rcu: Create rcutree plugins to handle hotplug CPU for multi-level trees
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <asm/atomic.h>
39#include <linux/bitops.h>
40#include <linux/module.h>
41#include <linux/completion.h>
42#include <linux/moduleparam.h>
43#include <linux/percpu.h>
44#include <linux/notifier.h>
45#include <linux/cpu.h>
46#include <linux/mutex.h>
47#include <linux/time.h>
48
9f77da9f
PM
49#include "rcutree.h"
50
64db4cff
PM
51#ifdef CONFIG_DEBUG_LOCK_ALLOC
52static struct lock_class_key rcu_lock_key;
53struct lockdep_map rcu_lock_map =
54 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
55EXPORT_SYMBOL_GPL(rcu_lock_map);
56#endif
57
58/* Data structures. */
59
60#define RCU_STATE_INITIALIZER(name) { \
61 .level = { &name.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_SIGNAL_INIT, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
72 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75}
76
d6714c22
PM
77struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
78DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 79
6258c4fb
IM
80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 82
f41d911f 83extern long rcu_batches_completed_sched(void);
dd5d19ba 84static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
f41d911f
PM
85static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
86 struct rcu_node *rnp, unsigned long flags);
87static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
c935a331 88#ifdef CONFIG_HOTPLUG_CPU
33f76148 89static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
c935a331 90#endif /* #ifdef CONFIG_HOTPLUG_CPU */
f41d911f
PM
91static void __rcu_process_callbacks(struct rcu_state *rsp,
92 struct rcu_data *rdp);
93static void __call_rcu(struct rcu_head *head,
94 void (*func)(struct rcu_head *rcu),
95 struct rcu_state *rsp);
96static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
97static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
98 int preemptable);
99
100#include "rcutree_plugin.h"
101
b1f77b05 102/*
d6714c22 103 * Note a quiescent state. Because we do not need to know
b1f77b05 104 * how many quiescent states passed, just if there was at least
d6714c22 105 * one since the start of the grace period, this just sets a flag.
b1f77b05 106 */
d6714c22 107void rcu_sched_qs(int cpu)
b1f77b05 108{
f41d911f
PM
109 unsigned long flags;
110 struct rcu_data *rdp;
111
112 local_irq_save(flags);
113 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05
IM
114 rdp->passed_quiesc = 1;
115 rdp->passed_quiesc_completed = rdp->completed;
f41d911f
PM
116 rcu_preempt_qs(cpu);
117 local_irq_restore(flags);
b1f77b05
IM
118}
119
d6714c22 120void rcu_bh_qs(int cpu)
b1f77b05 121{
f41d911f
PM
122 unsigned long flags;
123 struct rcu_data *rdp;
124
125 local_irq_save(flags);
126 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05
IM
127 rdp->passed_quiesc = 1;
128 rdp->passed_quiesc_completed = rdp->completed;
f41d911f 129 local_irq_restore(flags);
b1f77b05 130}
64db4cff
PM
131
132#ifdef CONFIG_NO_HZ
90a4d2c0
PM
133DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
134 .dynticks_nesting = 1,
135 .dynticks = 1,
136};
64db4cff
PM
137#endif /* #ifdef CONFIG_NO_HZ */
138
139static int blimit = 10; /* Maximum callbacks per softirq. */
140static int qhimark = 10000; /* If this many pending, ignore blimit. */
141static int qlowmark = 100; /* Once only this many pending, use blimit. */
142
143static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 144static int rcu_pending(int cpu);
64db4cff 145
d6714c22
PM
146/*
147 * Return the number of RCU-sched batches processed thus far for debug & stats.
148 */
149long rcu_batches_completed_sched(void)
150{
151 return rcu_sched_state.completed;
152}
153EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
154
64db4cff
PM
155/*
156 * Return the number of RCU BH batches processed thus far for debug & stats.
157 */
158long rcu_batches_completed_bh(void)
159{
160 return rcu_bh_state.completed;
161}
162EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
163
164/*
165 * Does the CPU have callbacks ready to be invoked?
166 */
167static int
168cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
169{
170 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
171}
172
173/*
174 * Does the current CPU require a yet-as-unscheduled grace period?
175 */
176static int
177cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
178{
179 /* ACCESS_ONCE() because we are accessing outside of lock. */
180 return *rdp->nxttail[RCU_DONE_TAIL] &&
181 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
182}
183
184/*
185 * Return the root node of the specified rcu_state structure.
186 */
187static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
188{
189 return &rsp->node[0];
190}
191
192#ifdef CONFIG_SMP
193
194/*
195 * If the specified CPU is offline, tell the caller that it is in
196 * a quiescent state. Otherwise, whack it with a reschedule IPI.
197 * Grace periods can end up waiting on an offline CPU when that
198 * CPU is in the process of coming online -- it will be added to the
199 * rcu_node bitmasks before it actually makes it online. The same thing
200 * can happen while a CPU is in the process of coming online. Because this
201 * race is quite rare, we check for it after detecting that the grace
202 * period has been delayed rather than checking each and every CPU
203 * each and every time we start a new grace period.
204 */
205static int rcu_implicit_offline_qs(struct rcu_data *rdp)
206{
207 /*
208 * If the CPU is offline, it is in a quiescent state. We can
209 * trust its state not to change because interrupts are disabled.
210 */
211 if (cpu_is_offline(rdp->cpu)) {
212 rdp->offline_fqs++;
213 return 1;
214 }
215
f41d911f
PM
216 /* If preemptable RCU, no point in sending reschedule IPI. */
217 if (rdp->preemptable)
218 return 0;
219
64db4cff
PM
220 /* The CPU is online, so send it a reschedule IPI. */
221 if (rdp->cpu != smp_processor_id())
222 smp_send_reschedule(rdp->cpu);
223 else
224 set_need_resched();
225 rdp->resched_ipi++;
226 return 0;
227}
228
229#endif /* #ifdef CONFIG_SMP */
230
231#ifdef CONFIG_NO_HZ
232static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
233
234/**
235 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
236 *
237 * Enter nohz mode, in other words, -leave- the mode in which RCU
238 * read-side critical sections can occur. (Though RCU read-side
239 * critical sections can occur in irq handlers in nohz mode, a possibility
240 * handled by rcu_irq_enter() and rcu_irq_exit()).
