rcu: Enable fourth level of TREE_RCU hierarchy
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
6ebb237b 49#include <linux/kernel_stat.h>
64db4cff 50
9f77da9f
PM
51#include "rcutree.h"
52
64db4cff
PM
53/* Data structures. */
54
b668c9cf 55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 56
64db4cff
PM
57#define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
cf244dc0
PM
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 65 }, \
83f5b01f 66 .signaled = RCU_GP_IDLE, \
64db4cff
PM
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
e74f4c45
PM
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
64db4cff
PM
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
6ebb237b
PM
84static int rcu_scheduler_active __read_mostly;
85
f41d911f 86
fc2219d4
PM
87/*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
91 */
92static int rcu_gp_in_progress(struct rcu_state *rsp)
93{
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
95}
96
b1f77b05 97/*
d6714c22 98 * Note a quiescent state. Because we do not need to know
b1f77b05 99 * how many quiescent states passed, just if there was at least
d6714c22 100 * one since the start of the grace period, this just sets a flag.
b1f77b05 101 */
d6714c22 102void rcu_sched_qs(int cpu)
b1f77b05 103{
f41d911f
PM
104 struct rcu_data *rdp;
105
f41d911f 106 rdp = &per_cpu(rcu_sched_data, cpu);
c64ac3ce 107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
108 barrier();
109 rdp->passed_quiesc = 1;
110 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
111}
112
d6714c22 113void rcu_bh_qs(int cpu)
b1f77b05 114{
f41d911f
PM
115 struct rcu_data *rdp;
116
f41d911f 117 rdp = &per_cpu(rcu_bh_data, cpu);
c64ac3ce 118 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
119 barrier();
120 rdp->passed_quiesc = 1;
b1f77b05 121}
64db4cff
PM
122
123#ifdef CONFIG_NO_HZ
90a4d2c0
PM
124DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
125 .dynticks_nesting = 1,
126 .dynticks = 1,
127};
64db4cff
PM
128#endif /* #ifdef CONFIG_NO_HZ */
129
130static int blimit = 10; /* Maximum callbacks per softirq. */
131static int qhimark = 10000; /* If this many pending, ignore blimit. */
132static int qlowmark = 100; /* Once only this many pending, use blimit. */
133
3d76c082
PM
134module_param(blimit, int, 0);
135module_param(qhimark, int, 0);
136module_param(qlowmark, int, 0);
137
64db4cff 138static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 139static int rcu_pending(int cpu);
64db4cff
PM
140
141/*
d6714c22 142 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 143 */
d6714c22 144long rcu_batches_completed_sched(void)
64db4cff 145{
d6714c22 146 return rcu_sched_state.completed;
64db4cff 147}
d6714c22 148EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
149
150/*
151 * Return the number of RCU BH batches processed thus far for debug & stats.
152 */
153long rcu_batches_completed_bh(void)
154{
155 return rcu_bh_state.completed;
156}
157EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
158
159/*
160 * Does the CPU have callbacks ready to be invoked?
161 */
162static int
163cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
164{
165 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
166}
167
168/*
169 * Does the current CPU require a yet-as-unscheduled grace period?
170 */
171static int
172cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
173{
fc2219d4 174 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
175}
176
177/*
178 * Return the root node of the specified rcu_state structure.
179 */
180static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
181{
182 return &rsp->node[0];
183}
184
185#ifdef CONFIG_SMP
186
187/*
188 * If the specified CPU is offline, tell the caller that it is in
189 * a quiescent state. Otherwise, whack it with a reschedule IPI.
190 * Grace periods can end up waiting on an offline CPU when that
191 * CPU is in the process of coming online -- it will be added to the
192 * rcu_node bitmasks before it actually makes it online. The same thing
193 * can happen while a CPU is in the process of coming online. Because this
194 * race is quite rare, we check for it after detecting that the grace
195 * period has been delayed rather than checking each and every CPU
196 * each and every time we start a new grace period.
197 */
198static int rcu_implicit_offline_qs(struct rcu_data *rdp)
199{
200 /*
201 * If the CPU is offline, it is in a quiescent state. We can
202 * trust its state not to change because interrupts are disabled.
203 */
204 if (cpu_is_offline(rdp->cpu)) {
205 rdp->offline_fqs++;
206 return 1;
207 }
208
f41d911f
PM
209 /* If preemptable RCU, no point in sending reschedule IPI. */
210 if (rdp->preemptable)
211 return 0;
212
64db4cff
PM
213 /* The CPU is online, so send it a reschedule IPI. */
214 if (rdp->cpu != smp_processor_id())
215 smp_send_reschedule(rdp->cpu);
216 else
217 set_need_resched();
218 rdp->resched_ipi++;
219 return 0;
220}
221
222#endif /* #ifdef CONFIG_SMP */
223
224#ifdef CONFIG_NO_HZ
64db4cff
PM
225
226/**
227 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
228 *
229 * Enter nohz mode, in other words, -leave- the mode in which RCU
230 * read-side critical sections can occur. (Though RCU read-side
231 * critical sections can occur in irq handlers in nohz mode, a possibility
232 * handled by rcu_irq_enter() and rcu_irq_exit()).
233 */
234void rcu_enter_nohz(void)
235{
236 unsigned long flags;
237 struct rcu_dynticks *rdtp;
238
239 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
240 local_irq_save(flags);
241 rdtp = &__get_cpu_var(rcu_dynticks);
242 rdtp->dynticks++;
243 rdtp->dynticks_nesting--;
86848966 244 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
245 local_irq_restore(flags);
246}
247
248/*
249 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
250 *
251 * Exit nohz mode, in other words, -enter- the mode in which RCU
252 * read-side critical sections normally occur.
253 */
254void rcu_exit_nohz(void)
255{
256 unsigned long flags;
257 struct rcu_dynticks *rdtp;
258
259 local_irq_save(flags);
260 rdtp = &__get_cpu_var(rcu_dynticks);
261 rdtp->dynticks++;
262 rdtp->dynticks_nesting++;
86848966 263 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
264 local_irq_restore(flags);
265 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
266}
267
268/**
269 * rcu_nmi_enter - inform RCU of entry to NMI context
270 *
271 * If the CPU was idle with dynamic ticks active, and there is no
272 * irq handler running, this updates rdtp->dynticks_nmi to let the
273 * RCU grace-period handling know that the CPU is active.
274 */
275void rcu_nmi_enter(void)
276{
277 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
278
279 if (rdtp->dynticks & 0x1)
280 return;
281 rdtp->dynticks_nmi++;
86848966 282 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
283 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
284}
285
286/**
287 * rcu_nmi_exit - inform RCU of exit from NMI context
288 *
289 * If the CPU was idle with dynamic ticks active, and there is no
290 * irq handler running, this updates rdtp->dynticks_nmi to let the
291 * RCU grace-period handling know that the CPU is no longer active.
292 */
293void rcu_nmi_exit(void)
294{
295 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
296
297 if (rdtp->dynticks & 0x1)
298 return;
299 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
300 rdtp->dynticks_nmi++;
86848966 301 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
302}
303
304/**
305 * rcu_irq_enter - inform RCU of entry to hard irq context
306 *
307 * If the CPU was idle with dynamic ticks active, this updates the
308 * rdtp->dynticks to let the RCU handling know that the CPU is active.
309 */
310void rcu_irq_enter(void)
311{
312 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
313
314 if (rdtp->dynticks_nesting++)
315 return;
316 rdtp->dynticks++;
86848966 317 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
318 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
319}
320
321/**
322 * rcu_irq_exit - inform RCU of exit from hard irq context
323 *
324 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
325 * to put let the RCU handling be aware that the CPU is going back to idle
326 * with no ticks.
327 */
328void rcu_irq_exit(void)
329{
330 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
331
332 if (--rdtp->dynticks_nesting)
333 return;
334 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
335 rdtp->dynticks++;
86848966 336 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
337
338 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 339 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
340 __get_cpu_var(rcu_bh_data).nxtlist)
341 set_need_resched();
342}
343
64db4cff
PM
344#ifdef CONFIG_SMP
345
64db4cff
PM
346/*
347 * Snapshot the specified CPU's dynticks counter so that we can later
348 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 349 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
350 */
351static int dyntick_save_progress_counter(struct rcu_data *rdp)
352{
353 int ret;
354 int snap;
355 int snap_nmi;
356
357 snap = rdp->dynticks->dynticks;
358 snap_nmi = rdp->dynticks->dynticks_nmi;
359 smp_mb(); /* Order sampling of snap with end of grace period. */
360 rdp->dynticks_snap = snap;
361 rdp->dynticks_nmi_snap = snap_nmi;
362 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
363 if (ret)
364 rdp->dynticks_fqs++;
365 return ret;
366}
367
368/*
369 * Return true if the specified CPU has passed through a quiescent
370 * state by virtue of being in or having passed through an dynticks
371 * idle state since the last call to dyntick_save_progress_counter()
372 * for this same CPU.
373 */
374static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
375{
376 long curr;
377 long curr_nmi;
378 long snap;
379 long snap_nmi;
380
381 curr = rdp->dynticks->dynticks;
382 snap = rdp->dynticks_snap;
383 curr_nmi = rdp->dynticks->dynticks_nmi;
384 snap_nmi = rdp->dynticks_nmi_snap;
385 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
386
387 /*
388 * If the CPU passed through or entered a dynticks idle phase with
389 * no active irq/NMI handlers, then we can safely pretend that the CPU
390 * already acknowledged the request to pass through a quiescent
391 * state. Either way, that CPU cannot possibly be in an RCU
392 * read-side critical section that started before the beginning
393 * of the current RCU grace period.
394 */
395 if ((curr != snap || (curr & 0x1) == 0) &&
396 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
397 rdp->dynticks_fqs++;
398 return 1;
399 }
400
401 /* Go check for the CPU being offline. */
402 return rcu_implicit_offline_qs(rdp);
403}
404
405#endif /* #ifdef CONFIG_SMP */
406
407#else /* #ifdef CONFIG_NO_HZ */
408
64db4cff
PM
409#ifdef CONFIG_SMP
410
64db4cff
PM
411static int dyntick_save_progress_counter(struct rcu_data *rdp)
412{
413 return 0;
414}
415
416static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
417{
418 return rcu_implicit_offline_qs(rdp);
419}
420
421#endif /* #ifdef CONFIG_SMP */
422
423#endif /* #else #ifdef CONFIG_NO_HZ */
424
425#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
426
427static void record_gp_stall_check_time(struct rcu_state *rsp)
428{
429 rsp->gp_start = jiffies;
430 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
431}
432
433static void print_other_cpu_stall(struct rcu_state *rsp)
434{
435 int cpu;
436 long delta;
437 unsigned long flags;
438 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
439
440 /* Only let one CPU complain about others per time interval. */
441
442 spin_lock_irqsave(&rnp->lock, flags);
443 delta = jiffies - rsp->jiffies_stall;
fc2219d4 444 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
64db4cff
PM
445 spin_unlock_irqrestore(&rnp->lock, flags);
446 return;
447 }
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
449
450 /*
451 * Now rat on any tasks that got kicked up to the root rcu_node
452 * due to CPU offlining.
453 */
454 rcu_print_task_stall(rnp);
64db4cff
PM
455 spin_unlock_irqrestore(&rnp->lock, flags);
456
457 /* OK, time to rat on our buddy... */
458
459 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
a0b6c9a7 460 rcu_for_each_leaf_node(rsp, rnp) {
f41d911f 461 rcu_print_task_stall(rnp);
a0b6c9a7 462 if (rnp->qsmask == 0)
64db4cff 463 continue;
a0b6c9a7
PM
464 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
465 if (rnp->qsmask & (1UL << cpu))
466 printk(" %d", rnp->grplo + cpu);
64db4cff
PM
467 }
468 printk(" (detected by %d, t=%ld jiffies)\n",
469 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
470 trigger_all_cpu_backtrace();
471
64db4cff
PM
472 force_quiescent_state(rsp, 0); /* Kick them all. */
473}
474
475static void print_cpu_stall(struct rcu_state *rsp)
476{
477 unsigned long flags;
478 struct rcu_node *rnp = rcu_get_root(rsp);
479
480 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
481 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
482 trigger_all_cpu_backtrace();
483
64db4cff
PM
484 spin_lock_irqsave(&rnp->lock, flags);
485 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
486 rsp->jiffies_stall =
487 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
488 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 489
64db4cff
PM
490 set_need_resched(); /* kick ourselves to get things going. */
491}
492
493static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
494{
495 long delta;
496 struct rcu_node *rnp;
497
498 delta = jiffies - rsp->jiffies_stall;
499 rnp = rdp->mynode;
500 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
501
502 /* We haven't checked in, so go dump stack. */
503 print_cpu_stall(rsp);
504
fc2219d4 505 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
506
507 /* They had two time units to dump stack, so complain. */
508 print_other_cpu_stall(rsp);
509 }
510}
511
512#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
513
514static void record_gp_stall_check_time(struct rcu_state *rsp)
515{
516}
517
518static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
519{
520}
521
522#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
523
524/*
525 * Update CPU-local rcu_data state to record the newly noticed grace period.
526 * This is used both when we started the grace period and when we notice
9160306e
PM
527 * that someone else started the grace period. The caller must hold the
528 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
529 * and must have irqs disabled.
64db4cff 530 */
9160306e
PM
531static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
532{
533 if (rdp->gpnum != rnp->gpnum) {
534 rdp->qs_pending = 1;
535 rdp->passed_quiesc = 0;
536 rdp->gpnum = rnp->gpnum;
537 }
538}
539
64db4cff
PM
540static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
541{
9160306e
PM
542 unsigned long flags;
543 struct rcu_node *rnp;
544
545 local_irq_save(flags);
546 rnp = rdp->mynode;
547 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
548 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
549 local_irq_restore(flags);
550 return;
551 }
552 __note_new_gpnum(rsp, rnp, rdp);
553 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
554}
555
556/*
557 * Did someone else start a new RCU grace period start since we last
558 * checked? Update local state appropriately if so. Must be called
559 * on the CPU corresponding to rdp.
560 */
561static int
562check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
563{
564 unsigned long flags;
565 int ret = 0;
566
567 local_irq_save(flags);
568 if (rdp->gpnum != rsp->gpnum) {
569 note_new_gpnum(rsp, rdp);
570 ret = 1;
571 }
572 local_irq_restore(flags);
573 return ret;
574}
575
d09b62df
PM
576/*
577 * Advance this CPU's callbacks, but only if the current grace period
578 * has ended. This may be called only from the CPU to whom the rdp
579 * belongs. In addition, the corresponding leaf rcu_node structure's
580 * ->lock must be held by the caller, with irqs disabled.
581 */
582static void
583__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
584{
585 /* Did another grace period end? */
586 if (rdp->completed != rnp->completed) {
587
588 /* Advance callbacks. No harm if list empty. */
589 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
590 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
591 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
592
593 /* Remember that we saw this grace-period completion. */
594 rdp->completed = rnp->completed;
595 }
596}
597
598/*
599 * Advance this CPU's callbacks, but only if the current grace period
600 * has ended. This may be called only from the CPU to whom the rdp
601 * belongs.
602 */
603static void
604rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
605{
606 unsigned long flags;
607 struct rcu_node *rnp;
608
609 local_irq_save(flags);
610 rnp = rdp->mynode;
611 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
612 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
613 local_irq_restore(flags);
614 return;
615 }
616 __rcu_process_gp_end(rsp, rnp, rdp);
617 spin_unlock_irqrestore(&rnp->lock, flags);
618}
619
620/*
621 * Do per-CPU grace-period initialization for running CPU. The caller
622 * must hold the lock of the leaf rcu_node structure corresponding to
623 * this CPU.
624 */
625static void
626rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
627{
628 /* Prior grace period ended, so advance callbacks for current CPU. */
629 __rcu_process_gp_end(rsp, rnp, rdp);
630
631 /*
632 * Because this CPU just now started the new grace period, we know
633 * that all of its callbacks will be covered by this upcoming grace
634 * period, even the ones that were registered arbitrarily recently.
635 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
636 *
637 * Other CPUs cannot be sure exactly when the grace period started.
638 * Therefore, their recently registered callbacks must pass through
639 * an additional RCU_NEXT_READY stage, so that they will be handled
640 * by the next RCU grace period.
641 */
642 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
643 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
644
645 /* Set state so that this CPU will detect the next quiescent state. */
646 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
647}
648
64db4cff
PM
649/*
650 * Start a new RCU grace period if warranted, re-initializing the hierarchy
651 * in preparation for detecting the next grace period. The caller must hold
652 * the root node's ->lock, which is released before return. Hard irqs must
653 * be disabled.
654 */
655static void
656rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
657 __releases(rcu_get_root(rsp)->lock)
658{
659 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
660 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
661
662 if (!cpu_needs_another_gp(rsp, rdp)) {
b32e9eb6
PM
663 if (rnp->completed == rsp->completed) {
664 spin_unlock_irqrestore(&rnp->lock, flags);
665 return;
666 }
667 spin_unlock(&rnp->lock); /* irqs remain disabled. */
668
669 /*
670 * Propagate new ->completed value to rcu_node structures
671 * so that other CPUs don't have to wait until the start
672 * of the next grace period to process their callbacks.
673 */
674 rcu_for_each_node_breadth_first(rsp, rnp) {
675 spin_lock(&rnp->lock); /* irqs already disabled. */
676 rnp->completed = rsp->completed;
677 spin_unlock(&rnp->lock); /* irqs remain disabled. */
678 }
679 local_irq_restore(flags);
64db4cff
PM
680 return;
681 }
682
683 /* Advance to a new grace period and initialize state. */
684 rsp->gpnum++;
c3422bea 685 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
686 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
687 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 688 record_gp_stall_check_time(rsp);
64db4cff 689
64db4cff
PM
690 /* Special-case the common single-level case. */
691 if (NUM_RCU_NODES == 1) {
b0e165c0 692 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 693 rnp->qsmask = rnp->qsmaskinit;
de078d87 694 rnp->gpnum = rsp->gpnum;
d09b62df 695 rnp->completed = rsp->completed;
c12172c0 696 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 697 rcu_start_gp_per_cpu(rsp, rnp, rdp);
64db4cff
PM
698 spin_unlock_irqrestore(&rnp->lock, flags);
699 return;
700 }
701
702 spin_unlock(&rnp->lock); /* leave irqs disabled. */
703
704
705 /* Exclude any concurrent CPU-hotplug operations. */
706 spin_lock(&rsp->onofflock); /* irqs already disabled. */
707
708 /*
b835db1f
PM
709 * Set the quiescent-state-needed bits in all the rcu_node
710 * structures for all currently online CPUs in breadth-first
711 * order, starting from the root rcu_node structure. This
712 * operation relies on the layout of the hierarchy within the
713 * rsp->node[] array. Note that other CPUs will access only
714 * the leaves of the hierarchy, which still indicate that no
715 * grace period is in progress, at least until the corresponding
716 * leaf node has been initialized. In addition, we have excluded
717 * CPU-hotplug operations.
64db4cff
PM
718 *
719 * Note that the grace period cannot complete until we finish
720 * the initialization process, as there will be at least one
721 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
722 * one corresponding to this CPU, due to the fact that we have
723 * irqs disabled.
64db4cff 724 */
a0b6c9a7 725 rcu_for_each_node_breadth_first(rsp, rnp) {
83f5b01f 726 spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 727 rcu_preempt_check_blocked_tasks(rnp);
49e29126 728 rnp->qsmask = rnp->qsmaskinit;
de078d87 729 rnp->gpnum = rsp->gpnum;
d09b62df
PM
730 rnp->completed = rsp->completed;
731 if (rnp == rdp->mynode)
732 rcu_start_gp_per_cpu(rsp, rnp, rdp);
83f5b01f 733 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
734 }
735
83f5b01f
PM
736 rnp = rcu_get_root(rsp);
737 spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 738 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
83f5b01f 739 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
740 spin_unlock_irqrestore(&rsp->onofflock, flags);
741}
742
f41d911f 743/*
d3f6bad3
PM
744 * Report a full set of quiescent states to the specified rcu_state
745 * data structure. This involves cleaning up after the prior grace
746 * period and letting rcu_start_gp() start up the next grace period
747 * if one is needed. Note that the caller must hold rnp->lock, as
748 * required by rcu_start_gp(), which will release it.
f41d911f 749 */
d3f6bad3 750static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 751 __releases(rcu_get_root(rsp)->lock)
f41d911f 752{
fc2219d4 753 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 754 rsp->completed = rsp->gpnum;
83f5b01f 755 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
756 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
757}
758
64db4cff 759/*
d3f6bad3
PM
760 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
761 * Allows quiescent states for a group of CPUs to be reported at one go
762 * to the specified rcu_node structure, though all the CPUs in the group
763 * must be represented by the same rcu_node structure (which need not be
764 * a leaf rcu_node structure, though it often will be). That structure's
765 * lock must be held upon entry, and it is released before return.
64db4cff
PM
766 */
767static void
d3f6bad3
PM
768rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
769 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
770 __releases(rnp->lock)
771{
28ecd580
PM
772 struct rcu_node *rnp_c;
773
64db4cff
PM
774 /* Walk up the rcu_node hierarchy. */
775 for (;;) {
776 if (!(rnp->qsmask & mask)) {
777
778 /* Our bit has already been cleared, so done. */
779 spin_unlock_irqrestore(&rnp->lock, flags);
780 return;
781 }
782 rnp->qsmask &= ~mask;
f41d911f 783 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
784
785 /* Other bits still set at this level, so done. */
786 spin_unlock_irqrestore(&rnp->lock, flags);
787 return;
788 }
789 mask = rnp->grpmask;
790 if (rnp->parent == NULL) {
791
792 /* No more levels. Exit loop holding root lock. */
793
794 break;
795 }
796 spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 797 rnp_c = rnp;
64db4cff
PM
798 rnp = rnp->parent;
799 spin_lock_irqsave(&rnp->lock, flags);
28ecd580 800 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
801 }
802
803 /*
804 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 805 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 806 * to clean up and start the next grace period if one is needed.
64db4cff 807 */
d3f6bad3 808 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
809}
810
811/*
d3f6bad3
PM
812 * Record a quiescent state for the specified CPU to that CPU's rcu_data
813 * structure. This must be either called from the specified CPU, or
814 * called when the specified CPU is known to be offline (and when it is
815 * also known that no other CPU is concurrently trying to help the offline
816 * CPU). The lastcomp argument is used to make sure we are still in the
817 * grace period of interest. We don't want to end the current grace period
818 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
819 */
820static void
d3f6bad3 821rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
822{
823 unsigned long flags;
824 unsigned long mask;
825 struct rcu_node *rnp;
826
827 rnp = rdp->mynode;
828 spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 829 if (lastcomp != rnp->completed) {
64db4cff
PM
830
831 /*
832 * Someone beat us to it for this grace period, so leave.
833 * The race with GP start is resolved by the fact that we
834 * hold the leaf rcu_node lock, so that the per-CPU bits
835 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
836 * CPU's bit already cleared in rcu_report_qs_rnp() if this
837 * race occurred.
64db4cff
PM
838 */
839 rdp->passed_quiesc = 0; /* try again later! */
840 spin_unlock_irqrestore(&rnp->lock, flags);
841 return;
842 }
843 mask = rdp->grpmask;
844 if ((rnp->qsmask & mask) == 0) {
845 spin_unlock_irqrestore(&rnp->lock, flags);
846 } else {
847 rdp->qs_pending = 0;
848
849 /*
850 * This GP can't end until cpu checks in, so all of our
851 * callbacks can be processed during the next GP.
852 */
64db4cff
PM
853 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
854
d3f6bad3 855 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
856 }
857}
858
859/*
860 * Check to see if there is a new grace period of which this CPU
861 * is not yet aware, and if so, set up local rcu_data state for it.
862 * Otherwise, see if this CPU has just passed through its first
863 * quiescent state for this grace period, and record that fact if so.
864 */
865static void
866rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
867{
868 /* If there is now a new grace period, record and return. */
869 if (check_for_new_grace_period(rsp, rdp))
870 return;
871
872 /*
873 * Does this CPU still need to do its part for current grace period?
874 * If no, return and let the other CPUs do their part as well.
875 */
876 if (!rdp->qs_pending)
877 return;
878
879 /*
880 * Was there a quiescent state since the beginning of the grace
881 * period? If no, then exit and wait for the next call.
882 */
883 if (!rdp->passed_quiesc)
884 return;
885
d3f6bad3
PM
886 /*
887 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
888 * judge of that).
889 */
890 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
891}
892
893#ifdef CONFIG_HOTPLUG_CPU
894
e74f4c45
PM
895/*
896 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
897 * specified flavor of RCU. The callbacks will be adopted by the next
898 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
899 * comes first. Because this is invoked from the CPU_DYING notifier,
900 * irqs are already disabled.
901 */
902static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
903{
904 int i;
905 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
906
907 if (rdp->nxtlist == NULL)
908 return; /* irqs disabled, so comparison is stable. */
909 spin_lock(&rsp->onofflock); /* irqs already disabled. */
910 *rsp->orphan_cbs_tail = rdp->nxtlist;
911 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
912 rdp->nxtlist = NULL;
913 for (i = 0; i < RCU_NEXT_SIZE; i++)
914 rdp->nxttail[i] = &rdp->nxtlist;
915 rsp->orphan_qlen += rdp->qlen;
916 rdp->qlen = 0;
917 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
918}
919
920/*
921 * Adopt previously orphaned RCU callbacks.
922 */
923static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
924{
925 unsigned long flags;
926 struct rcu_data *rdp;
927
928 spin_lock_irqsave(&rsp->onofflock, flags);
929 rdp = rsp->rda[smp_processor_id()];
930 if (rsp->orphan_cbs_list == NULL) {
931 spin_unlock_irqrestore(&rsp->onofflock, flags);
932 return;
933 }
934 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
935 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
936 rdp->qlen += rsp->orphan_qlen;
937 rsp->orphan_cbs_list = NULL;
938 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
939 rsp->orphan_qlen = 0;
940 spin_unlock_irqrestore(&rsp->onofflock, flags);
941}
942
64db4cff
PM
943/*
944 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
945 * and move all callbacks from the outgoing CPU to the current one.
946 */
947static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
948{
64db4cff 949 unsigned long flags;
64db4cff 950 unsigned long mask;
b668c9cf 951 int need_quiet = 0;
64db4cff 952 struct rcu_data *rdp = rsp->rda[cpu];
64db4cff
PM
953 struct rcu_node *rnp;
954
955 /* Exclude any attempts to start a new grace period. */
956 spin_lock_irqsave(&rsp->onofflock, flags);
957
958 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 959 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
960 mask = rdp->grpmask; /* rnp->grplo is constant. */
961 do {
962 spin_lock(&rnp->lock); /* irqs already disabled. */
963 rnp->qsmaskinit &= ~mask;
964 if (rnp->qsmaskinit != 0) {
b668c9cf
PM
965 if (rnp != rdp->mynode)
966 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
967 break;
968 }
b668c9cf
PM
969 if (rnp == rdp->mynode)
970 need_quiet = rcu_preempt_offline_tasks(rsp, rnp, rdp);
971 else
972 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 973 mask = rnp->grpmask;
64db4cff
PM
974 rnp = rnp->parent;
975 } while (rnp != NULL);
64db4cff 976
b668c9cf
PM
977 /*
978 * We still hold the leaf rcu_node structure lock here, and
979 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
980 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
981 * held leads to deadlock.
b668c9cf
PM
982 */
983 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
984 rnp = rdp->mynode;
985 if (need_quiet)
d3f6bad3 986 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf
PM
987 else
988 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 989
e74f4c45 990 rcu_adopt_orphan_cbs(rsp);
64db4cff
PM
991}
992
993/*
994 * Remove the specified CPU from the RCU hierarchy and move any pending
995 * callbacks that it might have to the current CPU. This code assumes
996 * that at least one CPU in the system will remain running at all times.
997 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
998 */
999static void rcu_offline_cpu(int cpu)
1000{
d6714c22 1001 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1002 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1003 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1004}
1005
1006#else /* #ifdef CONFIG_HOTPLUG_CPU */
1007
e74f4c45
PM
1008static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1009{
1010}
1011
1012static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1013{
1014}
1015
64db4cff
PM
1016static void rcu_offline_cpu(int cpu)
1017{
1018}
1019
1020#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1021
1022/*
1023 * Invoke any RCU callbacks that have made it to the end of their grace
1024 * period. Thottle as specified by rdp->blimit.
1025 */
37c72e56 1026static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1027{
1028 unsigned long flags;
1029 struct rcu_head *next, *list, **tail;
1030 int count;
1031
1032 /* If no callbacks are ready, just return.*/
1033 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1034 return;
1035
1036 /*
1037 * Extract the list of ready callbacks, disabling to prevent
1038 * races with call_rcu() from interrupt handlers.
1039 */
1040 local_irq_save(flags);
1041 list = rdp->nxtlist;
1042 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1043 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1044 tail = rdp->nxttail[RCU_DONE_TAIL];
1045 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1046 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1047 rdp->nxttail[count] = &rdp->nxtlist;
1048 local_irq_restore(flags);
1049
1050 /* Invoke callbacks. */
1051 count = 0;
1052 while (list) {
1053 next = list->next;
1054 prefetch(next);
1055 list->func(list);
1056 list = next;
1057 if (++count >= rdp->blimit)
1058 break;
1059 }
1060
1061 local_irq_save(flags);
1062
1063 /* Update count, and requeue any remaining callbacks. */
1064 rdp->qlen -= count;
1065 if (list != NULL) {
1066 *tail = rdp->nxtlist;
1067 rdp->nxtlist = list;
1068 for (count = 0; count < RCU_NEXT_SIZE; count++)
1069 if (&rdp->nxtlist == rdp->nxttail[count])
1070 rdp->nxttail[count] = tail;
1071 else
1072 break;
1073 }
1074
1075 /* Reinstate batch limit if we have worked down the excess. */
1076 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1077 rdp->blimit = blimit;
1078
37c72e56
PM
1079 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1080 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1081 rdp->qlen_last_fqs_check = 0;
1082 rdp->n_force_qs_snap = rsp->n_force_qs;
1083 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1084 rdp->qlen_last_fqs_check = rdp->qlen;
1085
64db4cff
PM
1086 local_irq_restore(flags);
1087
1088 /* Re-raise the RCU softirq if there are callbacks remaining. */
1089 if (cpu_has_callbacks_ready_to_invoke(rdp))
1090 raise_softirq(RCU_SOFTIRQ);
1091}
1092
1093/*
1094 * Check to see if this CPU is in a non-context-switch quiescent state
1095 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1096 * Also schedule the RCU softirq handler.
1097 *
1098 * This function must be called with hardirqs disabled. It is normally
1099 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1100 * false, there is no point in invoking rcu_check_callbacks().
1101 */
1102void rcu_check_callbacks(int cpu, int user)
1103{
a157229c
PM
1104 if (!rcu_pending(cpu))
1105 return; /* if nothing for RCU to do. */
64db4cff 1106 if (user ||
a6826048
PM
1107 (idle_cpu(cpu) && rcu_scheduler_active &&
1108 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1109
1110 /*
1111 * Get here if this CPU took its interrupt from user
1112 * mode or from the idle loop, and if this is not a
1113 * nested interrupt. In this case, the CPU is in
d6714c22 1114 * a quiescent state, so note it.
64db4cff
PM
1115 *
1116 * No memory barrier is required here because both
d6714c22
PM
1117 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1118 * variables that other CPUs neither access nor modify,
1119 * at least not while the corresponding CPU is online.
64db4cff
PM
1120 */
1121
d6714c22
PM
1122 rcu_sched_qs(cpu);
1123 rcu_bh_qs(cpu);
64db4cff
PM
1124
1125 } else if (!in_softirq()) {
1126
1127 /*
1128 * Get here if this CPU did not take its interrupt from
1129 * softirq, in other words, if it is not interrupting
1130 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1131 * critical section, so note it.
64db4cff
PM
1132 */
1133
d6714c22 1134 rcu_bh_qs(cpu);
64db4cff 1135 }
f41d911f 1136 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1137 raise_softirq(RCU_SOFTIRQ);
1138}
1139
1140#ifdef CONFIG_SMP
1141
1142/*
1143 * Scan the leaf rcu_node structures, processing dyntick state for any that
1144 * have not yet encountered a quiescent state, using the function specified.
1145 * Returns 1 if the current grace period ends while scanning (possibly
1146 * because we made it end).
1147 */
1148static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1149 int (*f)(struct rcu_data *))
1150{
1151 unsigned long bit;
1152 int cpu;
1153 unsigned long flags;
1154 unsigned long mask;
a0b6c9a7 1155 struct rcu_node *rnp;
64db4cff 1156
a0b6c9a7 1157 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1158 mask = 0;
a0b6c9a7 1159 spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 1160 if (rnp->completed != lastcomp) {
a0b6c9a7 1161 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1162 return 1;
1163 }
a0b6c9a7
PM
1164 if (rnp->qsmask == 0) {
1165 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1166 continue;
1167 }
a0b6c9a7 1168 cpu = rnp->grplo;
64db4cff 1169 bit = 1;
a0b6c9a7
PM
1170 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1171 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
64db4cff
PM
1172 mask |= bit;
1173 }
560d4bc0 1174 if (mask != 0 && rnp->completed == lastcomp) {
64db4cff 1175
d3f6bad3
PM
1176 /* rcu_report_qs_rnp() releases rnp->lock. */
1177 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1178 continue;
1179 }
a0b6c9a7 1180 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1181 }
1182 return 0;
1183}
1184
1185/*
1186 * Force quiescent states on reluctant CPUs, and also detect which
1187 * CPUs are in dyntick-idle mode.
1188 */
1189static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1190{
1191 unsigned long flags;
1192 long lastcomp;
64db4cff
PM
1193 struct rcu_node *rnp = rcu_get_root(rsp);
1194 u8 signaled;
281d150c 1195 u8 forcenow;
64db4cff 1196
fc2219d4 1197 if (!rcu_gp_in_progress(rsp))
64db4cff
PM
1198 return; /* No grace period in progress, nothing to force. */
1199 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1200 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1201 return; /* Someone else is already on the job. */
1202 }
1203 if (relaxed &&
ef631b0c 1204 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1205 goto unlock_ret; /* no emergency and done recently. */
1206 rsp->n_force_qs++;
1207 spin_lock(&rnp->lock);
8e9aa8f0 1208 lastcomp = rsp->gpnum - 1;
64db4cff
PM
1209 signaled = rsp->signaled;
1210 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1211 if(!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1212 rsp->n_force_qs_ngp++;
1213 spin_unlock(&rnp->lock);
1214 goto unlock_ret; /* no GP in progress, time updated. */
1215 }
1216 spin_unlock(&rnp->lock);
1217 switch (signaled) {
83f5b01f 1218 case RCU_GP_IDLE:
64db4cff
PM
1219 case RCU_GP_INIT:
1220
83f5b01f 1221 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1222
1223 case RCU_SAVE_DYNTICK:
1224
1225 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1226 break; /* So gcc recognizes the dead code. */
1227
1228 /* Record dyntick-idle state. */
1229 if (rcu_process_dyntick(rsp, lastcomp,
1230 dyntick_save_progress_counter))
1231 goto unlock_ret;
281d150c
PM
1232 /* fall into next case. */
1233
1234 case RCU_SAVE_COMPLETED:
64db4cff
PM
1235
1236 /* Update state, record completion counter. */
281d150c 1237 forcenow = 0;
64db4cff 1238 spin_lock(&rnp->lock);
560d4bc0
PM
1239 if (lastcomp + 1 == rsp->gpnum &&
1240 lastcomp == rsp->completed &&
281d150c 1241 rsp->signaled == signaled) {
64db4cff 1242 rsp->signaled = RCU_FORCE_QS;
8e9aa8f0 1243 rsp->completed_fqs = lastcomp;
281d150c 1244 forcenow = signaled == RCU_SAVE_COMPLETED;
64db4cff
PM
1245 }
1246 spin_unlock(&rnp->lock);
281d150c
PM
1247 if (!forcenow)
1248 break;
1249 /* fall into next case. */
64db4cff
PM
1250
1251 case RCU_FORCE_QS:
1252
1253 /* Check dyntick-idle state, send IPI to laggarts. */
8e9aa8f0 1254 if (rcu_process_dyntick(rsp, rsp->completed_fqs,
64db4cff
PM
1255 rcu_implicit_dynticks_qs))
1256 goto unlock_ret;
1257
1258 /* Leave state in case more forcing is required. */
1259
1260 break;
1261 }
1262unlock_ret:
1263 spin_unlock_irqrestore(&rsp->fqslock, flags);
1264}
1265
1266#else /* #ifdef CONFIG_SMP */
1267
1268static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1269{
1270 set_need_resched();
1271}
1272
1273#endif /* #else #ifdef CONFIG_SMP */
1274
1275/*
1276 * This does the RCU processing work from softirq context for the
1277 * specified rcu_state and rcu_data structures. This may be called
1278 * only from the CPU to whom the rdp belongs.
1279 */
1280static void
1281__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1282{
1283 unsigned long flags;
1284
2e597558
PM
1285 WARN_ON_ONCE(rdp->beenonline == 0);
1286
64db4cff
PM
1287 /*
1288 * If an RCU GP has gone long enough, go check for dyntick
1289 * idle CPUs and, if needed, send resched IPIs.
1290 */
ef631b0c 1291 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1292 force_quiescent_state(rsp, 1);
1293
1294 /*
1295 * Advance callbacks in response to end of earlier grace
1296 * period that some other CPU ended.
1297 */
1298 rcu_process_gp_end(rsp, rdp);
1299
1300 /* Update RCU state based on any recent quiescent states. */
1301 rcu_check_quiescent_state(rsp, rdp);
1302
1303 /* Does this CPU require a not-yet-started grace period? */
1304 if (cpu_needs_another_gp(rsp, rdp)) {
1305 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1306 rcu_start_gp(rsp, flags); /* releases above lock */
1307 }
1308
1309 /* If there are callbacks ready, invoke them. */
37c72e56 1310 rcu_do_batch(rsp, rdp);
64db4cff
PM
1311}
1312
1313/*
1314 * Do softirq processing for the current CPU.
1315 */
1316static void rcu_process_callbacks(struct softirq_action *unused)
1317{
1318 /*
1319 * Memory references from any prior RCU read-side critical sections
1320 * executed by the interrupted code must be seen before any RCU
1321 * grace-period manipulations below.
1322 */
1323 smp_mb(); /* See above block comment. */
1324
d6714c22
PM
1325 __rcu_process_callbacks(&rcu_sched_state,
1326 &__get_cpu_var(rcu_sched_data));
64db4cff 1327 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1328 rcu_preempt_process_callbacks();
64db4cff
PM
1329
1330 /*
1331 * Memory references from any later RCU read-side critical sections
1332 * executed by the interrupted code must be seen after any RCU
1333 * grace-period manipulations above.
1334 */
1335 smp_mb(); /* See above block comment. */
1336}
1337
1338static void
1339__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1340 struct rcu_state *rsp)
1341{
1342 unsigned long flags;
1343 struct rcu_data *rdp;
1344
1345 head->func = func;
1346 head->next = NULL;
1347
1348 smp_mb(); /* Ensure RCU update seen before callback registry. */
1349
1350 /*
1351 * Opportunistically note grace-period endings and beginnings.
1352 * Note that we might see a beginning right after we see an
1353 * end, but never vice versa, since this CPU has to pass through
1354 * a quiescent state betweentimes.
1355 */
1356 local_irq_save(flags);
1357 rdp = rsp->rda[smp_processor_id()];
1358 rcu_process_gp_end(rsp, rdp);
1359 check_for_new_grace_period(rsp, rdp);
1360
1361 /* Add the callback to our list. */
1362 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1363 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1364
1365 /* Start a new grace period if one not already started. */
fc2219d4 1366 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1367 unsigned long nestflag;
1368 struct rcu_node *rnp_root = rcu_get_root(rsp);
1369
1370 spin_lock_irqsave(&rnp_root->lock, nestflag);
1371 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1372 }
1373
37c72e56
PM
1374 /*
1375 * Force the grace period if too many callbacks or too long waiting.
1376 * Enforce hysteresis, and don't invoke force_quiescent_state()
1377 * if some other CPU has recently done so. Also, don't bother
1378 * invoking force_quiescent_state() if the newly enqueued callback
1379 * is the only one waiting for a grace period to complete.
1380 */
1381 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1382 rdp->blimit = LONG_MAX;
37c72e56
PM
1383 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1384 *rdp->nxttail[RCU_DONE_TAIL] != head)
1385 force_quiescent_state(rsp, 0);
1386 rdp->n_force_qs_snap = rsp->n_force_qs;
1387 rdp->qlen_last_fqs_check = rdp->qlen;
ef631b0c 1388 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1389 force_quiescent_state(rsp, 1);
1390 local_irq_restore(flags);
1391}
1392
1393/*
d6714c22 1394 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1395 */
d6714c22 1396void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1397{
d6714c22 1398 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1399}
d6714c22 1400EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1401
1402/*
1403 * Queue an RCU for invocation after a quicker grace period.
1404 */
1405void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1406{
1407 __call_rcu(head, func, &rcu_bh_state);
1408}
1409EXPORT_SYMBOL_GPL(call_rcu_bh);
1410
6ebb237b
PM
1411/**
1412 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1413 *
1414 * Control will return to the caller some time after a full rcu-sched
1415 * grace period has elapsed, in other words after all currently executing
1416 * rcu-sched read-side critical sections have completed. These read-side
1417 * critical sections are delimited by rcu_read_lock_sched() and
1418 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1419 * local_irq_disable(), and so on may be used in place of
1420 * rcu_read_lock_sched().
1421 *
1422 * This means that all preempt_disable code sequences, including NMI and
1423 * hardware-interrupt handlers, in progress on entry will have completed
1424 * before this primitive returns. However, this does not guarantee that
1425 * softirq handlers will have completed, since in some kernels, these
1426 * handlers can run in process context, and can block.
1427 *
1428 * This primitive provides the guarantees made by the (now removed)
1429 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1430 * guarantees that rcu_read_lock() sections will have completed.
1431 * In "classic RCU", these two guarantees happen to be one and
1432 * the same, but can differ in realtime RCU implementations.
1433 */
1434void synchronize_sched(void)
1435{
1436 struct rcu_synchronize rcu;
1437
1438 if (rcu_blocking_is_gp())
1439 return;
1440
1441 init_completion(&rcu.completion);
1442 /* Will wake me after RCU finished. */
1443 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1444 /* Wait for it. */
1445 wait_for_completion(&rcu.completion);
1446}
1447EXPORT_SYMBOL_GPL(synchronize_sched);
1448
1449/**
1450 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1451 *
1452 * Control will return to the caller some time after a full rcu_bh grace
1453 * period has elapsed, in other words after all currently executing rcu_bh
1454 * read-side critical sections have completed. RCU read-side critical
1455 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1456 * and may be nested.
1457 */
1458void synchronize_rcu_bh(void)
1459{
1460 struct rcu_synchronize rcu;
1461
1462 if (rcu_blocking_is_gp())
1463 return;
1464
1465 init_completion(&rcu.completion);
1466 /* Will wake me after RCU finished. */
1467 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1468 /* Wait for it. */
1469 wait_for_completion(&rcu.completion);
1470}
1471EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1472
64db4cff
PM
1473/*
1474 * Check to see if there is any immediate RCU-related work to be done
1475 * by the current CPU, for the specified type of RCU, returning 1 if so.
1476 * The checks are in order of increasing expense: checks that can be
1477 * carried out against CPU-local state are performed first. However,
1478 * we must check for CPU stalls first, else we might not get a chance.
1479 */
1480static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1481{
2f51f988
PM
1482 struct rcu_node *rnp = rdp->mynode;
1483
64db4cff
PM
1484 rdp->n_rcu_pending++;
1485
1486 /* Check for CPU stalls, if enabled. */
1487 check_cpu_stall(rsp, rdp);
1488
1489 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1490 if (rdp->qs_pending) {
1491 rdp->n_rp_qs_pending++;
64db4cff 1492 return 1;
7ba5c840 1493 }
64db4cff
PM
1494
1495 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1496 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1497 rdp->n_rp_cb_ready++;
64db4cff 1498 return 1;
7ba5c840 1499 }
64db4cff
PM
1500
1501 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1502 if (cpu_needs_another_gp(rsp, rdp)) {
1503 rdp->n_rp_cpu_needs_gp++;
64db4cff 1504 return 1;
7ba5c840 1505 }
64db4cff
PM
1506
1507 /* Has another RCU grace period completed? */
2f51f988 1508 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1509 rdp->n_rp_gp_completed++;
64db4cff 1510 return 1;
7ba5c840 1511 }
64db4cff
PM
1512
1513 /* Has a new RCU grace period started? */
2f51f988 1514 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1515 rdp->n_rp_gp_started++;
64db4cff 1516 return 1;
7ba5c840 1517 }
64db4cff
PM
1518
1519 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1520 if (rcu_gp_in_progress(rsp) &&
7ba5c840
PM
1521 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1522 rdp->n_rp_need_fqs++;
64db4cff 1523 return 1;
7ba5c840 1524 }
64db4cff
PM
1525
1526 /* nothing to do */
7ba5c840 1527 rdp->n_rp_need_nothing++;
64db4cff
PM
1528 return 0;
1529}
1530
1531/*
1532 * Check to see if there is any immediate RCU-related work to be done
1533 * by the current CPU, returning 1 if so. This function is part of the
1534 * RCU implementation; it is -not- an exported member of the RCU API.
1535 */
a157229c 1536static int rcu_pending(int cpu)
64db4cff 1537{
d6714c22 1538 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1539 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1540 rcu_preempt_pending(cpu);
64db4cff
PM
1541}
1542
1543/*
1544 * Check to see if any future RCU-related work will need to be done
1545 * by the current CPU, even if none need be done immediately, returning
1546 * 1 if so. This function is part of the RCU implementation; it is -not-
1547 * an exported member of the RCU API.
1548 */
1549int rcu_needs_cpu(int cpu)
1550{
1551 /* RCU callbacks either ready or pending? */
d6714c22 1552 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1553 per_cpu(rcu_bh_data, cpu).nxtlist ||
1554 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1555}
1556
6ebb237b
PM
1557/*
1558 * This function is invoked towards the end of the scheduler's initialization
1559 * process. Before this is called, the idle task might contain
1560 * RCU read-side critical sections (during which time, this idle
1561 * task is booting the system). After this function is called, the
1562 * idle tasks are prohibited from containing RCU read-side critical
1563 * sections.
1564 */
1565void rcu_scheduler_starting(void)
1566{
1567 WARN_ON(num_online_cpus() != 1);
1568 WARN_ON(nr_context_switches() > 0);
1569 rcu_scheduler_active = 1;
1570}
1571
d0ec774c
PM
1572static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1573static atomic_t rcu_barrier_cpu_count;
1574static DEFINE_MUTEX(rcu_barrier_mutex);
1575static struct completion rcu_barrier_completion;
d0ec774c
PM
1576
1577static void rcu_barrier_callback(struct rcu_head *notused)
1578{
1579 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1580 complete(&rcu_barrier_completion);
1581}
1582
1583/*
1584 * Called with preemption disabled, and from cross-cpu IRQ context.
1585 */
1586static void rcu_barrier_func(void *type)
1587{
1588 int cpu = smp_processor_id();
1589 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1590 void (*call_rcu_func)(struct rcu_head *head,
1591 void (*func)(struct rcu_head *head));
1592
1593 atomic_inc(&rcu_barrier_cpu_count);
1594 call_rcu_func = type;
1595 call_rcu_func(head, rcu_barrier_callback);
1596}
1597
d0ec774c
PM
1598/*
1599 * Orchestrate the specified type of RCU barrier, waiting for all
1600 * RCU callbacks of the specified type to complete.
1601 */
e74f4c45
PM
1602static void _rcu_barrier(struct rcu_state *rsp,
1603 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1604 void (*func)(struct rcu_head *head)))
1605{
1606 BUG_ON(in_interrupt());
e74f4c45 1607 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1608 mutex_lock(&rcu_barrier_mutex);
1609 init_completion(&rcu_barrier_completion);
1610 /*
1611 * Initialize rcu_barrier_cpu_count to 1, then invoke
1612 * rcu_barrier_func() on each CPU, so that each CPU also has
1613 * incremented rcu_barrier_cpu_count. Only then is it safe to
1614 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1615 * might complete its grace period before all of the other CPUs
1616 * did their increment, causing this function to return too
1617 * early.
1618 */
1619 atomic_set(&rcu_barrier_cpu_count, 1);
e74f4c45
PM
1620 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1621 rcu_adopt_orphan_cbs(rsp);
d0ec774c 1622 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
e74f4c45 1623 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
d0ec774c
PM
1624 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1625 complete(&rcu_barrier_completion);
1626 wait_for_completion(&rcu_barrier_completion);
1627 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1628}
d0ec774c
PM
1629
1630/**
1631 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1632 */
1633void rcu_barrier_bh(void)
1634{
e74f4c45 1635 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1636}
1637EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1638
1639/**
1640 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1641 */
1642void rcu_barrier_sched(void)
1643{
e74f4c45 1644 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1645}
1646EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1647
64db4cff 1648/*
27569620 1649 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1650 */
27569620
PM
1651static void __init
1652rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1653{
1654 unsigned long flags;
1655 int i;
27569620
PM
1656 struct rcu_data *rdp = rsp->rda[cpu];
1657 struct rcu_node *rnp = rcu_get_root(rsp);
1658
1659 /* Set up local state, ensuring consistent view of global state. */
1660 spin_lock_irqsave(&rnp->lock, flags);
1661 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1662 rdp->nxtlist = NULL;
1663 for (i = 0; i < RCU_NEXT_SIZE; i++)
1664 rdp->nxttail[i] = &rdp->nxtlist;
1665 rdp->qlen = 0;
1666#ifdef CONFIG_NO_HZ
1667 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1668#endif /* #ifdef CONFIG_NO_HZ */
1669 rdp->cpu = cpu;
1670 spin_unlock_irqrestore(&rnp->lock, flags);
1671}
1672
1673/*
1674 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1675 * offline event can be happening at a given time. Note also that we
1676 * can accept some slop in the rsp->completed access due to the fact
1677 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1678 */
e4fa4c97 1679static void __cpuinit
f41d911f 1680rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1681{
1682 unsigned long flags;
64db4cff
PM
1683 unsigned long mask;
1684 struct rcu_data *rdp = rsp->rda[cpu];
1685 struct rcu_node *rnp = rcu_get_root(rsp);
1686
1687 /* Set up local state, ensuring consistent view of global state. */
1688 spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1689 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1690 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1691 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1692 rdp->preemptable = preemptable;
37c72e56
PM
1693 rdp->qlen_last_fqs_check = 0;
1694 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1695 rdp->blimit = blimit;
64db4cff
PM
1696 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1697
1698 /*
1699 * A new grace period might start here. If so, we won't be part
1700 * of it, but that is OK, as we are currently in a quiescent state.
1701 */
1702
1703 /* Exclude any attempts to start a new GP on large systems. */
1704 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1705
1706 /* Add CPU to rcu_node bitmasks. */
1707 rnp = rdp->mynode;
1708 mask = rdp->grpmask;
1709 do {
1710 /* Exclude any attempts to start a new GP on small systems. */
1711 spin_lock(&rnp->lock); /* irqs already disabled. */
1712 rnp->qsmaskinit |= mask;
1713 mask = rnp->grpmask;
d09b62df
PM
1714 if (rnp == rdp->mynode) {
1715 rdp->gpnum = rnp->completed; /* if GP in progress... */
1716 rdp->completed = rnp->completed;
1717 rdp->passed_quiesc_completed = rnp->completed - 1;
1718 }
64db4cff
PM
1719 spin_unlock(&rnp->lock); /* irqs already disabled. */
1720 rnp = rnp->parent;
1721 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1722
e7d8842e 1723 spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1724}
1725
1726static void __cpuinit rcu_online_cpu(int cpu)
1727{
f41d911f
PM
1728 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1729 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1730 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1731}
1732
1733/*
f41d911f 1734 * Handle CPU online/offline notification events.
64db4cff 1735 */
9f680ab4
PM
1736static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1737 unsigned long action, void *hcpu)
64db4cff
PM
1738{
1739 long cpu = (long)hcpu;
1740
1741 switch (action) {
1742 case CPU_UP_PREPARE:
1743 case CPU_UP_PREPARE_FROZEN:
1744 rcu_online_cpu(cpu);
1745 break;
d0ec774c
PM
1746 case CPU_DYING:
1747 case CPU_DYING_FROZEN:
1748 /*
e74f4c45 1749 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
d0ec774c 1750 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
e74f4c45
PM
1751 * returns, all online cpus have queued rcu_barrier_func().
1752 * The dying CPU clears its cpu_online_mask bit and
1753 * moves all of its RCU callbacks to ->orphan_cbs_list
1754 * in the context of stop_machine(), so subsequent calls
1755 * to _rcu_barrier() will adopt these callbacks and only
1756 * then queue rcu_barrier_func() on all remaining CPUs.
d0ec774c 1757 */
e74f4c45
PM
1758 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1759 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1760 rcu_preempt_send_cbs_to_orphanage();
d0ec774c 1761 break;
64db4cff
PM
1762 case CPU_DEAD:
1763 case CPU_DEAD_FROZEN:
1764 case CPU_UP_CANCELED:
1765 case CPU_UP_CANCELED_FROZEN:
1766 rcu_offline_cpu(cpu);
1767 break;
1768 default:
1769 break;
1770 }
1771 return NOTIFY_OK;
1772}
1773
1774/*
1775 * Compute the per-level fanout, either using the exact fanout specified
1776 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1777 */
1778#ifdef CONFIG_RCU_FANOUT_EXACT
1779static void __init rcu_init_levelspread(struct rcu_state *rsp)
1780{
1781 int i;
1782
1783 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1784 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1785}
1786#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1787static void __init rcu_init_levelspread(struct rcu_state *rsp)
1788{
1789 int ccur;
1790 int cprv;
1791 int i;
1792
1793 cprv = NR_CPUS;
1794 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1795 ccur = rsp->levelcnt[i];
1796 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1797 cprv = ccur;
1798 }
1799}
1800#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1801
1802/*
1803 * Helper function for rcu_init() that initializes one rcu_state structure.
1804 */
1805static void __init rcu_init_one(struct rcu_state *rsp)
1806{
1807 int cpustride = 1;
1808 int i;
1809 int j;
1810 struct rcu_node *rnp;
1811
1812 /* Initialize the level-tracking arrays. */
1813
1814 for (i = 1; i < NUM_RCU_LVLS; i++)
1815 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1816 rcu_init_levelspread(rsp);
1817
1818 /* Initialize the elements themselves, starting from the leaves. */
1819
1820 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1821 cpustride *= rsp->levelspread[i];
1822 rnp = rsp->level[i];
1823 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
88b91c7c 1824 spin_lock_init(&rnp->lock);
b668c9cf 1825 lockdep_set_class(&rnp->lock, &rcu_node_class[i]);
f41d911f 1826 rnp->gpnum = 0;
64db4cff
PM
1827 rnp->qsmask = 0;
1828 rnp->qsmaskinit = 0;
1829 rnp->grplo = j * cpustride;
1830 rnp->grphi = (j + 1) * cpustride - 1;
1831 if (rnp->grphi >= NR_CPUS)
1832 rnp->grphi = NR_CPUS - 1;
1833 if (i == 0) {
1834 rnp->grpnum = 0;
1835 rnp->grpmask = 0;
1836 rnp->parent = NULL;
1837 } else {
1838 rnp->grpnum = j % rsp->levelspread[i - 1];
1839 rnp->grpmask = 1UL << rnp->grpnum;
1840 rnp->parent = rsp->level[i - 1] +
1841 j / rsp->levelspread[i - 1];
1842 }
1843 rnp->level = i;
f41d911f
PM
1844 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1845 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1846 }
1847 }
1848}
1849
1850/*
f41d911f
PM
1851 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1852 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1853 * structure.
64db4cff 1854 */
65cf8f86 1855#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1856do { \
a0b6c9a7
PM
1857 int i; \
1858 int j; \
1859 struct rcu_node *rnp; \
1860 \
65cf8f86 1861 rcu_init_one(rsp); \
64db4cff
PM
1862 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1863 j = 0; \
1864 for_each_possible_cpu(i) { \
1865 if (i > rnp[j].grphi) \
1866 j++; \
1867 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1868 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1869 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1870 } \
1871} while (0)
1872
9f680ab4 1873void __init rcu_init(void)
64db4cff 1874{
9f680ab4
PM
1875 int i;
1876
f41d911f 1877 rcu_bootup_announce();
64db4cff
PM
1878#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1879 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1880#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
cf244dc0
PM
1881#if NUM_RCU_LVL_4 != 0
1882 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1883#endif /* #if NUM_RCU_LVL_4 != 0 */
65cf8f86
PM
1884 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1885 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1886 __rcu_init_preempt();
2e597558 1887 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1888
1889 /*
1890 * We don't need protection against CPU-hotplug here because
1891 * this is called early in boot, before either interrupts
1892 * or the scheduler are operational.
1893 */
1894 cpu_notifier(rcu_cpu_notify, 0);
1895 for_each_online_cpu(i)
1896 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i);
64db4cff
PM
1897}
1898
1eba8f84 1899#include "rcutree_plugin.h"