rcu: Create rcutree plugins to handle hotplug CPU for multi-level trees
[linux-2.6-block.git] / kernel / rcutree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27
28#ifdef CONFIG_TREE_PREEMPT_RCU
29
30struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
31DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
32
33/*
34 * Tell them what RCU they are running.
35 */
36static inline void rcu_bootup_announce(void)
37{
38 printk(KERN_INFO
39 "Experimental preemptable hierarchical RCU implementation.\n");
40}
41
42/*
43 * Return the number of RCU-preempt batches processed thus far
44 * for debug and statistics.
45 */
46long rcu_batches_completed_preempt(void)
47{
48 return rcu_preempt_state.completed;
49}
50EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
51
52/*
53 * Return the number of RCU batches processed thus far for debug & stats.
54 */
55long rcu_batches_completed(void)
56{
57 return rcu_batches_completed_preempt();
58}
59EXPORT_SYMBOL_GPL(rcu_batches_completed);
60
61/*
62 * Record a preemptable-RCU quiescent state for the specified CPU. Note
63 * that this just means that the task currently running on the CPU is
64 * not in a quiescent state. There might be any number of tasks blocked
65 * while in an RCU read-side critical section.
66 */
67static void rcu_preempt_qs_record(int cpu)
68{
69 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
70 rdp->passed_quiesc = 1;
71 rdp->passed_quiesc_completed = rdp->completed;
72}
73
74/*
75 * We have entered the scheduler or are between softirqs in ksoftirqd.
76 * If we are in an RCU read-side critical section, we need to reflect
77 * that in the state of the rcu_node structure corresponding to this CPU.
78 * Caller must disable hardirqs.
79 */
80static void rcu_preempt_qs(int cpu)
81{
82 struct task_struct *t = current;
83 int phase;
84 struct rcu_data *rdp;
85 struct rcu_node *rnp;
86
87 if (t->rcu_read_lock_nesting &&
88 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
89
90 /* Possibly blocking in an RCU read-side critical section. */
91 rdp = rcu_preempt_state.rda[cpu];
92 rnp = rdp->mynode;
93 spin_lock(&rnp->lock);
94 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
dd5d19ba 95 t->rcu_blocked_node = (void *)rnp;
f41d911f
PM
96
97 /*
98 * If this CPU has already checked in, then this task
99 * will hold up the next grace period rather than the
100 * current grace period. Queue the task accordingly.
101 * If the task is queued for the current grace period
102 * (i.e., this CPU has not yet passed through a quiescent
103 * state for the current grace period), then as long
104 * as that task remains queued, the current grace period
105 * cannot end.
106 */
107 phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
108 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
109 smp_mb(); /* Ensure later ctxt swtch seen after above. */
110 spin_unlock(&rnp->lock);
111 }
112
113 /*
114 * Either we were not in an RCU read-side critical section to
115 * begin with, or we have now recorded that critical section
116 * globally. Either way, we can now note a quiescent state
117 * for this CPU. Again, if we were in an RCU read-side critical
118 * section, and if that critical section was blocking the current
119 * grace period, then the fact that the task has been enqueued
120 * means that we continue to block the current grace period.
121 */
122 rcu_preempt_qs_record(cpu);
123 t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
124 RCU_READ_UNLOCK_GOT_QS);
125}
126
127/*
128 * Tree-preemptable RCU implementation for rcu_read_lock().
129 * Just increment ->rcu_read_lock_nesting, shared state will be updated
130 * if we block.
131 */
132void __rcu_read_lock(void)
133{
134 ACCESS_ONCE(current->rcu_read_lock_nesting)++;
135 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
136}
137EXPORT_SYMBOL_GPL(__rcu_read_lock);
138
139static void rcu_read_unlock_special(struct task_struct *t)
140{
141 int empty;
142 unsigned long flags;
143 unsigned long mask;
144 struct rcu_node *rnp;
145 int special;
146
147 /* NMI handlers cannot block and cannot safely manipulate state. */
148 if (in_nmi())
149 return;
150
151 local_irq_save(flags);
152
153 /*
154 * If RCU core is waiting for this CPU to exit critical section,
155 * let it know that we have done so.
156 */
157 special = t->rcu_read_unlock_special;
158 if (special & RCU_READ_UNLOCK_NEED_QS) {
159 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
160 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
161 }
162
163 /* Hardware IRQ handlers cannot block. */
164 if (in_irq()) {
165 local_irq_restore(flags);
166 return;
167 }
168
169 /* Clean up if blocked during RCU read-side critical section. */
170 if (special & RCU_READ_UNLOCK_BLOCKED) {
171 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
172
dd5d19ba
PM
173 /*
174 * Remove this task from the list it blocked on. The
175 * task can migrate while we acquire the lock, but at
176 * most one time. So at most two passes through loop.