241 */
242void rcu_enter_nohz(void)
243{
244 unsigned long flags;
245 struct rcu_dynticks *rdtp;
246
247 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
248 local_irq_save(flags);
249 rdtp = &__get_cpu_var(rcu_dynticks);
250 rdtp->dynticks++;
251 rdtp->dynticks_nesting--;
252 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
253 local_irq_restore(flags);
254}
255
256/*
257 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
258 *
259 * Exit nohz mode, in other words, -enter- the mode in which RCU
260 * read-side critical sections normally occur.
261 */
262void rcu_exit_nohz(void)
263{
264 unsigned long flags;
265 struct rcu_dynticks *rdtp;
266
267 local_irq_save(flags);
268 rdtp = &__get_cpu_var(rcu_dynticks);
269 rdtp->dynticks++;
270 rdtp->dynticks_nesting++;
271 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
272 local_irq_restore(flags);
273 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
274}
275
276/**
277 * rcu_nmi_enter - inform RCU of entry to NMI context
278 *
279 * If the CPU was idle with dynamic ticks active, and there is no
280 * irq handler running, this updates rdtp->dynticks_nmi to let the
281 * RCU grace-period handling know that the CPU is active.
282 */
283void rcu_nmi_enter(void)
284{
285 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
286
287 if (rdtp->dynticks & 0x1)
288 return;
289 rdtp->dynticks_nmi++;
290 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
292}
293
294/**
295 * rcu_nmi_exit - inform RCU of exit from NMI context
296 *
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is no longer active.
300 */
301void rcu_nmi_exit(void)
302{
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks & 0x1)
306 return;
307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
308 rdtp->dynticks_nmi++;
309 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
310}
311
312/**
313 * rcu_irq_enter - inform RCU of entry to hard irq context
314 *
315 * If the CPU was idle with dynamic ticks active, this updates the
316 * rdtp->dynticks to let the RCU handling know that the CPU is active.
317 */
318void rcu_irq_enter(void)
319{
320 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
321
322 if (rdtp->dynticks_nesting++)
323 return;
324 rdtp->dynticks++;
325 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
326 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
327}
328
329/**
330 * rcu_irq_exit - inform RCU of exit from hard irq context
331 *
332 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
333 * to put let the RCU handling be aware that the CPU is going back to idle
334 * with no ticks.
335 */
336void rcu_irq_exit(void)
337{
338 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
339
340 if (--rdtp->dynticks_nesting)
341 return;
342 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
343 rdtp->dynticks++;
344 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
345
346 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 347 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
348 __get_cpu_var(rcu_bh_data).nxtlist)
349 set_need_resched();
350}
351
352/*
353 * Record the specified "completed" value, which is later used to validate
354 * dynticks counter manipulations. Specify "rsp->completed - 1" to
355 * unconditionally invalidate any future dynticks manipulations (which is
356 * useful at the beginning of a grace period).
357 */
358static void dyntick_record_completed(struct rcu_state *rsp, long comp)
359{
360 rsp->dynticks_completed = comp;
361}
362
363#ifdef CONFIG_SMP
364
365/*
366 * Recall the previously recorded value of the completion for dynticks.
367 */
368static long dyntick_recall_completed(struct rcu_state *rsp)
369{
370 return rsp->dynticks_completed;
371}
372
373/*
374 * Snapshot the specified CPU's dynticks counter so that we can later
375 * credit them with an implicit quiescent state. Return 1 if this CPU
376 * is already in a quiescent state courtesy of dynticks idle mode.
377 */
378static int dyntick_save_progress_counter(struct rcu_data *rdp)
379{
380 int ret;
381 int snap;
382 int snap_nmi;
383
384 snap = rdp->dynticks->dynticks;
385 snap_nmi = rdp->dynticks->dynticks_nmi;
386 smp_mb(); /* Order sampling of snap with end of grace period. */
387 rdp->dynticks_snap = snap;
388 rdp->dynticks_nmi_snap = snap_nmi;
389 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
390 if (ret)
391 rdp->dynticks_fqs++;
392 return ret;
393}
394
395/*
396 * Return true if the specified CPU has passed through a quiescent
397 * state by virtue of being in or having passed through an dynticks
398 * idle state since the last call to dyntick_save_progress_counter()
399 * for this same CPU.
400 */
401static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
402{
403 long curr;
404 long curr_nmi;
405 long snap;
406 long snap_nmi;
407
408 curr = rdp->dynticks->dynticks;
409 snap = rdp->dynticks_snap;
410 curr_nmi = rdp->dynticks->dynticks_nmi;
411 snap_nmi = rdp->dynticks_nmi_snap;
412 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
413
414 /*
415 * If the CPU passed through or entered a dynticks idle phase with
416 * no active irq/NMI handlers, then we can safely pretend that the CPU
417 * already acknowledged the request to pass through a quiescent
418 * state. Either way, that CPU cannot possibly be in an RCU
419 * read-side critical section that started before the beginning
420 * of the current RCU grace period.
421 */
422 if ((curr != snap || (curr & 0x1) == 0) &&
423 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
424 rdp->dynticks_fqs++;
425 return 1;
426 }
427
428 /* Go check for the CPU being offline. */
429 return rcu_implicit_offline_qs(rdp);
430}
431
432#endif /* #ifdef CONFIG_SMP */
433
434#else /* #ifdef CONFIG_NO_HZ */
435
436static void dyntick_record_completed(struct rcu_state *rsp, long comp)
437{
438}
439
440#ifdef CONFIG_SMP
441
442/*
443 * If there are no dynticks, then the only way that a CPU can passively
444 * be in a quiescent state is to be offline. Unlike dynticks idle, which
445 * is a point in time during the prior (already finished) grace period,
446 * an offline CPU is always in a quiescent state, and thus can be
447 * unconditionally applied. So just return the current value of completed.
448 */
449static long dyntick_recall_completed(struct rcu_state *rsp)
450{
451 return rsp->completed;
452}
453
454static int dyntick_save_progress_counter(struct rcu_data *rdp)
455{
456 return 0;
457}
458
459static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
460{
461 return rcu_implicit_offline_qs(rdp);
462}
463
464#endif /* #ifdef CONFIG_SMP */
465
466#endif /* #else #ifdef CONFIG_NO_HZ */
467
468#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
469
470static void record_gp_stall_check_time(struct rcu_state *rsp)
471{
472 rsp->gp_start = jiffies;
473 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
474}
475
476static void print_other_cpu_stall(struct rcu_state *rsp)
477{
478 int cpu;
479 long delta;
480 unsigned long flags;
481 struct rcu_node *rnp = rcu_get_root(rsp);
482 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
483 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
484
485 /* Only let one CPU complain about others per time interval. */
486
487 spin_lock_irqsave(&rnp->lock, flags);
488 delta = jiffies - rsp->jiffies_stall;
489 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
490 spin_unlock_irqrestore(&rnp->lock, flags);
491 return;
492 }
493 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
494 spin_unlock_irqrestore(&rnp->lock, flags);
495
496 /* OK, time to rat on our buddy... */
497
498 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
499 for (; rnp_cur < rnp_end; rnp_cur++) {
f41d911f 500 rcu_print_task_stall(rnp);
64db4cff
PM
501 if (rnp_cur->qsmask == 0)
502 continue;
503 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
504 if (rnp_cur->qsmask & (1UL << cpu))
505 printk(" %d", rnp_cur->grplo + cpu);
506 }
507 printk(" (detected by %d, t=%ld jiffies)\n",
508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
509 force_quiescent_state(rsp, 0); /* Kick them all. */
510}
511
512static void print_cpu_stall(struct rcu_state *rsp)
513{
514 unsigned long flags;
515 struct rcu_node *rnp = rcu_get_root(rsp);
516
517 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
518 smp_processor_id(), jiffies - rsp->gp_start);
519 dump_stack();
520 spin_lock_irqsave(&rnp->lock, flags);
521 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
522 rsp->jiffies_stall =
523 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
524 spin_unlock_irqrestore(&rnp->lock, flags);
525 set_need_resched(); /* kick ourselves to get things going. */
526}
527
528static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
529{
530 long delta;
531 struct rcu_node *rnp;
532
533 delta = jiffies - rsp->jiffies_stall;
534 rnp = rdp->mynode;
535 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
536
537 /* We haven't checked in, so go dump stack. */
538 print_cpu_stall(rsp);
539
540 } else if (rsp->gpnum != rsp->completed &&
541 delta >= RCU_STALL_RAT_DELAY) {
542
543 /* They had two time units to dump stack, so complain. */
544 print_other_cpu_stall(rsp);
545 }
546}
547
548#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
549
550static void record_gp_stall_check_time(struct rcu_state *rsp)
551{
552}
553
554static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
555{
556}
557
558#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
559
560/*
561 * Update CPU-local rcu_data state to record the newly noticed grace period.
562 * This is used both when we started the grace period and when we notice
563 * that someone else started the grace period.
564 */
565static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
566{
567 rdp->qs_pending = 1;
568 rdp->passed_quiesc = 0;
569 rdp->gpnum = rsp->gpnum;
64db4cff
PM
570}
571
572/*
573 * Did someone else start a new RCU grace period start since we last
574 * checked? Update local state appropriately if so. Must be called
575 * on the CPU corresponding to rdp.
576 */
577static int
578check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
579{
580 unsigned long flags;
581 int ret = 0;
582
583 local_irq_save(flags);
584 if (rdp->gpnum != rsp->gpnum) {
585 note_new_gpnum(rsp, rdp);
586 ret = 1;
587 }
588 local_irq_restore(flags);
589 return ret;
590}
591
592/*
593 * Start a new RCU grace period if warranted, re-initializing the hierarchy
594 * in preparation for detecting the next grace period. The caller must hold
595 * the root node's ->lock, which is released before return. Hard irqs must
596 * be disabled.
597 */
598static void
599rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
600 __releases(rcu_get_root(rsp)->lock)
601{
602 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
603 struct rcu_node *rnp = rcu_get_root(rsp);
604 struct rcu_node *rnp_cur;
605 struct rcu_node *rnp_end;
606
607 if (!cpu_needs_another_gp(rsp, rdp)) {
608 spin_unlock_irqrestore(&rnp->lock, flags);
609 return;
610 }
611
612 /* Advance to a new grace period and initialize state. */
613 rsp->gpnum++;
614 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
615 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
616 record_gp_stall_check_time(rsp);
617 dyntick_record_completed(rsp, rsp->completed - 1);
618 note_new_gpnum(rsp, rdp);
619
620 /*
621 * Because we are first, we know that all our callbacks will
622 * be covered by this upcoming grace period, even the ones
623 * that were registered arbitrarily recently.
624 */
625 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
626 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
627
628 /* Special-case the common single-level case. */
629 if (NUM_RCU_NODES == 1) {
630 rnp->qsmask = rnp->qsmaskinit;
c12172c0 631 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
632 spin_unlock_irqrestore(&rnp->lock, flags);
633 return;
634 }
635
636 spin_unlock(&rnp->lock); /* leave irqs disabled. */
637
638
639 /* Exclude any concurrent CPU-hotplug operations. */
640 spin_lock(&rsp->onofflock); /* irqs already disabled. */
641
642 /*
643 * Set the quiescent-state-needed bits in all the non-leaf RCU
644 * nodes for all currently online CPUs. This operation relies
645 * on the layout of the hierarchy within the rsp->node[] array.
646 * Note that other CPUs will access only the leaves of the
647 * hierarchy, which still indicate that no grace period is in
648 * progress. In addition, we have excluded CPU-hotplug operations.
649 *
650 * We therefore do not need to hold any locks. Any required
651 * memory barriers will be supplied by the locks guarding the
652 * leaf rcu_nodes in the hierarchy.
653 */
654
655 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
656 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
657 rnp_cur->qsmask = rnp_cur->qsmaskinit;
658
659 /*
660 * Now set up the leaf nodes. Here we must be careful. First,
661 * we need to hold the lock in order to exclude other CPUs, which
662 * might be contending for the leaf nodes' locks. Second, as
663 * soon as we initialize a given leaf node, its CPUs might run
664 * up the rest of the hierarchy. We must therefore acquire locks
665 * for each node that we touch during this stage. (But we still
666 * are excluding CPU-hotplug operations.)
667 *
668 * Note that the grace period cannot complete until we finish
669 * the initialization process, as there will be at least one
670 * qsmask bit set in the root node until that time, namely the
671 * one corresponding to this CPU.
672 */
673 rnp_end = &rsp->node[NUM_RCU_NODES];
674 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
675 for (; rnp_cur < rnp_end; rnp_cur++) {
676 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
677 rnp_cur->qsmask = rnp_cur->qsmaskinit;
678 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
679 }
680
681 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
682 spin_unlock_irqrestore(&rsp->onofflock, flags);
683}
684
685/*
686 * Advance this CPU's callbacks, but only if the current grace period
687 * has ended. This may be called only from the CPU to whom the rdp
688 * belongs.
689 */
690static void
691rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
692{
693 long completed_snap;
694 unsigned long flags;
695
696 local_irq_save(flags);
697 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
698
699 /* Did another grace period end? */
700 if (rdp->completed != completed_snap) {
701
702 /* Advance callbacks. No harm if list empty. */
703 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
704 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
705 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
706
707 /* Remember that we saw this grace-period completion. */
708 rdp->completed = completed_snap;
709 }
710 local_irq_restore(flags);
711}
712
f41d911f
PM
713/*
714 * Clean up after the prior grace period and let rcu_start_gp() start up
715 * the next grace period if one is needed. Note that the caller must
716 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
717 */
718static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
719 __releases(rnp->lock)
720{
721 rsp->completed = rsp->gpnum;
722 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
723 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
724}
725
64db4cff
PM
726/*
727 * Similar to cpu_quiet(), for which it is a helper function. Allows
728 * a group of CPUs to be quieted at one go, though all the CPUs in the
729 * group must be represented by the same leaf rcu_node structure.
730 * That structure's lock must be held upon entry, and it is released
731 * before return.
732 */
733static void
734cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
735 unsigned long flags)
736 __releases(rnp->lock)
737{
738 /* Walk up the rcu_node hierarchy. */
739 for (;;) {
740 if (!(rnp->qsmask & mask)) {
741
742 /* Our bit has already been cleared, so done. */
743 spin_unlock_irqrestore(&rnp->lock, flags);
744 return;
745 }
746 rnp->qsmask &= ~mask;
f41d911f 747 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
748
749 /* Other bits still set at this level, so done. */
750 spin_unlock_irqrestore(&rnp->lock, flags);
751 return;
752 }
753 mask = rnp->grpmask;
754 if (rnp->parent == NULL) {
755
756 /* No more levels. Exit loop holding root lock. */
757
758 break;
759 }
760 spin_unlock_irqrestore(&rnp->lock, flags);
761 rnp = rnp->parent;
762 spin_lock_irqsave(&rnp->lock, flags);
763 }
764
765 /*
766 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
767 * state for this grace period. Invoke cpu_quiet_msk_finish()
768 * to clean up and start the next grace period if one is needed.
64db4cff 769 */
f41d911f 770 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
771}
772
773/*
774 * Record a quiescent state for the specified CPU, which must either be
775 * the current CPU or an offline CPU. The lastcomp argument is used to
776 * make sure we are still in the grace period of interest. We don't want
777 * to end the current grace period based on quiescent states detected in
778 * an earlier grace period!
779 */
780static void
781cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
782{
783 unsigned long flags;
784 unsigned long mask;
785 struct rcu_node *rnp;
786
787 rnp = rdp->mynode;
788 spin_lock_irqsave(&rnp->lock, flags);
789 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
790
791 /*
792 * Someone beat us to it for this grace period, so leave.
793 * The race with GP start is resolved by the fact that we
794 * hold the leaf rcu_node lock, so that the per-CPU bits
795 * cannot yet be initialized -- so we would simply find our
796 * CPU's bit already cleared in cpu_quiet_msk() if this race
797 * occurred.
798 */
799 rdp->passed_quiesc = 0; /* try again later! */
800 spin_unlock_irqrestore(&rnp->lock, flags);
801 return;
802 }
803 mask = rdp->grpmask;
804 if ((rnp->qsmask & mask) == 0) {
805 spin_unlock_irqrestore(&rnp->lock, flags);
806 } else {
807 rdp->qs_pending = 0;
808
809 /*
810 * This GP can't end until cpu checks in, so all of our
811 * callbacks can be processed during the next GP.
812 */
813 rdp = rsp->rda[smp_processor_id()];
814 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
815
816 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
817 }
818}
819
820/*
821 * Check to see if there is a new grace period of which this CPU
822 * is not yet aware, and if so, set up local rcu_data state for it.
823 * Otherwise, see if this CPU has just passed through its first
824 * quiescent state for this grace period, and record that fact if so.
825 */
826static void
827rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
828{
829 /* If there is now a new grace period, record and return. */
830 if (check_for_new_grace_period(rsp, rdp))
831 return;
832
833 /*
834 * Does this CPU still need to do its part for current grace period?
835 * If no, return and let the other CPUs do their part as well.
836 */
837 if (!rdp->qs_pending)
838 return;
839
840 /*
841 * Was there a quiescent state since the beginning of the grace
842 * period? If no, then exit and wait for the next call.
843 */
844 if (!rdp->passed_quiesc)
845 return;
846
847 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
848 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
849}
850
851#ifdef CONFIG_HOTPLUG_CPU
852
853/*
854 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
855 * and move all callbacks from the outgoing CPU to the current one.
856 */
857static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
858{
859 int i;
860 unsigned long flags;
861 long lastcomp;
862 unsigned long mask;
863 struct rcu_data *rdp = rsp->rda[cpu];
864 struct rcu_data *rdp_me;
865 struct rcu_node *rnp;
866
867 /* Exclude any attempts to start a new grace period. */
868 spin_lock_irqsave(&rsp->onofflock, flags);
869
870 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
871 rnp = rdp->mynode;
872 mask = rdp->grpmask; /* rnp->grplo is constant. */
873 do {
874 spin_lock(&rnp->lock); /* irqs already disabled. */
875 rnp->qsmaskinit &= ~mask;
876 if (rnp->qsmaskinit != 0) {
f41d911f 877 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
878 break;
879 }
dd5d19ba 880 rcu_preempt_offline_tasks(rsp, rnp);
64db4cff 881 mask = rnp->grpmask;
f41d911f 882 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
883 rnp = rnp->parent;
884 } while (rnp != NULL);
885 lastcomp = rsp->completed;
886
887 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
888
889 /* Being offline is a quiescent state, so go record it. */
890 cpu_quiet(cpu, rsp, rdp, lastcomp);
891
892 /*
893 * Move callbacks from the outgoing CPU to the running CPU.
894 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 895 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
896 * Note also that we must carefully retain the order of the
897 * outgoing CPU's callbacks in order for rcu_barrier() to work
898 * correctly. Finally, note that we start all the callbacks
899 * afresh, even those that have passed through a grace period
900 * and are therefore ready to invoke. The theory is that hotplug
901 * events are rare, and that if they are frequent enough to
902 * indefinitely delay callbacks, you have far worse things to
903 * be worrying about.
904 */
905 rdp_me = rsp->rda[smp_processor_id()];
906 if (rdp->nxtlist != NULL) {
907 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
908 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
909 rdp->nxtlist = NULL;
910 for (i = 0; i < RCU_NEXT_SIZE; i++)
911 rdp->nxttail[i] = &rdp->nxtlist;
912 rdp_me->qlen += rdp->qlen;
913 rdp->qlen = 0;
914 }
915 local_irq_restore(flags);
916}
917
918/*
919 * Remove the specified CPU from the RCU hierarchy and move any pending
920 * callbacks that it might have to the current CPU. This code assumes
921 * that at least one CPU in the system will remain running at all times.
922 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
923 */
924static void rcu_offline_cpu(int cpu)
925{
d6714c22 926 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 927 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 928 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
929}
930
931#else /* #ifdef CONFIG_HOTPLUG_CPU */
932
933static void rcu_offline_cpu(int cpu)
934{
935}
936
937#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
938
939/*
940 * Invoke any RCU callbacks that have made it to the end of their grace
941 * period. Thottle as specified by rdp->blimit.
942 */
943static void rcu_do_batch(struct rcu_data *rdp)
944{
945 unsigned long flags;
946 struct rcu_head *next, *list, **tail;
947 int count;
948
949 /* If no callbacks are ready, just return.*/
950 if (!cpu_has_callbacks_ready_to_invoke(rdp))
951 return;
952
953 /*
954 * Extract the list of ready callbacks, disabling to prevent
955 * races with call_rcu() from interrupt handlers.
956 */
957 local_irq_save(flags);
958 list = rdp->nxtlist;
959 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
960 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
961 tail = rdp->nxttail[RCU_DONE_TAIL];
962 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
963 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
964 rdp->nxttail[count] = &rdp->nxtlist;
965 local_irq_restore(flags);
966
967 /* Invoke callbacks. */
968 count = 0;
969 while (list) {
970 next = list->next;
971 prefetch(next);
972 list->func(list);
973 list = next;
974 if (++count >= rdp->blimit)
975 break;
976 }
977
978 local_irq_save(flags);
979
980 /* Update count, and requeue any remaining callbacks. */
981 rdp->qlen -= count;
982 if (list != NULL) {
983 *tail = rdp->nxtlist;
984 rdp->nxtlist = list;
985 for (count = 0; count < RCU_NEXT_SIZE; count++)
986 if (&rdp->nxtlist == rdp->nxttail[count])
987 rdp->nxttail[count] = tail;
988 else
989 break;
990 }
991
992 /* Reinstate batch limit if we have worked down the excess. */
993 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
994 rdp->blimit = blimit;
995
996 local_irq_restore(flags);
997
998 /* Re-raise the RCU softirq if there are callbacks remaining. */
999 if (cpu_has_callbacks_ready_to_invoke(rdp))
1000 raise_softirq(RCU_SOFTIRQ);
1001}
1002
1003/*
1004 * Check to see if this CPU is in a non-context-switch quiescent state
1005 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1006 * Also schedule the RCU softirq handler.
1007 *
1008 * This function must be called with hardirqs disabled. It is normally
1009 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1010 * false, there is no point in invoking rcu_check_callbacks().
1011 */
1012void rcu_check_callbacks(int cpu, int user)
1013{
a157229c
PM
1014 if (!rcu_pending(cpu))
1015 return; /* if nothing for RCU to do. */
64db4cff 1016 if (user ||
a6826048
PM
1017 (idle_cpu(cpu) && rcu_scheduler_active &&
1018 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1019
1020 /*
1021 * Get here if this CPU took its interrupt from user
1022 * mode or from the idle loop, and if this is not a
1023 * nested interrupt. In this case, the CPU is in
d6714c22 1024 * a quiescent state, so note it.
64db4cff
PM
1025 *
1026 * No memory barrier is required here because both
d6714c22
PM
1027 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1028 * variables that other CPUs neither access nor modify,
1029 * at least not while the corresponding CPU is online.
64db4cff
PM
1030 */
1031
d6714c22
PM
1032 rcu_sched_qs(cpu);
1033 rcu_bh_qs(cpu);
64db4cff
PM
1034
1035 } else if (!in_softirq()) {
1036
1037 /*
1038 * Get here if this CPU did not take its interrupt from
1039 * softirq, in other words, if it is not interrupting
1040 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1041 * critical section, so note it.
64db4cff
PM
1042 */
1043
d6714c22 1044 rcu_bh_qs(cpu);
64db4cff 1045 }
f41d911f 1046 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1047 raise_softirq(RCU_SOFTIRQ);
1048}
1049
1050#ifdef CONFIG_SMP
1051
1052/*
1053 * Scan the leaf rcu_node structures, processing dyntick state for any that
1054 * have not yet encountered a quiescent state, using the function specified.
1055 * Returns 1 if the current grace period ends while scanning (possibly
1056 * because we made it end).
1057 */
1058static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1059 int (*f)(struct rcu_data *))
1060{
1061 unsigned long bit;
1062 int cpu;
1063 unsigned long flags;
1064 unsigned long mask;
1065 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1066 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1067
1068 for (; rnp_cur < rnp_end; rnp_cur++) {
1069 mask = 0;
1070 spin_lock_irqsave(&rnp_cur->lock, flags);
1071 if (rsp->completed != lastcomp) {
1072 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1073 return 1;
1074 }
1075 if (rnp_cur->qsmask == 0) {
1076 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1077 continue;
1078 }
1079 cpu = rnp_cur->grplo;
1080 bit = 1;
1081 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1082 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1083 mask |= bit;
1084 }
1085 if (mask != 0 && rsp->completed == lastcomp) {
1086
1087 /* cpu_quiet_msk() releases rnp_cur->lock. */
1088 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1089 continue;
1090 }
1091 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1092 }
1093 return 0;
1094}
1095
1096/*
1097 * Force quiescent states on reluctant CPUs, and also detect which
1098 * CPUs are in dyntick-idle mode.
1099 */
1100static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1101{
1102 unsigned long flags;
1103 long lastcomp;
64db4cff
PM
1104 struct rcu_node *rnp = rcu_get_root(rsp);
1105 u8 signaled;
1106
1107 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1108 return; /* No grace period in progress, nothing to force. */
1109 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1110 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1111 return; /* Someone else is already on the job. */
1112 }
1113 if (relaxed &&
ef631b0c 1114 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1115 goto unlock_ret; /* no emergency and done recently. */
1116 rsp->n_force_qs++;
1117 spin_lock(&rnp->lock);
1118 lastcomp = rsp->completed;
1119 signaled = rsp->signaled;
1120 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1121 if (lastcomp == rsp->gpnum) {
1122 rsp->n_force_qs_ngp++;
1123 spin_unlock(&rnp->lock);
1124 goto unlock_ret; /* no GP in progress, time updated. */
1125 }
1126 spin_unlock(&rnp->lock);
1127 switch (signaled) {
1128 case RCU_GP_INIT:
1129
1130 break; /* grace period still initializing, ignore. */
1131
1132 case RCU_SAVE_DYNTICK:
1133
1134 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1135 break; /* So gcc recognizes the dead code. */
1136
1137 /* Record dyntick-idle state. */
1138 if (rcu_process_dyntick(rsp, lastcomp,
1139 dyntick_save_progress_counter))
1140 goto unlock_ret;
1141
1142 /* Update state, record completion counter. */
1143 spin_lock(&rnp->lock);
1144 if (lastcomp == rsp->completed) {
1145 rsp->signaled = RCU_FORCE_QS;
1146 dyntick_record_completed(rsp, lastcomp);
1147 }
1148 spin_unlock(&rnp->lock);
1149 break;
1150
1151 case RCU_FORCE_QS:
1152
1153 /* Check dyntick-idle state, send IPI to laggarts. */
1154 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1155 rcu_implicit_dynticks_qs))
1156 goto unlock_ret;
1157
1158 /* Leave state in case more forcing is required. */
1159
1160 break;
1161 }
1162unlock_ret:
1163 spin_unlock_irqrestore(&rsp->fqslock, flags);
1164}
1165
1166#else /* #ifdef CONFIG_SMP */
1167
1168static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1169{
1170 set_need_resched();
1171}
1172
1173#endif /* #else #ifdef CONFIG_SMP */
1174
1175/*
1176 * This does the RCU processing work from softirq context for the
1177 * specified rcu_state and rcu_data structures. This may be called
1178 * only from the CPU to whom the rdp belongs.
1179 */
1180static void
1181__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1182{
1183 unsigned long flags;
1184
2e597558
PM
1185 WARN_ON_ONCE(rdp->beenonline == 0);
1186
64db4cff
PM
1187 /*
1188 * If an RCU GP has gone long enough, go check for dyntick
1189 * idle CPUs and, if needed, send resched IPIs.
1190 */
ef631b0c 1191 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1192 force_quiescent_state(rsp, 1);
1193
1194 /*
1195 * Advance callbacks in response to end of earlier grace
1196 * period that some other CPU ended.
1197 */
1198 rcu_process_gp_end(rsp, rdp);
1199
1200 /* Update RCU state based on any recent quiescent states. */
1201 rcu_check_quiescent_state(rsp, rdp);
1202
1203 /* Does this CPU require a not-yet-started grace period? */
1204 if (cpu_needs_another_gp(rsp, rdp)) {
1205 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1206 rcu_start_gp(rsp, flags); /* releases above lock */
1207 }
1208
1209 /* If there are callbacks ready, invoke them. */
1210 rcu_do_batch(rdp);
1211}
1212
1213/*
1214 * Do softirq processing for the current CPU.
1215 */
1216static void rcu_process_callbacks(struct softirq_action *unused)
1217{
1218 /*
1219 * Memory references from any prior RCU read-side critical sections
1220 * executed by the interrupted code must be seen before any RCU
1221 * grace-period manipulations below.
1222 */
1223 smp_mb(); /* See above block comment. */
1224
d6714c22
PM
1225 __rcu_process_callbacks(&rcu_sched_state,
1226 &__get_cpu_var(rcu_sched_data));
64db4cff 1227 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1228 rcu_preempt_process_callbacks();
64db4cff
PM
1229
1230 /*
1231 * Memory references from any later RCU read-side critical sections
1232 * executed by the interrupted code must be seen after any RCU
1233 * grace-period manipulations above.
1234 */
1235 smp_mb(); /* See above block comment. */
1236}
1237
1238static void
1239__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1240 struct rcu_state *rsp)
1241{
1242 unsigned long flags;
1243 struct rcu_data *rdp;
1244
1245 head->func = func;
1246 head->next = NULL;
1247
1248 smp_mb(); /* Ensure RCU update seen before callback registry. */
1249
1250 /*
1251 * Opportunistically note grace-period endings and beginnings.
1252 * Note that we might see a beginning right after we see an
1253 * end, but never vice versa, since this CPU has to pass through
1254 * a quiescent state betweentimes.
1255 */
1256 local_irq_save(flags);
1257 rdp = rsp->rda[smp_processor_id()];
1258 rcu_process_gp_end(rsp, rdp);
1259 check_for_new_grace_period(rsp, rdp);
1260
1261 /* Add the callback to our list. */
1262 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1263 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1264
1265 /* Start a new grace period if one not already started. */
1266 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1267 unsigned long nestflag;
1268 struct rcu_node *rnp_root = rcu_get_root(rsp);
1269
1270 spin_lock_irqsave(&rnp_root->lock, nestflag);
1271 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1272 }
1273
1274 /* Force the grace period if too many callbacks or too long waiting. */
1275 if (unlikely(++rdp->qlen > qhimark)) {
1276 rdp->blimit = LONG_MAX;
1277 force_quiescent_state(rsp, 0);
ef631b0c 1278 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1279 force_quiescent_state(rsp, 1);
1280 local_irq_restore(flags);
1281}
1282
1283/*
d6714c22
PM
1284 * Queue an RCU-sched callback for invocation after a grace period.
1285 */
1286void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1287{
1288 __call_rcu(head, func, &rcu_sched_state);
1289}
1290EXPORT_SYMBOL_GPL(call_rcu_sched);
1291
64db4cff
PM
1292/*
1293 * Queue an RCU for invocation after a quicker grace period.
1294 */
1295void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1296{
1297 __call_rcu(head, func, &rcu_bh_state);
1298}
1299EXPORT_SYMBOL_GPL(call_rcu_bh);
1300
1301/*
1302 * Check to see if there is any immediate RCU-related work to be done
1303 * by the current CPU, for the specified type of RCU, returning 1 if so.
1304 * The checks are in order of increasing expense: checks that can be
1305 * carried out against CPU-local state are performed first. However,
1306 * we must check for CPU stalls first, else we might not get a chance.
1307 */
1308static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1309{
1310 rdp->n_rcu_pending++;
1311
1312 /* Check for CPU stalls, if enabled. */
1313 check_cpu_stall(rsp, rdp);
1314
1315 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1316 if (rdp->qs_pending) {
1317 rdp->n_rp_qs_pending++;
64db4cff 1318 return 1;
7ba5c840 1319 }
64db4cff
PM
1320
1321 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1322 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1323 rdp->n_rp_cb_ready++;
64db4cff 1324 return 1;
7ba5c840 1325 }
64db4cff
PM
1326
1327 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1328 if (cpu_needs_another_gp(rsp, rdp)) {
1329 rdp->n_rp_cpu_needs_gp++;
64db4cff 1330 return 1;
7ba5c840 1331 }
64db4cff
PM
1332
1333 /* Has another RCU grace period completed? */
7ba5c840
PM
1334 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1335 rdp->n_rp_gp_completed++;
64db4cff 1336 return 1;
7ba5c840 1337 }
64db4cff
PM
1338
1339 /* Has a new RCU grace period started? */
7ba5c840
PM
1340 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1341 rdp->n_rp_gp_started++;
64db4cff 1342 return 1;
7ba5c840 1343 }
64db4cff
PM
1344
1345 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1346 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1347 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1348 rdp->n_rp_need_fqs++;
64db4cff 1349 return 1;
7ba5c840 1350 }
64db4cff
PM
1351
1352 /* nothing to do */
7ba5c840 1353 rdp->n_rp_need_nothing++;
64db4cff
PM
1354 return 0;
1355}
1356
1357/*
1358 * Check to see if there is any immediate RCU-related work to be done
1359 * by the current CPU, returning 1 if so. This function is part of the
1360 * RCU implementation; it is -not- an exported member of the RCU API.
1361 */
a157229c 1362static int rcu_pending(int cpu)
64db4cff 1363{
d6714c22 1364 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1365 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1366 rcu_preempt_pending(cpu);
64db4cff
PM
1367}
1368
1369/*
1370 * Check to see if any future RCU-related work will need to be done
1371 * by the current CPU, even if none need be done immediately, returning
1372 * 1 if so. This function is part of the RCU implementation; it is -not-
1373 * an exported member of the RCU API.
1374 */
1375int rcu_needs_cpu(int cpu)
1376{
1377 /* RCU callbacks either ready or pending? */
d6714c22 1378 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1379 per_cpu(rcu_bh_data, cpu).nxtlist ||
1380 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1381}
1382
1383/*
27569620
PM
1384 * Do boot-time initialization of a CPU's per-CPU RCU data.
1385 */
1386static void __init
1387rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1388{
1389 unsigned long flags;
1390 int i;
1391 struct rcu_data *rdp = rsp->rda[cpu];
1392 struct rcu_node *rnp = rcu_get_root(rsp);
1393
1394 /* Set up local state, ensuring consistent view of global state. */
1395 spin_lock_irqsave(&rnp->lock, flags);
1396 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1397 rdp->nxtlist = NULL;
1398 for (i = 0; i < RCU_NEXT_SIZE; i++)
1399 rdp->nxttail[i] = &rdp->nxtlist;
1400 rdp->qlen = 0;
1401#ifdef CONFIG_NO_HZ
1402 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1403#endif /* #ifdef CONFIG_NO_HZ */
1404 rdp->cpu = cpu;
1405 spin_unlock_irqrestore(&rnp->lock, flags);
1406}
1407
1408/*
1409 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1410 * offline event can be happening at a given time. Note also that we
1411 * can accept some slop in the rsp->completed access due to the fact
1412 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1413 */
e4fa4c97 1414static void __cpuinit
f41d911f 1415rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1416{
1417 unsigned long flags;
64db4cff
PM
1418 long lastcomp;
1419 unsigned long mask;
1420 struct rcu_data *rdp = rsp->rda[cpu];
1421 struct rcu_node *rnp = rcu_get_root(rsp);
1422
1423 /* Set up local state, ensuring consistent view of global state. */
1424 spin_lock_irqsave(&rnp->lock, flags);
1425 lastcomp = rsp->completed;
1426 rdp->completed = lastcomp;
1427 rdp->gpnum = lastcomp;
1428 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1429 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1430 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1431 rdp->preemptable = preemptable;
64db4cff 1432 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1433 rdp->blimit = blimit;
64db4cff
PM
1434 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1435
1436 /*
1437 * A new grace period might start here. If so, we won't be part
1438 * of it, but that is OK, as we are currently in a quiescent state.
1439 */
1440
1441 /* Exclude any attempts to start a new GP on large systems. */
1442 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1443
1444 /* Add CPU to rcu_node bitmasks. */
1445 rnp = rdp->mynode;
1446 mask = rdp->grpmask;
1447 do {
1448 /* Exclude any attempts to start a new GP on small systems. */
1449 spin_lock(&rnp->lock); /* irqs already disabled. */
1450 rnp->qsmaskinit |= mask;
1451 mask = rnp->grpmask;
1452 spin_unlock(&rnp->lock); /* irqs already disabled. */
1453 rnp = rnp->parent;
1454 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1455
1456 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1457
1458 /*
1459 * A new grace period might start here. If so, we will be part of
1460 * it, and its gpnum will be greater than ours, so we will
1461 * participate. It is also possible for the gpnum to have been
1462 * incremented before this function was called, and the bitmasks
1463 * to not be filled out until now, in which case we will also
1464 * participate due to our gpnum being behind.
1465 */
1466
1467 /* Since it is coming online, the CPU is in a quiescent state. */
1468 cpu_quiet(cpu, rsp, rdp, lastcomp);
1469 local_irq_restore(flags);
1470}
1471
1472static void __cpuinit rcu_online_cpu(int cpu)
1473{
f41d911f
PM
1474 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1475 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1476 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1477}
1478
1479/*
f41d911f 1480 * Handle CPU online/offline notification events.
64db4cff 1481 */
2e597558
PM
1482int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1483 unsigned long action, void *hcpu)
64db4cff
PM
1484{
1485 long cpu = (long)hcpu;
1486
1487 switch (action) {
1488 case CPU_UP_PREPARE:
1489 case CPU_UP_PREPARE_FROZEN:
1490 rcu_online_cpu(cpu);
1491 break;
1492 case CPU_DEAD:
1493 case CPU_DEAD_FROZEN:
1494 case CPU_UP_CANCELED:
1495 case CPU_UP_CANCELED_FROZEN:
1496 rcu_offline_cpu(cpu);
1497 break;
1498 default:
1499 break;
1500 }
1501 return NOTIFY_OK;
1502}
1503
1504/*
1505 * Compute the per-level fanout, either using the exact fanout specified
1506 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1507 */
1508#ifdef CONFIG_RCU_FANOUT_EXACT
1509static void __init rcu_init_levelspread(struct rcu_state *rsp)
1510{
1511 int i;
1512
1513 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1514 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1515}
1516#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1517static void __init rcu_init_levelspread(struct rcu_state *rsp)
1518{
1519 int ccur;
1520 int cprv;
1521 int i;
1522
1523 cprv = NR_CPUS;
1524 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1525 ccur = rsp->levelcnt[i];
1526 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1527 cprv = ccur;
1528 }
1529}
1530#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1531
1532/*
1533 * Helper function for rcu_init() that initializes one rcu_state structure.
1534 */
1535static void __init rcu_init_one(struct rcu_state *rsp)
1536{
1537 int cpustride = 1;
1538 int i;
1539 int j;
1540 struct rcu_node *rnp;
1541
1542 /* Initialize the level-tracking arrays. */
1543
1544 for (i = 1; i < NUM_RCU_LVLS; i++)
1545 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1546 rcu_init_levelspread(rsp);
1547
1548 /* Initialize the elements themselves, starting from the leaves. */
1549
1550 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1551 cpustride *= rsp->levelspread[i];
1552 rnp = rsp->level[i];
1553 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1554 spin_lock_init(&rnp->lock);
f41d911f 1555 rnp->gpnum = 0;
64db4cff
PM
1556 rnp->qsmask = 0;
1557 rnp->qsmaskinit = 0;
1558 rnp->grplo = j * cpustride;
1559 rnp->grphi = (j + 1) * cpustride - 1;
1560 if (rnp->grphi >= NR_CPUS)
1561 rnp->grphi = NR_CPUS - 1;
1562 if (i == 0) {
1563 rnp->grpnum = 0;
1564 rnp->grpmask = 0;
1565 rnp->parent = NULL;
1566 } else {
1567 rnp->grpnum = j % rsp->levelspread[i - 1];
1568 rnp->grpmask = 1UL << rnp->grpnum;
1569 rnp->parent = rsp->level[i - 1] +
1570 j / rsp->levelspread[i - 1];
1571 }
1572 rnp->level = i;
f41d911f
PM
1573 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1574 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1575 }
1576 }
1577}
1578
1579/*
f41d911f
PM
1580 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1581 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1582 * structure.
64db4cff 1583 */
65cf8f86 1584#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1585do { \
65cf8f86 1586 rcu_init_one(rsp); \
64db4cff
PM
1587 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1588 j = 0; \
1589 for_each_possible_cpu(i) { \
1590 if (i > rnp[j].grphi) \
1591 j++; \
1592 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1593 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1594 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1595 } \
1596} while (0)
1597
f41d911f
PM
1598#ifdef CONFIG_TREE_PREEMPT_RCU
1599
1600void __init __rcu_init_preempt(void)
1601{
1602 int i; /* All used by RCU_INIT_FLAVOR(). */
1603 int j;
1604 struct rcu_node *rnp;
1605
1606 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1607}
1608
1609#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1610
1611void __init __rcu_init_preempt(void)
1612{
1613}
1614
1615#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1616
64db4cff
PM
1617void __init __rcu_init(void)
1618{
f41d911f 1619 int i; /* All used by RCU_INIT_FLAVOR(). */
64db4cff
PM
1620 int j;
1621 struct rcu_node *rnp;
1622
f41d911f 1623 rcu_bootup_announce();
64db4cff
PM
1624#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1625 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1626#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1627 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1628 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1629 __rcu_init_preempt();
2e597558 1630 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1631}
1632
1633module_param(blimit, int, 0);
1634module_param(qhimark, int, 0);
1635module_param(qlowmark, int, 0);