rcu: fix rcutree grace-period-latency bug on small systems
[linux-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <asm/atomic.h>
39#include <linux/bitops.h>
40#include <linux/module.h>
41#include <linux/completion.h>
42#include <linux/moduleparam.h>
43#include <linux/percpu.h>
44#include <linux/notifier.h>
45#include <linux/cpu.h>
46#include <linux/mutex.h>
47#include <linux/time.h>
48
49#ifdef CONFIG_DEBUG_LOCK_ALLOC
50static struct lock_class_key rcu_lock_key;
51struct lockdep_map rcu_lock_map =
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
53EXPORT_SYMBOL_GPL(rcu_lock_map);
54#endif
55
56/* Data structures. */
57
58#define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \
60 .levelcnt = { \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \
62 NUM_RCU_LVL_1, \
63 NUM_RCU_LVL_2, \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_SIGNAL_INIT, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
71 .n_force_qs = 0, \
72 .n_force_qs_ngp = 0, \
73}
74
75struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state);
76DEFINE_PER_CPU(struct rcu_data, rcu_data);
77
78struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
80
81#ifdef CONFIG_NO_HZ
82DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks);
83#endif /* #ifdef CONFIG_NO_HZ */
84
85static int blimit = 10; /* Maximum callbacks per softirq. */
86static int qhimark = 10000; /* If this many pending, ignore blimit. */
87static int qlowmark = 100; /* Once only this many pending, use blimit. */
88
89static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
90
91/*
92 * Return the number of RCU batches processed thus far for debug & stats.
93 */
94long rcu_batches_completed(void)
95{
96 return rcu_state.completed;
97}
98EXPORT_SYMBOL_GPL(rcu_batches_completed);
99
100/*
101 * Return the number of RCU BH batches processed thus far for debug & stats.
102 */
103long rcu_batches_completed_bh(void)
104{
105 return rcu_bh_state.completed;
106}
107EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
108
109/*
110 * Does the CPU have callbacks ready to be invoked?
111 */
112static int
113cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
114{
115 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
116}
117
118/*
119 * Does the current CPU require a yet-as-unscheduled grace period?
120 */
121static int
122cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
123{
124 /* ACCESS_ONCE() because we are accessing outside of lock. */
125 return *rdp->nxttail[RCU_DONE_TAIL] &&
126 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
127}
128
129/*
130 * Return the root node of the specified rcu_state structure.
131 */
132static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
133{
134 return &rsp->node[0];
135}
136
137#ifdef CONFIG_SMP
138
139/*
140 * If the specified CPU is offline, tell the caller that it is in
141 * a quiescent state. Otherwise, whack it with a reschedule IPI.
142 * Grace periods can end up waiting on an offline CPU when that
143 * CPU is in the process of coming online -- it will be added to the
144 * rcu_node bitmasks before it actually makes it online. The same thing
145 * can happen while a CPU is in the process of coming online. Because this
146 * race is quite rare, we check for it after detecting that the grace
147 * period has been delayed rather than checking each and every CPU
148 * each and every time we start a new grace period.
149 */
150static int rcu_implicit_offline_qs(struct rcu_data *rdp)
151{
152 /*
153 * If the CPU is offline, it is in a quiescent state. We can
154 * trust its state not to change because interrupts are disabled.
155 */
156 if (cpu_is_offline(rdp->cpu)) {
157 rdp->offline_fqs++;
158 return 1;
159 }
160
161 /* The CPU is online, so send it a reschedule IPI. */
162 if (rdp->cpu != smp_processor_id())
163 smp_send_reschedule(rdp->cpu);
164 else
165 set_need_resched();
166 rdp->resched_ipi++;
167 return 0;
168}
169
170#endif /* #ifdef CONFIG_SMP */
171
172#ifdef CONFIG_NO_HZ
173static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
174
175/**
176 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
177 *
178 * Enter nohz mode, in other words, -leave- the mode in which RCU
179 * read-side critical sections can occur. (Though RCU read-side
180 * critical sections can occur in irq handlers in nohz mode, a possibility
181 * handled by rcu_irq_enter() and rcu_irq_exit()).
182 */
183void rcu_enter_nohz(void)
184{
185 unsigned long flags;
186 struct rcu_dynticks *rdtp;
187
188 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
189 local_irq_save(flags);
190 rdtp = &__get_cpu_var(rcu_dynticks);
191 rdtp->dynticks++;
192 rdtp->dynticks_nesting--;
193 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
194 local_irq_restore(flags);
195}
196
197/*
198 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
199 *
200 * Exit nohz mode, in other words, -enter- the mode in which RCU
201 * read-side critical sections normally occur.
202 */
203void rcu_exit_nohz(void)
204{
205 unsigned long flags;
206 struct rcu_dynticks *rdtp;
207
208 local_irq_save(flags);
209 rdtp = &__get_cpu_var(rcu_dynticks);
210 rdtp->dynticks++;
211 rdtp->dynticks_nesting++;
212 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
213 local_irq_restore(flags);
214 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
215}
216
217/**
218 * rcu_nmi_enter - inform RCU of entry to NMI context
219 *
220 * If the CPU was idle with dynamic ticks active, and there is no
221 * irq handler running, this updates rdtp->dynticks_nmi to let the
222 * RCU grace-period handling know that the CPU is active.
223 */
224void rcu_nmi_enter(void)
225{
226 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
227
228 if (rdtp->dynticks & 0x1)
229 return;
230 rdtp->dynticks_nmi++;
231 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
232 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
233}
234
235/**
236 * rcu_nmi_exit - inform RCU of exit from NMI context
237 *
238 * If the CPU was idle with dynamic ticks active, and there is no
239 * irq handler running, this updates rdtp->dynticks_nmi to let the
240 * RCU grace-period handling know that the CPU is no longer active.
241 */
242void rcu_nmi_exit(void)
243{
244 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
245
246 if (rdtp->dynticks & 0x1)
247 return;
248 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
249 rdtp->dynticks_nmi++;
250 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
251}
252
253/**
254 * rcu_irq_enter - inform RCU of entry to hard irq context
255 *
256 * If the CPU was idle with dynamic ticks active, this updates the
257 * rdtp->dynticks to let the RCU handling know that the CPU is active.
258 */
259void rcu_irq_enter(void)
260{
261 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
262
263 if (rdtp->dynticks_nesting++)
264 return;
265 rdtp->dynticks++;
266 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
267 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
268}
269
270/**
271 * rcu_irq_exit - inform RCU of exit from hard irq context
272 *
273 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
274 * to put let the RCU handling be aware that the CPU is going back to idle
275 * with no ticks.
276 */
277void rcu_irq_exit(void)
278{
279 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
280
281 if (--rdtp->dynticks_nesting)
282 return;
283 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
284 rdtp->dynticks++;
285 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
286
287 /* If the interrupt queued a callback, get out of dyntick mode. */
288 if (__get_cpu_var(rcu_data).nxtlist ||
289 __get_cpu_var(rcu_bh_data).nxtlist)
290 set_need_resched();
291}
292
293/*
294 * Record the specified "completed" value, which is later used to validate
295 * dynticks counter manipulations. Specify "rsp->completed - 1" to
296 * unconditionally invalidate any future dynticks manipulations (which is
297 * useful at the beginning of a grace period).
298 */
299static void dyntick_record_completed(struct rcu_state *rsp, long comp)
300{
301 rsp->dynticks_completed = comp;
302}
303
304#ifdef CONFIG_SMP
305
306/*
307 * Recall the previously recorded value of the completion for dynticks.
308 */
309static long dyntick_recall_completed(struct rcu_state *rsp)
310{
311 return rsp->dynticks_completed;
312}
313
314/*
315 * Snapshot the specified CPU's dynticks counter so that we can later
316 * credit them with an implicit quiescent state. Return 1 if this CPU
317 * is already in a quiescent state courtesy of dynticks idle mode.
318 */
319static int dyntick_save_progress_counter(struct rcu_data *rdp)
320{
321 int ret;
322 int snap;
323 int snap_nmi;
324
325 snap = rdp->dynticks->dynticks;
326 snap_nmi = rdp->dynticks->dynticks_nmi;
327 smp_mb(); /* Order sampling of snap with end of grace period. */
328 rdp->dynticks_snap = snap;
329 rdp->dynticks_nmi_snap = snap_nmi;
330 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
331 if (ret)
332 rdp->dynticks_fqs++;
333 return ret;
334}
335
336/*
337 * Return true if the specified CPU has passed through a quiescent
338 * state by virtue of being in or having passed through an dynticks
339 * idle state since the last call to dyntick_save_progress_counter()
340 * for this same CPU.
341 */
342static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
343{
344 long curr;
345 long curr_nmi;
346 long snap;
347 long snap_nmi;
348
349 curr = rdp->dynticks->dynticks;
350 snap = rdp->dynticks_snap;
351 curr_nmi = rdp->dynticks->dynticks_nmi;
352 snap_nmi = rdp->dynticks_nmi_snap;
353 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
354
355 /*
356 * If the CPU passed through or entered a dynticks idle phase with
357 * no active irq/NMI handlers, then we can safely pretend that the CPU
358 * already acknowledged the request to pass through a quiescent
359 * state. Either way, that CPU cannot possibly be in an RCU
360 * read-side critical section that started before the beginning
361 * of the current RCU grace period.
362 */
363 if ((curr != snap || (curr & 0x1) == 0) &&
364 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
365 rdp->dynticks_fqs++;
366 return 1;
367 }
368
369 /* Go check for the CPU being offline. */
370 return rcu_implicit_offline_qs(rdp);
371}
372
373#endif /* #ifdef CONFIG_SMP */
374
375#else /* #ifdef CONFIG_NO_HZ */
376
377static void dyntick_record_completed(struct rcu_state *rsp, long comp)
378{
379}
380
381#ifdef CONFIG_SMP
382
383/*
384 * If there are no dynticks, then the only way that a CPU can passively
385 * be in a quiescent state is to be offline. Unlike dynticks idle, which
386 * is a point in time during the prior (already finished) grace period,
387 * an offline CPU is always in a quiescent state, and thus can be
388 * unconditionally applied. So just return the current value of completed.
389 */
390static long dyntick_recall_completed(struct rcu_state *rsp)
391{
392 return rsp->completed;
393}
394
395static int dyntick_save_progress_counter(struct rcu_data *rdp)
396{
397 return 0;
398}
399
400static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
401{
402 return rcu_implicit_offline_qs(rdp);
403}
404
405#endif /* #ifdef CONFIG_SMP */
406
407#endif /* #else #ifdef CONFIG_NO_HZ */
408
409#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
410
411static void record_gp_stall_check_time(struct rcu_state *rsp)
412{
413 rsp->gp_start = jiffies;
414 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
415}
416
417static void print_other_cpu_stall(struct rcu_state *rsp)
418{
419 int cpu;
420 long delta;
421 unsigned long flags;
422 struct rcu_node *rnp = rcu_get_root(rsp);
423 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
424 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
425
426 /* Only let one CPU complain about others per time interval. */
427
428 spin_lock_irqsave(&rnp->lock, flags);
429 delta = jiffies - rsp->jiffies_stall;
430 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
431 spin_unlock_irqrestore(&rnp->lock, flags);
432 return;
433 }
434 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
435 spin_unlock_irqrestore(&rnp->lock, flags);
436
437 /* OK, time to rat on our buddy... */
438
439 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
440 for (; rnp_cur < rnp_end; rnp_cur++) {
441 if (rnp_cur->qsmask == 0)
442 continue;
443 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
444 if (rnp_cur->qsmask & (1UL << cpu))
445 printk(" %d", rnp_cur->grplo + cpu);
446 }
447 printk(" (detected by %d, t=%ld jiffies)\n",
448 smp_processor_id(), (long)(jiffies - rsp->gp_start));
449 force_quiescent_state(rsp, 0); /* Kick them all. */
450}
451
452static void print_cpu_stall(struct rcu_state *rsp)
453{
454 unsigned long flags;
455 struct rcu_node *rnp = rcu_get_root(rsp);
456
457 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
458 smp_processor_id(), jiffies - rsp->gp_start);
459 dump_stack();
460 spin_lock_irqsave(&rnp->lock, flags);
461 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
462 rsp->jiffies_stall =
463 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
464 spin_unlock_irqrestore(&rnp->lock, flags);
465 set_need_resched(); /* kick ourselves to get things going. */
466}
467
468static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
469{
470 long delta;
471 struct rcu_node *rnp;
472
473 delta = jiffies - rsp->jiffies_stall;
474 rnp = rdp->mynode;
475 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
476
477 /* We haven't checked in, so go dump stack. */
478 print_cpu_stall(rsp);
479
480 } else if (rsp->gpnum != rsp->completed &&
481 delta >= RCU_STALL_RAT_DELAY) {
482
483 /* They had two time units to dump stack, so complain. */
484 print_other_cpu_stall(rsp);
485 }
486}
487
488#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
489
490static void record_gp_stall_check_time(struct rcu_state *rsp)
491{
492}
493
494static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
495{
496}
497
498#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
499
500/*
501 * Update CPU-local rcu_data state to record the newly noticed grace period.
502 * This is used both when we started the grace period and when we notice
503 * that someone else started the grace period.
504 */
505static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
506{
507 rdp->qs_pending = 1;
508 rdp->passed_quiesc = 0;
509 rdp->gpnum = rsp->gpnum;
510 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
511 RCU_JIFFIES_TILL_FORCE_QS;
512}
513
514/*
515 * Did someone else start a new RCU grace period start since we last
516 * checked? Update local state appropriately if so. Must be called
517 * on the CPU corresponding to rdp.
518 */
519static int
520check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
521{
522 unsigned long flags;
523 int ret = 0;
524
525 local_irq_save(flags);
526 if (rdp->gpnum != rsp->gpnum) {
527 note_new_gpnum(rsp, rdp);
528 ret = 1;
529 }
530 local_irq_restore(flags);
531 return ret;
532}
533
534/*
535 * Start a new RCU grace period if warranted, re-initializing the hierarchy
536 * in preparation for detecting the next grace period. The caller must hold
537 * the root node's ->lock, which is released before return. Hard irqs must
538 * be disabled.
539 */
540static void
541rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
542 __releases(rcu_get_root(rsp)->lock)
543{
544 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
545 struct rcu_node *rnp = rcu_get_root(rsp);
546 struct rcu_node *rnp_cur;
547 struct rcu_node *rnp_end;
548
549 if (!cpu_needs_another_gp(rsp, rdp)) {
550 spin_unlock_irqrestore(&rnp->lock, flags);
551 return;
552 }
553
554 /* Advance to a new grace period and initialize state. */
555 rsp->gpnum++;
556 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
557 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
558 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
559 RCU_JIFFIES_TILL_FORCE_QS;
560 record_gp_stall_check_time(rsp);
561 dyntick_record_completed(rsp, rsp->completed - 1);
562 note_new_gpnum(rsp, rdp);
563
564 /*
565 * Because we are first, we know that all our callbacks will
566 * be covered by this upcoming grace period, even the ones
567 * that were registered arbitrarily recently.
568 */
569 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
570 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
571
572 /* Special-case the common single-level case. */
573 if (NUM_RCU_NODES == 1) {
574 rnp->qsmask = rnp->qsmaskinit;
c12172c0 575 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
576 spin_unlock_irqrestore(&rnp->lock, flags);
577 return;
578 }
579
580 spin_unlock(&rnp->lock); /* leave irqs disabled. */
581
582
583 /* Exclude any concurrent CPU-hotplug operations. */
584 spin_lock(&rsp->onofflock); /* irqs already disabled. */
585
586 /*
587 * Set the quiescent-state-needed bits in all the non-leaf RCU
588 * nodes for all currently online CPUs. This operation relies
589 * on the layout of the hierarchy within the rsp->node[] array.
590 * Note that other CPUs will access only the leaves of the
591 * hierarchy, which still indicate that no grace period is in
592 * progress. In addition, we have excluded CPU-hotplug operations.
593 *
594 * We therefore do not need to hold any locks. Any required
595 * memory barriers will be supplied by the locks guarding the
596 * leaf rcu_nodes in the hierarchy.
597 */
598
599 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
600 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
601 rnp_cur->qsmask = rnp_cur->qsmaskinit;
602
603 /*
604 * Now set up the leaf nodes. Here we must be careful. First,
605 * we need to hold the lock in order to exclude other CPUs, which
606 * might be contending for the leaf nodes' locks. Second, as
607 * soon as we initialize a given leaf node, its CPUs might run
608 * up the rest of the hierarchy. We must therefore acquire locks
609 * for each node that we touch during this stage. (But we still
610 * are excluding CPU-hotplug operations.)
611 *
612 * Note that the grace period cannot complete until we finish
613 * the initialization process, as there will be at least one
614 * qsmask bit set in the root node until that time, namely the
615 * one corresponding to this CPU.
616 */
617 rnp_end = &rsp->node[NUM_RCU_NODES];
618 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
619 for (; rnp_cur < rnp_end; rnp_cur++) {
620 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
621 rnp_cur->qsmask = rnp_cur->qsmaskinit;
622 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
623 }
624
625 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
626 spin_unlock_irqrestore(&rsp->onofflock, flags);
627}
628
629/*
630 * Advance this CPU's callbacks, but only if the current grace period
631 * has ended. This may be called only from the CPU to whom the rdp
632 * belongs.
633 */
634static void
635rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
636{
637 long completed_snap;
638 unsigned long flags;
639
640 local_irq_save(flags);
641 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
642
643 /* Did another grace period end? */
644 if (rdp->completed != completed_snap) {
645
646 /* Advance callbacks. No harm if list empty. */
647 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
648 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
649 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
650
651 /* Remember that we saw this grace-period completion. */
652 rdp->completed = completed_snap;
653 }
654 local_irq_restore(flags);
655}
656
657/*
658 * Similar to cpu_quiet(), for which it is a helper function. Allows
659 * a group of CPUs to be quieted at one go, though all the CPUs in the
660 * group must be represented by the same leaf rcu_node structure.
661 * That structure's lock must be held upon entry, and it is released
662 * before return.
663 */
664static void
665cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
666 unsigned long flags)
667 __releases(rnp->lock)
668{
669 /* Walk up the rcu_node hierarchy. */
670 for (;;) {
671 if (!(rnp->qsmask & mask)) {
672
673 /* Our bit has already been cleared, so done. */
674 spin_unlock_irqrestore(&rnp->lock, flags);
675 return;
676 }
677 rnp->qsmask &= ~mask;
678 if (rnp->qsmask != 0) {
679
680 /* Other bits still set at this level, so done. */
681 spin_unlock_irqrestore(&rnp->lock, flags);
682 return;
683 }
684 mask = rnp->grpmask;
685 if (rnp->parent == NULL) {
686
687 /* No more levels. Exit loop holding root lock. */
688
689 break;
690 }
691 spin_unlock_irqrestore(&rnp->lock, flags);
692 rnp = rnp->parent;
693 spin_lock_irqsave(&rnp->lock, flags);
694 }
695
696 /*
697 * Get here if we are the last CPU to pass through a quiescent
698 * state for this grace period. Clean up and let rcu_start_gp()
699 * start up the next grace period if one is needed. Note that
700 * we still hold rnp->lock, as required by rcu_start_gp(), which
701 * will release it.
702 */
703 rsp->completed = rsp->gpnum;
704 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
705 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
706}
707
708/*
709 * Record a quiescent state for the specified CPU, which must either be
710 * the current CPU or an offline CPU. The lastcomp argument is used to
711 * make sure we are still in the grace period of interest. We don't want
712 * to end the current grace period based on quiescent states detected in
713 * an earlier grace period!
714 */
715static void
716cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
717{
718 unsigned long flags;
719 unsigned long mask;
720 struct rcu_node *rnp;
721
722 rnp = rdp->mynode;
723 spin_lock_irqsave(&rnp->lock, flags);
724 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
725
726 /*
727 * Someone beat us to it for this grace period, so leave.
728 * The race with GP start is resolved by the fact that we
729 * hold the leaf rcu_node lock, so that the per-CPU bits
730 * cannot yet be initialized -- so we would simply find our
731 * CPU's bit already cleared in cpu_quiet_msk() if this race
732 * occurred.
733 */
734 rdp->passed_quiesc = 0; /* try again later! */
735 spin_unlock_irqrestore(&rnp->lock, flags);
736 return;
737 }
738 mask = rdp->grpmask;
739 if ((rnp->qsmask & mask) == 0) {
740 spin_unlock_irqrestore(&rnp->lock, flags);
741 } else {
742 rdp->qs_pending = 0;
743
744 /*
745 * This GP can't end until cpu checks in, so all of our
746 * callbacks can be processed during the next GP.
747 */
748 rdp = rsp->rda[smp_processor_id()];
749 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
750
751 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
752 }
753}
754
755/*
756 * Check to see if there is a new grace period of which this CPU
757 * is not yet aware, and if so, set up local rcu_data state for it.
758 * Otherwise, see if this CPU has just passed through its first
759 * quiescent state for this grace period, and record that fact if so.
760 */
761static void
762rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
763{
764 /* If there is now a new grace period, record and return. */
765 if (check_for_new_grace_period(rsp, rdp))
766 return;
767
768 /*
769 * Does this CPU still need to do its part for current grace period?
770 * If no, return and let the other CPUs do their part as well.
771 */
772 if (!rdp->qs_pending)
773 return;
774
775 /*
776 * Was there a quiescent state since the beginning of the grace
777 * period? If no, then exit and wait for the next call.
778 */
779 if (!rdp->passed_quiesc)
780 return;
781
782 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
783 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
784}
785
786#ifdef CONFIG_HOTPLUG_CPU
787
788/*
789 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
790 * and move all callbacks from the outgoing CPU to the current one.
791 */
792static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
793{
794 int i;
795 unsigned long flags;
796 long lastcomp;
797 unsigned long mask;
798 struct rcu_data *rdp = rsp->rda[cpu];
799 struct rcu_data *rdp_me;
800 struct rcu_node *rnp;
801
802 /* Exclude any attempts to start a new grace period. */
803 spin_lock_irqsave(&rsp->onofflock, flags);
804
805 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
806 rnp = rdp->mynode;
807 mask = rdp->grpmask; /* rnp->grplo is constant. */
808 do {
809 spin_lock(&rnp->lock); /* irqs already disabled. */
810 rnp->qsmaskinit &= ~mask;
811 if (rnp->qsmaskinit != 0) {
812 spin_unlock(&rnp->lock); /* irqs already disabled. */
813 break;
814 }
815 mask = rnp->grpmask;
816 spin_unlock(&rnp->lock); /* irqs already disabled. */
817 rnp = rnp->parent;
818 } while (rnp != NULL);
819 lastcomp = rsp->completed;
820
821 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
822
823 /* Being offline is a quiescent state, so go record it. */
824 cpu_quiet(cpu, rsp, rdp, lastcomp);
825
826 /*
827 * Move callbacks from the outgoing CPU to the running CPU.
828 * Note that the outgoing CPU is now quiscent, so it is now
829 * (uncharacteristically) safe to access it rcu_data structure.
830 * Note also that we must carefully retain the order of the
831 * outgoing CPU's callbacks in order for rcu_barrier() to work
832 * correctly. Finally, note that we start all the callbacks
833 * afresh, even those that have passed through a grace period
834 * and are therefore ready to invoke. The theory is that hotplug
835 * events are rare, and that if they are frequent enough to
836 * indefinitely delay callbacks, you have far worse things to
837 * be worrying about.
838 */
839 rdp_me = rsp->rda[smp_processor_id()];
840 if (rdp->nxtlist != NULL) {
841 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
842 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
843 rdp->nxtlist = NULL;
844 for (i = 0; i < RCU_NEXT_SIZE; i++)
845 rdp->nxttail[i] = &rdp->nxtlist;
846 rdp_me->qlen += rdp->qlen;
847 rdp->qlen = 0;
848 }
849 local_irq_restore(flags);
850}
851
852/*
853 * Remove the specified CPU from the RCU hierarchy and move any pending
854 * callbacks that it might have to the current CPU. This code assumes
855 * that at least one CPU in the system will remain running at all times.
856 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
857 */
858static void rcu_offline_cpu(int cpu)
859{
860 __rcu_offline_cpu(cpu, &rcu_state);
861 __rcu_offline_cpu(cpu, &rcu_bh_state);
862}
863
864#else /* #ifdef CONFIG_HOTPLUG_CPU */
865
866static void rcu_offline_cpu(int cpu)
867{
868}
869
870#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
871
872/*
873 * Invoke any RCU callbacks that have made it to the end of their grace
874 * period. Thottle as specified by rdp->blimit.
875 */
876static void rcu_do_batch(struct rcu_data *rdp)
877{
878 unsigned long flags;
879 struct rcu_head *next, *list, **tail;
880 int count;
881
882 /* If no callbacks are ready, just return.*/
883 if (!cpu_has_callbacks_ready_to_invoke(rdp))
884 return;
885
886 /*
887 * Extract the list of ready callbacks, disabling to prevent
888 * races with call_rcu() from interrupt handlers.
889 */
890 local_irq_save(flags);
891 list = rdp->nxtlist;
892 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
893 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
894 tail = rdp->nxttail[RCU_DONE_TAIL];
895 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
896 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
897 rdp->nxttail[count] = &rdp->nxtlist;
898 local_irq_restore(flags);
899
900 /* Invoke callbacks. */
901 count = 0;
902 while (list) {
903 next = list->next;
904 prefetch(next);
905 list->func(list);
906 list = next;
907 if (++count >= rdp->blimit)
908 break;
909 }
910
911 local_irq_save(flags);
912
913 /* Update count, and requeue any remaining callbacks. */
914 rdp->qlen -= count;
915 if (list != NULL) {
916 *tail = rdp->nxtlist;
917 rdp->nxtlist = list;
918 for (count = 0; count < RCU_NEXT_SIZE; count++)
919 if (&rdp->nxtlist == rdp->nxttail[count])
920 rdp->nxttail[count] = tail;
921 else
922 break;
923 }
924
925 /* Reinstate batch limit if we have worked down the excess. */
926 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
927 rdp->blimit = blimit;
928
929 local_irq_restore(flags);
930
931 /* Re-raise the RCU softirq if there are callbacks remaining. */
932 if (cpu_has_callbacks_ready_to_invoke(rdp))
933 raise_softirq(RCU_SOFTIRQ);
934}
935
936/*
937 * Check to see if this CPU is in a non-context-switch quiescent state
938 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
939 * Also schedule the RCU softirq handler.
940 *
941 * This function must be called with hardirqs disabled. It is normally
942 * invoked from the scheduling-clock interrupt. If rcu_pending returns
943 * false, there is no point in invoking rcu_check_callbacks().
944 */
945void rcu_check_callbacks(int cpu, int user)
946{
947 if (user ||
948 (idle_cpu(cpu) && !in_softirq() &&
949 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
950
951 /*
952 * Get here if this CPU took its interrupt from user
953 * mode or from the idle loop, and if this is not a
954 * nested interrupt. In this case, the CPU is in
955 * a quiescent state, so count it.
956 *
957 * No memory barrier is required here because both
958 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
959 * only CPU-local variables that other CPUs neither
960 * access nor modify, at least not while the corresponding
961 * CPU is online.
962 */
963
964 rcu_qsctr_inc(cpu);
965 rcu_bh_qsctr_inc(cpu);
966
967 } else if (!in_softirq()) {
968
969 /*
970 * Get here if this CPU did not take its interrupt from
971 * softirq, in other words, if it is not interrupting
972 * a rcu_bh read-side critical section. This is an _bh
973 * critical section, so count it.
974 */
975
976 rcu_bh_qsctr_inc(cpu);
977 }
978 raise_softirq(RCU_SOFTIRQ);
979}
980
981#ifdef CONFIG_SMP
982
983/*
984 * Scan the leaf rcu_node structures, processing dyntick state for any that
985 * have not yet encountered a quiescent state, using the function specified.
986 * Returns 1 if the current grace period ends while scanning (possibly
987 * because we made it end).
988 */
989static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
990 int (*f)(struct rcu_data *))
991{
992 unsigned long bit;
993 int cpu;
994 unsigned long flags;
995 unsigned long mask;
996 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
997 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
998
999 for (; rnp_cur < rnp_end; rnp_cur++) {
1000 mask = 0;
1001 spin_lock_irqsave(&rnp_cur->lock, flags);
1002 if (rsp->completed != lastcomp) {
1003 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1004 return 1;
1005 }
1006 if (rnp_cur->qsmask == 0) {
1007 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1008 continue;
1009 }
1010 cpu = rnp_cur->grplo;
1011 bit = 1;
1012 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1013 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1014 mask |= bit;
1015 }
1016 if (mask != 0 && rsp->completed == lastcomp) {
1017
1018 /* cpu_quiet_msk() releases rnp_cur->lock. */
1019 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1020 continue;
1021 }
1022 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1023 }
1024 return 0;
1025}
1026
1027/*
1028 * Force quiescent states on reluctant CPUs, and also detect which
1029 * CPUs are in dyntick-idle mode.
1030 */
1031static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1032{
1033 unsigned long flags;
1034 long lastcomp;
1035 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
1036 struct rcu_node *rnp = rcu_get_root(rsp);
1037 u8 signaled;
1038
1039 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1040 return; /* No grace period in progress, nothing to force. */
1041 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1042 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1043 return; /* Someone else is already on the job. */
1044 }
1045 if (relaxed &&
1046 (long)(rsp->jiffies_force_qs - jiffies) >= 0 &&
1047 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) >= 0)
1048 goto unlock_ret; /* no emergency and done recently. */
1049 rsp->n_force_qs++;
1050 spin_lock(&rnp->lock);
1051 lastcomp = rsp->completed;
1052 signaled = rsp->signaled;
1053 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1054 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
1055 RCU_JIFFIES_TILL_FORCE_QS;
1056 if (lastcomp == rsp->gpnum) {
1057 rsp->n_force_qs_ngp++;
1058 spin_unlock(&rnp->lock);
1059 goto unlock_ret; /* no GP in progress, time updated. */
1060 }
1061 spin_unlock(&rnp->lock);
1062 switch (signaled) {
1063 case RCU_GP_INIT:
1064
1065 break; /* grace period still initializing, ignore. */
1066
1067 case RCU_SAVE_DYNTICK:
1068
1069 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1070 break; /* So gcc recognizes the dead code. */
1071
1072 /* Record dyntick-idle state. */
1073 if (rcu_process_dyntick(rsp, lastcomp,
1074 dyntick_save_progress_counter))
1075 goto unlock_ret;
1076
1077 /* Update state, record completion counter. */
1078 spin_lock(&rnp->lock);
1079 if (lastcomp == rsp->completed) {
1080 rsp->signaled = RCU_FORCE_QS;
1081 dyntick_record_completed(rsp, lastcomp);
1082 }
1083 spin_unlock(&rnp->lock);
1084 break;
1085
1086 case RCU_FORCE_QS:
1087
1088 /* Check dyntick-idle state, send IPI to laggarts. */
1089 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1090 rcu_implicit_dynticks_qs))
1091 goto unlock_ret;
1092
1093 /* Leave state in case more forcing is required. */
1094
1095 break;
1096 }
1097unlock_ret:
1098 spin_unlock_irqrestore(&rsp->fqslock, flags);
1099}
1100
1101#else /* #ifdef CONFIG_SMP */
1102
1103static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1104{
1105 set_need_resched();
1106}
1107
1108#endif /* #else #ifdef CONFIG_SMP */
1109
1110/*
1111 * This does the RCU processing work from softirq context for the
1112 * specified rcu_state and rcu_data structures. This may be called
1113 * only from the CPU to whom the rdp belongs.
1114 */
1115static void
1116__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1117{
1118 unsigned long flags;
1119
1120 /*
1121 * If an RCU GP has gone long enough, go check for dyntick
1122 * idle CPUs and, if needed, send resched IPIs.
1123 */
1124 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1125 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1126 force_quiescent_state(rsp, 1);
1127
1128 /*
1129 * Advance callbacks in response to end of earlier grace
1130 * period that some other CPU ended.
1131 */
1132 rcu_process_gp_end(rsp, rdp);
1133
1134 /* Update RCU state based on any recent quiescent states. */
1135 rcu_check_quiescent_state(rsp, rdp);
1136
1137 /* Does this CPU require a not-yet-started grace period? */
1138 if (cpu_needs_another_gp(rsp, rdp)) {
1139 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1140 rcu_start_gp(rsp, flags); /* releases above lock */
1141 }
1142
1143 /* If there are callbacks ready, invoke them. */
1144 rcu_do_batch(rdp);
1145}
1146
1147/*
1148 * Do softirq processing for the current CPU.
1149 */
1150static void rcu_process_callbacks(struct softirq_action *unused)
1151{
1152 /*
1153 * Memory references from any prior RCU read-side critical sections
1154 * executed by the interrupted code must be seen before any RCU
1155 * grace-period manipulations below.
1156 */
1157 smp_mb(); /* See above block comment. */
1158
1159 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data));
1160 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1161
1162 /*
1163 * Memory references from any later RCU read-side critical sections
1164 * executed by the interrupted code must be seen after any RCU
1165 * grace-period manipulations above.
1166 */
1167 smp_mb(); /* See above block comment. */
1168}
1169
1170static void
1171__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1172 struct rcu_state *rsp)
1173{
1174 unsigned long flags;
1175 struct rcu_data *rdp;
1176
1177 head->func = func;
1178 head->next = NULL;
1179
1180 smp_mb(); /* Ensure RCU update seen before callback registry. */
1181
1182 /*
1183 * Opportunistically note grace-period endings and beginnings.
1184 * Note that we might see a beginning right after we see an
1185 * end, but never vice versa, since this CPU has to pass through
1186 * a quiescent state betweentimes.
1187 */
1188 local_irq_save(flags);
1189 rdp = rsp->rda[smp_processor_id()];
1190 rcu_process_gp_end(rsp, rdp);
1191 check_for_new_grace_period(rsp, rdp);
1192
1193 /* Add the callback to our list. */
1194 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1195 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1196
1197 /* Start a new grace period if one not already started. */
1198 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1199 unsigned long nestflag;
1200 struct rcu_node *rnp_root = rcu_get_root(rsp);
1201
1202 spin_lock_irqsave(&rnp_root->lock, nestflag);
1203 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1204 }
1205
1206 /* Force the grace period if too many callbacks or too long waiting. */
1207 if (unlikely(++rdp->qlen > qhimark)) {
1208 rdp->blimit = LONG_MAX;
1209 force_quiescent_state(rsp, 0);
1210 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1211 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0)
1212 force_quiescent_state(rsp, 1);
1213 local_irq_restore(flags);
1214}
1215
1216/*
1217 * Queue an RCU callback for invocation after a grace period.
1218 */
1219void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1220{
1221 __call_rcu(head, func, &rcu_state);
1222}
1223EXPORT_SYMBOL_GPL(call_rcu);
1224
1225/*
1226 * Queue an RCU for invocation after a quicker grace period.
1227 */
1228void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1229{
1230 __call_rcu(head, func, &rcu_bh_state);
1231}
1232EXPORT_SYMBOL_GPL(call_rcu_bh);
1233
1234/*
1235 * Check to see if there is any immediate RCU-related work to be done
1236 * by the current CPU, for the specified type of RCU, returning 1 if so.
1237 * The checks are in order of increasing expense: checks that can be
1238 * carried out against CPU-local state are performed first. However,
1239 * we must check for CPU stalls first, else we might not get a chance.
1240 */
1241static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1242{
1243 rdp->n_rcu_pending++;
1244
1245 /* Check for CPU stalls, if enabled. */
1246 check_cpu_stall(rsp, rdp);
1247
1248 /* Is the RCU core waiting for a quiescent state from this CPU? */
1249 if (rdp->qs_pending)
1250 return 1;
1251
1252 /* Does this CPU have callbacks ready to invoke? */
1253 if (cpu_has_callbacks_ready_to_invoke(rdp))
1254 return 1;
1255
1256 /* Has RCU gone idle with this CPU needing another grace period? */
1257 if (cpu_needs_another_gp(rsp, rdp))
1258 return 1;
1259
1260 /* Has another RCU grace period completed? */
1261 if (ACCESS_ONCE(rsp->completed) != rdp->completed) /* outside of lock */
1262 return 1;
1263
1264 /* Has a new RCU grace period started? */
1265 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) /* outside of lock */
1266 return 1;
1267
1268 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1269 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
1270 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0 ||
1271 (rdp->n_rcu_pending_force_qs - rdp->n_rcu_pending) < 0))
1272 return 1;
1273
1274 /* nothing to do */
1275 return 0;
1276}
1277
1278/*
1279 * Check to see if there is any immediate RCU-related work to be done
1280 * by the current CPU, returning 1 if so. This function is part of the
1281 * RCU implementation; it is -not- an exported member of the RCU API.
1282 */
1283int rcu_pending(int cpu)
1284{
1285 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) ||
1286 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1287}
1288
1289/*
1290 * Check to see if any future RCU-related work will need to be done
1291 * by the current CPU, even if none need be done immediately, returning
1292 * 1 if so. This function is part of the RCU implementation; it is -not-
1293 * an exported member of the RCU API.
1294 */
1295int rcu_needs_cpu(int cpu)
1296{
1297 /* RCU callbacks either ready or pending? */
1298 return per_cpu(rcu_data, cpu).nxtlist ||
1299 per_cpu(rcu_bh_data, cpu).nxtlist;
1300}
1301
1302/*
1303 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth"
1304 * approach so that we don't have to worry about how long the CPU has
1305 * been gone, or whether it ever was online previously. We do trust the
1306 * ->mynode field, as it is constant for a given struct rcu_data and
1307 * initialized during early boot.
1308 *
1309 * Note that only one online or offline event can be happening at a given
1310 * time. Note also that we can accept some slop in the rsp->completed
1311 * access due to the fact that this CPU cannot possibly have any RCU
1312 * callbacks in flight yet.
1313 */
1314static void
1315rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1316{
1317 unsigned long flags;
1318 int i;
1319 long lastcomp;
1320 unsigned long mask;
1321 struct rcu_data *rdp = rsp->rda[cpu];
1322 struct rcu_node *rnp = rcu_get_root(rsp);
1323
1324 /* Set up local state, ensuring consistent view of global state. */
1325 spin_lock_irqsave(&rnp->lock, flags);
1326 lastcomp = rsp->completed;
1327 rdp->completed = lastcomp;
1328 rdp->gpnum = lastcomp;
1329 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1330 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1331 rdp->beenonline = 1; /* We have now been online. */
1332 rdp->passed_quiesc_completed = lastcomp - 1;
1333 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1334 rdp->nxtlist = NULL;
1335 for (i = 0; i < RCU_NEXT_SIZE; i++)
1336 rdp->nxttail[i] = &rdp->nxtlist;
1337 rdp->qlen = 0;
1338 rdp->blimit = blimit;
1339#ifdef CONFIG_NO_HZ
1340 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1341#endif /* #ifdef CONFIG_NO_HZ */
1342 rdp->cpu = cpu;
1343 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1344
1345 /*
1346 * A new grace period might start here. If so, we won't be part
1347 * of it, but that is OK, as we are currently in a quiescent state.
1348 */
1349
1350 /* Exclude any attempts to start a new GP on large systems. */
1351 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1352
1353 /* Add CPU to rcu_node bitmasks. */
1354 rnp = rdp->mynode;
1355 mask = rdp->grpmask;
1356 do {
1357 /* Exclude any attempts to start a new GP on small systems. */
1358 spin_lock(&rnp->lock); /* irqs already disabled. */
1359 rnp->qsmaskinit |= mask;
1360 mask = rnp->grpmask;
1361 spin_unlock(&rnp->lock); /* irqs already disabled. */
1362 rnp = rnp->parent;
1363 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1364
1365 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1366
1367 /*
1368 * A new grace period might start here. If so, we will be part of
1369 * it, and its gpnum will be greater than ours, so we will
1370 * participate. It is also possible for the gpnum to have been
1371 * incremented before this function was called, and the bitmasks
1372 * to not be filled out until now, in which case we will also
1373 * participate due to our gpnum being behind.
1374 */
1375
1376 /* Since it is coming online, the CPU is in a quiescent state. */
1377 cpu_quiet(cpu, rsp, rdp, lastcomp);
1378 local_irq_restore(flags);
1379}
1380
1381static void __cpuinit rcu_online_cpu(int cpu)
1382{
1383#ifdef CONFIG_NO_HZ
1384 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1385
1386 rdtp->dynticks_nesting = 1;
1387 rdtp->dynticks |= 1; /* need consecutive #s even for hotplug. */
1388 rdtp->dynticks_nmi = (rdtp->dynticks_nmi + 1) & ~0x1;
1389#endif /* #ifdef CONFIG_NO_HZ */
1390 rcu_init_percpu_data(cpu, &rcu_state);
1391 rcu_init_percpu_data(cpu, &rcu_bh_state);
1392 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1393}
1394
1395/*
1396 * Handle CPU online/offline notifcation events.
1397 */
1398static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1399 unsigned long action, void *hcpu)
1400{
1401 long cpu = (long)hcpu;
1402
1403 switch (action) {
1404 case CPU_UP_PREPARE:
1405 case CPU_UP_PREPARE_FROZEN:
1406 rcu_online_cpu(cpu);
1407 break;
1408 case CPU_DEAD:
1409 case CPU_DEAD_FROZEN:
1410 case CPU_UP_CANCELED:
1411 case CPU_UP_CANCELED_FROZEN:
1412 rcu_offline_cpu(cpu);
1413 break;
1414 default:
1415 break;
1416 }
1417 return NOTIFY_OK;
1418}
1419
1420/*
1421 * Compute the per-level fanout, either using the exact fanout specified
1422 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1423 */
1424#ifdef CONFIG_RCU_FANOUT_EXACT
1425static void __init rcu_init_levelspread(struct rcu_state *rsp)
1426{
1427 int i;
1428
1429 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1430 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1431}
1432#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1433static void __init rcu_init_levelspread(struct rcu_state *rsp)
1434{
1435 int ccur;
1436 int cprv;
1437 int i;
1438
1439 cprv = NR_CPUS;
1440 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1441 ccur = rsp->levelcnt[i];
1442 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1443 cprv = ccur;
1444 }
1445}
1446#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1447
1448/*
1449 * Helper function for rcu_init() that initializes one rcu_state structure.
1450 */
1451static void __init rcu_init_one(struct rcu_state *rsp)
1452{
1453 int cpustride = 1;
1454 int i;
1455 int j;
1456 struct rcu_node *rnp;
1457
1458 /* Initialize the level-tracking arrays. */
1459
1460 for (i = 1; i < NUM_RCU_LVLS; i++)
1461 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1462 rcu_init_levelspread(rsp);
1463
1464 /* Initialize the elements themselves, starting from the leaves. */
1465
1466 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1467 cpustride *= rsp->levelspread[i];
1468 rnp = rsp->level[i];
1469 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1470 spin_lock_init(&rnp->lock);
1471 rnp->qsmask = 0;
1472 rnp->qsmaskinit = 0;
1473 rnp->grplo = j * cpustride;
1474 rnp->grphi = (j + 1) * cpustride - 1;
1475 if (rnp->grphi >= NR_CPUS)
1476 rnp->grphi = NR_CPUS - 1;
1477 if (i == 0) {
1478 rnp->grpnum = 0;
1479 rnp->grpmask = 0;
1480 rnp->parent = NULL;
1481 } else {
1482 rnp->grpnum = j % rsp->levelspread[i - 1];
1483 rnp->grpmask = 1UL << rnp->grpnum;
1484 rnp->parent = rsp->level[i - 1] +
1485 j / rsp->levelspread[i - 1];
1486 }
1487 rnp->level = i;
1488 }
1489 }
1490}
1491
1492/*
1493 * Helper macro for __rcu_init(). To be used nowhere else!
1494 * Assigns leaf node pointers into each CPU's rcu_data structure.
1495 */
1496#define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1497do { \
1498 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1499 j = 0; \
1500 for_each_possible_cpu(i) { \
1501 if (i > rnp[j].grphi) \
1502 j++; \
1503 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1504 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1505 } \
1506} while (0)
1507
1508static struct notifier_block __cpuinitdata rcu_nb = {
1509 .notifier_call = rcu_cpu_notify,
1510};
1511
1512void __init __rcu_init(void)
1513{
1514 int i; /* All used by RCU_DATA_PTR_INIT(). */
1515 int j;
1516 struct rcu_node *rnp;
1517
1518 printk(KERN_WARNING "Experimental hierarchical RCU implementation.\n");
1519#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1520 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1521#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1522 rcu_init_one(&rcu_state);
1523 RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
1524 rcu_init_one(&rcu_bh_state);
1525 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
1526
1527 for_each_online_cpu(i)
1528 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1529 /* Register notifier for non-boot CPUs */
1530 register_cpu_notifier(&rcu_nb);
1531 printk(KERN_WARNING "Experimental hierarchical RCU init done.\n");
1532}
1533
1534module_param(blimit, int, 0);
1535module_param(qhimark, int, 0);
1536module_param(qlowmark, int, 0);