscheduled the whole time.
1032 *
1da177e4
LT
1033 * The caller must ensure that the task *will* unschedule sometime soon,
1034 * else this function might spin for a *long* time. This function can't
1035 * be called with interrupts off, or it may introduce deadlock with
1036 * smp_call_function() if an IPI is sent by the same process we are
1037 * waiting to become inactive.
1038 */
85ba2d86 1039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1040{
1041 unsigned long flags;
dd41f596 1042 int running, on_rq;
85ba2d86 1043 unsigned long ncsw;
70b97a7f 1044 struct rq *rq;
1da177e4 1045
3a5c359a
AK
1046 for (;;) {
1047 /*
1048 * We do the initial early heuristics without holding
1049 * any task-queue locks at all. We'll only try to get
1050 * the runqueue lock when things look like they will
1051 * work out!
1052 */
1053 rq = task_rq(p);
fa490cfd 1054
3a5c359a
AK
1055 /*
1056 * If the task is actively running on another CPU
1057 * still, just relax and busy-wait without holding
1058 * any locks.
1059 *
1060 * NOTE! Since we don't hold any locks, it's not
1061 * even sure that "rq" stays as the right runqueue!
1062 * But we don't care, since "task_running()" will
1063 * return false if the runqueue has changed and p
1064 * is actually now running somewhere else!
1065 */
85ba2d86
RM
1066 while (task_running(rq, p)) {
1067 if (match_state && unlikely(p->state != match_state))
1068 return 0;
3a5c359a 1069 cpu_relax();
85ba2d86 1070 }
fa490cfd 1071
3a5c359a
AK
1072 /*
1073 * Ok, time to look more closely! We need the rq
1074 * lock now, to be *sure*. If we're wrong, we'll
1075 * just go back and repeat.
1076 */
1077 rq = task_rq_lock(p, &flags);
27a9da65 1078 trace_sched_wait_task(p);
3a5c359a 1079 running = task_running(rq, p);
fd2f4419 1080 on_rq = p->on_rq;
85ba2d86 1081 ncsw = 0;
f31e11d8 1082 if (!match_state || p->state == match_state)
93dcf55f 1083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1084 task_rq_unlock(rq, p, &flags);
fa490cfd 1085
85ba2d86
RM
1086 /*
1087 * If it changed from the expected state, bail out now.
1088 */
1089 if (unlikely(!ncsw))
1090 break;
1091
3a5c359a
AK
1092 /*
1093 * Was it really running after all now that we
1094 * checked with the proper locks actually held?
1095 *
1096 * Oops. Go back and try again..
1097 */
1098 if (unlikely(running)) {
1099 cpu_relax();
1100 continue;
1101 }
fa490cfd 1102
3a5c359a
AK
1103 /*
1104 * It's not enough that it's not actively running,
1105 * it must be off the runqueue _entirely_, and not
1106 * preempted!
1107 *
80dd99b3 1108 * So if it was still runnable (but just not actively
3a5c359a
AK
1109 * running right now), it's preempted, and we should
1110 * yield - it could be a while.
1111 */
1112 if (unlikely(on_rq)) {
8eb90c30
TG
1113 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1114
1115 set_current_state(TASK_UNINTERRUPTIBLE);
1116 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1117 continue;
1118 }
fa490cfd 1119
3a5c359a
AK
1120 /*
1121 * Ahh, all good. It wasn't running, and it wasn't
1122 * runnable, which means that it will never become
1123 * running in the future either. We're all done!
1124 */
1125 break;
1126 }
85ba2d86
RM
1127
1128 return ncsw;
1da177e4
LT
1129}
1130
1131/***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
25985edc 1138 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
36c8b586 1144void kick_process(struct task_struct *p)
1da177e4
LT
1145{
1146 int cpu;
1147
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1153}
b43e3521 1154EXPORT_SYMBOL_GPL(kick_process);
476d139c 1155#endif /* CONFIG_SMP */
1da177e4 1156
970b13ba 1157#ifdef CONFIG_SMP
30da688e 1158/*
013fdb80 1159 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1160 */
5da9a0fb
PZ
1161static int select_fallback_rq(int cpu, struct task_struct *p)
1162{
aa00d89c
TC
1163 int nid = cpu_to_node(cpu);
1164 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1165 enum { cpuset, possible, fail } state = cpuset;
1166 int dest_cpu;
5da9a0fb 1167
aa00d89c
TC
1168 /*
1169 * If the node that the cpu is on has been offlined, cpu_to_node()
1170 * will return -1. There is no cpu on the node, and we should
1171 * select the cpu on the other node.
1172 */
1173 if (nid != -1) {
1174 nodemask = cpumask_of_node(nid);
1175
1176 /* Look for allowed, online CPU in same node. */
1177 for_each_cpu(dest_cpu, nodemask) {
1178 if (!cpu_online(dest_cpu))
1179 continue;
1180 if (!cpu_active(dest_cpu))
1181 continue;
1182 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1183 return dest_cpu;
1184 }
2baab4e9 1185 }
5da9a0fb 1186
2baab4e9
PZ
1187 for (;;) {
1188 /* Any allowed, online CPU? */
e3831edd 1189 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1190 if (!cpu_online(dest_cpu))
1191 continue;
1192 if (!cpu_active(dest_cpu))
1193 continue;
1194 goto out;
1195 }
5da9a0fb 1196
2baab4e9
PZ
1197 switch (state) {
1198 case cpuset:
1199 /* No more Mr. Nice Guy. */
1200 cpuset_cpus_allowed_fallback(p);
1201 state = possible;
1202 break;
1203
1204 case possible:
1205 do_set_cpus_allowed(p, cpu_possible_mask);
1206 state = fail;
1207 break;
1208
1209 case fail:
1210 BUG();
1211 break;
1212 }
1213 }
1214
1215out:
1216 if (state != cpuset) {
1217 /*
1218 * Don't tell them about moving exiting tasks or
1219 * kernel threads (both mm NULL), since they never
1220 * leave kernel.
1221 */
1222 if (p->mm && printk_ratelimit()) {
1223 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1224 task_pid_nr(p), p->comm, cpu);
1225 }
5da9a0fb
PZ
1226 }
1227
1228 return dest_cpu;
1229}
1230
e2912009 1231/*
013fdb80 1232 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1233 */
970b13ba 1234static inline
7608dec2 1235int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1236{
7608dec2 1237 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1238
1239 /*
1240 * In order not to call set_task_cpu() on a blocking task we need
1241 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1242 * cpu.
1243 *
1244 * Since this is common to all placement strategies, this lives here.
1245 *
1246 * [ this allows ->select_task() to simply return task_cpu(p) and
1247 * not worry about this generic constraint ]
1248 */
fa17b507 1249 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1250 !cpu_online(cpu)))
5da9a0fb 1251 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1252
1253 return cpu;
970b13ba 1254}
09a40af5
MG
1255
1256static void update_avg(u64 *avg, u64 sample)
1257{
1258 s64 diff = sample - *avg;
1259 *avg += diff >> 3;
1260}
970b13ba
PZ
1261#endif
1262
d7c01d27 1263static void
b84cb5df 1264ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1265{
d7c01d27 1266#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1267 struct rq *rq = this_rq();
1268
d7c01d27
PZ
1269#ifdef CONFIG_SMP
1270 int this_cpu = smp_processor_id();
1271
1272 if (cpu == this_cpu) {
1273 schedstat_inc(rq, ttwu_local);
1274 schedstat_inc(p, se.statistics.nr_wakeups_local);
1275 } else {
1276 struct sched_domain *sd;
1277
1278 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1279 rcu_read_lock();
d7c01d27
PZ
1280 for_each_domain(this_cpu, sd) {
1281 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1282 schedstat_inc(sd, ttwu_wake_remote);
1283 break;
1284 }
1285 }
057f3fad 1286 rcu_read_unlock();
d7c01d27 1287 }
f339b9dc
PZ
1288
1289 if (wake_flags & WF_MIGRATED)
1290 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1291
d7c01d27
PZ
1292#endif /* CONFIG_SMP */
1293
1294 schedstat_inc(rq, ttwu_count);
9ed3811a 1295 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1296
1297 if (wake_flags & WF_SYNC)
9ed3811a 1298 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1299
d7c01d27
PZ
1300#endif /* CONFIG_SCHEDSTATS */
1301}
1302
1303static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1304{
9ed3811a 1305 activate_task(rq, p, en_flags);
fd2f4419 1306 p->on_rq = 1;
c2f7115e
PZ
1307
1308 /* if a worker is waking up, notify workqueue */
1309 if (p->flags & PF_WQ_WORKER)
1310 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1311}
1312
23f41eeb
PZ
1313/*
1314 * Mark the task runnable and perform wakeup-preemption.
1315 */
89363381 1316static void
23f41eeb 1317ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1318{
9ed3811a 1319 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1320 trace_sched_wakeup(p, true);
9ed3811a
TH
1321
1322 p->state = TASK_RUNNING;
1323#ifdef CONFIG_SMP
1324 if (p->sched_class->task_woken)
1325 p->sched_class->task_woken(rq, p);
1326
e69c6341 1327 if (rq->idle_stamp) {
78becc27 1328 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1329 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1330
abfafa54
JL
1331 update_avg(&rq->avg_idle, delta);
1332
1333 if (rq->avg_idle > max)
9ed3811a 1334 rq->avg_idle = max;
abfafa54 1335
9ed3811a
TH
1336 rq->idle_stamp = 0;
1337 }
1338#endif
1339}
1340
c05fbafb
PZ
1341static void
1342ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1343{
1344#ifdef CONFIG_SMP
1345 if (p->sched_contributes_to_load)
1346 rq->nr_uninterruptible--;
1347#endif
1348
1349 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1350 ttwu_do_wakeup(rq, p, wake_flags);
1351}
1352
1353/*
1354 * Called in case the task @p isn't fully descheduled from its runqueue,
1355 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1356 * since all we need to do is flip p->state to TASK_RUNNING, since
1357 * the task is still ->on_rq.
1358 */
1359static int ttwu_remote(struct task_struct *p, int wake_flags)
1360{
1361 struct rq *rq;
1362 int ret = 0;
1363
1364 rq = __task_rq_lock(p);
1365 if (p->on_rq) {
1ad4ec0d
FW
1366 /* check_preempt_curr() may use rq clock */
1367 update_rq_clock(rq);
c05fbafb
PZ
1368 ttwu_do_wakeup(rq, p, wake_flags);
1369 ret = 1;
1370 }
1371 __task_rq_unlock(rq);
1372
1373 return ret;
1374}
1375
317f3941 1376#ifdef CONFIG_SMP
fa14ff4a 1377static void sched_ttwu_pending(void)
317f3941
PZ
1378{
1379 struct rq *rq = this_rq();
fa14ff4a
PZ
1380 struct llist_node *llist = llist_del_all(&rq->wake_list);
1381 struct task_struct *p;
317f3941
PZ
1382
1383 raw_spin_lock(&rq->lock);
1384
fa14ff4a
PZ
1385 while (llist) {
1386 p = llist_entry(llist, struct task_struct, wake_entry);
1387 llist = llist_next(llist);
317f3941
PZ
1388 ttwu_do_activate(rq, p, 0);
1389 }
1390
1391 raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
f27dde8d
PZ
1396 /*
1397 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1398 * TIF_NEED_RESCHED remotely (for the first time) will also send
1399 * this IPI.
1400 */
1401 if (tif_need_resched())
1402 set_preempt_need_resched();
1403
873b4c65
VG
1404 if (llist_empty(&this_rq()->wake_list)
1405 && !tick_nohz_full_cpu(smp_processor_id())
1406 && !got_nohz_idle_kick())
c5d753a5
PZ
1407 return;
1408
1409 /*
1410 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1411 * traditionally all their work was done from the interrupt return
1412 * path. Now that we actually do some work, we need to make sure
1413 * we do call them.
1414 *
1415 * Some archs already do call them, luckily irq_enter/exit nest
1416 * properly.
1417 *
1418 * Arguably we should visit all archs and update all handlers,
1419 * however a fair share of IPIs are still resched only so this would
1420 * somewhat pessimize the simple resched case.
1421 */
1422 irq_enter();
ff442c51 1423 tick_nohz_full_check();
fa14ff4a 1424 sched_ttwu_pending();
ca38062e
SS
1425
1426 /*
1427 * Check if someone kicked us for doing the nohz idle load balance.
1428 */
873b4c65 1429 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1430 this_rq()->idle_balance = 1;
ca38062e 1431 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1432 }
c5d753a5 1433 irq_exit();
317f3941
PZ
1434}
1435
1436static void ttwu_queue_remote(struct task_struct *p, int cpu)
1437{
fa14ff4a 1438 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1439 smp_send_reschedule(cpu);
1440}
d6aa8f85 1441
39be3501 1442bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1443{
1444 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1445}
d6aa8f85 1446#endif /* CONFIG_SMP */
317f3941 1447
c05fbafb
PZ
1448static void ttwu_queue(struct task_struct *p, int cpu)
1449{
1450 struct rq *rq = cpu_rq(cpu);
1451
17d9f311 1452#if defined(CONFIG_SMP)
39be3501 1453 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1454 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1455 ttwu_queue_remote(p, cpu);
1456 return;
1457 }
1458#endif
1459
c05fbafb
PZ
1460 raw_spin_lock(&rq->lock);
1461 ttwu_do_activate(rq, p, 0);
1462 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1463}
1464
1465/**
1da177e4 1466 * try_to_wake_up - wake up a thread
9ed3811a 1467 * @p: the thread to be awakened
1da177e4 1468 * @state: the mask of task states that can be woken
9ed3811a 1469 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
e69f6186 1477 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1478 * or @state didn't match @p's state.
1da177e4 1479 */
e4a52bcb
PZ
1480static int
1481try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1482{
1da177e4 1483 unsigned long flags;
c05fbafb 1484 int cpu, success = 0;
2398f2c6 1485
e0acd0a6
ON
1486 /*
1487 * If we are going to wake up a thread waiting for CONDITION we
1488 * need to ensure that CONDITION=1 done by the caller can not be
1489 * reordered with p->state check below. This pairs with mb() in
1490 * set_current_state() the waiting thread does.
1491 */
1492 smp_mb__before_spinlock();
013fdb80 1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1494 if (!(p->state & state))
1da177e4
LT
1495 goto out;
1496
c05fbafb 1497 success = 1; /* we're going to change ->state */
1da177e4 1498 cpu = task_cpu(p);
1da177e4 1499
c05fbafb
PZ
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1da177e4 1502
1da177e4 1503#ifdef CONFIG_SMP
e9c84311 1504 /*
c05fbafb
PZ
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
e9c84311 1507 */
f3e94786 1508 while (p->on_cpu)
e4a52bcb 1509 cpu_relax();
0970d299 1510 /*
e4a52bcb 1511 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1512 */
e4a52bcb 1513 smp_rmb();
1da177e4 1514
a8e4f2ea 1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1516 p->state = TASK_WAKING;
e7693a36 1517
e4a52bcb 1518 if (p->sched_class->task_waking)
74f8e4b2 1519 p->sched_class->task_waking(p);
efbbd05a 1520
7608dec2 1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
e4a52bcb 1524 set_task_cpu(p, cpu);
f339b9dc 1525 }
1da177e4 1526#endif /* CONFIG_SMP */
1da177e4 1527
c05fbafb
PZ
1528 ttwu_queue(p, cpu);
1529stat:
b84cb5df 1530 ttwu_stat(p, cpu, wake_flags);
1da177e4 1531out:
013fdb80 1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1533
1534 return success;
1535}
1536
21aa9af0
TH
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
2acca55e 1541 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1543 * the current task.
21aa9af0
TH
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547 struct rq *rq = task_rq(p);
21aa9af0 1548
383efcd0
TH
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
21aa9af0
TH
1553 lockdep_assert_held(&rq->lock);
1554
2acca55e
PZ
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
21aa9af0 1561 if (!(p->state & TASK_NORMAL))
2acca55e 1562 goto out;
21aa9af0 1563
fd2f4419 1564 if (!p->on_rq)
d7c01d27
PZ
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
23f41eeb 1567 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1568 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1569out:
1570 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1571}
1572
50fa610a
DH
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1578 * processes.
1579 *
1580 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1581 *
1582 * It may be assumed that this function implies a write memory barrier before
1583 * changing the task state if and only if any tasks are woken up.
1584 */
7ad5b3a5 1585int wake_up_process(struct task_struct *p)
1da177e4 1586{
9067ac85
ON
1587 WARN_ON(task_is_stopped_or_traced(p));
1588 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1589}
1da177e4
LT
1590EXPORT_SYMBOL(wake_up_process);
1591
7ad5b3a5 1592int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1593{
1594 return try_to_wake_up(p, state, 0);
1595}
1596
1da177e4
LT
1597/*
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
dd41f596
IM
1600 *
1601 * __sched_fork() is basic setup used by init_idle() too:
1602 */
1603static void __sched_fork(struct task_struct *p)
1604{
fd2f4419
PZ
1605 p->on_rq = 0;
1606
1607 p->se.on_rq = 0;
dd41f596
IM
1608 p->se.exec_start = 0;
1609 p->se.sum_exec_runtime = 0;
f6cf891c 1610 p->se.prev_sum_exec_runtime = 0;
6c594c21 1611 p->se.nr_migrations = 0;
da7a735e 1612 p->se.vruntime = 0;
fd2f4419 1613 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1614
1615#ifdef CONFIG_SCHEDSTATS
41acab88 1616 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1617#endif
476d139c 1618
fa717060 1619 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1620
e107be36
AK
1621#ifdef CONFIG_PREEMPT_NOTIFIERS
1622 INIT_HLIST_HEAD(&p->preempt_notifiers);
1623#endif
cbee9f88
PZ
1624
1625#ifdef CONFIG_NUMA_BALANCING
1626 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1627 p->mm->numa_next_scan = jiffies;
b8593bfd 1628 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1629 p->mm->numa_scan_seq = 0;
1630 }
1631
1632 p->node_stamp = 0ULL;
1633 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1634 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1635 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1636 p->numa_work.next = &p->numa_work;
1637#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1638}
1639
1a687c2e 1640#ifdef CONFIG_NUMA_BALANCING
3105b86a 1641#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1642void set_numabalancing_state(bool enabled)
1643{
1644 if (enabled)
1645 sched_feat_set("NUMA");
1646 else
1647 sched_feat_set("NO_NUMA");
1648}
3105b86a
MG
1649#else
1650__read_mostly bool numabalancing_enabled;
1651
1652void set_numabalancing_state(bool enabled)
1653{
1654 numabalancing_enabled = enabled;
dd41f596 1655}
3105b86a 1656#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1657#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1658
1659/*
1660 * fork()/clone()-time setup:
1661 */
3e51e3ed 1662void sched_fork(struct task_struct *p)
dd41f596 1663{
0122ec5b 1664 unsigned long flags;
dd41f596
IM
1665 int cpu = get_cpu();
1666
1667 __sched_fork(p);
06b83b5f 1668 /*
0017d735 1669 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1670 * nobody will actually run it, and a signal or other external
1671 * event cannot wake it up and insert it on the runqueue either.
1672 */
0017d735 1673 p->state = TASK_RUNNING;
dd41f596 1674
c350a04e
MG
1675 /*
1676 * Make sure we do not leak PI boosting priority to the child.
1677 */
1678 p->prio = current->normal_prio;
1679
b9dc29e7
MG
1680 /*
1681 * Revert to default priority/policy on fork if requested.
1682 */
1683 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1684 if (task_has_rt_policy(p)) {
b9dc29e7 1685 p->policy = SCHED_NORMAL;
6c697bdf 1686 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1687 p->rt_priority = 0;
1688 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1689 p->static_prio = NICE_TO_PRIO(0);
1690
1691 p->prio = p->normal_prio = __normal_prio(p);
1692 set_load_weight(p);
6c697bdf 1693
b9dc29e7
MG
1694 /*
1695 * We don't need the reset flag anymore after the fork. It has
1696 * fulfilled its duty:
1697 */
1698 p->sched_reset_on_fork = 0;
1699 }
ca94c442 1700
2ddbf952
HS
1701 if (!rt_prio(p->prio))
1702 p->sched_class = &fair_sched_class;
b29739f9 1703
cd29fe6f
PZ
1704 if (p->sched_class->task_fork)
1705 p->sched_class->task_fork(p);
1706
86951599
PZ
1707 /*
1708 * The child is not yet in the pid-hash so no cgroup attach races,
1709 * and the cgroup is pinned to this child due to cgroup_fork()
1710 * is ran before sched_fork().
1711 *
1712 * Silence PROVE_RCU.
1713 */
0122ec5b 1714 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1715 set_task_cpu(p, cpu);
0122ec5b 1716 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1717
52f17b6c 1718#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1719 if (likely(sched_info_on()))
52f17b6c 1720 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1721#endif
3ca7a440
PZ
1722#if defined(CONFIG_SMP)
1723 p->on_cpu = 0;
4866cde0 1724#endif
bdd4e85d 1725#ifdef CONFIG_PREEMPT_COUNT
01028747 1726 init_task_preempt_count(p);
1da177e4 1727#endif
806c09a7 1728#ifdef CONFIG_SMP
917b627d 1729 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1730#endif
917b627d 1731
476d139c 1732 put_cpu();
1da177e4
LT
1733}
1734
1735/*
1736 * wake_up_new_task - wake up a newly created task for the first time.
1737 *
1738 * This function will do some initial scheduler statistics housekeeping
1739 * that must be done for every newly created context, then puts the task
1740 * on the runqueue and wakes it.
1741 */
3e51e3ed 1742void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1743{
1744 unsigned long flags;
dd41f596 1745 struct rq *rq;
fabf318e 1746
ab2515c4 1747 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1748#ifdef CONFIG_SMP
1749 /*
1750 * Fork balancing, do it here and not earlier because:
1751 * - cpus_allowed can change in the fork path
1752 * - any previously selected cpu might disappear through hotplug
fabf318e 1753 */
ab2515c4 1754 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1755#endif
1756
a75cdaa9
AS
1757 /* Initialize new task's runnable average */
1758 init_task_runnable_average(p);
ab2515c4 1759 rq = __task_rq_lock(p);
cd29fe6f 1760 activate_task(rq, p, 0);
fd2f4419 1761 p->on_rq = 1;
89363381 1762 trace_sched_wakeup_new(p, true);
a7558e01 1763 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1764#ifdef CONFIG_SMP
efbbd05a
PZ
1765 if (p->sched_class->task_woken)
1766 p->sched_class->task_woken(rq, p);
9a897c5a 1767#endif
0122ec5b 1768 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1769}
1770
e107be36
AK
1771#ifdef CONFIG_PREEMPT_NOTIFIERS
1772
1773/**
80dd99b3 1774 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1775 * @notifier: notifier struct to register
e107be36
AK
1776 */
1777void preempt_notifier_register(struct preempt_notifier *notifier)
1778{
1779 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1780}
1781EXPORT_SYMBOL_GPL(preempt_notifier_register);
1782
1783/**
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1785 * @notifier: notifier struct to unregister
e107be36
AK
1786 *
1787 * This is safe to call from within a preemption notifier.
1788 */
1789void preempt_notifier_unregister(struct preempt_notifier *notifier)
1790{
1791 hlist_del(&notifier->link);
1792}
1793EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1794
1795static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796{
1797 struct preempt_notifier *notifier;
e107be36 1798
b67bfe0d 1799 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1800 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1801}
1802
1803static void
1804fire_sched_out_preempt_notifiers(struct task_struct *curr,
1805 struct task_struct *next)
1806{
1807 struct preempt_notifier *notifier;
e107be36 1808
b67bfe0d 1809 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1810 notifier->ops->sched_out(notifier, next);
1811}
1812
6d6bc0ad 1813#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1814
1815static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1816{
1817}
1818
1819static void
1820fire_sched_out_preempt_notifiers(struct task_struct *curr,
1821 struct task_struct *next)
1822{
1823}
1824
6d6bc0ad 1825#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1826
4866cde0
NP
1827/**
1828 * prepare_task_switch - prepare to switch tasks
1829 * @rq: the runqueue preparing to switch
421cee29 1830 * @prev: the current task that is being switched out
4866cde0
NP
1831 * @next: the task we are going to switch to.
1832 *
1833 * This is called with the rq lock held and interrupts off. It must
1834 * be paired with a subsequent finish_task_switch after the context
1835 * switch.
1836 *
1837 * prepare_task_switch sets up locking and calls architecture specific
1838 * hooks.
1839 */
e107be36
AK
1840static inline void
1841prepare_task_switch(struct rq *rq, struct task_struct *prev,
1842 struct task_struct *next)
4866cde0 1843{
895dd92c 1844 trace_sched_switch(prev, next);
43148951 1845 sched_info_switch(rq, prev, next);
fe4b04fa 1846 perf_event_task_sched_out(prev, next);
e107be36 1847 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1848 prepare_lock_switch(rq, next);
1849 prepare_arch_switch(next);
1850}
1851
1da177e4
LT
1852/**
1853 * finish_task_switch - clean up after a task-switch
344babaa 1854 * @rq: runqueue associated with task-switch
1da177e4
LT
1855 * @prev: the thread we just switched away from.
1856 *
4866cde0
NP
1857 * finish_task_switch must be called after the context switch, paired
1858 * with a prepare_task_switch call before the context switch.
1859 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1860 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1861 *
1862 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1863 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1864 * with the lock held can cause deadlocks; see schedule() for
1865 * details.)
1866 */
a9957449 1867static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1868 __releases(rq->lock)
1869{
1da177e4 1870 struct mm_struct *mm = rq->prev_mm;
55a101f8 1871 long prev_state;
1da177e4
LT
1872
1873 rq->prev_mm = NULL;
1874
1875 /*
1876 * A task struct has one reference for the use as "current".
c394cc9f 1877 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1878 * schedule one last time. The schedule call will never return, and
1879 * the scheduled task must drop that reference.
c394cc9f 1880 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1881 * still held, otherwise prev could be scheduled on another cpu, die
1882 * there before we look at prev->state, and then the reference would
1883 * be dropped twice.
1884 * Manfred Spraul <manfred@colorfullife.com>
1885 */
55a101f8 1886 prev_state = prev->state;
bf9fae9f 1887 vtime_task_switch(prev);
4866cde0 1888 finish_arch_switch(prev);
a8d757ef 1889 perf_event_task_sched_in(prev, current);
4866cde0 1890 finish_lock_switch(rq, prev);
01f23e16 1891 finish_arch_post_lock_switch();
e8fa1362 1892
e107be36 1893 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1894 if (mm)
1895 mmdrop(mm);
c394cc9f 1896 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1897 /*
1898 * Remove function-return probe instances associated with this
1899 * task and put them back on the free list.
9761eea8 1900 */
c6fd91f0 1901 kprobe_flush_task(prev);
1da177e4 1902 put_task_struct(prev);
c6fd91f0 1903 }
99e5ada9
FW
1904
1905 tick_nohz_task_switch(current);
1da177e4
LT
1906}
1907
3f029d3c
GH
1908#ifdef CONFIG_SMP
1909
1910/* assumes rq->lock is held */
1911static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1912{
1913 if (prev->sched_class->pre_schedule)
1914 prev->sched_class->pre_schedule(rq, prev);
1915}
1916
1917/* rq->lock is NOT held, but preemption is disabled */
1918static inline void post_schedule(struct rq *rq)
1919{
1920 if (rq->post_schedule) {
1921 unsigned long flags;
1922
05fa785c 1923 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1924 if (rq->curr->sched_class->post_schedule)
1925 rq->curr->sched_class->post_schedule(rq);
05fa785c 1926 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1927
1928 rq->post_schedule = 0;
1929 }
1930}
1931
1932#else
da19ab51 1933
3f029d3c
GH
1934static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1935{
1936}
1937
1938static inline void post_schedule(struct rq *rq)
1939{
1da177e4
LT
1940}
1941
3f029d3c
GH
1942#endif
1943
1da177e4
LT
1944/**
1945 * schedule_tail - first thing a freshly forked thread must call.
1946 * @prev: the thread we just switched away from.
1947 */
36c8b586 1948asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1949 __releases(rq->lock)
1950{
70b97a7f
IM
1951 struct rq *rq = this_rq();
1952
4866cde0 1953 finish_task_switch(rq, prev);
da19ab51 1954
3f029d3c
GH
1955 /*
1956 * FIXME: do we need to worry about rq being invalidated by the
1957 * task_switch?
1958 */
1959 post_schedule(rq);
70b97a7f 1960
4866cde0
NP
1961#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1962 /* In this case, finish_task_switch does not reenable preemption */
1963 preempt_enable();
1964#endif
1da177e4 1965 if (current->set_child_tid)
b488893a 1966 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1967}
1968
1969/*
1970 * context_switch - switch to the new MM and the new
1971 * thread's register state.
1972 */
dd41f596 1973static inline void
70b97a7f 1974context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1975 struct task_struct *next)
1da177e4 1976{
dd41f596 1977 struct mm_struct *mm, *oldmm;
1da177e4 1978
e107be36 1979 prepare_task_switch(rq, prev, next);
fe4b04fa 1980
dd41f596
IM
1981 mm = next->mm;
1982 oldmm = prev->active_mm;
9226d125
ZA
1983 /*
1984 * For paravirt, this is coupled with an exit in switch_to to
1985 * combine the page table reload and the switch backend into
1986 * one hypercall.
1987 */
224101ed 1988 arch_start_context_switch(prev);
9226d125 1989
31915ab4 1990 if (!mm) {
1da177e4
LT
1991 next->active_mm = oldmm;
1992 atomic_inc(&oldmm->mm_count);
1993 enter_lazy_tlb(oldmm, next);
1994 } else
1995 switch_mm(oldmm, mm, next);
1996
31915ab4 1997 if (!prev->mm) {
1da177e4 1998 prev->active_mm = NULL;
1da177e4
LT
1999 rq->prev_mm = oldmm;
2000 }
3a5f5e48
IM
2001 /*
2002 * Since the runqueue lock will be released by the next
2003 * task (which is an invalid locking op but in the case
2004 * of the scheduler it's an obvious special-case), so we
2005 * do an early lockdep release here:
2006 */
2007#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2008 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2009#endif
1da177e4 2010
91d1aa43 2011 context_tracking_task_switch(prev, next);
1da177e4
LT
2012 /* Here we just switch the register state and the stack. */
2013 switch_to(prev, next, prev);
2014
dd41f596
IM
2015 barrier();
2016 /*
2017 * this_rq must be evaluated again because prev may have moved
2018 * CPUs since it called schedule(), thus the 'rq' on its stack
2019 * frame will be invalid.
2020 */
2021 finish_task_switch(this_rq(), prev);
1da177e4
LT
2022}
2023
2024/*
1c3e8264 2025 * nr_running and nr_context_switches:
1da177e4
LT
2026 *
2027 * externally visible scheduler statistics: current number of runnable
1c3e8264 2028 * threads, total number of context switches performed since bootup.
1da177e4
LT
2029 */
2030unsigned long nr_running(void)
2031{
2032 unsigned long i, sum = 0;
2033
2034 for_each_online_cpu(i)
2035 sum += cpu_rq(i)->nr_running;
2036
2037 return sum;
f711f609 2038}
1da177e4 2039
1da177e4 2040unsigned long long nr_context_switches(void)
46cb4b7c 2041{
cc94abfc
SR
2042 int i;
2043 unsigned long long sum = 0;
46cb4b7c 2044
0a945022 2045 for_each_possible_cpu(i)
1da177e4 2046 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2047
1da177e4
LT
2048 return sum;
2049}
483b4ee6 2050
1da177e4
LT
2051unsigned long nr_iowait(void)
2052{
2053 unsigned long i, sum = 0;
483b4ee6 2054
0a945022 2055 for_each_possible_cpu(i)
1da177e4 2056 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2057
1da177e4
LT
2058 return sum;
2059}
483b4ee6 2060
8c215bd3 2061unsigned long nr_iowait_cpu(int cpu)
69d25870 2062{
8c215bd3 2063 struct rq *this = cpu_rq(cpu);
69d25870
AV
2064 return atomic_read(&this->nr_iowait);
2065}
46cb4b7c 2066
dd41f596 2067#ifdef CONFIG_SMP
8a0be9ef 2068
46cb4b7c 2069/*
38022906
PZ
2070 * sched_exec - execve() is a valuable balancing opportunity, because at
2071 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2072 */
38022906 2073void sched_exec(void)
46cb4b7c 2074{
38022906 2075 struct task_struct *p = current;
1da177e4 2076 unsigned long flags;
0017d735 2077 int dest_cpu;
46cb4b7c 2078
8f42ced9 2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2080 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2081 if (dest_cpu == smp_processor_id())
2082 goto unlock;
38022906 2083
8f42ced9 2084 if (likely(cpu_active(dest_cpu))) {
969c7921 2085 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2086
8f42ced9
PZ
2087 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2088 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2089 return;
2090 }
0017d735 2091unlock:
8f42ced9 2092 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2093}
dd41f596 2094
1da177e4
LT
2095#endif
2096
1da177e4 2097DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2098DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2099
2100EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2101EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2102
2103/*
c5f8d995 2104 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2105 * @p in case that task is currently running.
c5f8d995
HS
2106 *
2107 * Called with task_rq_lock() held on @rq.
1da177e4 2108 */
c5f8d995
HS
2109static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2110{
2111 u64 ns = 0;
2112
2113 if (task_current(rq, p)) {
2114 update_rq_clock(rq);
78becc27 2115 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2116 if ((s64)ns < 0)
2117 ns = 0;
2118 }
2119
2120 return ns;
2121}
2122
bb34d92f 2123unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2124{
1da177e4 2125 unsigned long flags;
41b86e9c 2126 struct rq *rq;
bb34d92f 2127 u64 ns = 0;
48f24c4d 2128
41b86e9c 2129 rq = task_rq_lock(p, &flags);
c5f8d995 2130 ns = do_task_delta_exec(p, rq);
0122ec5b 2131 task_rq_unlock(rq, p, &flags);
1508487e 2132
c5f8d995
HS
2133 return ns;
2134}
f06febc9 2135
c5f8d995
HS
2136/*
2137 * Return accounted runtime for the task.
2138 * In case the task is currently running, return the runtime plus current's
2139 * pending runtime that have not been accounted yet.
2140 */
2141unsigned long long task_sched_runtime(struct task_struct *p)
2142{
2143 unsigned long flags;
2144 struct rq *rq;
2145 u64 ns = 0;
2146
2147 rq = task_rq_lock(p, &flags);
2148 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2149 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2150
2151 return ns;
2152}
48f24c4d 2153
7835b98b
CL
2154/*
2155 * This function gets called by the timer code, with HZ frequency.
2156 * We call it with interrupts disabled.
7835b98b
CL
2157 */
2158void scheduler_tick(void)
2159{
7835b98b
CL
2160 int cpu = smp_processor_id();
2161 struct rq *rq = cpu_rq(cpu);
dd41f596 2162 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2163
2164 sched_clock_tick();
dd41f596 2165
05fa785c 2166 raw_spin_lock(&rq->lock);
3e51f33f 2167 update_rq_clock(rq);
fa85ae24 2168 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2169 update_cpu_load_active(rq);
05fa785c 2170 raw_spin_unlock(&rq->lock);
7835b98b 2171
e9d2b064 2172 perf_event_task_tick();
e220d2dc 2173
e418e1c2 2174#ifdef CONFIG_SMP
6eb57e0d 2175 rq->idle_balance = idle_cpu(cpu);
dd41f596 2176 trigger_load_balance(rq, cpu);
e418e1c2 2177#endif
265f22a9 2178 rq_last_tick_reset(rq);
1da177e4
LT
2179}
2180
265f22a9
FW
2181#ifdef CONFIG_NO_HZ_FULL
2182/**
2183 * scheduler_tick_max_deferment
2184 *
2185 * Keep at least one tick per second when a single
2186 * active task is running because the scheduler doesn't
2187 * yet completely support full dynticks environment.
2188 *
2189 * This makes sure that uptime, CFS vruntime, load
2190 * balancing, etc... continue to move forward, even
2191 * with a very low granularity.
e69f6186
YB
2192 *
2193 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2194 */
2195u64 scheduler_tick_max_deferment(void)
2196{
2197 struct rq *rq = this_rq();
2198 unsigned long next, now = ACCESS_ONCE(jiffies);
2199
2200 next = rq->last_sched_tick + HZ;
2201
2202 if (time_before_eq(next, now))
2203 return 0;
2204
2205 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2206}
265f22a9 2207#endif
1da177e4 2208
132380a0 2209notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2210{
2211 if (in_lock_functions(addr)) {
2212 addr = CALLER_ADDR2;
2213 if (in_lock_functions(addr))
2214 addr = CALLER_ADDR3;
2215 }
2216 return addr;
2217}
1da177e4 2218
7e49fcce
SR
2219#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2220 defined(CONFIG_PREEMPT_TRACER))
2221
43627582 2222void __kprobes add_preempt_count(int val)
1da177e4 2223{
6cd8a4bb 2224#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2225 /*
2226 * Underflow?
2227 */
9a11b49a
IM
2228 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2229 return;
6cd8a4bb 2230#endif
4a2b4b22 2231 add_preempt_count_notrace(val);
6cd8a4bb 2232#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2233 /*
2234 * Spinlock count overflowing soon?
2235 */
33859f7f
MOS
2236 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2237 PREEMPT_MASK - 10);
6cd8a4bb
SR
2238#endif
2239 if (preempt_count() == val)
2240 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2241}
2242EXPORT_SYMBOL(add_preempt_count);
2243
43627582 2244void __kprobes sub_preempt_count(int val)
1da177e4 2245{
6cd8a4bb 2246#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2247 /*
2248 * Underflow?
2249 */
01e3eb82 2250 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2251 return;
1da177e4
LT
2252 /*
2253 * Is the spinlock portion underflowing?
2254 */
9a11b49a
IM
2255 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2256 !(preempt_count() & PREEMPT_MASK)))
2257 return;
6cd8a4bb 2258#endif
9a11b49a 2259
6cd8a4bb
SR
2260 if (preempt_count() == val)
2261 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4a2b4b22 2262 sub_preempt_count_notrace(val);
1da177e4
LT
2263}
2264EXPORT_SYMBOL(sub_preempt_count);
2265
2266#endif
2267
2268/*
dd41f596 2269 * Print scheduling while atomic bug:
1da177e4 2270 */
dd41f596 2271static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2272{
664dfa65
DJ
2273 if (oops_in_progress)
2274 return;
2275
3df0fc5b
PZ
2276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2277 prev->comm, prev->pid, preempt_count());
838225b4 2278
dd41f596 2279 debug_show_held_locks(prev);
e21f5b15 2280 print_modules();
dd41f596
IM
2281 if (irqs_disabled())
2282 print_irqtrace_events(prev);
6135fc1e 2283 dump_stack();
373d4d09 2284 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2285}
1da177e4 2286
dd41f596
IM
2287/*
2288 * Various schedule()-time debugging checks and statistics:
2289 */
2290static inline void schedule_debug(struct task_struct *prev)
2291{
1da177e4 2292 /*
41a2d6cf 2293 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2294 * schedule() atomically, we ignore that path for now.
2295 * Otherwise, whine if we are scheduling when we should not be.
2296 */
3f33a7ce 2297 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2298 __schedule_bug(prev);
b3fbab05 2299 rcu_sleep_check();
dd41f596 2300
1da177e4
LT
2301 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2302
2d72376b 2303 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2304}
2305
6cecd084 2306static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2307{
61eadef6 2308 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2309 update_rq_clock(rq);
6cecd084 2310 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2311}
2312
dd41f596
IM
2313/*
2314 * Pick up the highest-prio task:
2315 */
2316static inline struct task_struct *
b67802ea 2317pick_next_task(struct rq *rq)
dd41f596 2318{
5522d5d5 2319 const struct sched_class *class;
dd41f596 2320 struct task_struct *p;
1da177e4
LT
2321
2322 /*
dd41f596
IM
2323 * Optimization: we know that if all tasks are in
2324 * the fair class we can call that function directly:
1da177e4 2325 */
953bfcd1 2326 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2327 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2328 if (likely(p))
2329 return p;
1da177e4
LT
2330 }
2331
34f971f6 2332 for_each_class(class) {
fb8d4724 2333 p = class->pick_next_task(rq);
dd41f596
IM
2334 if (p)
2335 return p;
dd41f596 2336 }
34f971f6
PZ
2337
2338 BUG(); /* the idle class will always have a runnable task */
dd41f596 2339}
1da177e4 2340
dd41f596 2341/*
c259e01a 2342 * __schedule() is the main scheduler function.
edde96ea
PE
2343 *
2344 * The main means of driving the scheduler and thus entering this function are:
2345 *
2346 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2347 *
2348 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2349 * paths. For example, see arch/x86/entry_64.S.
2350 *
2351 * To drive preemption between tasks, the scheduler sets the flag in timer
2352 * interrupt handler scheduler_tick().
2353 *
2354 * 3. Wakeups don't really cause entry into schedule(). They add a
2355 * task to the run-queue and that's it.
2356 *
2357 * Now, if the new task added to the run-queue preempts the current
2358 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2359 * called on the nearest possible occasion:
2360 *
2361 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2362 *
2363 * - in syscall or exception context, at the next outmost
2364 * preempt_enable(). (this might be as soon as the wake_up()'s
2365 * spin_unlock()!)
2366 *
2367 * - in IRQ context, return from interrupt-handler to
2368 * preemptible context
2369 *
2370 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2371 * then at the next:
2372 *
2373 * - cond_resched() call
2374 * - explicit schedule() call
2375 * - return from syscall or exception to user-space
2376 * - return from interrupt-handler to user-space
dd41f596 2377 */
c259e01a 2378static void __sched __schedule(void)
dd41f596
IM
2379{
2380 struct task_struct *prev, *next;
67ca7bde 2381 unsigned long *switch_count;
dd41f596 2382 struct rq *rq;
31656519 2383 int cpu;
dd41f596 2384
ff743345
PZ
2385need_resched:
2386 preempt_disable();
dd41f596
IM
2387 cpu = smp_processor_id();
2388 rq = cpu_rq(cpu);
25502a6c 2389 rcu_note_context_switch(cpu);
dd41f596 2390 prev = rq->curr;
dd41f596 2391
dd41f596 2392 schedule_debug(prev);
1da177e4 2393
31656519 2394 if (sched_feat(HRTICK))
f333fdc9 2395 hrtick_clear(rq);
8f4d37ec 2396
e0acd0a6
ON
2397 /*
2398 * Make sure that signal_pending_state()->signal_pending() below
2399 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2400 * done by the caller to avoid the race with signal_wake_up().
2401 */
2402 smp_mb__before_spinlock();
05fa785c 2403 raw_spin_lock_irq(&rq->lock);
1da177e4 2404
246d86b5 2405 switch_count = &prev->nivcsw;
1da177e4 2406 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2407 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2408 prev->state = TASK_RUNNING;
21aa9af0 2409 } else {
2acca55e
PZ
2410 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2411 prev->on_rq = 0;
2412
21aa9af0 2413 /*
2acca55e
PZ
2414 * If a worker went to sleep, notify and ask workqueue
2415 * whether it wants to wake up a task to maintain
2416 * concurrency.
21aa9af0
TH
2417 */
2418 if (prev->flags & PF_WQ_WORKER) {
2419 struct task_struct *to_wakeup;
2420
2421 to_wakeup = wq_worker_sleeping(prev, cpu);
2422 if (to_wakeup)
2423 try_to_wake_up_local(to_wakeup);
2424 }
21aa9af0 2425 }
dd41f596 2426 switch_count = &prev->nvcsw;
1da177e4
LT
2427 }
2428
3f029d3c 2429 pre_schedule(rq, prev);
f65eda4f 2430
dd41f596 2431 if (unlikely(!rq->nr_running))
1da177e4 2432 idle_balance(cpu, rq);
1da177e4 2433
df1c99d4 2434 put_prev_task(rq, prev);
b67802ea 2435 next = pick_next_task(rq);
f26f9aff 2436 clear_tsk_need_resched(prev);
f27dde8d 2437 clear_preempt_need_resched();
f26f9aff 2438 rq->skip_clock_update = 0;
1da177e4 2439
1da177e4 2440 if (likely(prev != next)) {
1da177e4
LT
2441 rq->nr_switches++;
2442 rq->curr = next;
2443 ++*switch_count;
2444
dd41f596 2445 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2446 /*
246d86b5
ON
2447 * The context switch have flipped the stack from under us
2448 * and restored the local variables which were saved when
2449 * this task called schedule() in the past. prev == current
2450 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2451 */
2452 cpu = smp_processor_id();
2453 rq = cpu_rq(cpu);
1da177e4 2454 } else
05fa785c 2455 raw_spin_unlock_irq(&rq->lock);
1da177e4 2456
3f029d3c 2457 post_schedule(rq);
1da177e4 2458
ba74c144 2459 sched_preempt_enable_no_resched();
ff743345 2460 if (need_resched())
1da177e4
LT
2461 goto need_resched;
2462}
c259e01a 2463
9c40cef2
TG
2464static inline void sched_submit_work(struct task_struct *tsk)
2465{
3c7d5184 2466 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2467 return;
2468 /*
2469 * If we are going to sleep and we have plugged IO queued,
2470 * make sure to submit it to avoid deadlocks.
2471 */
2472 if (blk_needs_flush_plug(tsk))
2473 blk_schedule_flush_plug(tsk);
2474}
2475
6ebbe7a0 2476asmlinkage void __sched schedule(void)
c259e01a 2477{
9c40cef2
TG
2478 struct task_struct *tsk = current;
2479
2480 sched_submit_work(tsk);
c259e01a
TG
2481 __schedule();
2482}
1da177e4
LT
2483EXPORT_SYMBOL(schedule);
2484
91d1aa43 2485#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2486asmlinkage void __sched schedule_user(void)
2487{
2488 /*
2489 * If we come here after a random call to set_need_resched(),
2490 * or we have been woken up remotely but the IPI has not yet arrived,
2491 * we haven't yet exited the RCU idle mode. Do it here manually until
2492 * we find a better solution.
2493 */
91d1aa43 2494 user_exit();
20ab65e3 2495 schedule();
91d1aa43 2496 user_enter();
20ab65e3
FW
2497}
2498#endif
2499
c5491ea7
TG
2500/**
2501 * schedule_preempt_disabled - called with preemption disabled
2502 *
2503 * Returns with preemption disabled. Note: preempt_count must be 1
2504 */
2505void __sched schedule_preempt_disabled(void)
2506{
ba74c144 2507 sched_preempt_enable_no_resched();
c5491ea7
TG
2508 schedule();
2509 preempt_disable();
2510}
2511
1da177e4
LT
2512#ifdef CONFIG_PREEMPT
2513/*
2ed6e34f 2514 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2515 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2516 * occur there and call schedule directly.
2517 */
d1f74e20 2518asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2519{
1da177e4
LT
2520 /*
2521 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2522 * we do not want to preempt the current task. Just return..
1da177e4 2523 */
fbb00b56 2524 if (likely(!preemptible()))
1da177e4
LT
2525 return;
2526
3a5c359a 2527 do {
d1f74e20 2528 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2529 __schedule();
d1f74e20 2530 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2531
3a5c359a
AK
2532 /*
2533 * Check again in case we missed a preemption opportunity
2534 * between schedule and now.
2535 */
2536 barrier();
5ed0cec0 2537 } while (need_resched());
1da177e4 2538}
1da177e4
LT
2539EXPORT_SYMBOL(preempt_schedule);
2540
2541/*
2ed6e34f 2542 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2543 * off of irq context.
2544 * Note, that this is called and return with irqs disabled. This will
2545 * protect us against recursive calling from irq.
2546 */
2547asmlinkage void __sched preempt_schedule_irq(void)
2548{
b22366cd 2549 enum ctx_state prev_state;
6478d880 2550
2ed6e34f 2551 /* Catch callers which need to be fixed */
f27dde8d 2552 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2553
b22366cd
FW
2554 prev_state = exception_enter();
2555
3a5c359a
AK
2556 do {
2557 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2558 local_irq_enable();
c259e01a 2559 __schedule();
3a5c359a 2560 local_irq_disable();
3a5c359a 2561 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2562
3a5c359a
AK
2563 /*
2564 * Check again in case we missed a preemption opportunity
2565 * between schedule and now.
2566 */
2567 barrier();
5ed0cec0 2568 } while (need_resched());
b22366cd
FW
2569
2570 exception_exit(prev_state);
1da177e4
LT
2571}
2572
2573#endif /* CONFIG_PREEMPT */
2574
63859d4f 2575int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2576 void *key)
1da177e4 2577{
63859d4f 2578 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2579}
1da177e4
LT
2580EXPORT_SYMBOL(default_wake_function);
2581
2582/*
41a2d6cf
IM
2583 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2584 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2585 * number) then we wake all the non-exclusive tasks and one exclusive task.
2586 *
2587 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2588 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2589 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2590 */
78ddb08f 2591static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2592 int nr_exclusive, int wake_flags, void *key)
1da177e4 2593{
2e45874c 2594 wait_queue_t *curr, *next;
1da177e4 2595
2e45874c 2596 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2597 unsigned flags = curr->flags;
2598
63859d4f 2599 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2600 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2601 break;
2602 }
2603}
2604
2605/**
2606 * __wake_up - wake up threads blocked on a waitqueue.
2607 * @q: the waitqueue
2608 * @mode: which threads
2609 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2610 * @key: is directly passed to the wakeup function
50fa610a
DH
2611 *
2612 * It may be assumed that this function implies a write memory barrier before
2613 * changing the task state if and only if any tasks are woken up.
1da177e4 2614 */
7ad5b3a5 2615void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2616 int nr_exclusive, void *key)
1da177e4
LT
2617{
2618 unsigned long flags;
2619
2620 spin_lock_irqsave(&q->lock, flags);
2621 __wake_up_common(q, mode, nr_exclusive, 0, key);
2622 spin_unlock_irqrestore(&q->lock, flags);
2623}
1da177e4
LT
2624EXPORT_SYMBOL(__wake_up);
2625
2626/*
2627 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2628 */
63b20011 2629void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2630{
63b20011 2631 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2632}
22c43c81 2633EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2634
4ede816a
DL
2635void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2636{
2637 __wake_up_common(q, mode, 1, 0, key);
2638}
bf294b41 2639EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2640
1da177e4 2641/**
4ede816a 2642 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2643 * @q: the waitqueue
2644 * @mode: which threads
2645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2646 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2647 *
2648 * The sync wakeup differs that the waker knows that it will schedule
2649 * away soon, so while the target thread will be woken up, it will not
2650 * be migrated to another CPU - ie. the two threads are 'synchronized'
2651 * with each other. This can prevent needless bouncing between CPUs.
2652 *
2653 * On UP it can prevent extra preemption.
50fa610a
DH
2654 *
2655 * It may be assumed that this function implies a write memory barrier before
2656 * changing the task state if and only if any tasks are woken up.
1da177e4 2657 */
4ede816a
DL
2658void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2659 int nr_exclusive, void *key)
1da177e4
LT
2660{
2661 unsigned long flags;
7d478721 2662 int wake_flags = WF_SYNC;
1da177e4
LT
2663
2664 if (unlikely(!q))
2665 return;
2666
cedce3e7 2667 if (unlikely(nr_exclusive != 1))
7d478721 2668 wake_flags = 0;
1da177e4
LT
2669
2670 spin_lock_irqsave(&q->lock, flags);
7d478721 2671 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2672 spin_unlock_irqrestore(&q->lock, flags);
2673}
4ede816a
DL
2674EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2675
2676/*
2677 * __wake_up_sync - see __wake_up_sync_key()
2678 */
2679void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2680{
2681 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2682}
1da177e4
LT
2683EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2684
65eb3dc6
KD
2685/**
2686 * complete: - signals a single thread waiting on this completion
2687 * @x: holds the state of this particular completion
2688 *
2689 * This will wake up a single thread waiting on this completion. Threads will be
2690 * awakened in the same order in which they were queued.
2691 *
2692 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2693 *
2694 * It may be assumed that this function implies a write memory barrier before
2695 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2696 */
b15136e9 2697void complete(struct completion *x)
1da177e4
LT
2698{
2699 unsigned long flags;
2700
2701 spin_lock_irqsave(&x->wait.lock, flags);
2702 x->done++;
d9514f6c 2703 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2704 spin_unlock_irqrestore(&x->wait.lock, flags);
2705}
2706EXPORT_SYMBOL(complete);
2707
65eb3dc6
KD
2708/**
2709 * complete_all: - signals all threads waiting on this completion
2710 * @x: holds the state of this particular completion
2711 *
2712 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2713 *
2714 * It may be assumed that this function implies a write memory barrier before
2715 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2716 */
b15136e9 2717void complete_all(struct completion *x)
1da177e4
LT
2718{
2719 unsigned long flags;
2720
2721 spin_lock_irqsave(&x->wait.lock, flags);
2722 x->done += UINT_MAX/2;
d9514f6c 2723 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2724 spin_unlock_irqrestore(&x->wait.lock, flags);
2725}
2726EXPORT_SYMBOL(complete_all);
2727
8cbbe86d 2728static inline long __sched
686855f5
VD
2729do_wait_for_common(struct completion *x,
2730 long (*action)(long), long timeout, int state)
1da177e4 2731{
1da177e4
LT
2732 if (!x->done) {
2733 DECLARE_WAITQUEUE(wait, current);
2734
a93d2f17 2735 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2736 do {
94d3d824 2737 if (signal_pending_state(state, current)) {
ea71a546
ON
2738 timeout = -ERESTARTSYS;
2739 break;
8cbbe86d
AK
2740 }
2741 __set_current_state(state);
1da177e4 2742 spin_unlock_irq(&x->wait.lock);
686855f5 2743 timeout = action(timeout);
1da177e4 2744 spin_lock_irq(&x->wait.lock);
ea71a546 2745 } while (!x->done && timeout);
1da177e4 2746 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2747 if (!x->done)
2748 return timeout;
1da177e4
LT
2749 }
2750 x->done--;
ea71a546 2751 return timeout ?: 1;
1da177e4 2752}
1da177e4 2753
686855f5
VD
2754static inline long __sched
2755__wait_for_common(struct completion *x,
2756 long (*action)(long), long timeout, int state)
1da177e4 2757{
1da177e4
LT
2758 might_sleep();
2759
2760 spin_lock_irq(&x->wait.lock);
686855f5 2761 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2762 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2763 return timeout;
2764}
1da177e4 2765
686855f5
VD
2766static long __sched
2767wait_for_common(struct completion *x, long timeout, int state)
2768{
2769 return __wait_for_common(x, schedule_timeout, timeout, state);
2770}
2771
2772static long __sched
2773wait_for_common_io(struct completion *x, long timeout, int state)
2774{
2775 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2776}
2777
65eb3dc6
KD
2778/**
2779 * wait_for_completion: - waits for completion of a task
2780 * @x: holds the state of this particular completion
2781 *
2782 * This waits to be signaled for completion of a specific task. It is NOT
2783 * interruptible and there is no timeout.
2784 *
2785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2786 * and interrupt capability. Also see complete().
2787 */
b15136e9 2788void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2789{
2790 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2791}
8cbbe86d 2792EXPORT_SYMBOL(wait_for_completion);
1da177e4 2793
65eb3dc6
KD
2794/**
2795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2796 * @x: holds the state of this particular completion
2797 * @timeout: timeout value in jiffies
2798 *
2799 * This waits for either a completion of a specific task to be signaled or for a
2800 * specified timeout to expire. The timeout is in jiffies. It is not
2801 * interruptible.
c6dc7f05 2802 *
e69f6186
YB
2803 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2804 * till timeout) if completed.
65eb3dc6 2805 */
b15136e9 2806unsigned long __sched
8cbbe86d 2807wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2808{
8cbbe86d 2809 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2810}
8cbbe86d 2811EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2812
686855f5
VD
2813/**
2814 * wait_for_completion_io: - waits for completion of a task
2815 * @x: holds the state of this particular completion
2816 *
2817 * This waits to be signaled for completion of a specific task. It is NOT
2818 * interruptible and there is no timeout. The caller is accounted as waiting
2819 * for IO.
2820 */
2821void __sched wait_for_completion_io(struct completion *x)
2822{
2823 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2824}
2825EXPORT_SYMBOL(wait_for_completion_io);
2826
2827/**
2828 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2829 * @x: holds the state of this particular completion
2830 * @timeout: timeout value in jiffies
2831 *
2832 * This waits for either a completion of a specific task to be signaled or for a
2833 * specified timeout to expire. The timeout is in jiffies. It is not
2834 * interruptible. The caller is accounted as waiting for IO.
2835 *
e69f6186
YB
2836 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2837 * till timeout) if completed.
686855f5
VD
2838 */
2839unsigned long __sched
2840wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2841{
2842 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2843}
2844EXPORT_SYMBOL(wait_for_completion_io_timeout);
2845
65eb3dc6
KD
2846/**
2847 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2848 * @x: holds the state of this particular completion
2849 *
2850 * This waits for completion of a specific task to be signaled. It is
2851 * interruptible.
c6dc7f05 2852 *
e69f6186 2853 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2854 */
8cbbe86d 2855int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2856{
51e97990
AK
2857 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2858 if (t == -ERESTARTSYS)
2859 return t;
2860 return 0;
0fec171c 2861}
8cbbe86d 2862EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2863
65eb3dc6
KD
2864/**
2865 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2866 * @x: holds the state of this particular completion
2867 * @timeout: timeout value in jiffies
2868 *
2869 * This waits for either a completion of a specific task to be signaled or for a
2870 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2871 *
e69f6186
YB
2872 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2873 * or number of jiffies left till timeout) if completed.
65eb3dc6 2874 */
6bf41237 2875long __sched
8cbbe86d
AK
2876wait_for_completion_interruptible_timeout(struct completion *x,
2877 unsigned long timeout)
0fec171c 2878{
8cbbe86d 2879 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2880}
8cbbe86d 2881EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2882
65eb3dc6
KD
2883/**
2884 * wait_for_completion_killable: - waits for completion of a task (killable)
2885 * @x: holds the state of this particular completion
2886 *
2887 * This waits to be signaled for completion of a specific task. It can be
2888 * interrupted by a kill signal.
c6dc7f05 2889 *
e69f6186 2890 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2891 */
009e577e
MW
2892int __sched wait_for_completion_killable(struct completion *x)
2893{
2894 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2895 if (t == -ERESTARTSYS)
2896 return t;
2897 return 0;
2898}
2899EXPORT_SYMBOL(wait_for_completion_killable);
2900
0aa12fb4
SW
2901/**
2902 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2903 * @x: holds the state of this particular completion
2904 * @timeout: timeout value in jiffies
2905 *
2906 * This waits for either a completion of a specific task to be
2907 * signaled or for a specified timeout to expire. It can be
2908 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 2909 *
e69f6186
YB
2910 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2911 * or number of jiffies left till timeout) if completed.
0aa12fb4 2912 */
6bf41237 2913long __sched
0aa12fb4
SW
2914wait_for_completion_killable_timeout(struct completion *x,
2915 unsigned long timeout)
2916{
2917 return wait_for_common(x, timeout, TASK_KILLABLE);
2918}
2919EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2920
be4de352
DC
2921/**
2922 * try_wait_for_completion - try to decrement a completion without blocking
2923 * @x: completion structure
2924 *
e69f6186 2925 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
2926 * 1 if a decrement succeeded.
2927 *
2928 * If a completion is being used as a counting completion,
2929 * attempt to decrement the counter without blocking. This
2930 * enables us to avoid waiting if the resource the completion
2931 * is protecting is not available.
2932 */
2933bool try_wait_for_completion(struct completion *x)
2934{
7539a3b3 2935 unsigned long flags;
be4de352
DC
2936 int ret = 1;
2937
7539a3b3 2938 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2939 if (!x->done)
2940 ret = 0;
2941 else
2942 x->done--;
7539a3b3 2943 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2944 return ret;
2945}
2946EXPORT_SYMBOL(try_wait_for_completion);
2947
2948/**
2949 * completion_done - Test to see if a completion has any waiters
2950 * @x: completion structure
2951 *
e69f6186 2952 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
2953 * 1 if there are no waiters.
2954 *
2955 */
2956bool completion_done(struct completion *x)
2957{
7539a3b3 2958 unsigned long flags;
be4de352
DC
2959 int ret = 1;
2960
7539a3b3 2961 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2962 if (!x->done)
2963 ret = 0;
7539a3b3 2964 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2965 return ret;
2966}
2967EXPORT_SYMBOL(completion_done);
2968
8cbbe86d
AK
2969static long __sched
2970sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2971{
0fec171c
IM
2972 unsigned long flags;
2973 wait_queue_t wait;
2974
2975 init_waitqueue_entry(&wait, current);
1da177e4 2976
8cbbe86d 2977 __set_current_state(state);
1da177e4 2978
8cbbe86d
AK
2979 spin_lock_irqsave(&q->lock, flags);
2980 __add_wait_queue(q, &wait);
2981 spin_unlock(&q->lock);
2982 timeout = schedule_timeout(timeout);
2983 spin_lock_irq(&q->lock);
2984 __remove_wait_queue(q, &wait);
2985 spin_unlock_irqrestore(&q->lock, flags);
2986
2987 return timeout;
2988}
2989
2990void __sched interruptible_sleep_on(wait_queue_head_t *q)
2991{
2992 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2993}
1da177e4
LT
2994EXPORT_SYMBOL(interruptible_sleep_on);
2995
0fec171c 2996long __sched
95cdf3b7 2997interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2998{
8cbbe86d 2999 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3000}
1da177e4
LT
3001EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3002
0fec171c 3003void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3004{
8cbbe86d 3005 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3006}
1da177e4
LT
3007EXPORT_SYMBOL(sleep_on);
3008
0fec171c 3009long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3010{
8cbbe86d 3011 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3012}
1da177e4
LT
3013EXPORT_SYMBOL(sleep_on_timeout);
3014
b29739f9
IM
3015#ifdef CONFIG_RT_MUTEXES
3016
3017/*
3018 * rt_mutex_setprio - set the current priority of a task
3019 * @p: task
3020 * @prio: prio value (kernel-internal form)
3021 *
3022 * This function changes the 'effective' priority of a task. It does
3023 * not touch ->normal_prio like __setscheduler().
3024 *
3025 * Used by the rt_mutex code to implement priority inheritance logic.
3026 */
36c8b586 3027void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3028{
83b699ed 3029 int oldprio, on_rq, running;
70b97a7f 3030 struct rq *rq;
83ab0aa0 3031 const struct sched_class *prev_class;
b29739f9
IM
3032
3033 BUG_ON(prio < 0 || prio > MAX_PRIO);
3034
0122ec5b 3035 rq = __task_rq_lock(p);
b29739f9 3036
1c4dd99b
TG
3037 /*
3038 * Idle task boosting is a nono in general. There is one
3039 * exception, when PREEMPT_RT and NOHZ is active:
3040 *
3041 * The idle task calls get_next_timer_interrupt() and holds
3042 * the timer wheel base->lock on the CPU and another CPU wants
3043 * to access the timer (probably to cancel it). We can safely
3044 * ignore the boosting request, as the idle CPU runs this code
3045 * with interrupts disabled and will complete the lock
3046 * protected section without being interrupted. So there is no
3047 * real need to boost.
3048 */
3049 if (unlikely(p == rq->idle)) {
3050 WARN_ON(p != rq->curr);
3051 WARN_ON(p->pi_blocked_on);
3052 goto out_unlock;
3053 }
3054
a8027073 3055 trace_sched_pi_setprio(p, prio);
d5f9f942 3056 oldprio = p->prio;
83ab0aa0 3057 prev_class = p->sched_class;
fd2f4419 3058 on_rq = p->on_rq;
051a1d1a 3059 running = task_current(rq, p);
0e1f3483 3060 if (on_rq)
69be72c1 3061 dequeue_task(rq, p, 0);
0e1f3483
HS
3062 if (running)
3063 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3064
3065 if (rt_prio(prio))
3066 p->sched_class = &rt_sched_class;
3067 else
3068 p->sched_class = &fair_sched_class;
3069
b29739f9
IM
3070 p->prio = prio;
3071
0e1f3483
HS
3072 if (running)
3073 p->sched_class->set_curr_task(rq);
da7a735e 3074 if (on_rq)
371fd7e7 3075 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3076
da7a735e 3077 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3078out_unlock:
0122ec5b 3079 __task_rq_unlock(rq);
b29739f9 3080}
b29739f9 3081#endif
36c8b586 3082void set_user_nice(struct task_struct *p, long nice)
1da177e4 3083{
dd41f596 3084 int old_prio, delta, on_rq;
1da177e4 3085 unsigned long flags;
70b97a7f 3086 struct rq *rq;
1da177e4
LT
3087
3088 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3089 return;
3090 /*
3091 * We have to be careful, if called from sys_setpriority(),
3092 * the task might be in the middle of scheduling on another CPU.
3093 */
3094 rq = task_rq_lock(p, &flags);
3095 /*
3096 * The RT priorities are set via sched_setscheduler(), but we still
3097 * allow the 'normal' nice value to be set - but as expected
3098 * it wont have any effect on scheduling until the task is
dd41f596 3099 * SCHED_FIFO/SCHED_RR:
1da177e4 3100 */
e05606d3 3101 if (task_has_rt_policy(p)) {
1da177e4
LT
3102 p->static_prio = NICE_TO_PRIO(nice);
3103 goto out_unlock;
3104 }
fd2f4419 3105 on_rq = p->on_rq;
c09595f6 3106 if (on_rq)
69be72c1 3107 dequeue_task(rq, p, 0);
1da177e4 3108
1da177e4 3109 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3110 set_load_weight(p);
b29739f9
IM
3111 old_prio = p->prio;
3112 p->prio = effective_prio(p);
3113 delta = p->prio - old_prio;
1da177e4 3114
dd41f596 3115 if (on_rq) {
371fd7e7 3116 enqueue_task(rq, p, 0);
1da177e4 3117 /*
d5f9f942
AM
3118 * If the task increased its priority or is running and
3119 * lowered its priority, then reschedule its CPU:
1da177e4 3120 */
d5f9f942 3121 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3122 resched_task(rq->curr);
3123 }
3124out_unlock:
0122ec5b 3125 task_rq_unlock(rq, p, &flags);
1da177e4 3126}
1da177e4
LT
3127EXPORT_SYMBOL(set_user_nice);
3128
e43379f1
MM
3129/*
3130 * can_nice - check if a task can reduce its nice value
3131 * @p: task
3132 * @nice: nice value
3133 */
36c8b586 3134int can_nice(const struct task_struct *p, const int nice)
e43379f1 3135{
024f4747
MM
3136 /* convert nice value [19,-20] to rlimit style value [1,40] */
3137 int nice_rlim = 20 - nice;
48f24c4d 3138
78d7d407 3139 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3140 capable(CAP_SYS_NICE));
3141}
3142
1da177e4
LT
3143#ifdef __ARCH_WANT_SYS_NICE
3144
3145/*
3146 * sys_nice - change the priority of the current process.
3147 * @increment: priority increment
3148 *
3149 * sys_setpriority is a more generic, but much slower function that
3150 * does similar things.
3151 */
5add95d4 3152SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3153{
48f24c4d 3154 long nice, retval;
1da177e4
LT
3155
3156 /*
3157 * Setpriority might change our priority at the same moment.
3158 * We don't have to worry. Conceptually one call occurs first
3159 * and we have a single winner.
3160 */
e43379f1
MM
3161 if (increment < -40)
3162 increment = -40;
1da177e4
LT
3163 if (increment > 40)
3164 increment = 40;
3165
2b8f836f 3166 nice = TASK_NICE(current) + increment;
1da177e4
LT
3167 if (nice < -20)
3168 nice = -20;
3169 if (nice > 19)
3170 nice = 19;
3171
e43379f1
MM
3172 if (increment < 0 && !can_nice(current, nice))
3173 return -EPERM;
3174
1da177e4
LT
3175 retval = security_task_setnice(current, nice);
3176 if (retval)
3177 return retval;
3178
3179 set_user_nice(current, nice);
3180 return 0;
3181}
3182
3183#endif
3184
3185/**
3186 * task_prio - return the priority value of a given task.
3187 * @p: the task in question.
3188 *
e69f6186 3189 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3190 * RT tasks are offset by -200. Normal tasks are centered
3191 * around 0, value goes from -16 to +15.
3192 */
36c8b586 3193int task_prio(const struct task_struct *p)
1da177e4
LT
3194{
3195 return p->prio - MAX_RT_PRIO;
3196}
3197
3198/**
3199 * task_nice - return the nice value of a given task.
3200 * @p: the task in question.
e69f6186
YB
3201 *
3202 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3203 */
36c8b586 3204int task_nice(const struct task_struct *p)
1da177e4
LT
3205{
3206 return TASK_NICE(p);
3207}
150d8bed 3208EXPORT_SYMBOL(task_nice);
1da177e4
LT
3209
3210/**
3211 * idle_cpu - is a given cpu idle currently?
3212 * @cpu: the processor in question.
e69f6186
YB
3213 *
3214 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3215 */
3216int idle_cpu(int cpu)
3217{
908a3283
TG
3218 struct rq *rq = cpu_rq(cpu);
3219
3220 if (rq->curr != rq->idle)
3221 return 0;
3222
3223 if (rq->nr_running)
3224 return 0;
3225
3226#ifdef CONFIG_SMP
3227 if (!llist_empty(&rq->wake_list))
3228 return 0;
3229#endif
3230
3231 return 1;
1da177e4
LT
3232}
3233
1da177e4
LT
3234/**
3235 * idle_task - return the idle task for a given cpu.
3236 * @cpu: the processor in question.
e69f6186
YB
3237 *
3238 * Return: The idle task for the cpu @cpu.
1da177e4 3239 */
36c8b586 3240struct task_struct *idle_task(int cpu)
1da177e4
LT
3241{
3242 return cpu_rq(cpu)->idle;
3243}
3244
3245/**
3246 * find_process_by_pid - find a process with a matching PID value.
3247 * @pid: the pid in question.
e69f6186
YB
3248 *
3249 * The task of @pid, if found. %NULL otherwise.
1da177e4 3250 */
a9957449 3251static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3252{
228ebcbe 3253 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3254}
3255
3256/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3257static void
3258__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3259{
1da177e4
LT
3260 p->policy = policy;
3261 p->rt_priority = prio;
b29739f9
IM
3262 p->normal_prio = normal_prio(p);
3263 /* we are holding p->pi_lock already */
3264 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3265 if (rt_prio(p->prio))
3266 p->sched_class = &rt_sched_class;
3267 else
3268 p->sched_class = &fair_sched_class;
2dd73a4f 3269 set_load_weight(p);
1da177e4
LT
3270}
3271
c69e8d9c
DH
3272/*
3273 * check the target process has a UID that matches the current process's
3274 */
3275static bool check_same_owner(struct task_struct *p)
3276{
3277 const struct cred *cred = current_cred(), *pcred;
3278 bool match;
3279
3280 rcu_read_lock();
3281 pcred = __task_cred(p);
9c806aa0
EB
3282 match = (uid_eq(cred->euid, pcred->euid) ||
3283 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3284 rcu_read_unlock();
3285 return match;
3286}
3287
961ccddd 3288static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3289 const struct sched_param *param, bool user)
1da177e4 3290{
83b699ed 3291 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3292 unsigned long flags;
83ab0aa0 3293 const struct sched_class *prev_class;
70b97a7f 3294 struct rq *rq;
ca94c442 3295 int reset_on_fork;
1da177e4 3296
66e5393a
SR
3297 /* may grab non-irq protected spin_locks */
3298 BUG_ON(in_interrupt());
1da177e4
LT
3299recheck:
3300 /* double check policy once rq lock held */
ca94c442
LP
3301 if (policy < 0) {
3302 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3303 policy = oldpolicy = p->policy;
ca94c442
LP
3304 } else {
3305 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3306 policy &= ~SCHED_RESET_ON_FORK;
3307
3308 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3309 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3310 policy != SCHED_IDLE)
3311 return -EINVAL;
3312 }
3313
1da177e4
LT
3314 /*
3315 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3316 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3317 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3318 */
3319 if (param->sched_priority < 0 ||
95cdf3b7 3320 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3321 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3322 return -EINVAL;
e05606d3 3323 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3324 return -EINVAL;
3325
37e4ab3f
OC
3326 /*
3327 * Allow unprivileged RT tasks to decrease priority:
3328 */
961ccddd 3329 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3330 if (rt_policy(policy)) {
a44702e8
ON
3331 unsigned long rlim_rtprio =
3332 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3333
3334 /* can't set/change the rt policy */
3335 if (policy != p->policy && !rlim_rtprio)
3336 return -EPERM;
3337
3338 /* can't increase priority */
3339 if (param->sched_priority > p->rt_priority &&
3340 param->sched_priority > rlim_rtprio)
3341 return -EPERM;
3342 }
c02aa73b 3343
dd41f596 3344 /*
c02aa73b
DH
3345 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3346 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3347 */
c02aa73b
DH
3348 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3349 if (!can_nice(p, TASK_NICE(p)))
3350 return -EPERM;
3351 }
5fe1d75f 3352
37e4ab3f 3353 /* can't change other user's priorities */
c69e8d9c 3354 if (!check_same_owner(p))
37e4ab3f 3355 return -EPERM;
ca94c442
LP
3356
3357 /* Normal users shall not reset the sched_reset_on_fork flag */
3358 if (p->sched_reset_on_fork && !reset_on_fork)
3359 return -EPERM;
37e4ab3f 3360 }
1da177e4 3361
725aad24 3362 if (user) {
b0ae1981 3363 retval = security_task_setscheduler(p);
725aad24
JF
3364 if (retval)
3365 return retval;
3366 }
3367
b29739f9
IM
3368 /*
3369 * make sure no PI-waiters arrive (or leave) while we are
3370 * changing the priority of the task:
0122ec5b 3371 *
25985edc 3372 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3373 * runqueue lock must be held.
3374 */
0122ec5b 3375 rq = task_rq_lock(p, &flags);
dc61b1d6 3376
34f971f6
PZ
3377 /*
3378 * Changing the policy of the stop threads its a very bad idea
3379 */
3380 if (p == rq->stop) {
0122ec5b 3381 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3382 return -EINVAL;
3383 }
3384
a51e9198
DF
3385 /*
3386 * If not changing anything there's no need to proceed further:
3387 */
3388 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3389 param->sched_priority == p->rt_priority))) {
45afb173 3390 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3391 return 0;
3392 }
3393
dc61b1d6
PZ
3394#ifdef CONFIG_RT_GROUP_SCHED
3395 if (user) {
3396 /*
3397 * Do not allow realtime tasks into groups that have no runtime
3398 * assigned.
3399 */
3400 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3401 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3402 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3403 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3404 return -EPERM;
3405 }
3406 }
3407#endif
3408
1da177e4
LT
3409 /* recheck policy now with rq lock held */
3410 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3411 policy = oldpolicy = -1;
0122ec5b 3412 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3413 goto recheck;
3414 }
fd2f4419 3415 on_rq = p->on_rq;
051a1d1a 3416 running = task_current(rq, p);
0e1f3483 3417 if (on_rq)
4ca9b72b 3418 dequeue_task(rq, p, 0);
0e1f3483
HS
3419 if (running)
3420 p->sched_class->put_prev_task(rq, p);
f6b53205 3421
ca94c442
LP
3422 p->sched_reset_on_fork = reset_on_fork;
3423
1da177e4 3424 oldprio = p->prio;
83ab0aa0 3425 prev_class = p->sched_class;
dd41f596 3426 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3427
0e1f3483
HS
3428 if (running)
3429 p->sched_class->set_curr_task(rq);
da7a735e 3430 if (on_rq)
4ca9b72b 3431 enqueue_task(rq, p, 0);
cb469845 3432
da7a735e 3433 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3434 task_rq_unlock(rq, p, &flags);
b29739f9 3435
95e02ca9
TG
3436 rt_mutex_adjust_pi(p);
3437
1da177e4
LT
3438 return 0;
3439}
961ccddd
RR
3440
3441/**
3442 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3443 * @p: the task in question.
3444 * @policy: new policy.
3445 * @param: structure containing the new RT priority.
3446 *
e69f6186
YB
3447 * Return: 0 on success. An error code otherwise.
3448 *
961ccddd
RR
3449 * NOTE that the task may be already dead.
3450 */
3451int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3452 const struct sched_param *param)
961ccddd
RR
3453{
3454 return __sched_setscheduler(p, policy, param, true);
3455}
1da177e4
LT
3456EXPORT_SYMBOL_GPL(sched_setscheduler);
3457
961ccddd
RR
3458/**
3459 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3460 * @p: the task in question.
3461 * @policy: new policy.
3462 * @param: structure containing the new RT priority.
3463 *
3464 * Just like sched_setscheduler, only don't bother checking if the
3465 * current context has permission. For example, this is needed in
3466 * stop_machine(): we create temporary high priority worker threads,
3467 * but our caller might not have that capability.
e69f6186
YB
3468 *
3469 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3470 */
3471int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3472 const struct sched_param *param)
961ccddd
RR
3473{
3474 return __sched_setscheduler(p, policy, param, false);
3475}
3476
95cdf3b7
IM
3477static int
3478do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3479{
1da177e4
LT
3480 struct sched_param lparam;
3481 struct task_struct *p;
36c8b586 3482 int retval;
1da177e4
LT
3483
3484 if (!param || pid < 0)
3485 return -EINVAL;
3486 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3487 return -EFAULT;
5fe1d75f
ON
3488
3489 rcu_read_lock();
3490 retval = -ESRCH;
1da177e4 3491 p = find_process_by_pid(pid);
5fe1d75f
ON
3492 if (p != NULL)
3493 retval = sched_setscheduler(p, policy, &lparam);
3494 rcu_read_unlock();
36c8b586 3495
1da177e4
LT
3496 return retval;
3497}
3498
3499/**
3500 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3501 * @pid: the pid in question.
3502 * @policy: new policy.
3503 * @param: structure containing the new RT priority.
e69f6186
YB
3504 *
3505 * Return: 0 on success. An error code otherwise.
1da177e4 3506 */
5add95d4
HC
3507SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3508 struct sched_param __user *, param)
1da177e4 3509{
c21761f1
JB
3510 /* negative values for policy are not valid */
3511 if (policy < 0)
3512 return -EINVAL;
3513
1da177e4
LT
3514 return do_sched_setscheduler(pid, policy, param);
3515}
3516
3517/**
3518 * sys_sched_setparam - set/change the RT priority of a thread
3519 * @pid: the pid in question.
3520 * @param: structure containing the new RT priority.
e69f6186
YB
3521 *
3522 * Return: 0 on success. An error code otherwise.
1da177e4 3523 */
5add95d4 3524SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3525{
3526 return do_sched_setscheduler(pid, -1, param);
3527}
3528
3529/**
3530 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3531 * @pid: the pid in question.
e69f6186
YB
3532 *
3533 * Return: On success, the policy of the thread. Otherwise, a negative error
3534 * code.
1da177e4 3535 */
5add95d4 3536SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3537{
36c8b586 3538 struct task_struct *p;
3a5c359a 3539 int retval;
1da177e4
LT
3540
3541 if (pid < 0)
3a5c359a 3542 return -EINVAL;
1da177e4
LT
3543
3544 retval = -ESRCH;
5fe85be0 3545 rcu_read_lock();
1da177e4
LT
3546 p = find_process_by_pid(pid);
3547 if (p) {
3548 retval = security_task_getscheduler(p);
3549 if (!retval)
ca94c442
LP
3550 retval = p->policy
3551 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3552 }
5fe85be0 3553 rcu_read_unlock();
1da177e4
LT
3554 return retval;
3555}
3556
3557/**
ca94c442 3558 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3559 * @pid: the pid in question.
3560 * @param: structure containing the RT priority.
e69f6186
YB
3561 *
3562 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3563 * code.
1da177e4 3564 */
5add95d4 3565SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3566{
3567 struct sched_param lp;
36c8b586 3568 struct task_struct *p;
3a5c359a 3569 int retval;
1da177e4
LT
3570
3571 if (!param || pid < 0)
3a5c359a 3572 return -EINVAL;
1da177e4 3573
5fe85be0 3574 rcu_read_lock();
1da177e4
LT
3575 p = find_process_by_pid(pid);
3576 retval = -ESRCH;
3577 if (!p)
3578 goto out_unlock;
3579
3580 retval = security_task_getscheduler(p);
3581 if (retval)
3582 goto out_unlock;
3583
3584 lp.sched_priority = p->rt_priority;
5fe85be0 3585 rcu_read_unlock();
1da177e4
LT
3586
3587 /*
3588 * This one might sleep, we cannot do it with a spinlock held ...
3589 */
3590 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3591
1da177e4
LT
3592 return retval;
3593
3594out_unlock:
5fe85be0 3595 rcu_read_unlock();
1da177e4
LT
3596 return retval;
3597}
3598
96f874e2 3599long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3600{
5a16f3d3 3601 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3602 struct task_struct *p;
3603 int retval;
1da177e4 3604
95402b38 3605 get_online_cpus();
23f5d142 3606 rcu_read_lock();
1da177e4
LT
3607
3608 p = find_process_by_pid(pid);
3609 if (!p) {
23f5d142 3610 rcu_read_unlock();
95402b38 3611 put_online_cpus();
1da177e4
LT
3612 return -ESRCH;
3613 }
3614
23f5d142 3615 /* Prevent p going away */
1da177e4 3616 get_task_struct(p);
23f5d142 3617 rcu_read_unlock();
1da177e4 3618
14a40ffc
TH
3619 if (p->flags & PF_NO_SETAFFINITY) {
3620 retval = -EINVAL;
3621 goto out_put_task;
3622 }
5a16f3d3
RR
3623 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3624 retval = -ENOMEM;
3625 goto out_put_task;
3626 }
3627 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3628 retval = -ENOMEM;
3629 goto out_free_cpus_allowed;
3630 }
1da177e4 3631 retval = -EPERM;
4c44aaaf
EB
3632 if (!check_same_owner(p)) {
3633 rcu_read_lock();
3634 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3635 rcu_read_unlock();
3636 goto out_unlock;
3637 }
3638 rcu_read_unlock();
3639 }
1da177e4 3640
b0ae1981 3641 retval = security_task_setscheduler(p);
e7834f8f
DQ
3642 if (retval)
3643 goto out_unlock;
3644
5a16f3d3
RR
3645 cpuset_cpus_allowed(p, cpus_allowed);
3646 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3647again:
5a16f3d3 3648 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3649
8707d8b8 3650 if (!retval) {
5a16f3d3
RR
3651 cpuset_cpus_allowed(p, cpus_allowed);
3652 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3653 /*
3654 * We must have raced with a concurrent cpuset
3655 * update. Just reset the cpus_allowed to the
3656 * cpuset's cpus_allowed
3657 */
5a16f3d3 3658 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3659 goto again;
3660 }
3661 }
1da177e4 3662out_unlock:
5a16f3d3
RR
3663 free_cpumask_var(new_mask);
3664out_free_cpus_allowed:
3665 free_cpumask_var(cpus_allowed);
3666out_put_task:
1da177e4 3667 put_task_struct(p);
95402b38 3668 put_online_cpus();
1da177e4
LT
3669 return retval;
3670}
3671
3672static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3673 struct cpumask *new_mask)
1da177e4 3674{
96f874e2
RR
3675 if (len < cpumask_size())
3676 cpumask_clear(new_mask);
3677 else if (len > cpumask_size())
3678 len = cpumask_size();
3679
1da177e4
LT
3680 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3681}
3682
3683/**
3684 * sys_sched_setaffinity - set the cpu affinity of a process
3685 * @pid: pid of the process
3686 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3687 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3688 *
3689 * Return: 0 on success. An error code otherwise.
1da177e4 3690 */
5add95d4
HC
3691SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3692 unsigned long __user *, user_mask_ptr)
1da177e4 3693{
5a16f3d3 3694 cpumask_var_t new_mask;
1da177e4
LT
3695 int retval;
3696
5a16f3d3
RR
3697 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3698 return -ENOMEM;
1da177e4 3699
5a16f3d3
RR
3700 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3701 if (retval == 0)
3702 retval = sched_setaffinity(pid, new_mask);
3703 free_cpumask_var(new_mask);
3704 return retval;
1da177e4
LT
3705}
3706
96f874e2 3707long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3708{
36c8b586 3709 struct task_struct *p;
31605683 3710 unsigned long flags;
1da177e4 3711 int retval;
1da177e4 3712
95402b38 3713 get_online_cpus();
23f5d142 3714 rcu_read_lock();
1da177e4
LT
3715
3716 retval = -ESRCH;
3717 p = find_process_by_pid(pid);
3718 if (!p)
3719 goto out_unlock;
3720
e7834f8f
DQ
3721 retval = security_task_getscheduler(p);
3722 if (retval)
3723 goto out_unlock;
3724
013fdb80 3725 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3726 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3727 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3728
3729out_unlock:
23f5d142 3730 rcu_read_unlock();
95402b38 3731 put_online_cpus();
1da177e4 3732
9531b62f 3733 return retval;
1da177e4
LT
3734}
3735
3736/**
3737 * sys_sched_getaffinity - get the cpu affinity of a process
3738 * @pid: pid of the process
3739 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3740 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3741 *
3742 * Return: 0 on success. An error code otherwise.
1da177e4 3743 */
5add95d4
HC
3744SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3745 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3746{
3747 int ret;
f17c8607 3748 cpumask_var_t mask;
1da177e4 3749
84fba5ec 3750 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3751 return -EINVAL;
3752 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3753 return -EINVAL;
3754
f17c8607
RR
3755 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3756 return -ENOMEM;
1da177e4 3757
f17c8607
RR
3758 ret = sched_getaffinity(pid, mask);
3759 if (ret == 0) {
8bc037fb 3760 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3761
3762 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3763 ret = -EFAULT;
3764 else
cd3d8031 3765 ret = retlen;
f17c8607
RR
3766 }
3767 free_cpumask_var(mask);
1da177e4 3768
f17c8607 3769 return ret;
1da177e4
LT
3770}
3771
3772/**
3773 * sys_sched_yield - yield the current processor to other threads.
3774 *
dd41f596
IM
3775 * This function yields the current CPU to other tasks. If there are no
3776 * other threads running on this CPU then this function will return.
e69f6186
YB
3777 *
3778 * Return: 0.
1da177e4 3779 */
5add95d4 3780SYSCALL_DEFINE0(sched_yield)
1da177e4 3781{
70b97a7f 3782 struct rq *rq = this_rq_lock();
1da177e4 3783
2d72376b 3784 schedstat_inc(rq, yld_count);
4530d7ab 3785 current->sched_class->yield_task(rq);
1da177e4
LT
3786
3787 /*
3788 * Since we are going to call schedule() anyway, there's
3789 * no need to preempt or enable interrupts:
3790 */
3791 __release(rq->lock);
8a25d5de 3792 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3793 do_raw_spin_unlock(&rq->lock);
ba74c144 3794 sched_preempt_enable_no_resched();
1da177e4
LT
3795
3796 schedule();
3797
3798 return 0;
3799}
3800
d86ee480
PZ
3801static inline int should_resched(void)
3802{
3803 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3804}
3805
e7b38404 3806static void __cond_resched(void)
1da177e4 3807{
e7aaaa69 3808 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3809 __schedule();
e7aaaa69 3810 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3811}
3812
02b67cc3 3813int __sched _cond_resched(void)
1da177e4 3814{
d86ee480 3815 if (should_resched()) {
1da177e4
LT
3816 __cond_resched();
3817 return 1;
3818 }
3819 return 0;
3820}
02b67cc3 3821EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3822
3823/*
613afbf8 3824 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3825 * call schedule, and on return reacquire the lock.
3826 *
41a2d6cf 3827 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3828 * operations here to prevent schedule() from being called twice (once via
3829 * spin_unlock(), once by hand).
3830 */
613afbf8 3831int __cond_resched_lock(spinlock_t *lock)
1da177e4 3832{
d86ee480 3833 int resched = should_resched();
6df3cecb
JK
3834 int ret = 0;
3835
f607c668
PZ
3836 lockdep_assert_held(lock);
3837
95c354fe 3838 if (spin_needbreak(lock) || resched) {
1da177e4 3839 spin_unlock(lock);
d86ee480 3840 if (resched)
95c354fe
NP
3841 __cond_resched();
3842 else
3843 cpu_relax();
6df3cecb 3844 ret = 1;
1da177e4 3845 spin_lock(lock);
1da177e4 3846 }
6df3cecb 3847 return ret;
1da177e4 3848}
613afbf8 3849EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3850
613afbf8 3851int __sched __cond_resched_softirq(void)
1da177e4
LT
3852{
3853 BUG_ON(!in_softirq());
3854
d86ee480 3855 if (should_resched()) {
98d82567 3856 local_bh_enable();
1da177e4
LT
3857 __cond_resched();
3858 local_bh_disable();
3859 return 1;
3860 }
3861 return 0;
3862}
613afbf8 3863EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3864
1da177e4
LT
3865/**
3866 * yield - yield the current processor to other threads.
3867 *
8e3fabfd
PZ
3868 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3869 *
3870 * The scheduler is at all times free to pick the calling task as the most
3871 * eligible task to run, if removing the yield() call from your code breaks
3872 * it, its already broken.
3873 *
3874 * Typical broken usage is:
3875 *
3876 * while (!event)
3877 * yield();
3878 *
3879 * where one assumes that yield() will let 'the other' process run that will
3880 * make event true. If the current task is a SCHED_FIFO task that will never
3881 * happen. Never use yield() as a progress guarantee!!
3882 *
3883 * If you want to use yield() to wait for something, use wait_event().
3884 * If you want to use yield() to be 'nice' for others, use cond_resched().
3885 * If you still want to use yield(), do not!
1da177e4
LT
3886 */
3887void __sched yield(void)
3888{
3889 set_current_state(TASK_RUNNING);
3890 sys_sched_yield();
3891}
1da177e4
LT
3892EXPORT_SYMBOL(yield);
3893
d95f4122
MG
3894/**
3895 * yield_to - yield the current processor to another thread in
3896 * your thread group, or accelerate that thread toward the
3897 * processor it's on.
16addf95
RD
3898 * @p: target task
3899 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3900 *
3901 * It's the caller's job to ensure that the target task struct
3902 * can't go away on us before we can do any checks.
3903 *
e69f6186 3904 * Return:
7b270f60
PZ
3905 * true (>0) if we indeed boosted the target task.
3906 * false (0) if we failed to boost the target.
3907 * -ESRCH if there's no task to yield to.
d95f4122
MG
3908 */
3909bool __sched yield_to(struct task_struct *p, bool preempt)
3910{
3911 struct task_struct *curr = current;
3912 struct rq *rq, *p_rq;
3913 unsigned long flags;
c3c18640 3914 int yielded = 0;
d95f4122
MG
3915
3916 local_irq_save(flags);
3917 rq = this_rq();
3918
3919again:
3920 p_rq = task_rq(p);
7b270f60
PZ
3921 /*
3922 * If we're the only runnable task on the rq and target rq also
3923 * has only one task, there's absolutely no point in yielding.
3924 */
3925 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3926 yielded = -ESRCH;
3927 goto out_irq;
3928 }
3929
d95f4122
MG
3930 double_rq_lock(rq, p_rq);
3931 while (task_rq(p) != p_rq) {
3932 double_rq_unlock(rq, p_rq);
3933 goto again;
3934 }
3935
3936 if (!curr->sched_class->yield_to_task)
7b270f60 3937 goto out_unlock;
d95f4122
MG
3938
3939 if (curr->sched_class != p->sched_class)
7b270f60 3940 goto out_unlock;
d95f4122
MG
3941
3942 if (task_running(p_rq, p) || p->state)
7b270f60 3943 goto out_unlock;
d95f4122
MG
3944
3945 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3946 if (yielded) {
d95f4122 3947 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3948 /*
3949 * Make p's CPU reschedule; pick_next_entity takes care of
3950 * fairness.
3951 */
3952 if (preempt && rq != p_rq)
3953 resched_task(p_rq->curr);
3954 }
d95f4122 3955
7b270f60 3956out_unlock:
d95f4122 3957 double_rq_unlock(rq, p_rq);
7b270f60 3958out_irq:
d95f4122
MG
3959 local_irq_restore(flags);
3960
7b270f60 3961 if (yielded > 0)
d95f4122
MG
3962 schedule();
3963
3964 return yielded;
3965}
3966EXPORT_SYMBOL_GPL(yield_to);
3967
1da177e4 3968/*
41a2d6cf 3969 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3970 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3971 */
3972void __sched io_schedule(void)
3973{
54d35f29 3974 struct rq *rq = raw_rq();
1da177e4 3975
0ff92245 3976 delayacct_blkio_start();
1da177e4 3977 atomic_inc(&rq->nr_iowait);
73c10101 3978 blk_flush_plug(current);
8f0dfc34 3979 current->in_iowait = 1;
1da177e4 3980 schedule();
8f0dfc34 3981 current->in_iowait = 0;
1da177e4 3982 atomic_dec(&rq->nr_iowait);
0ff92245 3983 delayacct_blkio_end();
1da177e4 3984}
1da177e4
LT
3985EXPORT_SYMBOL(io_schedule);
3986
3987long __sched io_schedule_timeout(long timeout)
3988{
54d35f29 3989 struct rq *rq = raw_rq();
1da177e4
LT
3990 long ret;
3991
0ff92245 3992 delayacct_blkio_start();
1da177e4 3993 atomic_inc(&rq->nr_iowait);
73c10101 3994 blk_flush_plug(current);
8f0dfc34 3995 current->in_iowait = 1;
1da177e4 3996 ret = schedule_timeout(timeout);
8f0dfc34 3997 current->in_iowait = 0;
1da177e4 3998 atomic_dec(&rq->nr_iowait);
0ff92245 3999 delayacct_blkio_end();
1da177e4
LT
4000 return ret;
4001}
4002
4003/**
4004 * sys_sched_get_priority_max - return maximum RT priority.
4005 * @policy: scheduling class.
4006 *
e69f6186
YB
4007 * Return: On success, this syscall returns the maximum
4008 * rt_priority that can be used by a given scheduling class.
4009 * On failure, a negative error code is returned.
1da177e4 4010 */
5add95d4 4011SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4012{
4013 int ret = -EINVAL;
4014
4015 switch (policy) {
4016 case SCHED_FIFO:
4017 case SCHED_RR:
4018 ret = MAX_USER_RT_PRIO-1;
4019 break;
4020 case SCHED_NORMAL:
b0a9499c 4021 case SCHED_BATCH:
dd41f596 4022 case SCHED_IDLE:
1da177e4
LT
4023 ret = 0;
4024 break;
4025 }
4026 return ret;
4027}
4028
4029/**
4030 * sys_sched_get_priority_min - return minimum RT priority.
4031 * @policy: scheduling class.
4032 *
e69f6186
YB
4033 * Return: On success, this syscall returns the minimum
4034 * rt_priority that can be used by a given scheduling class.
4035 * On failure, a negative error code is returned.
1da177e4 4036 */
5add95d4 4037SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4038{
4039 int ret = -EINVAL;
4040
4041 switch (policy) {
4042 case SCHED_FIFO:
4043 case SCHED_RR:
4044 ret = 1;
4045 break;
4046 case SCHED_NORMAL:
b0a9499c 4047 case SCHED_BATCH:
dd41f596 4048 case SCHED_IDLE:
1da177e4
LT
4049 ret = 0;
4050 }
4051 return ret;
4052}
4053
4054/**
4055 * sys_sched_rr_get_interval - return the default timeslice of a process.
4056 * @pid: pid of the process.
4057 * @interval: userspace pointer to the timeslice value.
4058 *
4059 * this syscall writes the default timeslice value of a given process
4060 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4061 *
4062 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4063 * an error code.
1da177e4 4064 */
17da2bd9 4065SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4066 struct timespec __user *, interval)
1da177e4 4067{
36c8b586 4068 struct task_struct *p;
a4ec24b4 4069 unsigned int time_slice;
dba091b9
TG
4070 unsigned long flags;
4071 struct rq *rq;
3a5c359a 4072 int retval;
1da177e4 4073 struct timespec t;
1da177e4
LT
4074
4075 if (pid < 0)
3a5c359a 4076 return -EINVAL;
1da177e4
LT
4077
4078 retval = -ESRCH;
1a551ae7 4079 rcu_read_lock();
1da177e4
LT
4080 p = find_process_by_pid(pid);
4081 if (!p)
4082 goto out_unlock;
4083
4084 retval = security_task_getscheduler(p);
4085 if (retval)
4086 goto out_unlock;
4087
dba091b9
TG
4088 rq = task_rq_lock(p, &flags);
4089 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4090 task_rq_unlock(rq, p, &flags);
a4ec24b4 4091
1a551ae7 4092 rcu_read_unlock();
a4ec24b4 4093 jiffies_to_timespec(time_slice, &t);
1da177e4 4094 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4095 return retval;
3a5c359a 4096
1da177e4 4097out_unlock:
1a551ae7 4098 rcu_read_unlock();
1da177e4
LT
4099 return retval;
4100}
4101
7c731e0a 4102static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4103
82a1fcb9 4104void sched_show_task(struct task_struct *p)
1da177e4 4105{
1da177e4 4106 unsigned long free = 0;
4e79752c 4107 int ppid;
36c8b586 4108 unsigned state;
1da177e4 4109
1da177e4 4110 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4111 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4112 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4113#if BITS_PER_LONG == 32
1da177e4 4114 if (state == TASK_RUNNING)
3df0fc5b 4115 printk(KERN_CONT " running ");
1da177e4 4116 else
3df0fc5b 4117 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4118#else
4119 if (state == TASK_RUNNING)
3df0fc5b 4120 printk(KERN_CONT " running task ");
1da177e4 4121 else
3df0fc5b 4122 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4123#endif
4124#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4125 free = stack_not_used(p);
1da177e4 4126#endif
4e79752c
PM
4127 rcu_read_lock();
4128 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4129 rcu_read_unlock();
3df0fc5b 4130 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4131 task_pid_nr(p), ppid,
aa47b7e0 4132 (unsigned long)task_thread_info(p)->flags);
1da177e4 4133
3d1cb205 4134 print_worker_info(KERN_INFO, p);
5fb5e6de 4135 show_stack(p, NULL);
1da177e4
LT
4136}
4137
e59e2ae2 4138void show_state_filter(unsigned long state_filter)
1da177e4 4139{
36c8b586 4140 struct task_struct *g, *p;
1da177e4 4141
4bd77321 4142#if BITS_PER_LONG == 32
3df0fc5b
PZ
4143 printk(KERN_INFO
4144 " task PC stack pid father\n");
1da177e4 4145#else
3df0fc5b
PZ
4146 printk(KERN_INFO
4147 " task PC stack pid father\n");
1da177e4 4148#endif
510f5acc 4149 rcu_read_lock();
1da177e4
LT
4150 do_each_thread(g, p) {
4151 /*
4152 * reset the NMI-timeout, listing all files on a slow
25985edc 4153 * console might take a lot of time:
1da177e4
LT
4154 */
4155 touch_nmi_watchdog();
39bc89fd 4156 if (!state_filter || (p->state & state_filter))
82a1fcb9 4157 sched_show_task(p);
1da177e4
LT
4158 } while_each_thread(g, p);
4159
04c9167f
JF
4160 touch_all_softlockup_watchdogs();
4161
dd41f596
IM
4162#ifdef CONFIG_SCHED_DEBUG
4163 sysrq_sched_debug_show();
4164#endif
510f5acc 4165 rcu_read_unlock();
e59e2ae2
IM
4166 /*
4167 * Only show locks if all tasks are dumped:
4168 */
93335a21 4169 if (!state_filter)
e59e2ae2 4170 debug_show_all_locks();
1da177e4
LT
4171}
4172
0db0628d 4173void init_idle_bootup_task(struct task_struct *idle)
1df21055 4174{
dd41f596 4175 idle->sched_class = &idle_sched_class;
1df21055
IM
4176}
4177
f340c0d1
IM
4178/**
4179 * init_idle - set up an idle thread for a given CPU
4180 * @idle: task in question
4181 * @cpu: cpu the idle task belongs to
4182 *
4183 * NOTE: this function does not set the idle thread's NEED_RESCHED
4184 * flag, to make booting more robust.
4185 */
0db0628d 4186void init_idle(struct task_struct *idle, int cpu)
1da177e4 4187{
70b97a7f 4188 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4189 unsigned long flags;
4190
05fa785c 4191 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4192
dd41f596 4193 __sched_fork(idle);
06b83b5f 4194 idle->state = TASK_RUNNING;
dd41f596
IM
4195 idle->se.exec_start = sched_clock();
4196
1e1b6c51 4197 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4198 /*
4199 * We're having a chicken and egg problem, even though we are
4200 * holding rq->lock, the cpu isn't yet set to this cpu so the
4201 * lockdep check in task_group() will fail.
4202 *
4203 * Similar case to sched_fork(). / Alternatively we could
4204 * use task_rq_lock() here and obtain the other rq->lock.
4205 *
4206 * Silence PROVE_RCU
4207 */
4208 rcu_read_lock();
dd41f596 4209 __set_task_cpu(idle, cpu);
6506cf6c 4210 rcu_read_unlock();
1da177e4 4211
1da177e4 4212 rq->curr = rq->idle = idle;
3ca7a440
PZ
4213#if defined(CONFIG_SMP)
4214 idle->on_cpu = 1;
4866cde0 4215#endif
05fa785c 4216 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4217
4218 /* Set the preempt count _outside_ the spinlocks! */
01028747 4219 init_idle_preempt_count(idle, cpu);
55cd5340 4220
dd41f596
IM
4221 /*
4222 * The idle tasks have their own, simple scheduling class:
4223 */
4224 idle->sched_class = &idle_sched_class;
868baf07 4225 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4226 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4227#if defined(CONFIG_SMP)
4228 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4229#endif
19978ca6
IM
4230}
4231
1da177e4 4232#ifdef CONFIG_SMP
1e1b6c51
KM
4233void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4234{
4235 if (p->sched_class && p->sched_class->set_cpus_allowed)
4236 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4237
4238 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4239 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4240}
4241
1da177e4
LT
4242/*
4243 * This is how migration works:
4244 *
969c7921
TH
4245 * 1) we invoke migration_cpu_stop() on the target CPU using
4246 * stop_one_cpu().
4247 * 2) stopper starts to run (implicitly forcing the migrated thread
4248 * off the CPU)
4249 * 3) it checks whether the migrated task is still in the wrong runqueue.
4250 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4251 * it and puts it into the right queue.
969c7921
TH
4252 * 5) stopper completes and stop_one_cpu() returns and the migration
4253 * is done.
1da177e4
LT
4254 */
4255
4256/*
4257 * Change a given task's CPU affinity. Migrate the thread to a
4258 * proper CPU and schedule it away if the CPU it's executing on
4259 * is removed from the allowed bitmask.
4260 *
4261 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4262 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4263 * call is not atomic; no spinlocks may be held.
4264 */
96f874e2 4265int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4266{
4267 unsigned long flags;
70b97a7f 4268 struct rq *rq;
969c7921 4269 unsigned int dest_cpu;
48f24c4d 4270 int ret = 0;
1da177e4
LT
4271
4272 rq = task_rq_lock(p, &flags);
e2912009 4273
db44fc01
YZ
4274 if (cpumask_equal(&p->cpus_allowed, new_mask))
4275 goto out;
4276
6ad4c188 4277 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4278 ret = -EINVAL;
4279 goto out;
4280 }
4281
1e1b6c51 4282 do_set_cpus_allowed(p, new_mask);
73fe6aae 4283
1da177e4 4284 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4285 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4286 goto out;
4287
969c7921 4288 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4289 if (p->on_rq) {
969c7921 4290 struct migration_arg arg = { p, dest_cpu };
1da177e4 4291 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4292 task_rq_unlock(rq, p, &flags);
969c7921 4293 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4294 tlb_migrate_finish(p->mm);
4295 return 0;
4296 }
4297out:
0122ec5b 4298 task_rq_unlock(rq, p, &flags);
48f24c4d 4299
1da177e4
LT
4300 return ret;
4301}
cd8ba7cd 4302EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4303
4304/*
41a2d6cf 4305 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4306 * this because either it can't run here any more (set_cpus_allowed()
4307 * away from this CPU, or CPU going down), or because we're
4308 * attempting to rebalance this task on exec (sched_exec).
4309 *
4310 * So we race with normal scheduler movements, but that's OK, as long
4311 * as the task is no longer on this CPU.
efc30814
KK
4312 *
4313 * Returns non-zero if task was successfully migrated.
1da177e4 4314 */
efc30814 4315static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4316{
70b97a7f 4317 struct rq *rq_dest, *rq_src;
e2912009 4318 int ret = 0;
1da177e4 4319
e761b772 4320 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4321 return ret;
1da177e4
LT
4322
4323 rq_src = cpu_rq(src_cpu);
4324 rq_dest = cpu_rq(dest_cpu);
4325
0122ec5b 4326 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4327 double_rq_lock(rq_src, rq_dest);
4328 /* Already moved. */
4329 if (task_cpu(p) != src_cpu)
b1e38734 4330 goto done;
1da177e4 4331 /* Affinity changed (again). */
fa17b507 4332 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4333 goto fail;
1da177e4 4334
e2912009
PZ
4335 /*
4336 * If we're not on a rq, the next wake-up will ensure we're
4337 * placed properly.
4338 */
fd2f4419 4339 if (p->on_rq) {
4ca9b72b 4340 dequeue_task(rq_src, p, 0);
e2912009 4341 set_task_cpu(p, dest_cpu);
4ca9b72b 4342 enqueue_task(rq_dest, p, 0);
15afe09b 4343 check_preempt_curr(rq_dest, p, 0);
1da177e4 4344 }
b1e38734 4345done:
efc30814 4346 ret = 1;
b1e38734 4347fail:
1da177e4 4348 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4349 raw_spin_unlock(&p->pi_lock);
efc30814 4350 return ret;
1da177e4
LT
4351}
4352
4353/*
969c7921
TH
4354 * migration_cpu_stop - this will be executed by a highprio stopper thread
4355 * and performs thread migration by bumping thread off CPU then
4356 * 'pushing' onto another runqueue.
1da177e4 4357 */
969c7921 4358static int migration_cpu_stop(void *data)
1da177e4 4359{
969c7921 4360 struct migration_arg *arg = data;
f7b4cddc 4361
969c7921
TH
4362 /*
4363 * The original target cpu might have gone down and we might
4364 * be on another cpu but it doesn't matter.
4365 */
f7b4cddc 4366 local_irq_disable();
969c7921 4367 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4368 local_irq_enable();
1da177e4 4369 return 0;
f7b4cddc
ON
4370}
4371
1da177e4 4372#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4373
054b9108 4374/*
48c5ccae
PZ
4375 * Ensures that the idle task is using init_mm right before its cpu goes
4376 * offline.
054b9108 4377 */
48c5ccae 4378void idle_task_exit(void)
1da177e4 4379{
48c5ccae 4380 struct mm_struct *mm = current->active_mm;
e76bd8d9 4381
48c5ccae 4382 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4383
48c5ccae
PZ
4384 if (mm != &init_mm)
4385 switch_mm(mm, &init_mm, current);
4386 mmdrop(mm);
1da177e4
LT
4387}
4388
4389/*
5d180232
PZ
4390 * Since this CPU is going 'away' for a while, fold any nr_active delta
4391 * we might have. Assumes we're called after migrate_tasks() so that the
4392 * nr_active count is stable.
4393 *
4394 * Also see the comment "Global load-average calculations".
1da177e4 4395 */
5d180232 4396static void calc_load_migrate(struct rq *rq)
1da177e4 4397{
5d180232
PZ
4398 long delta = calc_load_fold_active(rq);
4399 if (delta)
4400 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4401}
4402
48f24c4d 4403/*
48c5ccae
PZ
4404 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4405 * try_to_wake_up()->select_task_rq().
4406 *
4407 * Called with rq->lock held even though we'er in stop_machine() and
4408 * there's no concurrency possible, we hold the required locks anyway
4409 * because of lock validation efforts.
1da177e4 4410 */
48c5ccae 4411static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4412{
70b97a7f 4413 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4414 struct task_struct *next, *stop = rq->stop;
4415 int dest_cpu;
1da177e4
LT
4416
4417 /*
48c5ccae
PZ
4418 * Fudge the rq selection such that the below task selection loop
4419 * doesn't get stuck on the currently eligible stop task.
4420 *
4421 * We're currently inside stop_machine() and the rq is either stuck
4422 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4423 * either way we should never end up calling schedule() until we're
4424 * done here.
1da177e4 4425 */
48c5ccae 4426 rq->stop = NULL;
48f24c4d 4427
77bd3970
FW
4428 /*
4429 * put_prev_task() and pick_next_task() sched
4430 * class method both need to have an up-to-date
4431 * value of rq->clock[_task]
4432 */
4433 update_rq_clock(rq);
4434
dd41f596 4435 for ( ; ; ) {
48c5ccae
PZ
4436 /*
4437 * There's this thread running, bail when that's the only
4438 * remaining thread.
4439 */
4440 if (rq->nr_running == 1)
dd41f596 4441 break;
48c5ccae 4442
b67802ea 4443 next = pick_next_task(rq);
48c5ccae 4444 BUG_ON(!next);
79c53799 4445 next->sched_class->put_prev_task(rq, next);
e692ab53 4446
48c5ccae
PZ
4447 /* Find suitable destination for @next, with force if needed. */
4448 dest_cpu = select_fallback_rq(dead_cpu, next);
4449 raw_spin_unlock(&rq->lock);
4450
4451 __migrate_task(next, dead_cpu, dest_cpu);
4452
4453 raw_spin_lock(&rq->lock);
1da177e4 4454 }
dce48a84 4455
48c5ccae 4456 rq->stop = stop;
dce48a84 4457}
48c5ccae 4458
1da177e4
LT
4459#endif /* CONFIG_HOTPLUG_CPU */
4460
e692ab53
NP
4461#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4462
4463static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4464 {
4465 .procname = "sched_domain",
c57baf1e 4466 .mode = 0555,
e0361851 4467 },
56992309 4468 {}
e692ab53
NP
4469};
4470
4471static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4472 {
4473 .procname = "kernel",
c57baf1e 4474 .mode = 0555,
e0361851
AD
4475 .child = sd_ctl_dir,
4476 },
56992309 4477 {}
e692ab53
NP
4478};
4479
4480static struct ctl_table *sd_alloc_ctl_entry(int n)
4481{
4482 struct ctl_table *entry =
5cf9f062 4483 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4484
e692ab53
NP
4485 return entry;
4486}
4487
6382bc90
MM
4488static void sd_free_ctl_entry(struct ctl_table **tablep)
4489{
cd790076 4490 struct ctl_table *entry;
6382bc90 4491
cd790076
MM
4492 /*
4493 * In the intermediate directories, both the child directory and
4494 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4495 * will always be set. In the lowest directory the names are
cd790076
MM
4496 * static strings and all have proc handlers.
4497 */
4498 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4499 if (entry->child)
4500 sd_free_ctl_entry(&entry->child);
cd790076
MM
4501 if (entry->proc_handler == NULL)
4502 kfree(entry->procname);
4503 }
6382bc90
MM
4504
4505 kfree(*tablep);
4506 *tablep = NULL;
4507}
4508
201c373e 4509static int min_load_idx = 0;
fd9b86d3 4510static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4511
e692ab53 4512static void
e0361851 4513set_table_entry(struct ctl_table *entry,
e692ab53 4514 const char *procname, void *data, int maxlen,
201c373e
NK
4515 umode_t mode, proc_handler *proc_handler,
4516 bool load_idx)
e692ab53 4517{
e692ab53
NP
4518 entry->procname = procname;
4519 entry->data = data;
4520 entry->maxlen = maxlen;
4521 entry->mode = mode;
4522 entry->proc_handler = proc_handler;
201c373e
NK
4523
4524 if (load_idx) {
4525 entry->extra1 = &min_load_idx;
4526 entry->extra2 = &max_load_idx;
4527 }
e692ab53
NP
4528}
4529
4530static struct ctl_table *
4531sd_alloc_ctl_domain_table(struct sched_domain *sd)
4532{
a5d8c348 4533 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4534
ad1cdc1d
MM
4535 if (table == NULL)
4536 return NULL;
4537
e0361851 4538 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4539 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4540 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4541 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4542 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4543 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4544 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4545 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4546 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4547 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4548 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4549 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4550 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4551 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4552 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4553 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4554 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4555 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4556 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4557 &sd->cache_nice_tries,
201c373e 4558 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4559 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4560 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4561 set_table_entry(&table[11], "name", sd->name,
201c373e 4562 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4563 /* &table[12] is terminator */
e692ab53
NP
4564
4565 return table;
4566}
4567
be7002e6 4568static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4569{
4570 struct ctl_table *entry, *table;
4571 struct sched_domain *sd;
4572 int domain_num = 0, i;
4573 char buf[32];
4574
4575 for_each_domain(cpu, sd)
4576 domain_num++;
4577 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4578 if (table == NULL)
4579 return NULL;
e692ab53
NP
4580
4581 i = 0;
4582 for_each_domain(cpu, sd) {
4583 snprintf(buf, 32, "domain%d", i);
e692ab53 4584 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4585 entry->mode = 0555;
e692ab53
NP
4586 entry->child = sd_alloc_ctl_domain_table(sd);
4587 entry++;
4588 i++;
4589 }
4590 return table;
4591}
4592
4593static struct ctl_table_header *sd_sysctl_header;
6382bc90 4594static void register_sched_domain_sysctl(void)
e692ab53 4595{
6ad4c188 4596 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4597 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4598 char buf[32];
4599
7378547f
MM
4600 WARN_ON(sd_ctl_dir[0].child);
4601 sd_ctl_dir[0].child = entry;
4602
ad1cdc1d
MM
4603 if (entry == NULL)
4604 return;
4605
6ad4c188 4606 for_each_possible_cpu(i) {
e692ab53 4607 snprintf(buf, 32, "cpu%d", i);
e692ab53 4608 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4609 entry->mode = 0555;
e692ab53 4610 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4611 entry++;
e692ab53 4612 }
7378547f
MM
4613
4614 WARN_ON(sd_sysctl_header);
e692ab53
NP
4615 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4616}
6382bc90 4617
7378547f 4618/* may be called multiple times per register */
6382bc90
MM
4619static void unregister_sched_domain_sysctl(void)
4620{
7378547f
MM
4621 if (sd_sysctl_header)
4622 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4623 sd_sysctl_header = NULL;
7378547f
MM
4624 if (sd_ctl_dir[0].child)
4625 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4626}
e692ab53 4627#else
6382bc90
MM
4628static void register_sched_domain_sysctl(void)
4629{
4630}
4631static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4632{
4633}
4634#endif
4635
1f11eb6a
GH
4636static void set_rq_online(struct rq *rq)
4637{
4638 if (!rq->online) {
4639 const struct sched_class *class;
4640
c6c4927b 4641 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4642 rq->online = 1;
4643
4644 for_each_class(class) {
4645 if (class->rq_online)
4646 class->rq_online(rq);
4647 }
4648 }
4649}
4650
4651static void set_rq_offline(struct rq *rq)
4652{
4653 if (rq->online) {
4654 const struct sched_class *class;
4655
4656 for_each_class(class) {
4657 if (class->rq_offline)
4658 class->rq_offline(rq);
4659 }
4660
c6c4927b 4661 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4662 rq->online = 0;
4663 }
4664}
4665
1da177e4
LT
4666/*
4667 * migration_call - callback that gets triggered when a CPU is added.
4668 * Here we can start up the necessary migration thread for the new CPU.
4669 */
0db0628d 4670static int
48f24c4d 4671migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4672{
48f24c4d 4673 int cpu = (long)hcpu;
1da177e4 4674 unsigned long flags;
969c7921 4675 struct rq *rq = cpu_rq(cpu);
1da177e4 4676
48c5ccae 4677 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4678
1da177e4 4679 case CPU_UP_PREPARE:
a468d389 4680 rq->calc_load_update = calc_load_update;
1da177e4 4681 break;
48f24c4d 4682
1da177e4 4683 case CPU_ONLINE:
1f94ef59 4684 /* Update our root-domain */
05fa785c 4685 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4686 if (rq->rd) {
c6c4927b 4687 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4688
4689 set_rq_online(rq);
1f94ef59 4690 }
05fa785c 4691 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4692 break;
48f24c4d 4693
1da177e4 4694#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4695 case CPU_DYING:
317f3941 4696 sched_ttwu_pending();
57d885fe 4697 /* Update our root-domain */
05fa785c 4698 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4699 if (rq->rd) {
c6c4927b 4700 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4701 set_rq_offline(rq);
57d885fe 4702 }
48c5ccae
PZ
4703 migrate_tasks(cpu);
4704 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4705 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4706 break;
48c5ccae 4707
5d180232 4708 case CPU_DEAD:
f319da0c 4709 calc_load_migrate(rq);
57d885fe 4710 break;
1da177e4
LT
4711#endif
4712 }
49c022e6
PZ
4713
4714 update_max_interval();
4715
1da177e4
LT
4716 return NOTIFY_OK;
4717}
4718
f38b0820
PM
4719/*
4720 * Register at high priority so that task migration (migrate_all_tasks)
4721 * happens before everything else. This has to be lower priority than
cdd6c482 4722 * the notifier in the perf_event subsystem, though.
1da177e4 4723 */
0db0628d 4724static struct notifier_block migration_notifier = {
1da177e4 4725 .notifier_call = migration_call,
50a323b7 4726 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4727};
4728
0db0628d 4729static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4730 unsigned long action, void *hcpu)
4731{
4732 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4733 case CPU_STARTING:
3a101d05
TH
4734 case CPU_DOWN_FAILED:
4735 set_cpu_active((long)hcpu, true);
4736 return NOTIFY_OK;
4737 default:
4738 return NOTIFY_DONE;
4739 }
4740}
4741
0db0628d 4742static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4743 unsigned long action, void *hcpu)
4744{
4745 switch (action & ~CPU_TASKS_FROZEN) {
4746 case CPU_DOWN_PREPARE:
4747 set_cpu_active((long)hcpu, false);
4748 return NOTIFY_OK;
4749 default:
4750 return NOTIFY_DONE;
4751 }
4752}
4753
7babe8db 4754static int __init migration_init(void)
1da177e4
LT
4755{
4756 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4757 int err;
48f24c4d 4758
3a101d05 4759 /* Initialize migration for the boot CPU */
07dccf33
AM
4760 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4761 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4762 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4763 register_cpu_notifier(&migration_notifier);
7babe8db 4764
3a101d05
TH
4765 /* Register cpu active notifiers */
4766 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4767 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4768
a004cd42 4769 return 0;
1da177e4 4770}
7babe8db 4771early_initcall(migration_init);
1da177e4
LT
4772#endif
4773
4774#ifdef CONFIG_SMP
476f3534 4775
4cb98839
PZ
4776static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4777
3e9830dc 4778#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4779
d039ac60 4780static __read_mostly int sched_debug_enabled;
f6630114 4781
d039ac60 4782static int __init sched_debug_setup(char *str)
f6630114 4783{
d039ac60 4784 sched_debug_enabled = 1;
f6630114
MT
4785
4786 return 0;
4787}
d039ac60
PZ
4788early_param("sched_debug", sched_debug_setup);
4789
4790static inline bool sched_debug(void)
4791{
4792 return sched_debug_enabled;
4793}
f6630114 4794
7c16ec58 4795static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4796 struct cpumask *groupmask)
1da177e4 4797{
4dcf6aff 4798 struct sched_group *group = sd->groups;
434d53b0 4799 char str[256];
1da177e4 4800
968ea6d8 4801 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4802 cpumask_clear(groupmask);
4dcf6aff
IM
4803
4804 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4805
4806 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4807 printk("does not load-balance\n");
4dcf6aff 4808 if (sd->parent)
3df0fc5b
PZ
4809 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4810 " has parent");
4dcf6aff 4811 return -1;
41c7ce9a
NP
4812 }
4813
3df0fc5b 4814 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4815
758b2cdc 4816 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4817 printk(KERN_ERR "ERROR: domain->span does not contain "
4818 "CPU%d\n", cpu);
4dcf6aff 4819 }
758b2cdc 4820 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4821 printk(KERN_ERR "ERROR: domain->groups does not contain"
4822 " CPU%d\n", cpu);
4dcf6aff 4823 }
1da177e4 4824
4dcf6aff 4825 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4826 do {
4dcf6aff 4827 if (!group) {
3df0fc5b
PZ
4828 printk("\n");
4829 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4830 break;
4831 }
4832
c3decf0d
PZ
4833 /*
4834 * Even though we initialize ->power to something semi-sane,
4835 * we leave power_orig unset. This allows us to detect if
4836 * domain iteration is still funny without causing /0 traps.
4837 */
4838 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4839 printk(KERN_CONT "\n");
4840 printk(KERN_ERR "ERROR: domain->cpu_power not "
4841 "set\n");
4dcf6aff
IM
4842 break;
4843 }
1da177e4 4844
758b2cdc 4845 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4846 printk(KERN_CONT "\n");
4847 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4848 break;
4849 }
1da177e4 4850
cb83b629
PZ
4851 if (!(sd->flags & SD_OVERLAP) &&
4852 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4853 printk(KERN_CONT "\n");
4854 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4855 break;
4856 }
1da177e4 4857
758b2cdc 4858 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4859
968ea6d8 4860 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4861
3df0fc5b 4862 printk(KERN_CONT " %s", str);
9c3f75cb 4863 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4864 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4865 group->sgp->power);
381512cf 4866 }
1da177e4 4867
4dcf6aff
IM
4868 group = group->next;
4869 } while (group != sd->groups);
3df0fc5b 4870 printk(KERN_CONT "\n");
1da177e4 4871
758b2cdc 4872 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4873 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4874
758b2cdc
RR
4875 if (sd->parent &&
4876 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4877 printk(KERN_ERR "ERROR: parent span is not a superset "
4878 "of domain->span\n");
4dcf6aff
IM
4879 return 0;
4880}
1da177e4 4881
4dcf6aff
IM
4882static void sched_domain_debug(struct sched_domain *sd, int cpu)
4883{
4884 int level = 0;
1da177e4 4885
d039ac60 4886 if (!sched_debug_enabled)
f6630114
MT
4887 return;
4888
4dcf6aff
IM
4889 if (!sd) {
4890 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4891 return;
4892 }
1da177e4 4893
4dcf6aff
IM
4894 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4895
4896 for (;;) {
4cb98839 4897 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4898 break;
1da177e4
LT
4899 level++;
4900 sd = sd->parent;
33859f7f 4901 if (!sd)
4dcf6aff
IM
4902 break;
4903 }
1da177e4 4904}
6d6bc0ad 4905#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4906# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4907static inline bool sched_debug(void)
4908{
4909 return false;
4910}
6d6bc0ad 4911#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4912
1a20ff27 4913static int sd_degenerate(struct sched_domain *sd)
245af2c7 4914{
758b2cdc 4915 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4916 return 1;
4917
4918 /* Following flags need at least 2 groups */
4919 if (sd->flags & (SD_LOAD_BALANCE |
4920 SD_BALANCE_NEWIDLE |
4921 SD_BALANCE_FORK |
89c4710e
SS
4922 SD_BALANCE_EXEC |
4923 SD_SHARE_CPUPOWER |
4924 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4925 if (sd->groups != sd->groups->next)
4926 return 0;
4927 }
4928
4929 /* Following flags don't use groups */
c88d5910 4930 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4931 return 0;
4932
4933 return 1;
4934}
4935
48f24c4d
IM
4936static int
4937sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4938{
4939 unsigned long cflags = sd->flags, pflags = parent->flags;
4940
4941 if (sd_degenerate(parent))
4942 return 1;
4943
758b2cdc 4944 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4945 return 0;
4946
245af2c7
SS
4947 /* Flags needing groups don't count if only 1 group in parent */
4948 if (parent->groups == parent->groups->next) {
4949 pflags &= ~(SD_LOAD_BALANCE |
4950 SD_BALANCE_NEWIDLE |
4951 SD_BALANCE_FORK |
89c4710e
SS
4952 SD_BALANCE_EXEC |
4953 SD_SHARE_CPUPOWER |
10866e62
PZ
4954 SD_SHARE_PKG_RESOURCES |
4955 SD_PREFER_SIBLING);
5436499e
KC
4956 if (nr_node_ids == 1)
4957 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4958 }
4959 if (~cflags & pflags)
4960 return 0;
4961
4962 return 1;
4963}
4964
dce840a0 4965static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4966{
dce840a0 4967 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4968
68e74568 4969 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4970 free_cpumask_var(rd->rto_mask);
4971 free_cpumask_var(rd->online);
4972 free_cpumask_var(rd->span);
4973 kfree(rd);
4974}
4975
57d885fe
GH
4976static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4977{
a0490fa3 4978 struct root_domain *old_rd = NULL;
57d885fe 4979 unsigned long flags;
57d885fe 4980
05fa785c 4981 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4982
4983 if (rq->rd) {
a0490fa3 4984 old_rd = rq->rd;
57d885fe 4985
c6c4927b 4986 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4987 set_rq_offline(rq);
57d885fe 4988
c6c4927b 4989 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4990
a0490fa3
IM
4991 /*
4992 * If we dont want to free the old_rt yet then
4993 * set old_rd to NULL to skip the freeing later
4994 * in this function:
4995 */
4996 if (!atomic_dec_and_test(&old_rd->refcount))
4997 old_rd = NULL;
57d885fe
GH
4998 }
4999
5000 atomic_inc(&rd->refcount);
5001 rq->rd = rd;
5002
c6c4927b 5003 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5004 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5005 set_rq_online(rq);
57d885fe 5006
05fa785c 5007 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5008
5009 if (old_rd)
dce840a0 5010 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5011}
5012
68c38fc3 5013static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5014{
5015 memset(rd, 0, sizeof(*rd));
5016
68c38fc3 5017 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5018 goto out;
68c38fc3 5019 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5020 goto free_span;
68c38fc3 5021 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5022 goto free_online;
6e0534f2 5023
68c38fc3 5024 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5025 goto free_rto_mask;
c6c4927b 5026 return 0;
6e0534f2 5027
68e74568
RR
5028free_rto_mask:
5029 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5030free_online:
5031 free_cpumask_var(rd->online);
5032free_span:
5033 free_cpumask_var(rd->span);
0c910d28 5034out:
c6c4927b 5035 return -ENOMEM;
57d885fe
GH
5036}
5037
029632fb
PZ
5038/*
5039 * By default the system creates a single root-domain with all cpus as
5040 * members (mimicking the global state we have today).
5041 */
5042struct root_domain def_root_domain;
5043
57d885fe
GH
5044static void init_defrootdomain(void)
5045{
68c38fc3 5046 init_rootdomain(&def_root_domain);
c6c4927b 5047
57d885fe
GH
5048 atomic_set(&def_root_domain.refcount, 1);
5049}
5050
dc938520 5051static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5052{
5053 struct root_domain *rd;
5054
5055 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5056 if (!rd)
5057 return NULL;
5058
68c38fc3 5059 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5060 kfree(rd);
5061 return NULL;
5062 }
57d885fe
GH
5063
5064 return rd;
5065}
5066
e3589f6c
PZ
5067static void free_sched_groups(struct sched_group *sg, int free_sgp)
5068{
5069 struct sched_group *tmp, *first;
5070
5071 if (!sg)
5072 return;
5073
5074 first = sg;
5075 do {
5076 tmp = sg->next;
5077
5078 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5079 kfree(sg->sgp);
5080
5081 kfree(sg);
5082 sg = tmp;
5083 } while (sg != first);
5084}
5085
dce840a0
PZ
5086static void free_sched_domain(struct rcu_head *rcu)
5087{
5088 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5089
5090 /*
5091 * If its an overlapping domain it has private groups, iterate and
5092 * nuke them all.
5093 */
5094 if (sd->flags & SD_OVERLAP) {
5095 free_sched_groups(sd->groups, 1);
5096 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5097 kfree(sd->groups->sgp);
dce840a0 5098 kfree(sd->groups);
9c3f75cb 5099 }
dce840a0
PZ
5100 kfree(sd);
5101}
5102
5103static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5104{
5105 call_rcu(&sd->rcu, free_sched_domain);
5106}
5107
5108static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5109{
5110 for (; sd; sd = sd->parent)
5111 destroy_sched_domain(sd, cpu);
5112}
5113
518cd623
PZ
5114/*
5115 * Keep a special pointer to the highest sched_domain that has
5116 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5117 * allows us to avoid some pointer chasing select_idle_sibling().
5118 *
5119 * Also keep a unique ID per domain (we use the first cpu number in
5120 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5121 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5122 */
5123DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5124DEFINE_PER_CPU(int, sd_llc_size);
518cd623
PZ
5125DEFINE_PER_CPU(int, sd_llc_id);
5126
5127static void update_top_cache_domain(int cpu)
5128{
5129 struct sched_domain *sd;
5130 int id = cpu;
7d9ffa89 5131 int size = 1;
518cd623
PZ
5132
5133 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5134 if (sd) {
518cd623 5135 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5136 size = cpumask_weight(sched_domain_span(sd));
5137 }
518cd623
PZ
5138
5139 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5140 per_cpu(sd_llc_size, cpu) = size;
518cd623
PZ
5141 per_cpu(sd_llc_id, cpu) = id;
5142}
5143
1da177e4 5144/*
0eab9146 5145 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5146 * hold the hotplug lock.
5147 */
0eab9146
IM
5148static void
5149cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5150{
70b97a7f 5151 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5152 struct sched_domain *tmp;
5153
5154 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5155 for (tmp = sd; tmp; ) {
245af2c7
SS
5156 struct sched_domain *parent = tmp->parent;
5157 if (!parent)
5158 break;
f29c9b1c 5159
1a848870 5160 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5161 tmp->parent = parent->parent;
1a848870
SS
5162 if (parent->parent)
5163 parent->parent->child = tmp;
10866e62
PZ
5164 /*
5165 * Transfer SD_PREFER_SIBLING down in case of a
5166 * degenerate parent; the spans match for this
5167 * so the property transfers.
5168 */
5169 if (parent->flags & SD_PREFER_SIBLING)
5170 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5171 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5172 } else
5173 tmp = tmp->parent;
245af2c7
SS
5174 }
5175
1a848870 5176 if (sd && sd_degenerate(sd)) {
dce840a0 5177 tmp = sd;
245af2c7 5178 sd = sd->parent;
dce840a0 5179 destroy_sched_domain(tmp, cpu);
1a848870
SS
5180 if (sd)
5181 sd->child = NULL;
5182 }
1da177e4 5183
4cb98839 5184 sched_domain_debug(sd, cpu);
1da177e4 5185
57d885fe 5186 rq_attach_root(rq, rd);
dce840a0 5187 tmp = rq->sd;
674311d5 5188 rcu_assign_pointer(rq->sd, sd);
dce840a0 5189 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5190
5191 update_top_cache_domain(cpu);
1da177e4
LT
5192}
5193
5194/* cpus with isolated domains */
dcc30a35 5195static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5196
5197/* Setup the mask of cpus configured for isolated domains */
5198static int __init isolated_cpu_setup(char *str)
5199{
bdddd296 5200 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5201 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5202 return 1;
5203}
5204
8927f494 5205__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5206
d3081f52
PZ
5207static const struct cpumask *cpu_cpu_mask(int cpu)
5208{
5209 return cpumask_of_node(cpu_to_node(cpu));
5210}
5211
dce840a0
PZ
5212struct sd_data {
5213 struct sched_domain **__percpu sd;
5214 struct sched_group **__percpu sg;
9c3f75cb 5215 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5216};
5217
49a02c51 5218struct s_data {
21d42ccf 5219 struct sched_domain ** __percpu sd;
49a02c51
AH
5220 struct root_domain *rd;
5221};
5222
2109b99e 5223enum s_alloc {
2109b99e 5224 sa_rootdomain,
21d42ccf 5225 sa_sd,
dce840a0 5226 sa_sd_storage,
2109b99e
AH
5227 sa_none,
5228};
5229
54ab4ff4
PZ
5230struct sched_domain_topology_level;
5231
5232typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5233typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5234
e3589f6c
PZ
5235#define SDTL_OVERLAP 0x01
5236
eb7a74e6 5237struct sched_domain_topology_level {
2c402dc3
PZ
5238 sched_domain_init_f init;
5239 sched_domain_mask_f mask;
e3589f6c 5240 int flags;
cb83b629 5241 int numa_level;
54ab4ff4 5242 struct sd_data data;
eb7a74e6
PZ
5243};
5244
c1174876
PZ
5245/*
5246 * Build an iteration mask that can exclude certain CPUs from the upwards
5247 * domain traversal.
5248 *
5249 * Asymmetric node setups can result in situations where the domain tree is of
5250 * unequal depth, make sure to skip domains that already cover the entire
5251 * range.
5252 *
5253 * In that case build_sched_domains() will have terminated the iteration early
5254 * and our sibling sd spans will be empty. Domains should always include the
5255 * cpu they're built on, so check that.
5256 *
5257 */
5258static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5259{
5260 const struct cpumask *span = sched_domain_span(sd);
5261 struct sd_data *sdd = sd->private;
5262 struct sched_domain *sibling;
5263 int i;
5264
5265 for_each_cpu(i, span) {
5266 sibling = *per_cpu_ptr(sdd->sd, i);
5267 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5268 continue;
5269
5270 cpumask_set_cpu(i, sched_group_mask(sg));
5271 }
5272}
5273
5274/*
5275 * Return the canonical balance cpu for this group, this is the first cpu
5276 * of this group that's also in the iteration mask.
5277 */
5278int group_balance_cpu(struct sched_group *sg)
5279{
5280 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5281}
5282
e3589f6c
PZ
5283static int
5284build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5285{
5286 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5287 const struct cpumask *span = sched_domain_span(sd);
5288 struct cpumask *covered = sched_domains_tmpmask;
5289 struct sd_data *sdd = sd->private;
5290 struct sched_domain *child;
5291 int i;
5292
5293 cpumask_clear(covered);
5294
5295 for_each_cpu(i, span) {
5296 struct cpumask *sg_span;
5297
5298 if (cpumask_test_cpu(i, covered))
5299 continue;
5300
c1174876
PZ
5301 child = *per_cpu_ptr(sdd->sd, i);
5302
5303 /* See the comment near build_group_mask(). */
5304 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5305 continue;
5306
e3589f6c 5307 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5308 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5309
5310 if (!sg)
5311 goto fail;
5312
5313 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5314 if (child->child) {
5315 child = child->child;
5316 cpumask_copy(sg_span, sched_domain_span(child));
5317 } else
5318 cpumask_set_cpu(i, sg_span);
5319
5320 cpumask_or(covered, covered, sg_span);
5321
74a5ce20 5322 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5323 if (atomic_inc_return(&sg->sgp->ref) == 1)
5324 build_group_mask(sd, sg);
5325
c3decf0d
PZ
5326 /*
5327 * Initialize sgp->power such that even if we mess up the
5328 * domains and no possible iteration will get us here, we won't
5329 * die on a /0 trap.
5330 */
5331 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5332
c1174876
PZ
5333 /*
5334 * Make sure the first group of this domain contains the
5335 * canonical balance cpu. Otherwise the sched_domain iteration
5336 * breaks. See update_sg_lb_stats().
5337 */
74a5ce20 5338 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5339 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5340 groups = sg;
5341
5342 if (!first)
5343 first = sg;
5344 if (last)
5345 last->next = sg;
5346 last = sg;
5347 last->next = first;
5348 }
5349 sd->groups = groups;
5350
5351 return 0;
5352
5353fail:
5354 free_sched_groups(first, 0);
5355
5356 return -ENOMEM;
5357}
5358
dce840a0 5359static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5360{
dce840a0
PZ
5361 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5362 struct sched_domain *child = sd->child;
1da177e4 5363
dce840a0
PZ
5364 if (child)
5365 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5366
9c3f75cb 5367 if (sg) {
dce840a0 5368 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5369 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5370 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5371 }
dce840a0
PZ
5372
5373 return cpu;
1e9f28fa 5374}
1e9f28fa 5375
01a08546 5376/*
dce840a0
PZ
5377 * build_sched_groups will build a circular linked list of the groups
5378 * covered by the given span, and will set each group's ->cpumask correctly,
5379 * and ->cpu_power to 0.
e3589f6c
PZ
5380 *
5381 * Assumes the sched_domain tree is fully constructed
01a08546 5382 */
e3589f6c
PZ
5383static int
5384build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5385{
dce840a0
PZ
5386 struct sched_group *first = NULL, *last = NULL;
5387 struct sd_data *sdd = sd->private;
5388 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5389 struct cpumask *covered;
dce840a0 5390 int i;
9c1cfda2 5391
e3589f6c
PZ
5392 get_group(cpu, sdd, &sd->groups);
5393 atomic_inc(&sd->groups->ref);
5394
0936629f 5395 if (cpu != cpumask_first(span))
e3589f6c
PZ
5396 return 0;
5397
f96225fd
PZ
5398 lockdep_assert_held(&sched_domains_mutex);
5399 covered = sched_domains_tmpmask;
5400
dce840a0 5401 cpumask_clear(covered);
6711cab4 5402
dce840a0
PZ
5403 for_each_cpu(i, span) {
5404 struct sched_group *sg;
cd08e923 5405 int group, j;
6711cab4 5406
dce840a0
PZ
5407 if (cpumask_test_cpu(i, covered))
5408 continue;
6711cab4 5409
cd08e923 5410 group = get_group(i, sdd, &sg);
dce840a0 5411 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5412 sg->sgp->power = 0;
c1174876 5413 cpumask_setall(sched_group_mask(sg));
0601a88d 5414
dce840a0
PZ
5415 for_each_cpu(j, span) {
5416 if (get_group(j, sdd, NULL) != group)
5417 continue;
0601a88d 5418
dce840a0
PZ
5419 cpumask_set_cpu(j, covered);
5420 cpumask_set_cpu(j, sched_group_cpus(sg));
5421 }
0601a88d 5422
dce840a0
PZ
5423 if (!first)
5424 first = sg;
5425 if (last)
5426 last->next = sg;
5427 last = sg;
5428 }
5429 last->next = first;
e3589f6c
PZ
5430
5431 return 0;
0601a88d 5432}
51888ca2 5433
89c4710e
SS
5434/*
5435 * Initialize sched groups cpu_power.
5436 *
5437 * cpu_power indicates the capacity of sched group, which is used while
5438 * distributing the load between different sched groups in a sched domain.
5439 * Typically cpu_power for all the groups in a sched domain will be same unless
5440 * there are asymmetries in the topology. If there are asymmetries, group
5441 * having more cpu_power will pickup more load compared to the group having
5442 * less cpu_power.
89c4710e
SS
5443 */
5444static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5445{
e3589f6c 5446 struct sched_group *sg = sd->groups;
89c4710e 5447
94c95ba6 5448 WARN_ON(!sg);
e3589f6c
PZ
5449
5450 do {
5451 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5452 sg = sg->next;
5453 } while (sg != sd->groups);
89c4710e 5454
c1174876 5455 if (cpu != group_balance_cpu(sg))
e3589f6c 5456 return;
aae6d3dd 5457
d274cb30 5458 update_group_power(sd, cpu);
69e1e811 5459 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5460}
5461
029632fb
PZ
5462int __weak arch_sd_sibling_asym_packing(void)
5463{
5464 return 0*SD_ASYM_PACKING;
89c4710e
SS
5465}
5466
7c16ec58
MT
5467/*
5468 * Initializers for schedule domains
5469 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5470 */
5471
a5d8c348
IM
5472#ifdef CONFIG_SCHED_DEBUG
5473# define SD_INIT_NAME(sd, type) sd->name = #type
5474#else
5475# define SD_INIT_NAME(sd, type) do { } while (0)
5476#endif
5477
54ab4ff4
PZ
5478#define SD_INIT_FUNC(type) \
5479static noinline struct sched_domain * \
5480sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5481{ \
5482 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5483 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5484 SD_INIT_NAME(sd, type); \
5485 sd->private = &tl->data; \
5486 return sd; \
7c16ec58
MT
5487}
5488
5489SD_INIT_FUNC(CPU)
7c16ec58
MT
5490#ifdef CONFIG_SCHED_SMT
5491 SD_INIT_FUNC(SIBLING)
5492#endif
5493#ifdef CONFIG_SCHED_MC
5494 SD_INIT_FUNC(MC)
5495#endif
01a08546
HC
5496#ifdef CONFIG_SCHED_BOOK
5497 SD_INIT_FUNC(BOOK)
5498#endif
7c16ec58 5499
1d3504fc 5500static int default_relax_domain_level = -1;
60495e77 5501int sched_domain_level_max;
1d3504fc
HS
5502
5503static int __init setup_relax_domain_level(char *str)
5504{
a841f8ce
DS
5505 if (kstrtoint(str, 0, &default_relax_domain_level))
5506 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5507
1d3504fc
HS
5508 return 1;
5509}
5510__setup("relax_domain_level=", setup_relax_domain_level);
5511
5512static void set_domain_attribute(struct sched_domain *sd,
5513 struct sched_domain_attr *attr)
5514{
5515 int request;
5516
5517 if (!attr || attr->relax_domain_level < 0) {
5518 if (default_relax_domain_level < 0)
5519 return;
5520 else
5521 request = default_relax_domain_level;
5522 } else
5523 request = attr->relax_domain_level;
5524 if (request < sd->level) {
5525 /* turn off idle balance on this domain */
c88d5910 5526 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5527 } else {
5528 /* turn on idle balance on this domain */
c88d5910 5529 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5530 }
5531}
5532
54ab4ff4
PZ
5533static void __sdt_free(const struct cpumask *cpu_map);
5534static int __sdt_alloc(const struct cpumask *cpu_map);
5535
2109b99e
AH
5536static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5537 const struct cpumask *cpu_map)
5538{
5539 switch (what) {
2109b99e 5540 case sa_rootdomain:
822ff793
PZ
5541 if (!atomic_read(&d->rd->refcount))
5542 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5543 case sa_sd:
5544 free_percpu(d->sd); /* fall through */
dce840a0 5545 case sa_sd_storage:
54ab4ff4 5546 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5547 case sa_none:
5548 break;
5549 }
5550}
3404c8d9 5551
2109b99e
AH
5552static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5553 const struct cpumask *cpu_map)
5554{
dce840a0
PZ
5555 memset(d, 0, sizeof(*d));
5556
54ab4ff4
PZ
5557 if (__sdt_alloc(cpu_map))
5558 return sa_sd_storage;
dce840a0
PZ
5559 d->sd = alloc_percpu(struct sched_domain *);
5560 if (!d->sd)
5561 return sa_sd_storage;
2109b99e 5562 d->rd = alloc_rootdomain();
dce840a0 5563 if (!d->rd)
21d42ccf 5564 return sa_sd;
2109b99e
AH
5565 return sa_rootdomain;
5566}
57d885fe 5567
dce840a0
PZ
5568/*
5569 * NULL the sd_data elements we've used to build the sched_domain and
5570 * sched_group structure so that the subsequent __free_domain_allocs()
5571 * will not free the data we're using.
5572 */
5573static void claim_allocations(int cpu, struct sched_domain *sd)
5574{
5575 struct sd_data *sdd = sd->private;
dce840a0
PZ
5576
5577 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5578 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5579
e3589f6c 5580 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5581 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5582
5583 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5584 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5585}
5586
2c402dc3
PZ
5587#ifdef CONFIG_SCHED_SMT
5588static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5589{
2c402dc3 5590 return topology_thread_cpumask(cpu);
3bd65a80 5591}
2c402dc3 5592#endif
7f4588f3 5593
d069b916
PZ
5594/*
5595 * Topology list, bottom-up.
5596 */
2c402dc3 5597static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5598#ifdef CONFIG_SCHED_SMT
5599 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5600#endif
1e9f28fa 5601#ifdef CONFIG_SCHED_MC
2c402dc3 5602 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5603#endif
d069b916
PZ
5604#ifdef CONFIG_SCHED_BOOK
5605 { sd_init_BOOK, cpu_book_mask, },
5606#endif
5607 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5608 { NULL, },
5609};
5610
5611static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5612
27723a68
VK
5613#define for_each_sd_topology(tl) \
5614 for (tl = sched_domain_topology; tl->init; tl++)
5615
cb83b629
PZ
5616#ifdef CONFIG_NUMA
5617
5618static int sched_domains_numa_levels;
cb83b629
PZ
5619static int *sched_domains_numa_distance;
5620static struct cpumask ***sched_domains_numa_masks;
5621static int sched_domains_curr_level;
5622
cb83b629
PZ
5623static inline int sd_local_flags(int level)
5624{
10717dcd 5625 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5626 return 0;
5627
5628 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5629}
5630
5631static struct sched_domain *
5632sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5633{
5634 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5635 int level = tl->numa_level;
5636 int sd_weight = cpumask_weight(
5637 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5638
5639 *sd = (struct sched_domain){
5640 .min_interval = sd_weight,
5641 .max_interval = 2*sd_weight,
5642 .busy_factor = 32,
870a0bb5 5643 .imbalance_pct = 125,
cb83b629
PZ
5644 .cache_nice_tries = 2,
5645 .busy_idx = 3,
5646 .idle_idx = 2,
5647 .newidle_idx = 0,
5648 .wake_idx = 0,
5649 .forkexec_idx = 0,
5650
5651 .flags = 1*SD_LOAD_BALANCE
5652 | 1*SD_BALANCE_NEWIDLE
5653 | 0*SD_BALANCE_EXEC
5654 | 0*SD_BALANCE_FORK
5655 | 0*SD_BALANCE_WAKE
5656 | 0*SD_WAKE_AFFINE
cb83b629 5657 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5658 | 0*SD_SHARE_PKG_RESOURCES
5659 | 1*SD_SERIALIZE
5660 | 0*SD_PREFER_SIBLING
5661 | sd_local_flags(level)
5662 ,
5663 .last_balance = jiffies,
5664 .balance_interval = sd_weight,
5665 };
5666 SD_INIT_NAME(sd, NUMA);
5667 sd->private = &tl->data;
5668
5669 /*
5670 * Ugly hack to pass state to sd_numa_mask()...
5671 */
5672 sched_domains_curr_level = tl->numa_level;
5673
5674 return sd;
5675}
5676
5677static const struct cpumask *sd_numa_mask(int cpu)
5678{
5679 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5680}
5681
d039ac60
PZ
5682static void sched_numa_warn(const char *str)
5683{
5684 static int done = false;
5685 int i,j;
5686
5687 if (done)
5688 return;
5689
5690 done = true;
5691
5692 printk(KERN_WARNING "ERROR: %s\n\n", str);
5693
5694 for (i = 0; i < nr_node_ids; i++) {
5695 printk(KERN_WARNING " ");
5696 for (j = 0; j < nr_node_ids; j++)
5697 printk(KERN_CONT "%02d ", node_distance(i,j));
5698 printk(KERN_CONT "\n");
5699 }
5700 printk(KERN_WARNING "\n");
5701}
5702
5703static bool find_numa_distance(int distance)
5704{
5705 int i;
5706
5707 if (distance == node_distance(0, 0))
5708 return true;
5709
5710 for (i = 0; i < sched_domains_numa_levels; i++) {
5711 if (sched_domains_numa_distance[i] == distance)
5712 return true;
5713 }
5714
5715 return false;
5716}
5717
cb83b629
PZ
5718static void sched_init_numa(void)
5719{
5720 int next_distance, curr_distance = node_distance(0, 0);
5721 struct sched_domain_topology_level *tl;
5722 int level = 0;
5723 int i, j, k;
5724
cb83b629
PZ
5725 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5726 if (!sched_domains_numa_distance)
5727 return;
5728
5729 /*
5730 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5731 * unique distances in the node_distance() table.
5732 *
5733 * Assumes node_distance(0,j) includes all distances in
5734 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5735 */
5736 next_distance = curr_distance;
5737 for (i = 0; i < nr_node_ids; i++) {
5738 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5739 for (k = 0; k < nr_node_ids; k++) {
5740 int distance = node_distance(i, k);
5741
5742 if (distance > curr_distance &&
5743 (distance < next_distance ||
5744 next_distance == curr_distance))
5745 next_distance = distance;
5746
5747 /*
5748 * While not a strong assumption it would be nice to know
5749 * about cases where if node A is connected to B, B is not
5750 * equally connected to A.
5751 */
5752 if (sched_debug() && node_distance(k, i) != distance)
5753 sched_numa_warn("Node-distance not symmetric");
5754
5755 if (sched_debug() && i && !find_numa_distance(distance))
5756 sched_numa_warn("Node-0 not representative");
5757 }
5758 if (next_distance != curr_distance) {
5759 sched_domains_numa_distance[level++] = next_distance;
5760 sched_domains_numa_levels = level;
5761 curr_distance = next_distance;
5762 } else break;
cb83b629 5763 }
d039ac60
PZ
5764
5765 /*
5766 * In case of sched_debug() we verify the above assumption.
5767 */
5768 if (!sched_debug())
5769 break;
cb83b629
PZ
5770 }
5771 /*
5772 * 'level' contains the number of unique distances, excluding the
5773 * identity distance node_distance(i,i).
5774 *
28b4a521 5775 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5776 * numbers.
5777 */
5778
5f7865f3
TC
5779 /*
5780 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5781 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5782 * the array will contain less then 'level' members. This could be
5783 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5784 * in other functions.
5785 *
5786 * We reset it to 'level' at the end of this function.
5787 */
5788 sched_domains_numa_levels = 0;
5789
cb83b629
PZ
5790 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5791 if (!sched_domains_numa_masks)
5792 return;
5793
5794 /*
5795 * Now for each level, construct a mask per node which contains all
5796 * cpus of nodes that are that many hops away from us.
5797 */
5798 for (i = 0; i < level; i++) {
5799 sched_domains_numa_masks[i] =
5800 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5801 if (!sched_domains_numa_masks[i])
5802 return;
5803
5804 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5805 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5806 if (!mask)
5807 return;
5808
5809 sched_domains_numa_masks[i][j] = mask;
5810
5811 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5812 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5813 continue;
5814
5815 cpumask_or(mask, mask, cpumask_of_node(k));
5816 }
5817 }
5818 }
5819
5820 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5821 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5822 if (!tl)
5823 return;
5824
5825 /*
5826 * Copy the default topology bits..
5827 */
5828 for (i = 0; default_topology[i].init; i++)
5829 tl[i] = default_topology[i];
5830
5831 /*
5832 * .. and append 'j' levels of NUMA goodness.
5833 */
5834 for (j = 0; j < level; i++, j++) {
5835 tl[i] = (struct sched_domain_topology_level){
5836 .init = sd_numa_init,
5837 .mask = sd_numa_mask,
5838 .flags = SDTL_OVERLAP,
5839 .numa_level = j,
5840 };
5841 }
5842
5843 sched_domain_topology = tl;
5f7865f3
TC
5844
5845 sched_domains_numa_levels = level;
cb83b629 5846}
301a5cba
TC
5847
5848static void sched_domains_numa_masks_set(int cpu)
5849{
5850 int i, j;
5851 int node = cpu_to_node(cpu);
5852
5853 for (i = 0; i < sched_domains_numa_levels; i++) {
5854 for (j = 0; j < nr_node_ids; j++) {
5855 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5856 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5857 }
5858 }
5859}
5860
5861static void sched_domains_numa_masks_clear(int cpu)
5862{
5863 int i, j;
5864 for (i = 0; i < sched_domains_numa_levels; i++) {
5865 for (j = 0; j < nr_node_ids; j++)
5866 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5867 }
5868}
5869
5870/*
5871 * Update sched_domains_numa_masks[level][node] array when new cpus
5872 * are onlined.
5873 */
5874static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5875 unsigned long action,
5876 void *hcpu)
5877{
5878 int cpu = (long)hcpu;
5879
5880 switch (action & ~CPU_TASKS_FROZEN) {
5881 case CPU_ONLINE:
5882 sched_domains_numa_masks_set(cpu);
5883 break;
5884
5885 case CPU_DEAD:
5886 sched_domains_numa_masks_clear(cpu);
5887 break;
5888
5889 default:
5890 return NOTIFY_DONE;
5891 }
5892
5893 return NOTIFY_OK;
cb83b629
PZ
5894}
5895#else
5896static inline void sched_init_numa(void)
5897{
5898}
301a5cba
TC
5899
5900static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5901 unsigned long action,
5902 void *hcpu)
5903{
5904 return 0;
5905}
cb83b629
PZ
5906#endif /* CONFIG_NUMA */
5907
54ab4ff4
PZ
5908static int __sdt_alloc(const struct cpumask *cpu_map)
5909{
5910 struct sched_domain_topology_level *tl;
5911 int j;
5912
27723a68 5913 for_each_sd_topology(tl) {
54ab4ff4
PZ
5914 struct sd_data *sdd = &tl->data;
5915
5916 sdd->sd = alloc_percpu(struct sched_domain *);
5917 if (!sdd->sd)
5918 return -ENOMEM;
5919
5920 sdd->sg = alloc_percpu(struct sched_group *);
5921 if (!sdd->sg)
5922 return -ENOMEM;
5923
9c3f75cb
PZ
5924 sdd->sgp = alloc_percpu(struct sched_group_power *);
5925 if (!sdd->sgp)
5926 return -ENOMEM;
5927
54ab4ff4
PZ
5928 for_each_cpu(j, cpu_map) {
5929 struct sched_domain *sd;
5930 struct sched_group *sg;
9c3f75cb 5931 struct sched_group_power *sgp;
54ab4ff4
PZ
5932
5933 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5934 GFP_KERNEL, cpu_to_node(j));
5935 if (!sd)
5936 return -ENOMEM;
5937
5938 *per_cpu_ptr(sdd->sd, j) = sd;
5939
5940 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5941 GFP_KERNEL, cpu_to_node(j));
5942 if (!sg)
5943 return -ENOMEM;
5944
30b4e9eb
IM
5945 sg->next = sg;
5946
54ab4ff4 5947 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5948
c1174876 5949 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5950 GFP_KERNEL, cpu_to_node(j));
5951 if (!sgp)
5952 return -ENOMEM;
5953
5954 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5955 }
5956 }
5957
5958 return 0;
5959}
5960
5961static void __sdt_free(const struct cpumask *cpu_map)
5962{
5963 struct sched_domain_topology_level *tl;
5964 int j;
5965
27723a68 5966 for_each_sd_topology(tl) {
54ab4ff4
PZ
5967 struct sd_data *sdd = &tl->data;
5968
5969 for_each_cpu(j, cpu_map) {
fb2cf2c6 5970 struct sched_domain *sd;
5971
5972 if (sdd->sd) {
5973 sd = *per_cpu_ptr(sdd->sd, j);
5974 if (sd && (sd->flags & SD_OVERLAP))
5975 free_sched_groups(sd->groups, 0);
5976 kfree(*per_cpu_ptr(sdd->sd, j));
5977 }
5978
5979 if (sdd->sg)
5980 kfree(*per_cpu_ptr(sdd->sg, j));
5981 if (sdd->sgp)
5982 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5983 }
5984 free_percpu(sdd->sd);
fb2cf2c6 5985 sdd->sd = NULL;
54ab4ff4 5986 free_percpu(sdd->sg);
fb2cf2c6 5987 sdd->sg = NULL;
9c3f75cb 5988 free_percpu(sdd->sgp);
fb2cf2c6 5989 sdd->sgp = NULL;
54ab4ff4
PZ
5990 }
5991}
5992
2c402dc3 5993struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5994 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5995 struct sched_domain *child, int cpu)
2c402dc3 5996{
54ab4ff4 5997 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5998 if (!sd)
d069b916 5999 return child;
2c402dc3 6000
2c402dc3 6001 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6002 if (child) {
6003 sd->level = child->level + 1;
6004 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6005 child->parent = sd;
c75e0128 6006 sd->child = child;
60495e77 6007 }
a841f8ce 6008 set_domain_attribute(sd, attr);
2c402dc3
PZ
6009
6010 return sd;
6011}
6012
2109b99e
AH
6013/*
6014 * Build sched domains for a given set of cpus and attach the sched domains
6015 * to the individual cpus
6016 */
dce840a0
PZ
6017static int build_sched_domains(const struct cpumask *cpu_map,
6018 struct sched_domain_attr *attr)
2109b99e 6019{
1c632169 6020 enum s_alloc alloc_state;
dce840a0 6021 struct sched_domain *sd;
2109b99e 6022 struct s_data d;
822ff793 6023 int i, ret = -ENOMEM;
9c1cfda2 6024
2109b99e
AH
6025 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6026 if (alloc_state != sa_rootdomain)
6027 goto error;
9c1cfda2 6028
dce840a0 6029 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6030 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6031 struct sched_domain_topology_level *tl;
6032
3bd65a80 6033 sd = NULL;
27723a68 6034 for_each_sd_topology(tl) {
4a850cbe 6035 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6036 if (tl == sched_domain_topology)
6037 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6038 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6039 sd->flags |= SD_OVERLAP;
d110235d
PZ
6040 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6041 break;
e3589f6c 6042 }
dce840a0
PZ
6043 }
6044
6045 /* Build the groups for the domains */
6046 for_each_cpu(i, cpu_map) {
6047 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6048 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6049 if (sd->flags & SD_OVERLAP) {
6050 if (build_overlap_sched_groups(sd, i))
6051 goto error;
6052 } else {
6053 if (build_sched_groups(sd, i))
6054 goto error;
6055 }
1cf51902 6056 }
a06dadbe 6057 }
9c1cfda2 6058
1da177e4 6059 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6060 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6061 if (!cpumask_test_cpu(i, cpu_map))
6062 continue;
9c1cfda2 6063
dce840a0
PZ
6064 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6065 claim_allocations(i, sd);
cd4ea6ae 6066 init_sched_groups_power(i, sd);
dce840a0 6067 }
f712c0c7 6068 }
9c1cfda2 6069
1da177e4 6070 /* Attach the domains */
dce840a0 6071 rcu_read_lock();
abcd083a 6072 for_each_cpu(i, cpu_map) {
21d42ccf 6073 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6074 cpu_attach_domain(sd, d.rd, i);
1da177e4 6075 }
dce840a0 6076 rcu_read_unlock();
51888ca2 6077
822ff793 6078 ret = 0;
51888ca2 6079error:
2109b99e 6080 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6081 return ret;
1da177e4 6082}
029190c5 6083
acc3f5d7 6084static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6085static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6086static struct sched_domain_attr *dattr_cur;
6087 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6088
6089/*
6090 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6091 * cpumask) fails, then fallback to a single sched domain,
6092 * as determined by the single cpumask fallback_doms.
029190c5 6093 */
4212823f 6094static cpumask_var_t fallback_doms;
029190c5 6095
ee79d1bd
HC
6096/*
6097 * arch_update_cpu_topology lets virtualized architectures update the
6098 * cpu core maps. It is supposed to return 1 if the topology changed
6099 * or 0 if it stayed the same.
6100 */
6101int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6102{
ee79d1bd 6103 return 0;
22e52b07
HC
6104}
6105
acc3f5d7
RR
6106cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6107{
6108 int i;
6109 cpumask_var_t *doms;
6110
6111 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6112 if (!doms)
6113 return NULL;
6114 for (i = 0; i < ndoms; i++) {
6115 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6116 free_sched_domains(doms, i);
6117 return NULL;
6118 }
6119 }
6120 return doms;
6121}
6122
6123void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6124{
6125 unsigned int i;
6126 for (i = 0; i < ndoms; i++)
6127 free_cpumask_var(doms[i]);
6128 kfree(doms);
6129}
6130
1a20ff27 6131/*
41a2d6cf 6132 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6133 * For now this just excludes isolated cpus, but could be used to
6134 * exclude other special cases in the future.
1a20ff27 6135 */
c4a8849a 6136static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6137{
7378547f
MM
6138 int err;
6139
22e52b07 6140 arch_update_cpu_topology();
029190c5 6141 ndoms_cur = 1;
acc3f5d7 6142 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6143 if (!doms_cur)
acc3f5d7
RR
6144 doms_cur = &fallback_doms;
6145 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6146 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6147 register_sched_domain_sysctl();
7378547f
MM
6148
6149 return err;
1a20ff27
DG
6150}
6151
1a20ff27
DG
6152/*
6153 * Detach sched domains from a group of cpus specified in cpu_map
6154 * These cpus will now be attached to the NULL domain
6155 */
96f874e2 6156static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6157{
6158 int i;
6159
dce840a0 6160 rcu_read_lock();
abcd083a 6161 for_each_cpu(i, cpu_map)
57d885fe 6162 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6163 rcu_read_unlock();
1a20ff27
DG
6164}
6165
1d3504fc
HS
6166/* handle null as "default" */
6167static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6168 struct sched_domain_attr *new, int idx_new)
6169{
6170 struct sched_domain_attr tmp;
6171
6172 /* fast path */
6173 if (!new && !cur)
6174 return 1;
6175
6176 tmp = SD_ATTR_INIT;
6177 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6178 new ? (new + idx_new) : &tmp,
6179 sizeof(struct sched_domain_attr));
6180}
6181
029190c5
PJ
6182/*
6183 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6184 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6185 * doms_new[] to the current sched domain partitioning, doms_cur[].
6186 * It destroys each deleted domain and builds each new domain.
6187 *
acc3f5d7 6188 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6189 * The masks don't intersect (don't overlap.) We should setup one
6190 * sched domain for each mask. CPUs not in any of the cpumasks will
6191 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6192 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6193 * it as it is.
6194 *
acc3f5d7
RR
6195 * The passed in 'doms_new' should be allocated using
6196 * alloc_sched_domains. This routine takes ownership of it and will
6197 * free_sched_domains it when done with it. If the caller failed the
6198 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6199 * and partition_sched_domains() will fallback to the single partition
6200 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6201 *
96f874e2 6202 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6203 * ndoms_new == 0 is a special case for destroying existing domains,
6204 * and it will not create the default domain.
dfb512ec 6205 *
029190c5
PJ
6206 * Call with hotplug lock held
6207 */
acc3f5d7 6208void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6209 struct sched_domain_attr *dattr_new)
029190c5 6210{
dfb512ec 6211 int i, j, n;
d65bd5ec 6212 int new_topology;
029190c5 6213
712555ee 6214 mutex_lock(&sched_domains_mutex);
a1835615 6215
7378547f
MM
6216 /* always unregister in case we don't destroy any domains */
6217 unregister_sched_domain_sysctl();
6218
d65bd5ec
HC
6219 /* Let architecture update cpu core mappings. */
6220 new_topology = arch_update_cpu_topology();
6221
dfb512ec 6222 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6223
6224 /* Destroy deleted domains */
6225 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6226 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6227 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6228 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6229 goto match1;
6230 }
6231 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6232 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6233match1:
6234 ;
6235 }
6236
c8d2d47a 6237 n = ndoms_cur;
e761b772 6238 if (doms_new == NULL) {
c8d2d47a 6239 n = 0;
acc3f5d7 6240 doms_new = &fallback_doms;
6ad4c188 6241 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6242 WARN_ON_ONCE(dattr_new);
e761b772
MK
6243 }
6244
029190c5
PJ
6245 /* Build new domains */
6246 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6247 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6248 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6249 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6250 goto match2;
6251 }
6252 /* no match - add a new doms_new */
dce840a0 6253 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6254match2:
6255 ;
6256 }
6257
6258 /* Remember the new sched domains */
acc3f5d7
RR
6259 if (doms_cur != &fallback_doms)
6260 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6261 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6262 doms_cur = doms_new;
1d3504fc 6263 dattr_cur = dattr_new;
029190c5 6264 ndoms_cur = ndoms_new;
7378547f
MM
6265
6266 register_sched_domain_sysctl();
a1835615 6267
712555ee 6268 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6269}
6270
d35be8ba
SB
6271static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6272
1da177e4 6273/*
3a101d05
TH
6274 * Update cpusets according to cpu_active mask. If cpusets are
6275 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6276 * around partition_sched_domains().
d35be8ba
SB
6277 *
6278 * If we come here as part of a suspend/resume, don't touch cpusets because we
6279 * want to restore it back to its original state upon resume anyway.
1da177e4 6280 */
0b2e918a
TH
6281static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6282 void *hcpu)
e761b772 6283{
d35be8ba
SB
6284 switch (action) {
6285 case CPU_ONLINE_FROZEN:
6286 case CPU_DOWN_FAILED_FROZEN:
6287
6288 /*
6289 * num_cpus_frozen tracks how many CPUs are involved in suspend
6290 * resume sequence. As long as this is not the last online
6291 * operation in the resume sequence, just build a single sched
6292 * domain, ignoring cpusets.
6293 */
6294 num_cpus_frozen--;
6295 if (likely(num_cpus_frozen)) {
6296 partition_sched_domains(1, NULL, NULL);
6297 break;
6298 }
6299
6300 /*
6301 * This is the last CPU online operation. So fall through and
6302 * restore the original sched domains by considering the
6303 * cpuset configurations.
6304 */
6305
e761b772 6306 case CPU_ONLINE:
6ad4c188 6307 case CPU_DOWN_FAILED:
7ddf96b0 6308 cpuset_update_active_cpus(true);
d35be8ba 6309 break;
3a101d05
TH
6310 default:
6311 return NOTIFY_DONE;
6312 }
d35be8ba 6313 return NOTIFY_OK;
3a101d05 6314}
e761b772 6315
0b2e918a
TH
6316static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6317 void *hcpu)
3a101d05 6318{
d35be8ba 6319 switch (action) {
3a101d05 6320 case CPU_DOWN_PREPARE:
7ddf96b0 6321 cpuset_update_active_cpus(false);
d35be8ba
SB
6322 break;
6323 case CPU_DOWN_PREPARE_FROZEN:
6324 num_cpus_frozen++;
6325 partition_sched_domains(1, NULL, NULL);
6326 break;
e761b772
MK
6327 default:
6328 return NOTIFY_DONE;
6329 }
d35be8ba 6330 return NOTIFY_OK;
e761b772 6331}
e761b772 6332
1da177e4
LT
6333void __init sched_init_smp(void)
6334{
dcc30a35
RR
6335 cpumask_var_t non_isolated_cpus;
6336
6337 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6338 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6339
cb83b629
PZ
6340 sched_init_numa();
6341
95402b38 6342 get_online_cpus();
712555ee 6343 mutex_lock(&sched_domains_mutex);
c4a8849a 6344 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6345 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6346 if (cpumask_empty(non_isolated_cpus))
6347 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6348 mutex_unlock(&sched_domains_mutex);
95402b38 6349 put_online_cpus();
e761b772 6350
301a5cba 6351 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6352 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6353 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6354
b328ca18 6355 init_hrtick();
5c1e1767
NP
6356
6357 /* Move init over to a non-isolated CPU */
dcc30a35 6358 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6359 BUG();
19978ca6 6360 sched_init_granularity();
dcc30a35 6361 free_cpumask_var(non_isolated_cpus);
4212823f 6362
0e3900e6 6363 init_sched_rt_class();
1da177e4
LT
6364}
6365#else
6366void __init sched_init_smp(void)
6367{
19978ca6 6368 sched_init_granularity();
1da177e4
LT
6369}
6370#endif /* CONFIG_SMP */
6371
cd1bb94b
AB
6372const_debug unsigned int sysctl_timer_migration = 1;
6373
1da177e4
LT
6374int in_sched_functions(unsigned long addr)
6375{
1da177e4
LT
6376 return in_lock_functions(addr) ||
6377 (addr >= (unsigned long)__sched_text_start
6378 && addr < (unsigned long)__sched_text_end);
6379}
6380
029632fb 6381#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6382/*
6383 * Default task group.
6384 * Every task in system belongs to this group at bootup.
6385 */
029632fb 6386struct task_group root_task_group;
35cf4e50 6387LIST_HEAD(task_groups);
052f1dc7 6388#endif
6f505b16 6389
e6252c3e 6390DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6391
1da177e4
LT
6392void __init sched_init(void)
6393{
dd41f596 6394 int i, j;
434d53b0
MT
6395 unsigned long alloc_size = 0, ptr;
6396
6397#ifdef CONFIG_FAIR_GROUP_SCHED
6398 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6399#endif
6400#ifdef CONFIG_RT_GROUP_SCHED
6401 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6402#endif
df7c8e84 6403#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6404 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6405#endif
434d53b0 6406 if (alloc_size) {
36b7b6d4 6407 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6408
6409#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6410 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6411 ptr += nr_cpu_ids * sizeof(void **);
6412
07e06b01 6413 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6414 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6415
6d6bc0ad 6416#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6417#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6418 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6419 ptr += nr_cpu_ids * sizeof(void **);
6420
07e06b01 6421 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6422 ptr += nr_cpu_ids * sizeof(void **);
6423
6d6bc0ad 6424#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6425#ifdef CONFIG_CPUMASK_OFFSTACK
6426 for_each_possible_cpu(i) {
e6252c3e 6427 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6428 ptr += cpumask_size();
6429 }
6430#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6431 }
dd41f596 6432
57d885fe
GH
6433#ifdef CONFIG_SMP
6434 init_defrootdomain();
6435#endif
6436
d0b27fa7
PZ
6437 init_rt_bandwidth(&def_rt_bandwidth,
6438 global_rt_period(), global_rt_runtime());
6439
6440#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6441 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6442 global_rt_period(), global_rt_runtime());
6d6bc0ad 6443#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6444
7c941438 6445#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6446 list_add(&root_task_group.list, &task_groups);
6447 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6448 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6449 autogroup_init(&init_task);
54c707e9 6450
7c941438 6451#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6452
0a945022 6453 for_each_possible_cpu(i) {
70b97a7f 6454 struct rq *rq;
1da177e4
LT
6455
6456 rq = cpu_rq(i);
05fa785c 6457 raw_spin_lock_init(&rq->lock);
7897986b 6458 rq->nr_running = 0;
dce48a84
TG
6459 rq->calc_load_active = 0;
6460 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6461 init_cfs_rq(&rq->cfs);
6f505b16 6462 init_rt_rq(&rq->rt, rq);
dd41f596 6463#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6464 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6465 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6466 /*
07e06b01 6467 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6468 *
6469 * In case of task-groups formed thr' the cgroup filesystem, it
6470 * gets 100% of the cpu resources in the system. This overall
6471 * system cpu resource is divided among the tasks of
07e06b01 6472 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6473 * based on each entity's (task or task-group's) weight
6474 * (se->load.weight).
6475 *
07e06b01 6476 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6477 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6478 * then A0's share of the cpu resource is:
6479 *
0d905bca 6480 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6481 *
07e06b01
YZ
6482 * We achieve this by letting root_task_group's tasks sit
6483 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6484 */
ab84d31e 6485 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6486 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6487#endif /* CONFIG_FAIR_GROUP_SCHED */
6488
6489 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6490#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6491 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6492 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6493#endif
1da177e4 6494
dd41f596
IM
6495 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6496 rq->cpu_load[j] = 0;
fdf3e95d
VP
6497
6498 rq->last_load_update_tick = jiffies;
6499
1da177e4 6500#ifdef CONFIG_SMP
41c7ce9a 6501 rq->sd = NULL;
57d885fe 6502 rq->rd = NULL;
1399fa78 6503 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6504 rq->post_schedule = 0;
1da177e4 6505 rq->active_balance = 0;
dd41f596 6506 rq->next_balance = jiffies;
1da177e4 6507 rq->push_cpu = 0;
0a2966b4 6508 rq->cpu = i;
1f11eb6a 6509 rq->online = 0;
eae0c9df
MG
6510 rq->idle_stamp = 0;
6511 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6512 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6513
6514 INIT_LIST_HEAD(&rq->cfs_tasks);
6515
dc938520 6516 rq_attach_root(rq, &def_root_domain);
3451d024 6517#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6518 rq->nohz_flags = 0;
83cd4fe2 6519#endif
265f22a9
FW
6520#ifdef CONFIG_NO_HZ_FULL
6521 rq->last_sched_tick = 0;
6522#endif
1da177e4 6523#endif
8f4d37ec 6524 init_rq_hrtick(rq);
1da177e4 6525 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6526 }
6527
2dd73a4f 6528 set_load_weight(&init_task);
b50f60ce 6529
e107be36
AK
6530#ifdef CONFIG_PREEMPT_NOTIFIERS
6531 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6532#endif
6533
b50f60ce 6534#ifdef CONFIG_RT_MUTEXES
732375c6 6535 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6536#endif
6537
1da177e4
LT
6538 /*
6539 * The boot idle thread does lazy MMU switching as well:
6540 */
6541 atomic_inc(&init_mm.mm_count);
6542 enter_lazy_tlb(&init_mm, current);
6543
6544 /*
6545 * Make us the idle thread. Technically, schedule() should not be
6546 * called from this thread, however somewhere below it might be,
6547 * but because we are the idle thread, we just pick up running again
6548 * when this runqueue becomes "idle".
6549 */
6550 init_idle(current, smp_processor_id());
dce48a84
TG
6551
6552 calc_load_update = jiffies + LOAD_FREQ;
6553
dd41f596
IM
6554 /*
6555 * During early bootup we pretend to be a normal task:
6556 */
6557 current->sched_class = &fair_sched_class;
6892b75e 6558
bf4d83f6 6559#ifdef CONFIG_SMP
4cb98839 6560 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6561 /* May be allocated at isolcpus cmdline parse time */
6562 if (cpu_isolated_map == NULL)
6563 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6564 idle_thread_set_boot_cpu();
029632fb
PZ
6565#endif
6566 init_sched_fair_class();
6a7b3dc3 6567
6892b75e 6568 scheduler_running = 1;
1da177e4
LT
6569}
6570
d902db1e 6571#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6572static inline int preempt_count_equals(int preempt_offset)
6573{
234da7bc 6574 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6575
4ba8216c 6576 return (nested == preempt_offset);
e4aafea2
FW
6577}
6578
d894837f 6579void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6580{
1da177e4
LT
6581 static unsigned long prev_jiffy; /* ratelimiting */
6582
b3fbab05 6583 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6584 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6585 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6586 return;
6587 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6588 return;
6589 prev_jiffy = jiffies;
6590
3df0fc5b
PZ
6591 printk(KERN_ERR
6592 "BUG: sleeping function called from invalid context at %s:%d\n",
6593 file, line);
6594 printk(KERN_ERR
6595 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6596 in_atomic(), irqs_disabled(),
6597 current->pid, current->comm);
aef745fc
IM
6598
6599 debug_show_held_locks(current);
6600 if (irqs_disabled())
6601 print_irqtrace_events(current);
6602 dump_stack();
1da177e4
LT
6603}
6604EXPORT_SYMBOL(__might_sleep);
6605#endif
6606
6607#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6608static void normalize_task(struct rq *rq, struct task_struct *p)
6609{
da7a735e
PZ
6610 const struct sched_class *prev_class = p->sched_class;
6611 int old_prio = p->prio;
3a5e4dc1 6612 int on_rq;
3e51f33f 6613
fd2f4419 6614 on_rq = p->on_rq;
3a5e4dc1 6615 if (on_rq)
4ca9b72b 6616 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6617 __setscheduler(rq, p, SCHED_NORMAL, 0);
6618 if (on_rq) {
4ca9b72b 6619 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6620 resched_task(rq->curr);
6621 }
da7a735e
PZ
6622
6623 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6624}
6625
1da177e4
LT
6626void normalize_rt_tasks(void)
6627{
a0f98a1c 6628 struct task_struct *g, *p;
1da177e4 6629 unsigned long flags;
70b97a7f 6630 struct rq *rq;
1da177e4 6631
4cf5d77a 6632 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6633 do_each_thread(g, p) {
178be793
IM
6634 /*
6635 * Only normalize user tasks:
6636 */
6637 if (!p->mm)
6638 continue;
6639
6cfb0d5d 6640 p->se.exec_start = 0;
6cfb0d5d 6641#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6642 p->se.statistics.wait_start = 0;
6643 p->se.statistics.sleep_start = 0;
6644 p->se.statistics.block_start = 0;
6cfb0d5d 6645#endif
dd41f596
IM
6646
6647 if (!rt_task(p)) {
6648 /*
6649 * Renice negative nice level userspace
6650 * tasks back to 0:
6651 */
6652 if (TASK_NICE(p) < 0 && p->mm)
6653 set_user_nice(p, 0);
1da177e4 6654 continue;
dd41f596 6655 }
1da177e4 6656
1d615482 6657 raw_spin_lock(&p->pi_lock);
b29739f9 6658 rq = __task_rq_lock(p);
1da177e4 6659
178be793 6660 normalize_task(rq, p);
3a5e4dc1 6661
b29739f9 6662 __task_rq_unlock(rq);
1d615482 6663 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6664 } while_each_thread(g, p);
6665
4cf5d77a 6666 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6667}
6668
6669#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6670
67fc4e0c 6671#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6672/*
67fc4e0c 6673 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6674 *
6675 * They can only be called when the whole system has been
6676 * stopped - every CPU needs to be quiescent, and no scheduling
6677 * activity can take place. Using them for anything else would
6678 * be a serious bug, and as a result, they aren't even visible
6679 * under any other configuration.
6680 */
6681
6682/**
6683 * curr_task - return the current task for a given cpu.
6684 * @cpu: the processor in question.
6685 *
6686 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6687 *
6688 * Return: The current task for @cpu.
1df5c10a 6689 */
36c8b586 6690struct task_struct *curr_task(int cpu)
1df5c10a
LT
6691{
6692 return cpu_curr(cpu);
6693}
6694
67fc4e0c
JW
6695#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6696
6697#ifdef CONFIG_IA64
1df5c10a
LT
6698/**
6699 * set_curr_task - set the current task for a given cpu.
6700 * @cpu: the processor in question.
6701 * @p: the task pointer to set.
6702 *
6703 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6704 * are serviced on a separate stack. It allows the architecture to switch the
6705 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6706 * must be called with all CPU's synchronized, and interrupts disabled, the
6707 * and caller must save the original value of the current task (see
6708 * curr_task() above) and restore that value before reenabling interrupts and
6709 * re-starting the system.
6710 *
6711 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6712 */
36c8b586 6713void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6714{
6715 cpu_curr(cpu) = p;
6716}
6717
6718#endif
29f59db3 6719
7c941438 6720#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6721/* task_group_lock serializes the addition/removal of task groups */
6722static DEFINE_SPINLOCK(task_group_lock);
6723
bccbe08a
PZ
6724static void free_sched_group(struct task_group *tg)
6725{
6726 free_fair_sched_group(tg);
6727 free_rt_sched_group(tg);
e9aa1dd1 6728 autogroup_free(tg);
bccbe08a
PZ
6729 kfree(tg);
6730}
6731
6732/* allocate runqueue etc for a new task group */
ec7dc8ac 6733struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6734{
6735 struct task_group *tg;
bccbe08a
PZ
6736
6737 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6738 if (!tg)
6739 return ERR_PTR(-ENOMEM);
6740
ec7dc8ac 6741 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6742 goto err;
6743
ec7dc8ac 6744 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6745 goto err;
6746
ace783b9
LZ
6747 return tg;
6748
6749err:
6750 free_sched_group(tg);
6751 return ERR_PTR(-ENOMEM);
6752}
6753
6754void sched_online_group(struct task_group *tg, struct task_group *parent)
6755{
6756 unsigned long flags;
6757
8ed36996 6758 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6759 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6760
6761 WARN_ON(!parent); /* root should already exist */
6762
6763 tg->parent = parent;
f473aa5e 6764 INIT_LIST_HEAD(&tg->children);
09f2724a 6765 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6766 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6767}
6768
9b5b7751 6769/* rcu callback to free various structures associated with a task group */
6f505b16 6770static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6771{
29f59db3 6772 /* now it should be safe to free those cfs_rqs */
6f505b16 6773 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6774}
6775
9b5b7751 6776/* Destroy runqueue etc associated with a task group */
4cf86d77 6777void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6778{
6779 /* wait for possible concurrent references to cfs_rqs complete */
6780 call_rcu(&tg->rcu, free_sched_group_rcu);
6781}
6782
6783void sched_offline_group(struct task_group *tg)
29f59db3 6784{
8ed36996 6785 unsigned long flags;
9b5b7751 6786 int i;
29f59db3 6787
3d4b47b4
PZ
6788 /* end participation in shares distribution */
6789 for_each_possible_cpu(i)
bccbe08a 6790 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6791
6792 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6793 list_del_rcu(&tg->list);
f473aa5e 6794 list_del_rcu(&tg->siblings);
8ed36996 6795 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6796}
6797
9b5b7751 6798/* change task's runqueue when it moves between groups.
3a252015
IM
6799 * The caller of this function should have put the task in its new group
6800 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6801 * reflect its new group.
9b5b7751
SV
6802 */
6803void sched_move_task(struct task_struct *tsk)
29f59db3 6804{
8323f26c 6805 struct task_group *tg;
29f59db3
SV
6806 int on_rq, running;
6807 unsigned long flags;
6808 struct rq *rq;
6809
6810 rq = task_rq_lock(tsk, &flags);
6811
051a1d1a 6812 running = task_current(rq, tsk);
fd2f4419 6813 on_rq = tsk->on_rq;
29f59db3 6814
0e1f3483 6815 if (on_rq)
29f59db3 6816 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6817 if (unlikely(running))
6818 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6819
8af01f56 6820 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6821 lockdep_is_held(&tsk->sighand->siglock)),
6822 struct task_group, css);
6823 tg = autogroup_task_group(tsk, tg);
6824 tsk->sched_task_group = tg;
6825
810b3817 6826#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6827 if (tsk->sched_class->task_move_group)
6828 tsk->sched_class->task_move_group(tsk, on_rq);
6829 else
810b3817 6830#endif
b2b5ce02 6831 set_task_rq(tsk, task_cpu(tsk));
810b3817 6832
0e1f3483
HS
6833 if (unlikely(running))
6834 tsk->sched_class->set_curr_task(rq);
6835 if (on_rq)
371fd7e7 6836 enqueue_task(rq, tsk, 0);
29f59db3 6837
0122ec5b 6838 task_rq_unlock(rq, tsk, &flags);
29f59db3 6839}
7c941438 6840#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6841
a790de99 6842#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6843static unsigned long to_ratio(u64 period, u64 runtime)
6844{
6845 if (runtime == RUNTIME_INF)
9a7e0b18 6846 return 1ULL << 20;
9f0c1e56 6847
9a7e0b18 6848 return div64_u64(runtime << 20, period);
9f0c1e56 6849}
a790de99
PT
6850#endif
6851
6852#ifdef CONFIG_RT_GROUP_SCHED
6853/*
6854 * Ensure that the real time constraints are schedulable.
6855 */
6856static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6857
9a7e0b18
PZ
6858/* Must be called with tasklist_lock held */
6859static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6860{
9a7e0b18 6861 struct task_struct *g, *p;
b40b2e8e 6862
9a7e0b18 6863 do_each_thread(g, p) {
029632fb 6864 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6865 return 1;
6866 } while_each_thread(g, p);
b40b2e8e 6867
9a7e0b18
PZ
6868 return 0;
6869}
b40b2e8e 6870
9a7e0b18
PZ
6871struct rt_schedulable_data {
6872 struct task_group *tg;
6873 u64 rt_period;
6874 u64 rt_runtime;
6875};
b40b2e8e 6876
a790de99 6877static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6878{
6879 struct rt_schedulable_data *d = data;
6880 struct task_group *child;
6881 unsigned long total, sum = 0;
6882 u64 period, runtime;
b40b2e8e 6883
9a7e0b18
PZ
6884 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6885 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6886
9a7e0b18
PZ
6887 if (tg == d->tg) {
6888 period = d->rt_period;
6889 runtime = d->rt_runtime;
b40b2e8e 6890 }
b40b2e8e 6891
4653f803
PZ
6892 /*
6893 * Cannot have more runtime than the period.
6894 */
6895 if (runtime > period && runtime != RUNTIME_INF)
6896 return -EINVAL;
6f505b16 6897
4653f803
PZ
6898 /*
6899 * Ensure we don't starve existing RT tasks.
6900 */
9a7e0b18
PZ
6901 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6902 return -EBUSY;
6f505b16 6903
9a7e0b18 6904 total = to_ratio(period, runtime);
6f505b16 6905
4653f803
PZ
6906 /*
6907 * Nobody can have more than the global setting allows.
6908 */
6909 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6910 return -EINVAL;
6f505b16 6911
4653f803
PZ
6912 /*
6913 * The sum of our children's runtime should not exceed our own.
6914 */
9a7e0b18
PZ
6915 list_for_each_entry_rcu(child, &tg->children, siblings) {
6916 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6917 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6918
9a7e0b18
PZ
6919 if (child == d->tg) {
6920 period = d->rt_period;
6921 runtime = d->rt_runtime;
6922 }
6f505b16 6923
9a7e0b18 6924 sum += to_ratio(period, runtime);
9f0c1e56 6925 }
6f505b16 6926
9a7e0b18
PZ
6927 if (sum > total)
6928 return -EINVAL;
6929
6930 return 0;
6f505b16
PZ
6931}
6932
9a7e0b18 6933static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6934{
8277434e
PT
6935 int ret;
6936
9a7e0b18
PZ
6937 struct rt_schedulable_data data = {
6938 .tg = tg,
6939 .rt_period = period,
6940 .rt_runtime = runtime,
6941 };
6942
8277434e
PT
6943 rcu_read_lock();
6944 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6945 rcu_read_unlock();
6946
6947 return ret;
521f1a24
DG
6948}
6949
ab84d31e 6950static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6951 u64 rt_period, u64 rt_runtime)
6f505b16 6952{
ac086bc2 6953 int i, err = 0;
9f0c1e56 6954
9f0c1e56 6955 mutex_lock(&rt_constraints_mutex);
521f1a24 6956 read_lock(&tasklist_lock);
9a7e0b18
PZ
6957 err = __rt_schedulable(tg, rt_period, rt_runtime);
6958 if (err)
9f0c1e56 6959 goto unlock;
ac086bc2 6960
0986b11b 6961 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6962 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6963 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6964
6965 for_each_possible_cpu(i) {
6966 struct rt_rq *rt_rq = tg->rt_rq[i];
6967
0986b11b 6968 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6969 rt_rq->rt_runtime = rt_runtime;
0986b11b 6970 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6971 }
0986b11b 6972 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6973unlock:
521f1a24 6974 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6975 mutex_unlock(&rt_constraints_mutex);
6976
6977 return err;
6f505b16
PZ
6978}
6979
25cc7da7 6980static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6981{
6982 u64 rt_runtime, rt_period;
6983
6984 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6985 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6986 if (rt_runtime_us < 0)
6987 rt_runtime = RUNTIME_INF;
6988
ab84d31e 6989 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6990}
6991
25cc7da7 6992static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6993{
6994 u64 rt_runtime_us;
6995
d0b27fa7 6996 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6997 return -1;
6998
d0b27fa7 6999 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7000 do_div(rt_runtime_us, NSEC_PER_USEC);
7001 return rt_runtime_us;
7002}
d0b27fa7 7003
25cc7da7 7004static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7005{
7006 u64 rt_runtime, rt_period;
7007
7008 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7009 rt_runtime = tg->rt_bandwidth.rt_runtime;
7010
619b0488
R
7011 if (rt_period == 0)
7012 return -EINVAL;
7013
ab84d31e 7014 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7015}
7016
25cc7da7 7017static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7018{
7019 u64 rt_period_us;
7020
7021 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7022 do_div(rt_period_us, NSEC_PER_USEC);
7023 return rt_period_us;
7024}
7025
7026static int sched_rt_global_constraints(void)
7027{
4653f803 7028 u64 runtime, period;
d0b27fa7
PZ
7029 int ret = 0;
7030
ec5d4989
HS
7031 if (sysctl_sched_rt_period <= 0)
7032 return -EINVAL;
7033
4653f803
PZ
7034 runtime = global_rt_runtime();
7035 period = global_rt_period();
7036
7037 /*
7038 * Sanity check on the sysctl variables.
7039 */
7040 if (runtime > period && runtime != RUNTIME_INF)
7041 return -EINVAL;
10b612f4 7042
d0b27fa7 7043 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7044 read_lock(&tasklist_lock);
4653f803 7045 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7046 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7047 mutex_unlock(&rt_constraints_mutex);
7048
7049 return ret;
7050}
54e99124 7051
25cc7da7 7052static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7053{
7054 /* Don't accept realtime tasks when there is no way for them to run */
7055 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7056 return 0;
7057
7058 return 1;
7059}
7060
6d6bc0ad 7061#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7062static int sched_rt_global_constraints(void)
7063{
ac086bc2
PZ
7064 unsigned long flags;
7065 int i;
7066
ec5d4989
HS
7067 if (sysctl_sched_rt_period <= 0)
7068 return -EINVAL;
7069
60aa605d
PZ
7070 /*
7071 * There's always some RT tasks in the root group
7072 * -- migration, kstopmachine etc..
7073 */
7074 if (sysctl_sched_rt_runtime == 0)
7075 return -EBUSY;
7076
0986b11b 7077 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7078 for_each_possible_cpu(i) {
7079 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7080
0986b11b 7081 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7082 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7083 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7084 }
0986b11b 7085 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7086
d0b27fa7
PZ
7087 return 0;
7088}
6d6bc0ad 7089#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7090
ce0dbbbb
CW
7091int sched_rr_handler(struct ctl_table *table, int write,
7092 void __user *buffer, size_t *lenp,
7093 loff_t *ppos)
7094{
7095 int ret;
7096 static DEFINE_MUTEX(mutex);
7097
7098 mutex_lock(&mutex);
7099 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7100 /* make sure that internally we keep jiffies */
7101 /* also, writing zero resets timeslice to default */
7102 if (!ret && write) {
7103 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7104 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7105 }
7106 mutex_unlock(&mutex);
7107 return ret;
7108}
7109
d0b27fa7 7110int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7111 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7112 loff_t *ppos)
7113{
7114 int ret;
7115 int old_period, old_runtime;
7116 static DEFINE_MUTEX(mutex);
7117
7118 mutex_lock(&mutex);
7119 old_period = sysctl_sched_rt_period;
7120 old_runtime = sysctl_sched_rt_runtime;
7121
8d65af78 7122 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7123
7124 if (!ret && write) {
7125 ret = sched_rt_global_constraints();
7126 if (ret) {
7127 sysctl_sched_rt_period = old_period;
7128 sysctl_sched_rt_runtime = old_runtime;
7129 } else {
7130 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7131 def_rt_bandwidth.rt_period =
7132 ns_to_ktime(global_rt_period());
7133 }
7134 }
7135 mutex_unlock(&mutex);
7136
7137 return ret;
7138}
68318b8e 7139
052f1dc7 7140#ifdef CONFIG_CGROUP_SCHED
68318b8e 7141
a7c6d554 7142static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7143{
a7c6d554 7144 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7145}
7146
eb95419b
TH
7147static struct cgroup_subsys_state *
7148cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7149{
eb95419b
TH
7150 struct task_group *parent = css_tg(parent_css);
7151 struct task_group *tg;
68318b8e 7152
eb95419b 7153 if (!parent) {
68318b8e 7154 /* This is early initialization for the top cgroup */
07e06b01 7155 return &root_task_group.css;
68318b8e
SV
7156 }
7157
ec7dc8ac 7158 tg = sched_create_group(parent);
68318b8e
SV
7159 if (IS_ERR(tg))
7160 return ERR_PTR(-ENOMEM);
7161
68318b8e
SV
7162 return &tg->css;
7163}
7164
eb95419b 7165static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7166{
eb95419b
TH
7167 struct task_group *tg = css_tg(css);
7168 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7169
63876986
TH
7170 if (parent)
7171 sched_online_group(tg, parent);
ace783b9
LZ
7172 return 0;
7173}
7174
eb95419b 7175static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7176{
eb95419b 7177 struct task_group *tg = css_tg(css);
68318b8e
SV
7178
7179 sched_destroy_group(tg);
7180}
7181
eb95419b 7182static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7183{
eb95419b 7184 struct task_group *tg = css_tg(css);
ace783b9
LZ
7185
7186 sched_offline_group(tg);
7187}
7188
eb95419b 7189static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7190 struct cgroup_taskset *tset)
68318b8e 7191{
bb9d97b6
TH
7192 struct task_struct *task;
7193
d99c8727 7194 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7195#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7196 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7197 return -EINVAL;
b68aa230 7198#else
bb9d97b6
TH
7199 /* We don't support RT-tasks being in separate groups */
7200 if (task->sched_class != &fair_sched_class)
7201 return -EINVAL;
b68aa230 7202#endif
bb9d97b6 7203 }
be367d09
BB
7204 return 0;
7205}
68318b8e 7206
eb95419b 7207static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7208 struct cgroup_taskset *tset)
68318b8e 7209{
bb9d97b6
TH
7210 struct task_struct *task;
7211
d99c8727 7212 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7213 sched_move_task(task);
68318b8e
SV
7214}
7215
eb95419b
TH
7216static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7217 struct cgroup_subsys_state *old_css,
7218 struct task_struct *task)
068c5cc5
PZ
7219{
7220 /*
7221 * cgroup_exit() is called in the copy_process() failure path.
7222 * Ignore this case since the task hasn't ran yet, this avoids
7223 * trying to poke a half freed task state from generic code.
7224 */
7225 if (!(task->flags & PF_EXITING))
7226 return;
7227
7228 sched_move_task(task);
7229}
7230
052f1dc7 7231#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7232static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7233 struct cftype *cftype, u64 shareval)
68318b8e 7234{
182446d0 7235 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7236}
7237
182446d0
TH
7238static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7239 struct cftype *cft)
68318b8e 7240{
182446d0 7241 struct task_group *tg = css_tg(css);
68318b8e 7242
c8b28116 7243 return (u64) scale_load_down(tg->shares);
68318b8e 7244}
ab84d31e
PT
7245
7246#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7247static DEFINE_MUTEX(cfs_constraints_mutex);
7248
ab84d31e
PT
7249const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7250const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7251
a790de99
PT
7252static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7253
ab84d31e
PT
7254static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7255{
56f570e5 7256 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7257 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7258
7259 if (tg == &root_task_group)
7260 return -EINVAL;
7261
7262 /*
7263 * Ensure we have at some amount of bandwidth every period. This is
7264 * to prevent reaching a state of large arrears when throttled via
7265 * entity_tick() resulting in prolonged exit starvation.
7266 */
7267 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7268 return -EINVAL;
7269
7270 /*
7271 * Likewise, bound things on the otherside by preventing insane quota
7272 * periods. This also allows us to normalize in computing quota
7273 * feasibility.
7274 */
7275 if (period > max_cfs_quota_period)
7276 return -EINVAL;
7277
a790de99
PT
7278 mutex_lock(&cfs_constraints_mutex);
7279 ret = __cfs_schedulable(tg, period, quota);
7280 if (ret)
7281 goto out_unlock;
7282
58088ad0 7283 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7284 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7285 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7286 raw_spin_lock_irq(&cfs_b->lock);
7287 cfs_b->period = ns_to_ktime(period);
7288 cfs_b->quota = quota;
58088ad0 7289
a9cf55b2 7290 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7291 /* restart the period timer (if active) to handle new period expiry */
7292 if (runtime_enabled && cfs_b->timer_active) {
7293 /* force a reprogram */
7294 cfs_b->timer_active = 0;
7295 __start_cfs_bandwidth(cfs_b);
7296 }
ab84d31e
PT
7297 raw_spin_unlock_irq(&cfs_b->lock);
7298
7299 for_each_possible_cpu(i) {
7300 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7301 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7302
7303 raw_spin_lock_irq(&rq->lock);
58088ad0 7304 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7305 cfs_rq->runtime_remaining = 0;
671fd9da 7306
029632fb 7307 if (cfs_rq->throttled)
671fd9da 7308 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7309 raw_spin_unlock_irq(&rq->lock);
7310 }
a790de99
PT
7311out_unlock:
7312 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7313
a790de99 7314 return ret;
ab84d31e
PT
7315}
7316
7317int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7318{
7319 u64 quota, period;
7320
029632fb 7321 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7322 if (cfs_quota_us < 0)
7323 quota = RUNTIME_INF;
7324 else
7325 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7326
7327 return tg_set_cfs_bandwidth(tg, period, quota);
7328}
7329
7330long tg_get_cfs_quota(struct task_group *tg)
7331{
7332 u64 quota_us;
7333
029632fb 7334 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7335 return -1;
7336
029632fb 7337 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7338 do_div(quota_us, NSEC_PER_USEC);
7339
7340 return quota_us;
7341}
7342
7343int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7344{
7345 u64 quota, period;
7346
7347 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7348 quota = tg->cfs_bandwidth.quota;
ab84d31e 7349
ab84d31e
PT
7350 return tg_set_cfs_bandwidth(tg, period, quota);
7351}
7352
7353long tg_get_cfs_period(struct task_group *tg)
7354{
7355 u64 cfs_period_us;
7356
029632fb 7357 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7358 do_div(cfs_period_us, NSEC_PER_USEC);
7359
7360 return cfs_period_us;
7361}
7362
182446d0
TH
7363static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7364 struct cftype *cft)
ab84d31e 7365{
182446d0 7366 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7367}
7368
182446d0
TH
7369static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7370 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7371{
182446d0 7372 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7373}
7374
182446d0
TH
7375static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7376 struct cftype *cft)
ab84d31e 7377{
182446d0 7378 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7379}
7380
182446d0
TH
7381static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7382 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7383{
182446d0 7384 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7385}
7386
a790de99
PT
7387struct cfs_schedulable_data {
7388 struct task_group *tg;
7389 u64 period, quota;
7390};
7391
7392/*
7393 * normalize group quota/period to be quota/max_period
7394 * note: units are usecs
7395 */
7396static u64 normalize_cfs_quota(struct task_group *tg,
7397 struct cfs_schedulable_data *d)
7398{
7399 u64 quota, period;
7400
7401 if (tg == d->tg) {
7402 period = d->period;
7403 quota = d->quota;
7404 } else {
7405 period = tg_get_cfs_period(tg);
7406 quota = tg_get_cfs_quota(tg);
7407 }
7408
7409 /* note: these should typically be equivalent */
7410 if (quota == RUNTIME_INF || quota == -1)
7411 return RUNTIME_INF;
7412
7413 return to_ratio(period, quota);
7414}
7415
7416static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7417{
7418 struct cfs_schedulable_data *d = data;
029632fb 7419 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7420 s64 quota = 0, parent_quota = -1;
7421
7422 if (!tg->parent) {
7423 quota = RUNTIME_INF;
7424 } else {
029632fb 7425 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7426
7427 quota = normalize_cfs_quota(tg, d);
7428 parent_quota = parent_b->hierarchal_quota;
7429
7430 /*
7431 * ensure max(child_quota) <= parent_quota, inherit when no
7432 * limit is set
7433 */
7434 if (quota == RUNTIME_INF)
7435 quota = parent_quota;
7436 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7437 return -EINVAL;
7438 }
7439 cfs_b->hierarchal_quota = quota;
7440
7441 return 0;
7442}
7443
7444static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7445{
8277434e 7446 int ret;
a790de99
PT
7447 struct cfs_schedulable_data data = {
7448 .tg = tg,
7449 .period = period,
7450 .quota = quota,
7451 };
7452
7453 if (quota != RUNTIME_INF) {
7454 do_div(data.period, NSEC_PER_USEC);
7455 do_div(data.quota, NSEC_PER_USEC);
7456 }
7457
8277434e
PT
7458 rcu_read_lock();
7459 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7460 rcu_read_unlock();
7461
7462 return ret;
a790de99 7463}
e8da1b18 7464
182446d0 7465static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7466 struct cgroup_map_cb *cb)
7467{
182446d0 7468 struct task_group *tg = css_tg(css);
029632fb 7469 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7470
7471 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7472 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7473 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7474
7475 return 0;
7476}
ab84d31e 7477#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7478#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7479
052f1dc7 7480#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7481static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7482 struct cftype *cft, s64 val)
6f505b16 7483{
182446d0 7484 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7485}
7486
182446d0
TH
7487static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7488 struct cftype *cft)
6f505b16 7489{
182446d0 7490 return sched_group_rt_runtime(css_tg(css));
6f505b16 7491}
d0b27fa7 7492
182446d0
TH
7493static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7494 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7495{
182446d0 7496 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7497}
7498
182446d0
TH
7499static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7500 struct cftype *cft)
d0b27fa7 7501{
182446d0 7502 return sched_group_rt_period(css_tg(css));
d0b27fa7 7503}
6d6bc0ad 7504#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7505
fe5c7cc2 7506static struct cftype cpu_files[] = {
052f1dc7 7507#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7508 {
7509 .name = "shares",
f4c753b7
PM
7510 .read_u64 = cpu_shares_read_u64,
7511 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7512 },
052f1dc7 7513#endif
ab84d31e
PT
7514#ifdef CONFIG_CFS_BANDWIDTH
7515 {
7516 .name = "cfs_quota_us",
7517 .read_s64 = cpu_cfs_quota_read_s64,
7518 .write_s64 = cpu_cfs_quota_write_s64,
7519 },
7520 {
7521 .name = "cfs_period_us",
7522 .read_u64 = cpu_cfs_period_read_u64,
7523 .write_u64 = cpu_cfs_period_write_u64,
7524 },
e8da1b18
NR
7525 {
7526 .name = "stat",
7527 .read_map = cpu_stats_show,
7528 },
ab84d31e 7529#endif
052f1dc7 7530#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7531 {
9f0c1e56 7532 .name = "rt_runtime_us",
06ecb27c
PM
7533 .read_s64 = cpu_rt_runtime_read,
7534 .write_s64 = cpu_rt_runtime_write,
6f505b16 7535 },
d0b27fa7
PZ
7536 {
7537 .name = "rt_period_us",
f4c753b7
PM
7538 .read_u64 = cpu_rt_period_read_uint,
7539 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7540 },
052f1dc7 7541#endif
4baf6e33 7542 { } /* terminate */
68318b8e
SV
7543};
7544
68318b8e 7545struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7546 .name = "cpu",
92fb9748
TH
7547 .css_alloc = cpu_cgroup_css_alloc,
7548 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7549 .css_online = cpu_cgroup_css_online,
7550 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7551 .can_attach = cpu_cgroup_can_attach,
7552 .attach = cpu_cgroup_attach,
068c5cc5 7553 .exit = cpu_cgroup_exit,
38605cae 7554 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7555 .base_cftypes = cpu_files,
68318b8e
SV
7556 .early_init = 1,
7557};
7558
052f1dc7 7559#endif /* CONFIG_CGROUP_SCHED */
d842de87 7560
b637a328
PM
7561void dump_cpu_task(int cpu)
7562{
7563 pr_info("Task dump for CPU %d:\n", cpu);
7564 sched_show_task(cpu_curr(cpu));
7565}