177 */
178 for (;;) {
179 rnp = (struct rcu_node *)t->rcu_blocked_node;
180 spin_lock(&rnp->lock);
181 if (rnp == (struct rcu_node *)t->rcu_blocked_node)
182 break;
183 spin_unlock(&rnp->lock);
184 }
f41d911f
PM
185 empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
186 list_del_init(&t->rcu_node_entry);
dd5d19ba 187 t->rcu_blocked_node = NULL;
f41d911f
PM
188
189 /*
190 * If this was the last task on the current list, and if
191 * we aren't waiting on any CPUs, report the quiescent state.
192 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
193 * drop rnp->lock and restore irq.
194 */
195 if (!empty && rnp->qsmask == 0 &&
196 list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
197 t->rcu_read_unlock_special &=
198 ~(RCU_READ_UNLOCK_NEED_QS |
199 RCU_READ_UNLOCK_GOT_QS);
200 if (rnp->parent == NULL) {
201 /* Only one rcu_node in the tree. */
202 cpu_quiet_msk_finish(&rcu_preempt_state, flags);
203 return;
204 }
205 /* Report up the rest of the hierarchy. */
206 mask = rnp->grpmask;
207 spin_unlock_irqrestore(&rnp->lock, flags);
208 rnp = rnp->parent;
209 spin_lock_irqsave(&rnp->lock, flags);
210 cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
211 return;
212 }
213 spin_unlock(&rnp->lock);
214 }
215 local_irq_restore(flags);
216}
217
218/*
219 * Tree-preemptable RCU implementation for rcu_read_unlock().
220 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
221 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
222 * invoke rcu_read_unlock_special() to clean up after a context switch
223 * in an RCU read-side critical section and other special cases.
224 */
225void __rcu_read_unlock(void)
226{
227 struct task_struct *t = current;
228
229 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
230 if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
231 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
232 rcu_read_unlock_special(t);
233}
234EXPORT_SYMBOL_GPL(__rcu_read_unlock);
235
236#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
237
238/*
239 * Scan the current list of tasks blocked within RCU read-side critical
240 * sections, printing out the tid of each.
241 */
242static void rcu_print_task_stall(struct rcu_node *rnp)
243{
244 unsigned long flags;
245 struct list_head *lp;
246 int phase = rnp->gpnum & 0x1;
247 struct task_struct *t;
248
249 if (!list_empty(&rnp->blocked_tasks[phase])) {
250 spin_lock_irqsave(&rnp->lock, flags);
251 phase = rnp->gpnum & 0x1; /* re-read under lock. */
252 lp = &rnp->blocked_tasks[phase];
253 list_for_each_entry(t, lp, rcu_node_entry)
254 printk(" P%d", t->pid);
255 spin_unlock_irqrestore(&rnp->lock, flags);
256 }
257}
258
259#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
260
261/*
262 * Check for preempted RCU readers for the specified rcu_node structure.
263 * If the caller needs a reliable answer, it must hold the rcu_node's
264 * >lock.
265 */
266static int rcu_preempted_readers(struct rcu_node *rnp)
267{
268 return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
269}
270
33f76148
PM
271#ifdef CONFIG_HOTPLUG_CPU
272
dd5d19ba
PM
273/*
274 * Handle tasklist migration for case in which all CPUs covered by the
275 * specified rcu_node have gone offline. Move them up to the root
276 * rcu_node. The reason for not just moving them to the immediate
277 * parent is to remove the need for rcu_read_unlock_special() to
278 * make more than two attempts to acquire the target rcu_node's lock.
279 *
280 * The caller must hold rnp->lock with irqs disabled.
281 */
282static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
283 struct rcu_node *rnp)
284{
285 int i;
286 struct list_head *lp;
287 struct list_head *lp_root;
288 struct rcu_node *rnp_root = rcu_get_root(rsp);
289 struct task_struct *tp;
290
291 if (rnp == rnp_root)
292 return; /* Shouldn't happen: at least one CPU online. */
293
294 /*
295 * Move tasks up to root rcu_node. Rely on the fact that the
296 * root rcu_node can be at most one ahead of the rest of the
297 * rcu_nodes in terms of gp_num value. This fact allows us to
298 * move the blocked_tasks[] array directly, element by element.
299 */
300 for (i = 0; i < 2; i++) {
301 lp = &rnp->blocked_tasks[i];
302 lp_root = &rnp_root->blocked_tasks[i];
303 while (!list_empty(lp)) {
304 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
305 spin_lock(&rnp_root->lock); /* irqs already disabled */
306 list_del(&tp->rcu_node_entry);
307 tp->rcu_blocked_node = rnp_root;
308 list_add(&tp->rcu_node_entry, lp_root);
309 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
310 }
311 }
312}
313
33f76148
PM
314/*
315 * Do CPU-offline processing for preemptable RCU.
316 */
317static void rcu_preempt_offline_cpu(int cpu)
318{
319 __rcu_offline_cpu(cpu, &rcu_preempt_state);
320}
321
322#endif /* #ifdef CONFIG_HOTPLUG_CPU */
323
f41d911f
PM
324/*
325 * Check for a quiescent state from the current CPU. When a task blocks,
326 * the task is recorded in the corresponding CPU's rcu_node structure,
327 * which is checked elsewhere.
328 *
329 * Caller must disable hard irqs.
330 */
331static void rcu_preempt_check_callbacks(int cpu)
332{
333 struct task_struct *t = current;
334
335 if (t->rcu_read_lock_nesting == 0) {
336 t->rcu_read_unlock_special &=
337 ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
338 rcu_preempt_qs_record(cpu);
339 return;
340 }
341 if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
342 if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
343 rcu_preempt_qs_record(cpu);
344 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
345 } else if (!(t->rcu_read_unlock_special &
346 RCU_READ_UNLOCK_NEED_QS)) {
347 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
348 }
349 }
350}
351
352/*
353 * Process callbacks for preemptable RCU.
354 */
355static void rcu_preempt_process_callbacks(void)
356{
357 __rcu_process_callbacks(&rcu_preempt_state,
358 &__get_cpu_var(rcu_preempt_data));
359}
360
361/*
362 * Queue a preemptable-RCU callback for invocation after a grace period.
363 */
364void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
365{
366 __call_rcu(head, func, &rcu_preempt_state);
367}
368EXPORT_SYMBOL_GPL(call_rcu);
369
370/*
371 * Check to see if there is any immediate preemptable-RCU-related work
372 * to be done.
373 */
374static int rcu_preempt_pending(int cpu)
375{
376 return __rcu_pending(&rcu_preempt_state,
377 &per_cpu(rcu_preempt_data, cpu));
378}
379
380/*
381 * Does preemptable RCU need the CPU to stay out of dynticks mode?
382 */
383static int rcu_preempt_needs_cpu(int cpu)
384{
385 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
386}
387
388/*
389 * Initialize preemptable RCU's per-CPU data.
390 */
391static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
392{
393 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
394}
395
396/*
397 * Check for a task exiting while in a preemptable-RCU read-side
398 * critical section, clean up if so. No need to issue warnings,
399 * as debug_check_no_locks_held() already does this if lockdep
400 * is enabled.
401 */
402void exit_rcu(void)
403{
404 struct task_struct *t = current;
405
406 if (t->rcu_read_lock_nesting == 0)
407 return;
408 t->rcu_read_lock_nesting = 1;
409 rcu_read_unlock();
410}
411
412#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
413
414/*
415 * Tell them what RCU they are running.
416 */
417static inline void rcu_bootup_announce(void)
418{
419 printk(KERN_INFO "Hierarchical RCU implementation.\n");
420}
421
422/*
423 * Return the number of RCU batches processed thus far for debug & stats.
424 */
425long rcu_batches_completed(void)
426{
427 return rcu_batches_completed_sched();
428}
429EXPORT_SYMBOL_GPL(rcu_batches_completed);
430
431/*
432 * Because preemptable RCU does not exist, we never have to check for
433 * CPUs being in quiescent states.
434 */
435static void rcu_preempt_qs(int cpu)
436{
437}
438
439#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
440
441/*
442 * Because preemptable RCU does not exist, we never have to check for
443 * tasks blocked within RCU read-side critical sections.
444 */
445static void rcu_print_task_stall(struct rcu_node *rnp)
446{
447}
448
449#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
450
451/*
452 * Because preemptable RCU does not exist, there are never any preempted
453 * RCU readers.
454 */
455static int rcu_preempted_readers(struct rcu_node *rnp)
456{
457 return 0;
458}
459
33f76148
PM
460#ifdef CONFIG_HOTPLUG_CPU
461
dd5d19ba
PM
462/*
463 * Because preemptable RCU does not exist, it never needs to migrate
464 * tasks that were blocked within RCU read-side critical sections.
465 */
466static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
467 struct rcu_node *rnp)
468{
469}
470
33f76148
PM
471/*
472 * Because preemptable RCU does not exist, it never needs CPU-offline
473 * processing.
474 */
475static void rcu_preempt_offline_cpu(int cpu)
476{
477}
478
479#endif /* #ifdef CONFIG_HOTPLUG_CPU */
480
f41d911f
PM
481/*
482 * Because preemptable RCU does not exist, it never has any callbacks
483 * to check.
484 */
485void rcu_preempt_check_callbacks(int cpu)
486{
487}
488
489/*
490 * Because preemptable RCU does not exist, it never has any callbacks
491 * to process.
492 */
493void rcu_preempt_process_callbacks(void)
494{
495}
496
497/*
498 * In classic RCU, call_rcu() is just call_rcu_sched().
499 */
500void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
501{
502 call_rcu_sched(head, func);
503}
504EXPORT_SYMBOL_GPL(call_rcu);
505
506/*
507 * Because preemptable RCU does not exist, it never has any work to do.
508 */
509static int rcu_preempt_pending(int cpu)
510{
511 return 0;
512}
513
514/*
515 * Because preemptable RCU does not exist, it never needs any CPU.
516 */
517static int rcu_preempt_needs_cpu(int cpu)
518{
519 return 0;
520}
521
522/*
523 * Because preemptable RCU does not exist, there is no per-CPU
524 * data to initialize.
525 */
526static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
527{
528}
529
530#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */