Merge branches 'doc.2013.09.25b' and 'fixes.2013.09.23b' into HEAD
[linux-2.6-block.git] / kernel / rcutree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
0edd1b17 31#include "time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37#else
38#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39#endif
40
3fbfbf7a
PM
41#ifdef CONFIG_RCU_NOCB_CPU
42static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 44static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
45static char __initdata nocb_buf[NR_CPUS * 5];
46#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
26845c28
PM
48/*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
52 */
53static void __init rcu_bootup_announce_oddness(void)
54{
55#ifdef CONFIG_RCU_TRACE
efc151c3 56 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
57#endif
58#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
60 CONFIG_RCU_FANOUT);
61#endif
62#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 63 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
64#endif
65#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
67#endif
68#ifdef CONFIG_PROVE_RCU
efc151c3 69 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
70#endif
71#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 72 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 73#endif
81a294c4 74#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
76#endif
77#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 78 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
79#endif
80#if NUM_RCU_LVL_4 != 0
efc151c3 81 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 82#endif
f885b7f2 83 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 85 if (nr_cpu_ids != NR_CPUS)
efc151c3 86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
3fbfbf7a 87#ifdef CONFIG_RCU_NOCB_CPU
911af505
PM
88#ifndef CONFIG_RCU_NOCB_CPU_NONE
89 if (!have_rcu_nocb_mask) {
615ee544 90 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
911af505
PM
91 have_rcu_nocb_mask = true;
92 }
93#ifdef CONFIG_RCU_NOCB_CPU_ZERO
9a5739d7 94 pr_info("\tOffload RCU callbacks from CPU 0\n");
911af505
PM
95 cpumask_set_cpu(0, rcu_nocb_mask);
96#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97#ifdef CONFIG_RCU_NOCB_CPU_ALL
9a5739d7 98 pr_info("\tOffload RCU callbacks from all CPUs\n");
5d5a0800 99 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
911af505
PM
100#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
3fbfbf7a 102 if (have_rcu_nocb_mask) {
5d5a0800
KT
103 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 rcu_nocb_mask);
107 }
3fbfbf7a 108 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
9a5739d7 109 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
3fbfbf7a 110 if (rcu_nocb_poll)
9a5739d7 111 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
3fbfbf7a
PM
112 }
113#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
26845c28
PM
114}
115
f41d911f
PM
116#ifdef CONFIG_TREE_PREEMPT_RCU
117
a41bfeb2 118RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
27f4d280 119static struct rcu_state *rcu_state = &rcu_preempt_state;
f41d911f 120
d9a3da06
PM
121static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
f41d911f
PM
123/*
124 * Tell them what RCU they are running.
125 */
0e0fc1c2 126static void __init rcu_bootup_announce(void)
f41d911f 127{
efc151c3 128 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 129 rcu_bootup_announce_oddness();
f41d911f
PM
130}
131
132/*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136long rcu_batches_completed_preempt(void)
137{
138 return rcu_preempt_state.completed;
139}
140EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142/*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145long rcu_batches_completed(void)
146{
147 return rcu_batches_completed_preempt();
148}
149EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
bf66f18e
PM
151/*
152 * Force a quiescent state for preemptible RCU.
153 */
154void rcu_force_quiescent_state(void)
155{
4cdfc175 156 force_quiescent_state(&rcu_preempt_state);
bf66f18e
PM
157}
158EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159
f41d911f 160/*
6cc68793 161 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
162 * that this just means that the task currently running on the CPU is
163 * not in a quiescent state. There might be any number of tasks blocked
164 * while in an RCU read-side critical section.
25502a6c
PM
165 *
166 * Unlike the other rcu_*_qs() functions, callers to this function
167 * must disable irqs in order to protect the assignment to
168 * ->rcu_read_unlock_special.
f41d911f 169 */
c3422bea 170static void rcu_preempt_qs(int cpu)
f41d911f
PM
171{
172 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 173
e4cc1f22 174 if (rdp->passed_quiesce == 0)
f7f7bac9 175 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 176 rdp->passed_quiesce = 1;
25502a6c 177 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
178}
179
180/*
c3422bea
PM
181 * We have entered the scheduler, and the current task might soon be
182 * context-switched away from. If this task is in an RCU read-side
183 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
184 * record that fact, so we enqueue the task on the blkd_tasks list.
185 * The task will dequeue itself when it exits the outermost enclosing
186 * RCU read-side critical section. Therefore, the current grace period
187 * cannot be permitted to complete until the blkd_tasks list entries
188 * predating the current grace period drain, in other words, until
189 * rnp->gp_tasks becomes NULL.
c3422bea
PM
190 *
191 * Caller must disable preemption.
f41d911f 192 */
cba6d0d6 193static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
194{
195 struct task_struct *t = current;
c3422bea 196 unsigned long flags;
f41d911f
PM
197 struct rcu_data *rdp;
198 struct rcu_node *rnp;
199
10f39bb1 200 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
201 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202
203 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 204 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 205 rnp = rdp->mynode;
1304afb2 206 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 207 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 208 t->rcu_blocked_node = rnp;
f41d911f
PM
209
210 /*
211 * If this CPU has already checked in, then this task
212 * will hold up the next grace period rather than the
213 * current grace period. Queue the task accordingly.
214 * If the task is queued for the current grace period
215 * (i.e., this CPU has not yet passed through a quiescent
216 * state for the current grace period), then as long
217 * as that task remains queued, the current grace period
12f5f524
PM
218 * cannot end. Note that there is some uncertainty as
219 * to exactly when the current grace period started.
220 * We take a conservative approach, which can result
221 * in unnecessarily waiting on tasks that started very
222 * slightly after the current grace period began. C'est
223 * la vie!!!
b0e165c0
PM
224 *
225 * But first, note that the current CPU must still be
226 * on line!
f41d911f 227 */
b0e165c0 228 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 229 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
230 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
231 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
232 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
233#ifdef CONFIG_RCU_BOOST
234 if (rnp->boost_tasks != NULL)
235 rnp->boost_tasks = rnp->gp_tasks;
236#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
237 } else {
238 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
239 if (rnp->qsmask & rdp->grpmask)
240 rnp->gp_tasks = &t->rcu_node_entry;
241 }
d4c08f2a
PM
242 trace_rcu_preempt_task(rdp->rsp->name,
243 t->pid,
244 (rnp->qsmask & rdp->grpmask)
245 ? rnp->gpnum
246 : rnp->gpnum + 1);
1304afb2 247 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
248 } else if (t->rcu_read_lock_nesting < 0 &&
249 t->rcu_read_unlock_special) {
250
251 /*
252 * Complete exit from RCU read-side critical section on
253 * behalf of preempted instance of __rcu_read_unlock().
254 */
255 rcu_read_unlock_special(t);
f41d911f
PM
256 }
257
258 /*
259 * Either we were not in an RCU read-side critical section to
260 * begin with, or we have now recorded that critical section
261 * globally. Either way, we can now note a quiescent state
262 * for this CPU. Again, if we were in an RCU read-side critical
263 * section, and if that critical section was blocking the current
264 * grace period, then the fact that the task has been enqueued
265 * means that we continue to block the current grace period.
266 */
e7d8842e 267 local_irq_save(flags);
cba6d0d6 268 rcu_preempt_qs(cpu);
e7d8842e 269 local_irq_restore(flags);
f41d911f
PM
270}
271
fc2219d4
PM
272/*
273 * Check for preempted RCU readers blocking the current grace period
274 * for the specified rcu_node structure. If the caller needs a reliable
275 * answer, it must hold the rcu_node's ->lock.
276 */
27f4d280 277static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 278{
12f5f524 279 return rnp->gp_tasks != NULL;
fc2219d4
PM
280}
281
b668c9cf
PM
282/*
283 * Record a quiescent state for all tasks that were previously queued
284 * on the specified rcu_node structure and that were blocking the current
285 * RCU grace period. The caller must hold the specified rnp->lock with
286 * irqs disabled, and this lock is released upon return, but irqs remain
287 * disabled.
288 */
d3f6bad3 289static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
290 __releases(rnp->lock)
291{
292 unsigned long mask;
293 struct rcu_node *rnp_p;
294
27f4d280 295 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 296 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
297 return; /* Still need more quiescent states! */
298 }
299
300 rnp_p = rnp->parent;
301 if (rnp_p == NULL) {
302 /*
303 * Either there is only one rcu_node in the tree,
304 * or tasks were kicked up to root rcu_node due to
305 * CPUs going offline.
306 */
d3f6bad3 307 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
308 return;
309 }
310
311 /* Report up the rest of the hierarchy. */
312 mask = rnp->grpmask;
1304afb2
PM
313 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
314 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
d3f6bad3 315 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
316}
317
12f5f524
PM
318/*
319 * Advance a ->blkd_tasks-list pointer to the next entry, instead
320 * returning NULL if at the end of the list.
321 */
322static struct list_head *rcu_next_node_entry(struct task_struct *t,
323 struct rcu_node *rnp)
324{
325 struct list_head *np;
326
327 np = t->rcu_node_entry.next;
328 if (np == &rnp->blkd_tasks)
329 np = NULL;
330 return np;
331}
332
b668c9cf
PM
333/*
334 * Handle special cases during rcu_read_unlock(), such as needing to
335 * notify RCU core processing or task having blocked during the RCU
336 * read-side critical section.
337 */
2a3fa843 338void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
339{
340 int empty;
d9a3da06 341 int empty_exp;
389abd48 342 int empty_exp_now;
f41d911f 343 unsigned long flags;
12f5f524 344 struct list_head *np;
82e78d80
PM
345#ifdef CONFIG_RCU_BOOST
346 struct rt_mutex *rbmp = NULL;
347#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
348 struct rcu_node *rnp;
349 int special;
350
351 /* NMI handlers cannot block and cannot safely manipulate state. */
352 if (in_nmi())
353 return;
354
355 local_irq_save(flags);
356
357 /*
358 * If RCU core is waiting for this CPU to exit critical section,
359 * let it know that we have done so.
360 */
361 special = t->rcu_read_unlock_special;
362 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 363 rcu_preempt_qs(smp_processor_id());
f41d911f
PM
364 }
365
366 /* Hardware IRQ handlers cannot block. */
ec433f0c 367 if (in_irq() || in_serving_softirq()) {
f41d911f
PM
368 local_irq_restore(flags);
369 return;
370 }
371
372 /* Clean up if blocked during RCU read-side critical section. */
373 if (special & RCU_READ_UNLOCK_BLOCKED) {
374 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
375
dd5d19ba
PM
376 /*
377 * Remove this task from the list it blocked on. The
378 * task can migrate while we acquire the lock, but at
379 * most one time. So at most two passes through loop.
380 */
381 for (;;) {
86848966 382 rnp = t->rcu_blocked_node;
1304afb2 383 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
86848966 384 if (rnp == t->rcu_blocked_node)
dd5d19ba 385 break;
1304afb2 386 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 387 }
27f4d280 388 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
389 empty_exp = !rcu_preempted_readers_exp(rnp);
390 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 391 np = rcu_next_node_entry(t, rnp);
f41d911f 392 list_del_init(&t->rcu_node_entry);
82e78d80 393 t->rcu_blocked_node = NULL;
f7f7bac9 394 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 395 rnp->gpnum, t->pid);
12f5f524
PM
396 if (&t->rcu_node_entry == rnp->gp_tasks)
397 rnp->gp_tasks = np;
398 if (&t->rcu_node_entry == rnp->exp_tasks)
399 rnp->exp_tasks = np;
27f4d280
PM
400#ifdef CONFIG_RCU_BOOST
401 if (&t->rcu_node_entry == rnp->boost_tasks)
402 rnp->boost_tasks = np;
82e78d80
PM
403 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
404 if (t->rcu_boost_mutex) {
405 rbmp = t->rcu_boost_mutex;
406 t->rcu_boost_mutex = NULL;
7765be2f 407 }
27f4d280 408#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
409
410 /*
411 * If this was the last task on the current list, and if
412 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
413 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
414 * so we must take a snapshot of the expedited state.
f41d911f 415 */
389abd48 416 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 417 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 418 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
419 rnp->gpnum,
420 0, rnp->qsmask,
421 rnp->level,
422 rnp->grplo,
423 rnp->grphi,
424 !!rnp->gp_tasks);
d3f6bad3 425 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 426 } else {
d4c08f2a 427 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 428 }
d9a3da06 429
27f4d280
PM
430#ifdef CONFIG_RCU_BOOST
431 /* Unboost if we were boosted. */
82e78d80
PM
432 if (rbmp)
433 rt_mutex_unlock(rbmp);
27f4d280
PM
434#endif /* #ifdef CONFIG_RCU_BOOST */
435
d9a3da06
PM
436 /*
437 * If this was the last task on the expedited lists,
438 * then we need to report up the rcu_node hierarchy.
439 */
389abd48 440 if (!empty_exp && empty_exp_now)
b40d293e 441 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
442 } else {
443 local_irq_restore(flags);
f41d911f 444 }
f41d911f
PM
445}
446
1ed509a2
PM
447#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
448
449/*
450 * Dump detailed information for all tasks blocking the current RCU
451 * grace period on the specified rcu_node structure.
452 */
453static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
454{
455 unsigned long flags;
1ed509a2
PM
456 struct task_struct *t;
457
12f5f524 458 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
459 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
460 raw_spin_unlock_irqrestore(&rnp->lock, flags);
461 return;
462 }
12f5f524
PM
463 t = list_entry(rnp->gp_tasks,
464 struct task_struct, rcu_node_entry);
465 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
466 sched_show_task(t);
467 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
468}
469
470/*
471 * Dump detailed information for all tasks blocking the current RCU
472 * grace period.
473 */
474static void rcu_print_detail_task_stall(struct rcu_state *rsp)
475{
476 struct rcu_node *rnp = rcu_get_root(rsp);
477
478 rcu_print_detail_task_stall_rnp(rnp);
479 rcu_for_each_leaf_node(rsp, rnp)
480 rcu_print_detail_task_stall_rnp(rnp);
481}
482
483#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
484
485static void rcu_print_detail_task_stall(struct rcu_state *rsp)
486{
487}
488
489#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
490
a858af28
PM
491#ifdef CONFIG_RCU_CPU_STALL_INFO
492
493static void rcu_print_task_stall_begin(struct rcu_node *rnp)
494{
efc151c3 495 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
496 rnp->level, rnp->grplo, rnp->grphi);
497}
498
499static void rcu_print_task_stall_end(void)
500{
efc151c3 501 pr_cont("\n");
a858af28
PM
502}
503
504#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
505
506static void rcu_print_task_stall_begin(struct rcu_node *rnp)
507{
508}
509
510static void rcu_print_task_stall_end(void)
511{
512}
513
514#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
515
f41d911f
PM
516/*
517 * Scan the current list of tasks blocked within RCU read-side critical
518 * sections, printing out the tid of each.
519 */
9bc8b558 520static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 521{
f41d911f 522 struct task_struct *t;
9bc8b558 523 int ndetected = 0;
f41d911f 524
27f4d280 525 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 526 return 0;
a858af28 527 rcu_print_task_stall_begin(rnp);
12f5f524
PM
528 t = list_entry(rnp->gp_tasks,
529 struct task_struct, rcu_node_entry);
9bc8b558 530 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 531 pr_cont(" P%d", t->pid);
9bc8b558
PM
532 ndetected++;
533 }
a858af28 534 rcu_print_task_stall_end();
9bc8b558 535 return ndetected;
f41d911f
PM
536}
537
b0e165c0
PM
538/*
539 * Check that the list of blocked tasks for the newly completed grace
540 * period is in fact empty. It is a serious bug to complete a grace
541 * period that still has RCU readers blocked! This function must be
542 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
543 * must be held by the caller.
12f5f524
PM
544 *
545 * Also, if there are blocked tasks on the list, they automatically
546 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
547 */
548static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
549{
27f4d280 550 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
551 if (!list_empty(&rnp->blkd_tasks))
552 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 553 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
554}
555
33f76148
PM
556#ifdef CONFIG_HOTPLUG_CPU
557
dd5d19ba
PM
558/*
559 * Handle tasklist migration for case in which all CPUs covered by the
560 * specified rcu_node have gone offline. Move them up to the root
561 * rcu_node. The reason for not just moving them to the immediate
562 * parent is to remove the need for rcu_read_unlock_special() to
563 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
564 * Returns true if there were tasks blocking the current RCU grace
565 * period.
dd5d19ba 566 *
237c80c5
PM
567 * Returns 1 if there was previously a task blocking the current grace
568 * period on the specified rcu_node structure.
569 *
dd5d19ba
PM
570 * The caller must hold rnp->lock with irqs disabled.
571 */
237c80c5
PM
572static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
573 struct rcu_node *rnp,
574 struct rcu_data *rdp)
dd5d19ba 575{
dd5d19ba
PM
576 struct list_head *lp;
577 struct list_head *lp_root;
d9a3da06 578 int retval = 0;
dd5d19ba 579 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 580 struct task_struct *t;
dd5d19ba 581
86848966
PM
582 if (rnp == rnp_root) {
583 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 584 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 585 }
12f5f524
PM
586
587 /* If we are on an internal node, complain bitterly. */
588 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
589
590 /*
12f5f524
PM
591 * Move tasks up to root rcu_node. Don't try to get fancy for
592 * this corner-case operation -- just put this node's tasks
593 * at the head of the root node's list, and update the root node's
594 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
595 * if non-NULL. This might result in waiting for more tasks than
596 * absolutely necessary, but this is a good performance/complexity
597 * tradeoff.
dd5d19ba 598 */
2036d94a 599 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
600 retval |= RCU_OFL_TASKS_NORM_GP;
601 if (rcu_preempted_readers_exp(rnp))
602 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
603 lp = &rnp->blkd_tasks;
604 lp_root = &rnp_root->blkd_tasks;
605 while (!list_empty(lp)) {
606 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
607 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
608 list_del(&t->rcu_node_entry);
609 t->rcu_blocked_node = rnp_root;
610 list_add(&t->rcu_node_entry, lp_root);
611 if (&t->rcu_node_entry == rnp->gp_tasks)
612 rnp_root->gp_tasks = rnp->gp_tasks;
613 if (&t->rcu_node_entry == rnp->exp_tasks)
614 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
615#ifdef CONFIG_RCU_BOOST
616 if (&t->rcu_node_entry == rnp->boost_tasks)
617 rnp_root->boost_tasks = rnp->boost_tasks;
618#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 619 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 620 }
27f4d280 621
1e3fd2b3
PM
622 rnp->gp_tasks = NULL;
623 rnp->exp_tasks = NULL;
27f4d280 624#ifdef CONFIG_RCU_BOOST
1e3fd2b3 625 rnp->boost_tasks = NULL;
5cc900cf
PM
626 /*
627 * In case root is being boosted and leaf was not. Make sure
628 * that we boost the tasks blocking the current grace period
629 * in this case.
630 */
27f4d280
PM
631 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
632 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
633 rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
635 rnp_root->boost_tasks = rnp_root->gp_tasks;
636 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637#endif /* #ifdef CONFIG_RCU_BOOST */
638
237c80c5 639 return retval;
dd5d19ba
PM
640}
641
e5601400
PM
642#endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
f41d911f
PM
644/*
645 * Check for a quiescent state from the current CPU. When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651static void rcu_preempt_check_callbacks(int cpu)
652{
653 struct task_struct *t = current;
654
655 if (t->rcu_read_lock_nesting == 0) {
c3422bea 656 rcu_preempt_qs(cpu);
f41d911f
PM
657 return;
658 }
10f39bb1
PM
659 if (t->rcu_read_lock_nesting > 0 &&
660 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 661 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
662}
663
a46e0899
PM
664#ifdef CONFIG_RCU_BOOST
665
09223371
SL
666static void rcu_preempt_do_callbacks(void)
667{
c9d4b0af 668 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
669}
670
a46e0899
PM
671#endif /* #ifdef CONFIG_RCU_BOOST */
672
f41d911f 673/*
6cc68793 674 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
675 */
676void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677{
3fbfbf7a 678 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
679}
680EXPORT_SYMBOL_GPL(call_rcu);
681
486e2593
PM
682/*
683 * Queue an RCU callback for lazy invocation after a grace period.
684 * This will likely be later named something like "call_rcu_lazy()",
685 * but this change will require some way of tagging the lazy RCU
686 * callbacks in the list of pending callbacks. Until then, this
687 * function may only be called from __kfree_rcu().
688 */
689void kfree_call_rcu(struct rcu_head *head,
690 void (*func)(struct rcu_head *rcu))
691{
3fbfbf7a 692 __call_rcu(head, func, &rcu_preempt_state, -1, 1);
486e2593
PM
693}
694EXPORT_SYMBOL_GPL(kfree_call_rcu);
695
6ebb237b
PM
696/**
697 * synchronize_rcu - wait until a grace period has elapsed.
698 *
699 * Control will return to the caller some time after a full grace
700 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
701 * read-side critical sections have completed. Note, however, that
702 * upon return from synchronize_rcu(), the caller might well be executing
703 * concurrently with new RCU read-side critical sections that began while
704 * synchronize_rcu() was waiting. RCU read-side critical sections are
705 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
706 *
707 * See the description of synchronize_sched() for more detailed information
708 * on memory ordering guarantees.
6ebb237b
PM
709 */
710void synchronize_rcu(void)
711{
fe15d706
PM
712 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
713 !lock_is_held(&rcu_lock_map) &&
714 !lock_is_held(&rcu_sched_lock_map),
715 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
716 if (!rcu_scheduler_active)
717 return;
3705b88d
AM
718 if (rcu_expedited)
719 synchronize_rcu_expedited();
720 else
721 wait_rcu_gp(call_rcu);
6ebb237b
PM
722}
723EXPORT_SYMBOL_GPL(synchronize_rcu);
724
d9a3da06 725static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 726static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
727static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
728
729/*
730 * Return non-zero if there are any tasks in RCU read-side critical
731 * sections blocking the current preemptible-RCU expedited grace period.
732 * If there is no preemptible-RCU expedited grace period currently in
733 * progress, returns zero unconditionally.
734 */
735static int rcu_preempted_readers_exp(struct rcu_node *rnp)
736{
12f5f524 737 return rnp->exp_tasks != NULL;
d9a3da06
PM
738}
739
740/*
741 * return non-zero if there is no RCU expedited grace period in progress
742 * for the specified rcu_node structure, in other words, if all CPUs and
743 * tasks covered by the specified rcu_node structure have done their bit
744 * for the current expedited grace period. Works only for preemptible
745 * RCU -- other RCU implementation use other means.
746 *
747 * Caller must hold sync_rcu_preempt_exp_mutex.
748 */
749static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
750{
751 return !rcu_preempted_readers_exp(rnp) &&
752 ACCESS_ONCE(rnp->expmask) == 0;
753}
754
755/*
756 * Report the exit from RCU read-side critical section for the last task
757 * that queued itself during or before the current expedited preemptible-RCU
758 * grace period. This event is reported either to the rcu_node structure on
759 * which the task was queued or to one of that rcu_node structure's ancestors,
760 * recursively up the tree. (Calm down, calm down, we do the recursion
761 * iteratively!)
762 *
b40d293e
TG
763 * Most callers will set the "wake" flag, but the task initiating the
764 * expedited grace period need not wake itself.
765 *
d9a3da06
PM
766 * Caller must hold sync_rcu_preempt_exp_mutex.
767 */
b40d293e
TG
768static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
769 bool wake)
d9a3da06
PM
770{
771 unsigned long flags;
772 unsigned long mask;
773
1304afb2 774 raw_spin_lock_irqsave(&rnp->lock, flags);
d9a3da06 775 for (;;) {
131906b0
PM
776 if (!sync_rcu_preempt_exp_done(rnp)) {
777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 778 break;
131906b0 779 }
d9a3da06 780 if (rnp->parent == NULL) {
131906b0 781 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b40d293e
TG
782 if (wake)
783 wake_up(&sync_rcu_preempt_exp_wq);
d9a3da06
PM
784 break;
785 }
786 mask = rnp->grpmask;
1304afb2 787 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 788 rnp = rnp->parent;
1304afb2 789 raw_spin_lock(&rnp->lock); /* irqs already disabled */
d9a3da06
PM
790 rnp->expmask &= ~mask;
791 }
d9a3da06
PM
792}
793
794/*
795 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
796 * grace period for the specified rcu_node structure. If there are no such
797 * tasks, report it up the rcu_node hierarchy.
798 *
7b2e6011
PM
799 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
800 * CPU hotplug operations.
d9a3da06
PM
801 */
802static void
803sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
804{
1217ed1b 805 unsigned long flags;
12f5f524 806 int must_wait = 0;
d9a3da06 807
1217ed1b 808 raw_spin_lock_irqsave(&rnp->lock, flags);
c701d5d9 809 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 810 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 811 } else {
12f5f524 812 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 813 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
814 must_wait = 1;
815 }
d9a3da06 816 if (!must_wait)
b40d293e 817 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
818}
819
236fefaf
PM
820/**
821 * synchronize_rcu_expedited - Brute-force RCU grace period
822 *
823 * Wait for an RCU-preempt grace period, but expedite it. The basic
824 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
825 * the ->blkd_tasks lists and wait for this list to drain. This consumes
826 * significant time on all CPUs and is unfriendly to real-time workloads,
827 * so is thus not recommended for any sort of common-case code.
828 * In fact, if you are using synchronize_rcu_expedited() in a loop,
829 * please restructure your code to batch your updates, and then Use a
830 * single synchronize_rcu() instead.
831 *
832 * Note that it is illegal to call this function while holding any lock
833 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
834 * to call this function from a CPU-hotplug notifier. Failing to observe
835 * these restriction will result in deadlock.
019129d5
PM
836 */
837void synchronize_rcu_expedited(void)
838{
d9a3da06
PM
839 unsigned long flags;
840 struct rcu_node *rnp;
841 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 842 unsigned long snap;
d9a3da06
PM
843 int trycount = 0;
844
845 smp_mb(); /* Caller's modifications seen first by other CPUs. */
846 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
847 smp_mb(); /* Above access cannot bleed into critical section. */
848
1943c89d
PM
849 /*
850 * Block CPU-hotplug operations. This means that any CPU-hotplug
851 * operation that finds an rcu_node structure with tasks in the
852 * process of being boosted will know that all tasks blocking
853 * this expedited grace period will already be in the process of
854 * being boosted. This simplifies the process of moving tasks
855 * from leaf to root rcu_node structures.
856 */
857 get_online_cpus();
858
d9a3da06
PM
859 /*
860 * Acquire lock, falling back to synchronize_rcu() if too many
861 * lock-acquisition failures. Of course, if someone does the
862 * expedited grace period for us, just leave.
863 */
864 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
865 if (ULONG_CMP_LT(snap,
866 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
867 put_online_cpus();
868 goto mb_ret; /* Others did our work for us. */
869 }
c701d5d9 870 if (trycount++ < 10) {
d9a3da06 871 udelay(trycount * num_online_cpus());
c701d5d9 872 } else {
1943c89d 873 put_online_cpus();
3705b88d 874 wait_rcu_gp(call_rcu);
d9a3da06
PM
875 return;
876 }
d9a3da06 877 }
1943c89d
PM
878 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
879 put_online_cpus();
d9a3da06 880 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 881 }
d9a3da06 882
12f5f524 883 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
884 synchronize_sched_expedited();
885
d9a3da06
PM
886 /* Initialize ->expmask for all non-leaf rcu_node structures. */
887 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 888 raw_spin_lock_irqsave(&rnp->lock, flags);
d9a3da06 889 rnp->expmask = rnp->qsmaskinit;
1943c89d 890 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
891 }
892
12f5f524 893 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
894 rcu_for_each_leaf_node(rsp, rnp)
895 sync_rcu_preempt_exp_init(rsp, rnp);
896 if (NUM_RCU_NODES > 1)
897 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
898
1943c89d 899 put_online_cpus();
d9a3da06 900
12f5f524 901 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
902 rnp = rcu_get_root(rsp);
903 wait_event(sync_rcu_preempt_exp_wq,
904 sync_rcu_preempt_exp_done(rnp));
905
906 /* Clean up and exit. */
907 smp_mb(); /* ensure expedited GP seen before counter increment. */
908 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
909unlock_mb_ret:
910 mutex_unlock(&sync_rcu_preempt_exp_mutex);
911mb_ret:
912 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
913}
914EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
915
e74f4c45
PM
916/**
917 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
918 *
919 * Note that this primitive does not necessarily wait for an RCU grace period
920 * to complete. For example, if there are no RCU callbacks queued anywhere
921 * in the system, then rcu_barrier() is within its rights to return
922 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
923 */
924void rcu_barrier(void)
925{
037b64ed 926 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
927}
928EXPORT_SYMBOL_GPL(rcu_barrier);
929
1eba8f84 930/*
6cc68793 931 * Initialize preemptible RCU's state structures.
1eba8f84
PM
932 */
933static void __init __rcu_init_preempt(void)
934{
394f99a9 935 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
936}
937
2439b696
PM
938/*
939 * Check for a task exiting while in a preemptible-RCU read-side
940 * critical section, clean up if so. No need to issue warnings,
941 * as debug_check_no_locks_held() already does this if lockdep
942 * is enabled.
943 */
944void exit_rcu(void)
945{
946 struct task_struct *t = current;
947
948 if (likely(list_empty(&current->rcu_node_entry)))
949 return;
950 t->rcu_read_lock_nesting = 1;
951 barrier();
952 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
953 __rcu_read_unlock();
954}
955
f41d911f
PM
956#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
957
27f4d280
PM
958static struct rcu_state *rcu_state = &rcu_sched_state;
959
f41d911f
PM
960/*
961 * Tell them what RCU they are running.
962 */
0e0fc1c2 963static void __init rcu_bootup_announce(void)
f41d911f 964{
efc151c3 965 pr_info("Hierarchical RCU implementation.\n");
26845c28 966 rcu_bootup_announce_oddness();
f41d911f
PM
967}
968
969/*
970 * Return the number of RCU batches processed thus far for debug & stats.
971 */
972long rcu_batches_completed(void)
973{
974 return rcu_batches_completed_sched();
975}
976EXPORT_SYMBOL_GPL(rcu_batches_completed);
977
bf66f18e
PM
978/*
979 * Force a quiescent state for RCU, which, because there is no preemptible
980 * RCU, becomes the same as rcu-sched.
981 */
982void rcu_force_quiescent_state(void)
983{
984 rcu_sched_force_quiescent_state();
985}
986EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
987
cba6d0d6
PM
988/*
989 * Because preemptible RCU does not exist, we never have to check for
990 * CPUs being in quiescent states.
991 */
992static void rcu_preempt_note_context_switch(int cpu)
993{
994}
995
fc2219d4 996/*
6cc68793 997 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
998 * RCU readers.
999 */
27f4d280 1000static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
1001{
1002 return 0;
1003}
1004
b668c9cf
PM
1005#ifdef CONFIG_HOTPLUG_CPU
1006
1007/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 1008static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf 1009{
1304afb2 1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
1011}
1012
1013#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1014
1ed509a2 1015/*
6cc68793 1016 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
1017 * tasks blocked within RCU read-side critical sections.
1018 */
1019static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1020{
1021}
1022
f41d911f 1023/*
6cc68793 1024 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1025 * tasks blocked within RCU read-side critical sections.
1026 */
9bc8b558 1027static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1028{
9bc8b558 1029 return 0;
f41d911f
PM
1030}
1031
b0e165c0 1032/*
6cc68793 1033 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1034 * so there is no need to check for blocked tasks. So check only for
1035 * bogus qsmask values.
b0e165c0
PM
1036 */
1037static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1038{
49e29126 1039 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1040}
1041
33f76148
PM
1042#ifdef CONFIG_HOTPLUG_CPU
1043
dd5d19ba 1044/*
6cc68793 1045 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1046 * tasks that were blocked within RCU read-side critical sections, and
1047 * such non-existent tasks cannot possibly have been blocking the current
1048 * grace period.
dd5d19ba 1049 */
237c80c5
PM
1050static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1051 struct rcu_node *rnp,
1052 struct rcu_data *rdp)
dd5d19ba 1053{
237c80c5 1054 return 0;
dd5d19ba
PM
1055}
1056
e5601400
PM
1057#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1058
f41d911f 1059/*
6cc68793 1060 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1061 * to check.
1062 */
1eba8f84 1063static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1064{
1065}
1066
486e2593
PM
1067/*
1068 * Queue an RCU callback for lazy invocation after a grace period.
1069 * This will likely be later named something like "call_rcu_lazy()",
1070 * but this change will require some way of tagging the lazy RCU
1071 * callbacks in the list of pending callbacks. Until then, this
1072 * function may only be called from __kfree_rcu().
1073 *
1074 * Because there is no preemptible RCU, we use RCU-sched instead.
1075 */
1076void kfree_call_rcu(struct rcu_head *head,
1077 void (*func)(struct rcu_head *rcu))
1078{
3fbfbf7a 1079 __call_rcu(head, func, &rcu_sched_state, -1, 1);
486e2593
PM
1080}
1081EXPORT_SYMBOL_GPL(kfree_call_rcu);
1082
019129d5
PM
1083/*
1084 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1085 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1086 */
1087void synchronize_rcu_expedited(void)
1088{
1089 synchronize_sched_expedited();
1090}
1091EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1092
d9a3da06
PM
1093#ifdef CONFIG_HOTPLUG_CPU
1094
1095/*
6cc68793 1096 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1097 * report on tasks preempted in RCU read-side critical sections during
1098 * expedited RCU grace periods.
1099 */
b40d293e
TG
1100static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1101 bool wake)
d9a3da06 1102{
d9a3da06
PM
1103}
1104
1105#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1106
e74f4c45 1107/*
6cc68793 1108 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1109 * another name for rcu_barrier_sched().
1110 */
1111void rcu_barrier(void)
1112{
1113 rcu_barrier_sched();
1114}
1115EXPORT_SYMBOL_GPL(rcu_barrier);
1116
1eba8f84 1117/*
6cc68793 1118 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1119 */
1120static void __init __rcu_init_preempt(void)
1121{
1122}
1123
2439b696
PM
1124/*
1125 * Because preemptible RCU does not exist, tasks cannot possibly exit
1126 * while in preemptible RCU read-side critical sections.
1127 */
1128void exit_rcu(void)
1129{
1130}
1131
f41d911f 1132#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1133
27f4d280
PM
1134#ifdef CONFIG_RCU_BOOST
1135
1136#include "rtmutex_common.h"
1137
0ea1f2eb
PM
1138#ifdef CONFIG_RCU_TRACE
1139
1140static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1141{
1142 if (list_empty(&rnp->blkd_tasks))
1143 rnp->n_balk_blkd_tasks++;
1144 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1145 rnp->n_balk_exp_gp_tasks++;
1146 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1147 rnp->n_balk_boost_tasks++;
1148 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1149 rnp->n_balk_notblocked++;
1150 else if (rnp->gp_tasks != NULL &&
a9f4793d 1151 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1152 rnp->n_balk_notyet++;
1153 else
1154 rnp->n_balk_nos++;
1155}
1156
1157#else /* #ifdef CONFIG_RCU_TRACE */
1158
1159static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1160{
1161}
1162
1163#endif /* #else #ifdef CONFIG_RCU_TRACE */
1164
5d01bbd1
TG
1165static void rcu_wake_cond(struct task_struct *t, int status)
1166{
1167 /*
1168 * If the thread is yielding, only wake it when this
1169 * is invoked from idle
1170 */
1171 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1172 wake_up_process(t);
1173}
1174
27f4d280
PM
1175/*
1176 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1177 * or ->boost_tasks, advancing the pointer to the next task in the
1178 * ->blkd_tasks list.
1179 *
1180 * Note that irqs must be enabled: boosting the task can block.
1181 * Returns 1 if there are more tasks needing to be boosted.
1182 */
1183static int rcu_boost(struct rcu_node *rnp)
1184{
1185 unsigned long flags;
1186 struct rt_mutex mtx;
1187 struct task_struct *t;
1188 struct list_head *tb;
1189
1190 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1191 return 0; /* Nothing left to boost. */
1192
1193 raw_spin_lock_irqsave(&rnp->lock, flags);
1194
1195 /*
1196 * Recheck under the lock: all tasks in need of boosting
1197 * might exit their RCU read-side critical sections on their own.
1198 */
1199 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1201 return 0;
1202 }
1203
1204 /*
1205 * Preferentially boost tasks blocking expedited grace periods.
1206 * This cannot starve the normal grace periods because a second
1207 * expedited grace period must boost all blocked tasks, including
1208 * those blocking the pre-existing normal grace period.
1209 */
0ea1f2eb 1210 if (rnp->exp_tasks != NULL) {
27f4d280 1211 tb = rnp->exp_tasks;
0ea1f2eb
PM
1212 rnp->n_exp_boosts++;
1213 } else {
27f4d280 1214 tb = rnp->boost_tasks;
0ea1f2eb
PM
1215 rnp->n_normal_boosts++;
1216 }
1217 rnp->n_tasks_boosted++;
27f4d280
PM
1218
1219 /*
1220 * We boost task t by manufacturing an rt_mutex that appears to
1221 * be held by task t. We leave a pointer to that rt_mutex where
1222 * task t can find it, and task t will release the mutex when it
1223 * exits its outermost RCU read-side critical section. Then
1224 * simply acquiring this artificial rt_mutex will boost task
1225 * t's priority. (Thanks to tglx for suggesting this approach!)
1226 *
1227 * Note that task t must acquire rnp->lock to remove itself from
1228 * the ->blkd_tasks list, which it will do from exit() if from
1229 * nowhere else. We therefore are guaranteed that task t will
1230 * stay around at least until we drop rnp->lock. Note that
1231 * rnp->lock also resolves races between our priority boosting
1232 * and task t's exiting its outermost RCU read-side critical
1233 * section.
1234 */
1235 t = container_of(tb, struct task_struct, rcu_node_entry);
1236 rt_mutex_init_proxy_locked(&mtx, t);
1237 t->rcu_boost_mutex = &mtx;
27f4d280
PM
1238 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1239 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1240 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1241
4f89b336
PM
1242 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1243 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1244}
1245
27f4d280
PM
1246/*
1247 * Priority-boosting kthread. One per leaf rcu_node and one for the
1248 * root rcu_node.
1249 */
1250static int rcu_boost_kthread(void *arg)
1251{
1252 struct rcu_node *rnp = (struct rcu_node *)arg;
1253 int spincnt = 0;
1254 int more2boost;
1255
f7f7bac9 1256 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1257 for (;;) {
d71df90e 1258 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1259 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1260 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1261 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1262 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1263 more2boost = rcu_boost(rnp);
1264 if (more2boost)
1265 spincnt++;
1266 else
1267 spincnt = 0;
1268 if (spincnt > 10) {
5d01bbd1 1269 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1270 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1271 schedule_timeout_interruptible(2);
f7f7bac9 1272 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1273 spincnt = 0;
1274 }
1275 }
1217ed1b 1276 /* NOTREACHED */
f7f7bac9 1277 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1278 return 0;
1279}
1280
1281/*
1282 * Check to see if it is time to start boosting RCU readers that are
1283 * blocking the current grace period, and, if so, tell the per-rcu_node
1284 * kthread to start boosting them. If there is an expedited grace
1285 * period in progress, it is always time to boost.
1286 *
b065a853
PM
1287 * The caller must hold rnp->lock, which this function releases.
1288 * The ->boost_kthread_task is immortal, so we don't need to worry
1289 * about it going away.
27f4d280 1290 */
1217ed1b 1291static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280
PM
1292{
1293 struct task_struct *t;
1294
0ea1f2eb
PM
1295 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1296 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1297 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1298 return;
0ea1f2eb 1299 }
27f4d280
PM
1300 if (rnp->exp_tasks != NULL ||
1301 (rnp->gp_tasks != NULL &&
1302 rnp->boost_tasks == NULL &&
1303 rnp->qsmask == 0 &&
1304 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1305 if (rnp->exp_tasks == NULL)
1306 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1307 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1308 t = rnp->boost_kthread_task;
5d01bbd1
TG
1309 if (t)
1310 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1311 } else {
0ea1f2eb 1312 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1313 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314 }
27f4d280
PM
1315}
1316
a46e0899
PM
1317/*
1318 * Wake up the per-CPU kthread to invoke RCU callbacks.
1319 */
1320static void invoke_rcu_callbacks_kthread(void)
1321{
1322 unsigned long flags;
1323
1324 local_irq_save(flags);
1325 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1326 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1327 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1328 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1329 __this_cpu_read(rcu_cpu_kthread_status));
1330 }
a46e0899
PM
1331 local_irq_restore(flags);
1332}
1333
dff1672d
PM
1334/*
1335 * Is the current CPU running the RCU-callbacks kthread?
1336 * Caller must have preemption disabled.
1337 */
1338static bool rcu_is_callbacks_kthread(void)
1339{
c9d4b0af 1340 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1341}
1342
27f4d280
PM
1343#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1344
1345/*
1346 * Do priority-boost accounting for the start of a new grace period.
1347 */
1348static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1349{
1350 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1351}
1352
27f4d280
PM
1353/*
1354 * Create an RCU-boost kthread for the specified node if one does not
1355 * already exist. We only create this kthread for preemptible RCU.
1356 * Returns zero if all is well, a negated errno otherwise.
1357 */
49fb4c62 1358static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1359 struct rcu_node *rnp)
27f4d280 1360{
5d01bbd1 1361 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1362 unsigned long flags;
1363 struct sched_param sp;
1364 struct task_struct *t;
1365
1366 if (&rcu_preempt_state != rsp)
1367 return 0;
5d01bbd1
TG
1368
1369 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1370 return 0;
1371
a46e0899 1372 rsp->boost = 1;
27f4d280
PM
1373 if (rnp->boost_kthread_task != NULL)
1374 return 0;
1375 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1376 "rcub/%d", rnp_index);
27f4d280
PM
1377 if (IS_ERR(t))
1378 return PTR_ERR(t);
1379 raw_spin_lock_irqsave(&rnp->lock, flags);
1380 rnp->boost_kthread_task = t;
1381 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1382 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1383 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1384 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1385 return 0;
1386}
1387
f8b7fc6b
PM
1388static void rcu_kthread_do_work(void)
1389{
c9d4b0af
CL
1390 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1391 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1392 rcu_preempt_do_callbacks();
1393}
1394
62ab7072 1395static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1396{
f8b7fc6b 1397 struct sched_param sp;
f8b7fc6b 1398
62ab7072
PM
1399 sp.sched_priority = RCU_KTHREAD_PRIO;
1400 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1401}
1402
62ab7072 1403static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1404{
62ab7072 1405 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1406}
1407
62ab7072 1408static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1409{
c9d4b0af 1410 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1411}
1412
1413/*
1414 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1415 * RCU softirq used in flavors and configurations of RCU that do not
1416 * support RCU priority boosting.
f8b7fc6b 1417 */
62ab7072 1418static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1419{
c9d4b0af
CL
1420 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1421 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1422 int spincnt;
f8b7fc6b 1423
62ab7072 1424 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1425 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1426 local_bh_disable();
f8b7fc6b 1427 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1428 this_cpu_inc(rcu_cpu_kthread_loops);
1429 local_irq_disable();
f8b7fc6b
PM
1430 work = *workp;
1431 *workp = 0;
62ab7072 1432 local_irq_enable();
f8b7fc6b
PM
1433 if (work)
1434 rcu_kthread_do_work();
1435 local_bh_enable();
62ab7072 1436 if (*workp == 0) {
f7f7bac9 1437 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1438 *statusp = RCU_KTHREAD_WAITING;
1439 return;
f8b7fc6b
PM
1440 }
1441 }
62ab7072 1442 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1443 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1444 schedule_timeout_interruptible(2);
f7f7bac9 1445 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1446 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1447}
1448
1449/*
1450 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1451 * served by the rcu_node in question. The CPU hotplug lock is still
1452 * held, so the value of rnp->qsmaskinit will be stable.
1453 *
1454 * We don't include outgoingcpu in the affinity set, use -1 if there is
1455 * no outgoing CPU. If there are no CPUs left in the affinity set,
1456 * this function allows the kthread to execute on any CPU.
1457 */
5d01bbd1 1458static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1459{
5d01bbd1
TG
1460 struct task_struct *t = rnp->boost_kthread_task;
1461 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1462 cpumask_var_t cm;
1463 int cpu;
f8b7fc6b 1464
5d01bbd1 1465 if (!t)
f8b7fc6b 1466 return;
5d01bbd1 1467 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1468 return;
f8b7fc6b
PM
1469 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1470 if ((mask & 0x1) && cpu != outgoingcpu)
1471 cpumask_set_cpu(cpu, cm);
1472 if (cpumask_weight(cm) == 0) {
1473 cpumask_setall(cm);
1474 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1475 cpumask_clear_cpu(cpu, cm);
1476 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1477 }
5d01bbd1 1478 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1479 free_cpumask_var(cm);
1480}
1481
62ab7072
PM
1482static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1483 .store = &rcu_cpu_kthread_task,
1484 .thread_should_run = rcu_cpu_kthread_should_run,
1485 .thread_fn = rcu_cpu_kthread,
1486 .thread_comm = "rcuc/%u",
1487 .setup = rcu_cpu_kthread_setup,
1488 .park = rcu_cpu_kthread_park,
1489};
f8b7fc6b
PM
1490
1491/*
1492 * Spawn all kthreads -- called as soon as the scheduler is running.
1493 */
1494static int __init rcu_spawn_kthreads(void)
1495{
f8b7fc6b 1496 struct rcu_node *rnp;
5d01bbd1 1497 int cpu;
f8b7fc6b 1498
b0d30417 1499 rcu_scheduler_fully_active = 1;
62ab7072 1500 for_each_possible_cpu(cpu)
f8b7fc6b 1501 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1502 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
f8b7fc6b 1503 rnp = rcu_get_root(rcu_state);
5d01bbd1 1504 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
f8b7fc6b
PM
1505 if (NUM_RCU_NODES > 1) {
1506 rcu_for_each_leaf_node(rcu_state, rnp)
5d01bbd1 1507 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
f8b7fc6b
PM
1508 }
1509 return 0;
1510}
1511early_initcall(rcu_spawn_kthreads);
1512
49fb4c62 1513static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1514{
1515 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1516 struct rcu_node *rnp = rdp->mynode;
1517
1518 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1519 if (rcu_scheduler_fully_active)
5d01bbd1 1520 (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
f8b7fc6b
PM
1521}
1522
27f4d280
PM
1523#else /* #ifdef CONFIG_RCU_BOOST */
1524
1217ed1b 1525static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280 1526{
1217ed1b 1527 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1528}
1529
a46e0899 1530static void invoke_rcu_callbacks_kthread(void)
27f4d280 1531{
a46e0899 1532 WARN_ON_ONCE(1);
27f4d280
PM
1533}
1534
dff1672d
PM
1535static bool rcu_is_callbacks_kthread(void)
1536{
1537 return false;
1538}
1539
27f4d280
PM
1540static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1541{
1542}
1543
5d01bbd1 1544static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1545{
1546}
1547
b0d30417
PM
1548static int __init rcu_scheduler_really_started(void)
1549{
1550 rcu_scheduler_fully_active = 1;
1551 return 0;
1552}
1553early_initcall(rcu_scheduler_really_started);
1554
49fb4c62 1555static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1556{
1557}
1558
27f4d280
PM
1559#endif /* #else #ifdef CONFIG_RCU_BOOST */
1560
8bd93a2c
PM
1561#if !defined(CONFIG_RCU_FAST_NO_HZ)
1562
1563/*
1564 * Check to see if any future RCU-related work will need to be done
1565 * by the current CPU, even if none need be done immediately, returning
1566 * 1 if so. This function is part of the RCU implementation; it is -not-
1567 * an exported member of the RCU API.
1568 *
7cb92499
PM
1569 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1570 * any flavor of RCU.
8bd93a2c 1571 */
aa9b1630 1572int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1573{
aa9b1630 1574 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1575 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499
PM
1576}
1577
1578/*
1579 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1580 * after it.
1581 */
1582static void rcu_cleanup_after_idle(int cpu)
1583{
1584}
1585
aea1b35e 1586/*
a858af28 1587 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1588 * is nothing.
1589 */
1590static void rcu_prepare_for_idle(int cpu)
1591{
1592}
1593
c57afe80
PM
1594/*
1595 * Don't bother keeping a running count of the number of RCU callbacks
1596 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1597 */
1598static void rcu_idle_count_callbacks_posted(void)
1599{
1600}
1601
8bd93a2c
PM
1602#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1603
f23f7fa1
PM
1604/*
1605 * This code is invoked when a CPU goes idle, at which point we want
1606 * to have the CPU do everything required for RCU so that it can enter
1607 * the energy-efficient dyntick-idle mode. This is handled by a
1608 * state machine implemented by rcu_prepare_for_idle() below.
1609 *
1610 * The following three proprocessor symbols control this state machine:
1611 *
f23f7fa1
PM
1612 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1613 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1614 * is sized to be roughly one RCU grace period. Those energy-efficiency
1615 * benchmarkers who might otherwise be tempted to set this to a large
1616 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1617 * system. And if you are -that- concerned about energy efficiency,
1618 * just power the system down and be done with it!
778d250a
PM
1619 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1620 * permitted to sleep in dyntick-idle mode with only lazy RCU
1621 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1622 *
1623 * The values below work well in practice. If future workloads require
1624 * adjustment, they can be converted into kernel config parameters, though
1625 * making the state machine smarter might be a better option.
1626 */
e84c48ae 1627#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1628#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1629
5e44ce35
PM
1630static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1631module_param(rcu_idle_gp_delay, int, 0644);
1632static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1633module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1634
9d2ad243 1635extern int tick_nohz_enabled;
486e2593
PM
1636
1637/*
c0f4dfd4
PM
1638 * Try to advance callbacks for all flavors of RCU on the current CPU.
1639 * Afterwards, if there are any callbacks ready for immediate invocation,
1640 * return true.
486e2593 1641 */
c0f4dfd4 1642static bool rcu_try_advance_all_cbs(void)
486e2593 1643{
c0f4dfd4
PM
1644 bool cbs_ready = false;
1645 struct rcu_data *rdp;
1646 struct rcu_node *rnp;
1647 struct rcu_state *rsp;
486e2593 1648
c0f4dfd4
PM
1649 for_each_rcu_flavor(rsp) {
1650 rdp = this_cpu_ptr(rsp->rda);
1651 rnp = rdp->mynode;
486e2593 1652
c0f4dfd4
PM
1653 /*
1654 * Don't bother checking unless a grace period has
1655 * completed since we last checked and there are
1656 * callbacks not yet ready to invoke.
1657 */
1658 if (rdp->completed != rnp->completed &&
1659 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1660 note_gp_changes(rsp, rdp);
486e2593 1661
c0f4dfd4
PM
1662 if (cpu_has_callbacks_ready_to_invoke(rdp))
1663 cbs_ready = true;
1664 }
1665 return cbs_ready;
486e2593
PM
1666}
1667
aa9b1630 1668/*
c0f4dfd4
PM
1669 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1670 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1671 * caller to set the timeout based on whether or not there are non-lazy
1672 * callbacks.
aa9b1630 1673 *
c0f4dfd4 1674 * The caller must have disabled interrupts.
aa9b1630 1675 */
c0f4dfd4 1676int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1677{
1678 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1679
c0f4dfd4
PM
1680 /* Snapshot to detect later posting of non-lazy callback. */
1681 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1682
aa9b1630 1683 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1684 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1685 *dj = ULONG_MAX;
aa9b1630
PM
1686 return 0;
1687 }
c0f4dfd4
PM
1688
1689 /* Attempt to advance callbacks. */
1690 if (rcu_try_advance_all_cbs()) {
1691 /* Some ready to invoke, so initiate later invocation. */
1692 invoke_rcu_core();
aa9b1630
PM
1693 return 1;
1694 }
c0f4dfd4
PM
1695 rdtp->last_accelerate = jiffies;
1696
1697 /* Request timer delay depending on laziness, and round. */
6faf7283 1698 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1699 *dj = round_up(rcu_idle_gp_delay + jiffies,
1700 rcu_idle_gp_delay) - jiffies;
e84c48ae 1701 } else {
c0f4dfd4 1702 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1703 }
aa9b1630
PM
1704 return 0;
1705}
1706
21e52e15 1707/*
c0f4dfd4
PM
1708 * Prepare a CPU for idle from an RCU perspective. The first major task
1709 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1710 * The second major task is to check to see if a non-lazy callback has
1711 * arrived at a CPU that previously had only lazy callbacks. The third
1712 * major task is to accelerate (that is, assign grace-period numbers to)
1713 * any recently arrived callbacks.
aea1b35e
PM
1714 *
1715 * The caller must have disabled interrupts.
8bd93a2c 1716 */
aea1b35e 1717static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1718{
c0f4dfd4 1719 struct rcu_data *rdp;
5955f7ee 1720 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1721 struct rcu_node *rnp;
1722 struct rcu_state *rsp;
9d2ad243
PM
1723 int tne;
1724
1725 /* Handle nohz enablement switches conservatively. */
1726 tne = ACCESS_ONCE(tick_nohz_enabled);
1727 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1728 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1729 invoke_rcu_core(); /* force nohz to see update. */
1730 rdtp->tick_nohz_enabled_snap = tne;
1731 return;
1732 }
1733 if (!tne)
1734 return;
f511fc62 1735
c0f4dfd4 1736 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1737 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1738 return;
9a0c6fef 1739
c57afe80 1740 /*
c0f4dfd4
PM
1741 * If a non-lazy callback arrived at a CPU having only lazy
1742 * callbacks, invoke RCU core for the side-effect of recalculating
1743 * idle duration on re-entry to idle.
c57afe80 1744 */
c0f4dfd4
PM
1745 if (rdtp->all_lazy &&
1746 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1747 invoke_rcu_core();
c57afe80
PM
1748 return;
1749 }
c57afe80 1750
3084f2f8 1751 /*
c0f4dfd4
PM
1752 * If we have not yet accelerated this jiffy, accelerate all
1753 * callbacks on this CPU.
3084f2f8 1754 */
c0f4dfd4 1755 if (rdtp->last_accelerate == jiffies)
aea1b35e 1756 return;
c0f4dfd4
PM
1757 rdtp->last_accelerate = jiffies;
1758 for_each_rcu_flavor(rsp) {
1759 rdp = per_cpu_ptr(rsp->rda, cpu);
1760 if (!*rdp->nxttail[RCU_DONE_TAIL])
1761 continue;
1762 rnp = rdp->mynode;
1763 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1764 rcu_accelerate_cbs(rsp, rnp, rdp);
1765 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
77e38ed3 1766 }
c0f4dfd4 1767}
3084f2f8 1768
c0f4dfd4
PM
1769/*
1770 * Clean up for exit from idle. Attempt to advance callbacks based on
1771 * any grace periods that elapsed while the CPU was idle, and if any
1772 * callbacks are now ready to invoke, initiate invocation.
1773 */
1774static void rcu_cleanup_after_idle(int cpu)
1775{
1776 struct rcu_data *rdp;
1777 struct rcu_state *rsp;
a47cd880 1778
534c97b0 1779 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1780 return;
c0f4dfd4
PM
1781 rcu_try_advance_all_cbs();
1782 for_each_rcu_flavor(rsp) {
1783 rdp = per_cpu_ptr(rsp->rda, cpu);
1784 if (cpu_has_callbacks_ready_to_invoke(rdp))
1785 invoke_rcu_core();
c701d5d9 1786 }
8bd93a2c
PM
1787}
1788
c57afe80 1789/*
98248a0e
PM
1790 * Keep a running count of the number of non-lazy callbacks posted
1791 * on this CPU. This running counter (which is never decremented) allows
1792 * rcu_prepare_for_idle() to detect when something out of the idle loop
1793 * posts a callback, even if an equal number of callbacks are invoked.
1794 * Of course, callbacks should only be posted from within a trace event
1795 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1796 */
1797static void rcu_idle_count_callbacks_posted(void)
1798{
5955f7ee 1799 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1800}
1801
b626c1b6
PM
1802/*
1803 * Data for flushing lazy RCU callbacks at OOM time.
1804 */
1805static atomic_t oom_callback_count;
1806static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1807
1808/*
1809 * RCU OOM callback -- decrement the outstanding count and deliver the
1810 * wake-up if we are the last one.
1811 */
1812static void rcu_oom_callback(struct rcu_head *rhp)
1813{
1814 if (atomic_dec_and_test(&oom_callback_count))
1815 wake_up(&oom_callback_wq);
1816}
1817
1818/*
1819 * Post an rcu_oom_notify callback on the current CPU if it has at
1820 * least one lazy callback. This will unnecessarily post callbacks
1821 * to CPUs that already have a non-lazy callback at the end of their
1822 * callback list, but this is an infrequent operation, so accept some
1823 * extra overhead to keep things simple.
1824 */
1825static void rcu_oom_notify_cpu(void *unused)
1826{
1827 struct rcu_state *rsp;
1828 struct rcu_data *rdp;
1829
1830 for_each_rcu_flavor(rsp) {
1831 rdp = __this_cpu_ptr(rsp->rda);
1832 if (rdp->qlen_lazy != 0) {
1833 atomic_inc(&oom_callback_count);
1834 rsp->call(&rdp->oom_head, rcu_oom_callback);
1835 }
1836 }
1837}
1838
1839/*
1840 * If low on memory, ensure that each CPU has a non-lazy callback.
1841 * This will wake up CPUs that have only lazy callbacks, in turn
1842 * ensuring that they free up the corresponding memory in a timely manner.
1843 * Because an uncertain amount of memory will be freed in some uncertain
1844 * timeframe, we do not claim to have freed anything.
1845 */
1846static int rcu_oom_notify(struct notifier_block *self,
1847 unsigned long notused, void *nfreed)
1848{
1849 int cpu;
1850
1851 /* Wait for callbacks from earlier instance to complete. */
1852 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1853
1854 /*
1855 * Prevent premature wakeup: ensure that all increments happen
1856 * before there is a chance of the counter reaching zero.
1857 */
1858 atomic_set(&oom_callback_count, 1);
1859
1860 get_online_cpus();
1861 for_each_online_cpu(cpu) {
1862 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1863 cond_resched();
1864 }
1865 put_online_cpus();
1866
1867 /* Unconditionally decrement: no need to wake ourselves up. */
1868 atomic_dec(&oom_callback_count);
1869
1870 return NOTIFY_OK;
1871}
1872
1873static struct notifier_block rcu_oom_nb = {
1874 .notifier_call = rcu_oom_notify
1875};
1876
1877static int __init rcu_register_oom_notifier(void)
1878{
1879 register_oom_notifier(&rcu_oom_nb);
1880 return 0;
1881}
1882early_initcall(rcu_register_oom_notifier);
1883
8bd93a2c 1884#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1885
1886#ifdef CONFIG_RCU_CPU_STALL_INFO
1887
1888#ifdef CONFIG_RCU_FAST_NO_HZ
1889
1890static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1891{
5955f7ee 1892 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1893 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1894
c0f4dfd4
PM
1895 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1896 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1897 ulong2long(nlpd),
1898 rdtp->all_lazy ? 'L' : '.',
1899 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1900}
1901
1902#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1903
1904static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1905{
1c17e4d4 1906 *cp = '\0';
a858af28
PM
1907}
1908
1909#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1910
1911/* Initiate the stall-info list. */
1912static void print_cpu_stall_info_begin(void)
1913{
efc151c3 1914 pr_cont("\n");
a858af28
PM
1915}
1916
1917/*
1918 * Print out diagnostic information for the specified stalled CPU.
1919 *
1920 * If the specified CPU is aware of the current RCU grace period
1921 * (flavor specified by rsp), then print the number of scheduling
1922 * clock interrupts the CPU has taken during the time that it has
1923 * been aware. Otherwise, print the number of RCU grace periods
1924 * that this CPU is ignorant of, for example, "1" if the CPU was
1925 * aware of the previous grace period.
1926 *
1927 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1928 */
1929static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1930{
1931 char fast_no_hz[72];
1932 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1933 struct rcu_dynticks *rdtp = rdp->dynticks;
1934 char *ticks_title;
1935 unsigned long ticks_value;
1936
1937 if (rsp->gpnum == rdp->gpnum) {
1938 ticks_title = "ticks this GP";
1939 ticks_value = rdp->ticks_this_gp;
1940 } else {
1941 ticks_title = "GPs behind";
1942 ticks_value = rsp->gpnum - rdp->gpnum;
1943 }
1944 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1945 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1946 cpu, ticks_value, ticks_title,
1947 atomic_read(&rdtp->dynticks) & 0xfff,
1948 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1949 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1950 fast_no_hz);
1951}
1952
1953/* Terminate the stall-info list. */
1954static void print_cpu_stall_info_end(void)
1955{
efc151c3 1956 pr_err("\t");
a858af28
PM
1957}
1958
1959/* Zero ->ticks_this_gp for all flavors of RCU. */
1960static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1961{
1962 rdp->ticks_this_gp = 0;
6231069b 1963 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1964}
1965
1966/* Increment ->ticks_this_gp for all flavors of RCU. */
1967static void increment_cpu_stall_ticks(void)
1968{
115f7a7c
PM
1969 struct rcu_state *rsp;
1970
1971 for_each_rcu_flavor(rsp)
1972 __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
a858af28
PM
1973}
1974
1975#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1976
1977static void print_cpu_stall_info_begin(void)
1978{
efc151c3 1979 pr_cont(" {");
a858af28
PM
1980}
1981
1982static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1983{
efc151c3 1984 pr_cont(" %d", cpu);
a858af28
PM
1985}
1986
1987static void print_cpu_stall_info_end(void)
1988{
efc151c3 1989 pr_cont("} ");
a858af28
PM
1990}
1991
1992static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1993{
1994}
1995
1996static void increment_cpu_stall_ticks(void)
1997{
1998}
1999
2000#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
2001
2002#ifdef CONFIG_RCU_NOCB_CPU
2003
2004/*
2005 * Offload callback processing from the boot-time-specified set of CPUs
2006 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2007 * kthread created that pulls the callbacks from the corresponding CPU,
2008 * waits for a grace period to elapse, and invokes the callbacks.
2009 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2010 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2011 * has been specified, in which case each kthread actively polls its
2012 * CPU. (Which isn't so great for energy efficiency, but which does
2013 * reduce RCU's overhead on that CPU.)
2014 *
2015 * This is intended to be used in conjunction with Frederic Weisbecker's
2016 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2017 * running CPU-bound user-mode computations.
2018 *
2019 * Offloading of callback processing could also in theory be used as
2020 * an energy-efficiency measure because CPUs with no RCU callbacks
2021 * queued are more aggressive about entering dyntick-idle mode.
2022 */
2023
2024
2025/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2026static int __init rcu_nocb_setup(char *str)
2027{
2028 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2029 have_rcu_nocb_mask = true;
2030 cpulist_parse(str, rcu_nocb_mask);
2031 return 1;
2032}
2033__setup("rcu_nocbs=", rcu_nocb_setup);
2034
1b0048a4
PG
2035static int __init parse_rcu_nocb_poll(char *arg)
2036{
2037 rcu_nocb_poll = 1;
2038 return 0;
2039}
2040early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2041
34ed6246 2042/*
dae6e64d
PM
2043 * Do any no-CBs CPUs need another grace period?
2044 *
2045 * Interrupts must be disabled. If the caller does not hold the root
2046 * rnp_node structure's ->lock, the results are advisory only.
2047 */
2048static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2049{
2050 struct rcu_node *rnp = rcu_get_root(rsp);
2051
8b425aa8 2052 return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
dae6e64d
PM
2053}
2054
2055/*
0446be48
PM
2056 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2057 * grace period.
dae6e64d 2058 */
0446be48 2059static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2060{
0446be48 2061 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2062}
2063
2064/*
8b425aa8 2065 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2066 * based on the sum of those of all rcu_node structures. This does
2067 * double-count the root rcu_node structure's requests, but this
2068 * is necessary to handle the possibility of a rcu_nocb_kthread()
2069 * having awakened during the time that the rcu_node structures
2070 * were being updated for the end of the previous grace period.
34ed6246 2071 */
dae6e64d
PM
2072static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2073{
8b425aa8 2074 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2075}
2076
2077static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2078{
dae6e64d
PM
2079 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2080 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2081}
2082
3fbfbf7a 2083/* Is the specified CPU a no-CPUs CPU? */
d1e43fa5 2084bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2085{
2086 if (have_rcu_nocb_mask)
2087 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2088 return false;
2089}
2090
2091/*
2092 * Enqueue the specified string of rcu_head structures onto the specified
2093 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2094 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2095 * counts are supplied by rhcount and rhcount_lazy.
2096 *
2097 * If warranted, also wake up the kthread servicing this CPUs queues.
2098 */
2099static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2100 struct rcu_head *rhp,
2101 struct rcu_head **rhtp,
2102 int rhcount, int rhcount_lazy)
2103{
2104 int len;
2105 struct rcu_head **old_rhpp;
2106 struct task_struct *t;
2107
2108 /* Enqueue the callback on the nocb list and update counts. */
2109 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2110 ACCESS_ONCE(*old_rhpp) = rhp;
2111 atomic_long_add(rhcount, &rdp->nocb_q_count);
2112 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2113
2114 /* If we are not being polled and there is a kthread, awaken it ... */
2115 t = ACCESS_ONCE(rdp->nocb_kthread);
829511d8 2116 if (rcu_nocb_poll || !t)
3fbfbf7a
PM
2117 return;
2118 len = atomic_long_read(&rdp->nocb_q_count);
2119 if (old_rhpp == &rdp->nocb_head) {
2120 wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
2121 rdp->qlen_last_fqs_check = 0;
2122 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2123 wake_up_process(t); /* ... or if many callbacks queued. */
2124 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2125 }
2126 return;
2127}
2128
2129/*
2130 * This is a helper for __call_rcu(), which invokes this when the normal
2131 * callback queue is inoperable. If this is not a no-CBs CPU, this
2132 * function returns failure back to __call_rcu(), which can complain
2133 * appropriately.
2134 *
2135 * Otherwise, this function queues the callback where the corresponding
2136 * "rcuo" kthread can find it.
2137 */
2138static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2139 bool lazy)
2140{
2141
d1e43fa5 2142 if (!rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2143 return 0;
2144 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
21e7a608
PM
2145 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2146 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2147 (unsigned long)rhp->func,
2148 rdp->qlen_lazy, rdp->qlen);
2149 else
2150 trace_rcu_callback(rdp->rsp->name, rhp,
2151 rdp->qlen_lazy, rdp->qlen);
3fbfbf7a
PM
2152 return 1;
2153}
2154
2155/*
2156 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2157 * not a no-CBs CPU.
2158 */
2159static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2160 struct rcu_data *rdp)
2161{
2162 long ql = rsp->qlen;
2163 long qll = rsp->qlen_lazy;
2164
2165 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2166 if (!rcu_is_nocb_cpu(smp_processor_id()))
3fbfbf7a
PM
2167 return 0;
2168 rsp->qlen = 0;
2169 rsp->qlen_lazy = 0;
2170
2171 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2172 if (rsp->orphan_donelist != NULL) {
2173 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2174 rsp->orphan_donetail, ql, qll);
2175 ql = qll = 0;
2176 rsp->orphan_donelist = NULL;
2177 rsp->orphan_donetail = &rsp->orphan_donelist;
2178 }
2179 if (rsp->orphan_nxtlist != NULL) {
2180 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2181 rsp->orphan_nxttail, ql, qll);
2182 ql = qll = 0;
2183 rsp->orphan_nxtlist = NULL;
2184 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2185 }
2186 return 1;
2187}
2188
2189/*
34ed6246
PM
2190 * If necessary, kick off a new grace period, and either way wait
2191 * for a subsequent grace period to complete.
3fbfbf7a 2192 */
34ed6246 2193static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2194{
34ed6246 2195 unsigned long c;
dae6e64d 2196 bool d;
34ed6246 2197 unsigned long flags;
34ed6246
PM
2198 struct rcu_node *rnp = rdp->mynode;
2199
2200 raw_spin_lock_irqsave(&rnp->lock, flags);
0446be48
PM
2201 c = rcu_start_future_gp(rnp, rdp);
2202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a
PM
2203
2204 /*
34ed6246
PM
2205 * Wait for the grace period. Do so interruptibly to avoid messing
2206 * up the load average.
3fbfbf7a 2207 */
f7f7bac9 2208 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2209 for (;;) {
dae6e64d
PM
2210 wait_event_interruptible(
2211 rnp->nocb_gp_wq[c & 0x1],
2212 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2213 if (likely(d))
34ed6246 2214 break;
dae6e64d 2215 flush_signals(current);
f7f7bac9 2216 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2217 }
f7f7bac9 2218 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2219 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2220}
2221
2222/*
2223 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2224 * callbacks queued by the corresponding no-CBs CPU.
2225 */
2226static int rcu_nocb_kthread(void *arg)
2227{
2228 int c, cl;
2229 struct rcu_head *list;
2230 struct rcu_head *next;
2231 struct rcu_head **tail;
2232 struct rcu_data *rdp = arg;
2233
2234 /* Each pass through this loop invokes one batch of callbacks */
2235 for (;;) {
2236 /* If not polling, wait for next batch of callbacks. */
2237 if (!rcu_nocb_poll)
353af9c9 2238 wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
3fbfbf7a
PM
2239 list = ACCESS_ONCE(rdp->nocb_head);
2240 if (!list) {
2241 schedule_timeout_interruptible(1);
353af9c9 2242 flush_signals(current);
3fbfbf7a
PM
2243 continue;
2244 }
2245
2246 /*
2247 * Extract queued callbacks, update counts, and wait
2248 * for a grace period to elapse.
2249 */
2250 ACCESS_ONCE(rdp->nocb_head) = NULL;
2251 tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2252 c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2253 cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2254 ACCESS_ONCE(rdp->nocb_p_count) += c;
2255 ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
34ed6246 2256 rcu_nocb_wait_gp(rdp);
3fbfbf7a
PM
2257
2258 /* Each pass through the following loop invokes a callback. */
2259 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2260 c = cl = 0;
2261 while (list) {
2262 next = list->next;
2263 /* Wait for enqueuing to complete, if needed. */
2264 while (next == NULL && &list->next != tail) {
2265 schedule_timeout_interruptible(1);
2266 next = list->next;
2267 }
2268 debug_rcu_head_unqueue(list);
2269 local_bh_disable();
2270 if (__rcu_reclaim(rdp->rsp->name, list))
2271 cl++;
2272 c++;
2273 local_bh_enable();
2274 list = next;
2275 }
2276 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2277 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2278 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
c635a4e1 2279 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2280 }
2281 return 0;
2282}
2283
2284/* Initialize per-rcu_data variables for no-CBs CPUs. */
2285static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2286{
2287 rdp->nocb_tail = &rdp->nocb_head;
2288 init_waitqueue_head(&rdp->nocb_wq);
2289}
2290
2291/* Create a kthread for each RCU flavor for each no-CBs CPU. */
2292static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2293{
2294 int cpu;
2295 struct rcu_data *rdp;
2296 struct task_struct *t;
2297
2298 if (rcu_nocb_mask == NULL)
2299 return;
2300 for_each_cpu(cpu, rcu_nocb_mask) {
2301 rdp = per_cpu_ptr(rsp->rda, cpu);
a4889858
PM
2302 t = kthread_run(rcu_nocb_kthread, rdp,
2303 "rcuo%c/%d", rsp->abbr, cpu);
3fbfbf7a
PM
2304 BUG_ON(IS_ERR(t));
2305 ACCESS_ONCE(rdp->nocb_kthread) = t;
2306 }
2307}
2308
2309/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2310static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a
PM
2311{
2312 if (rcu_nocb_mask == NULL ||
2313 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
34ed6246 2314 return false;
3fbfbf7a 2315 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2316 return true;
3fbfbf7a
PM
2317}
2318
34ed6246
PM
2319#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2320
dae6e64d
PM
2321static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2322{
2323 return 0;
3fbfbf7a
PM
2324}
2325
0446be48 2326static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2327{
3fbfbf7a
PM
2328}
2329
dae6e64d
PM
2330static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2331{
2332}
2333
2334static void rcu_init_one_nocb(struct rcu_node *rnp)
2335{
2336}
3fbfbf7a 2337
3fbfbf7a
PM
2338static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2339 bool lazy)
2340{
2341 return 0;
2342}
2343
2344static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2345 struct rcu_data *rdp)
2346{
2347 return 0;
2348}
2349
3fbfbf7a
PM
2350static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2351{
2352}
2353
2354static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2355{
2356}
2357
34ed6246 2358static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2359{
34ed6246 2360 return false;
3fbfbf7a
PM
2361}
2362
2363#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2364
2365/*
2366 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2367 * arbitrarily long period of time with the scheduling-clock tick turned
2368 * off. RCU will be paying attention to this CPU because it is in the
2369 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2370 * machine because the scheduling-clock tick has been disabled. Therefore,
2371 * if an adaptive-ticks CPU is failing to respond to the current grace
2372 * period and has not be idle from an RCU perspective, kick it.
2373 */
2374static void rcu_kick_nohz_cpu(int cpu)
2375{
2376#ifdef CONFIG_NO_HZ_FULL
2377 if (tick_nohz_full_cpu(cpu))
2378 smp_send_reschedule(cpu);
2379#endif /* #ifdef CONFIG_NO_HZ_FULL */
2380}
2333210b
PM
2381
2382
2383#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2384
d4bd54fb
PM
2385/*
2386 * Define RCU flavor that holds sysidle state. This needs to be the
2387 * most active flavor of RCU.
2388 */
2389#ifdef CONFIG_PREEMPT_RCU
0edd1b17 2390static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
d4bd54fb 2391#else /* #ifdef CONFIG_PREEMPT_RCU */
0edd1b17 2392static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
d4bd54fb
PM
2393#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2394
0edd1b17 2395static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2396#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2397#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2398#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2399#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2400#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2401
eb348b89
PM
2402/*
2403 * Invoked to note exit from irq or task transition to idle. Note that
2404 * usermode execution does -not- count as idle here! After all, we want
2405 * to detect full-system idle states, not RCU quiescent states and grace
2406 * periods. The caller must have disabled interrupts.
2407 */
2408static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2409{
2410 unsigned long j;
2411
2412 /* Adjust nesting, check for fully idle. */
2413 if (irq) {
2414 rdtp->dynticks_idle_nesting--;
2415 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2416 if (rdtp->dynticks_idle_nesting != 0)
2417 return; /* Still not fully idle. */
2418 } else {
2419 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2420 DYNTICK_TASK_NEST_VALUE) {
2421 rdtp->dynticks_idle_nesting = 0;
2422 } else {
2423 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2424 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2425 return; /* Still not fully idle. */
2426 }
2427 }
2428
2429 /* Record start of fully idle period. */
2430 j = jiffies;
2431 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2432 smp_mb__before_atomic_inc();
2433 atomic_inc(&rdtp->dynticks_idle);
2434 smp_mb__after_atomic_inc();
2435 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2436}
2437
0edd1b17
PM
2438/*
2439 * Unconditionally force exit from full system-idle state. This is
2440 * invoked when a normal CPU exits idle, but must be called separately
2441 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2442 * is that the timekeeping CPU is permitted to take scheduling-clock
2443 * interrupts while the system is in system-idle state, and of course
2444 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2445 * interrupt from any other type of interrupt.
2446 */
2447void rcu_sysidle_force_exit(void)
2448{
2449 int oldstate = ACCESS_ONCE(full_sysidle_state);
2450 int newoldstate;
2451
2452 /*
2453 * Each pass through the following loop attempts to exit full
2454 * system-idle state. If contention proves to be a problem,
2455 * a trylock-based contention tree could be used here.
2456 */
2457 while (oldstate > RCU_SYSIDLE_SHORT) {
2458 newoldstate = cmpxchg(&full_sysidle_state,
2459 oldstate, RCU_SYSIDLE_NOT);
2460 if (oldstate == newoldstate &&
2461 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2462 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2463 return; /* We cleared it, done! */
2464 }
2465 oldstate = newoldstate;
2466 }
2467 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2468}
2469
eb348b89
PM
2470/*
2471 * Invoked to note entry to irq or task transition from idle. Note that
2472 * usermode execution does -not- count as idle here! The caller must
2473 * have disabled interrupts.
2474 */
2475static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2476{
2477 /* Adjust nesting, check for already non-idle. */
2478 if (irq) {
2479 rdtp->dynticks_idle_nesting++;
2480 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2481 if (rdtp->dynticks_idle_nesting != 1)
2482 return; /* Already non-idle. */
2483 } else {
2484 /*
2485 * Allow for irq misnesting. Yes, it really is possible
2486 * to enter an irq handler then never leave it, and maybe
2487 * also vice versa. Handle both possibilities.
2488 */
2489 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2490 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2491 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2492 return; /* Already non-idle. */
2493 } else {
2494 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2495 }
2496 }
2497
2498 /* Record end of idle period. */
2499 smp_mb__before_atomic_inc();
2500 atomic_inc(&rdtp->dynticks_idle);
2501 smp_mb__after_atomic_inc();
2502 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2503
2504 /*
2505 * If we are the timekeeping CPU, we are permitted to be non-idle
2506 * during a system-idle state. This must be the case, because
2507 * the timekeeping CPU has to take scheduling-clock interrupts
2508 * during the time that the system is transitioning to full
2509 * system-idle state. This means that the timekeeping CPU must
2510 * invoke rcu_sysidle_force_exit() directly if it does anything
2511 * more than take a scheduling-clock interrupt.
2512 */
2513 if (smp_processor_id() == tick_do_timer_cpu)
2514 return;
2515
2516 /* Update system-idle state: We are clearly no longer fully idle! */
2517 rcu_sysidle_force_exit();
2518}
2519
2520/*
2521 * Check to see if the current CPU is idle. Note that usermode execution
2522 * does not count as idle. The caller must have disabled interrupts.
2523 */
2524static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2525 unsigned long *maxj)
2526{
2527 int cur;
2528 unsigned long j;
2529 struct rcu_dynticks *rdtp = rdp->dynticks;
2530
2531 /*
2532 * If some other CPU has already reported non-idle, if this is
2533 * not the flavor of RCU that tracks sysidle state, or if this
2534 * is an offline or the timekeeping CPU, nothing to do.
2535 */
2536 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2537 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2538 return;
eb75767b
PM
2539 if (rcu_gp_in_progress(rdp->rsp))
2540 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2541
2542 /* Pick up current idle and NMI-nesting counter and check. */
2543 cur = atomic_read(&rdtp->dynticks_idle);
2544 if (cur & 0x1) {
2545 *isidle = false; /* We are not idle! */
2546 return;
2547 }
2548 smp_mb(); /* Read counters before timestamps. */
2549
2550 /* Pick up timestamps. */
2551 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2552 /* If this CPU entered idle more recently, update maxj timestamp. */
2553 if (ULONG_CMP_LT(*maxj, j))
2554 *maxj = j;
2555}
2556
2557/*
2558 * Is this the flavor of RCU that is handling full-system idle?
2559 */
2560static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2561{
2562 return rsp == rcu_sysidle_state;
2563}
2564
eb75767b
PM
2565/*
2566 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2567 * timekeeping CPU.
2568 */
2569static void rcu_bind_gp_kthread(void)
2570{
2571 int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2572
2573 if (cpu < 0 || cpu >= nr_cpu_ids)
2574 return;
2575 if (raw_smp_processor_id() != cpu)
2576 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2577}
2578
0edd1b17
PM
2579/*
2580 * Return a delay in jiffies based on the number of CPUs, rcu_node
2581 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2582 * systems more time to transition to full-idle state in order to
2583 * avoid the cache thrashing that otherwise occur on the state variable.
2584 * Really small systems (less than a couple of tens of CPUs) should
2585 * instead use a single global atomically incremented counter, and later
2586 * versions of this will automatically reconfigure themselves accordingly.
2587 */
2588static unsigned long rcu_sysidle_delay(void)
2589{
2590 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2591 return 0;
2592 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2593}
2594
2595/*
2596 * Advance the full-system-idle state. This is invoked when all of
2597 * the non-timekeeping CPUs are idle.
2598 */
2599static void rcu_sysidle(unsigned long j)
2600{
2601 /* Check the current state. */
2602 switch (ACCESS_ONCE(full_sysidle_state)) {
2603 case RCU_SYSIDLE_NOT:
2604
2605 /* First time all are idle, so note a short idle period. */
2606 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2607 break;
2608
2609 case RCU_SYSIDLE_SHORT:
2610
2611 /*
2612 * Idle for a bit, time to advance to next state?
2613 * cmpxchg failure means race with non-idle, let them win.
2614 */
2615 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2616 (void)cmpxchg(&full_sysidle_state,
2617 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2618 break;
2619
2620 case RCU_SYSIDLE_LONG:
2621
2622 /*
2623 * Do an additional check pass before advancing to full.
2624 * cmpxchg failure means race with non-idle, let them win.
2625 */
2626 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2627 (void)cmpxchg(&full_sysidle_state,
2628 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2629 break;
2630
2631 default:
2632 break;
2633 }
2634}
2635
2636/*
2637 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2638 * back to the beginning.
2639 */
2640static void rcu_sysidle_cancel(void)
2641{
2642 smp_mb();
2643 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2644}
2645
2646/*
2647 * Update the sysidle state based on the results of a force-quiescent-state
2648 * scan of the CPUs' dyntick-idle state.
2649 */
2650static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2651 unsigned long maxj, bool gpkt)
2652{
2653 if (rsp != rcu_sysidle_state)
2654 return; /* Wrong flavor, ignore. */
2655 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2656 return; /* Running state machine from timekeeping CPU. */
2657 if (isidle)
2658 rcu_sysidle(maxj); /* More idle! */
2659 else
2660 rcu_sysidle_cancel(); /* Idle is over. */
2661}
2662
2663/*
2664 * Wrapper for rcu_sysidle_report() when called from the grace-period
2665 * kthread's context.
2666 */
2667static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2668 unsigned long maxj)
2669{
2670 rcu_sysidle_report(rsp, isidle, maxj, true);
2671}
2672
2673/* Callback and function for forcing an RCU grace period. */
2674struct rcu_sysidle_head {
2675 struct rcu_head rh;
2676 int inuse;
2677};
2678
2679static void rcu_sysidle_cb(struct rcu_head *rhp)
2680{
2681 struct rcu_sysidle_head *rshp;
2682
2683 /*
2684 * The following memory barrier is needed to replace the
2685 * memory barriers that would normally be in the memory
2686 * allocator.
2687 */
2688 smp_mb(); /* grace period precedes setting inuse. */
2689
2690 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2691 ACCESS_ONCE(rshp->inuse) = 0;
2692}
2693
2694/*
2695 * Check to see if the system is fully idle, other than the timekeeping CPU.
2696 * The caller must have disabled interrupts.
2697 */
2698bool rcu_sys_is_idle(void)
2699{
2700 static struct rcu_sysidle_head rsh;
2701 int rss = ACCESS_ONCE(full_sysidle_state);
2702
2703 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2704 return false;
2705
2706 /* Handle small-system case by doing a full scan of CPUs. */
2707 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2708 int oldrss = rss - 1;
2709
2710 /*
2711 * One pass to advance to each state up to _FULL.
2712 * Give up if any pass fails to advance the state.
2713 */
2714 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2715 int cpu;
2716 bool isidle = true;
2717 unsigned long maxj = jiffies - ULONG_MAX / 4;
2718 struct rcu_data *rdp;
2719
2720 /* Scan all the CPUs looking for nonidle CPUs. */
2721 for_each_possible_cpu(cpu) {
2722 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2723 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2724 if (!isidle)
2725 break;
2726 }
2727 rcu_sysidle_report(rcu_sysidle_state,
2728 isidle, maxj, false);
2729 oldrss = rss;
2730 rss = ACCESS_ONCE(full_sysidle_state);
2731 }
2732 }
2733
2734 /* If this is the first observation of an idle period, record it. */
2735 if (rss == RCU_SYSIDLE_FULL) {
2736 rss = cmpxchg(&full_sysidle_state,
2737 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2738 return rss == RCU_SYSIDLE_FULL;
2739 }
2740
2741 smp_mb(); /* ensure rss load happens before later caller actions. */
2742
2743 /* If already fully idle, tell the caller (in case of races). */
2744 if (rss == RCU_SYSIDLE_FULL_NOTED)
2745 return true;
2746
2747 /*
2748 * If we aren't there yet, and a grace period is not in flight,
2749 * initiate a grace period. Either way, tell the caller that
2750 * we are not there yet. We use an xchg() rather than an assignment
2751 * to make up for the memory barriers that would otherwise be
2752 * provided by the memory allocator.
2753 */
2754 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2755 !rcu_gp_in_progress(rcu_sysidle_state) &&
2756 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2757 call_rcu(&rsh.rh, rcu_sysidle_cb);
2758 return false;
eb348b89
PM
2759}
2760
2333210b
PM
2761/*
2762 * Initialize dynticks sysidle state for CPUs coming online.
2763 */
2764static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2765{
2766 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2767}
2768
2769#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2770
eb348b89
PM
2771static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2772{
2773}
2774
2775static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2776{
2777}
2778
0edd1b17
PM
2779static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2780 unsigned long *maxj)
2781{
2782}
2783
2784static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2785{
2786 return false;
2787}
2788
eb75767b
PM
2789static void rcu_bind_gp_kthread(void)
2790{
2791}
2792
0edd1b17
PM
2793static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2794 unsigned long maxj)
2795{
2796}
2797
2333210b
PM
2798static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2799{
2800}
2801
2802#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */