rcu: Eliminate unneeded function wrapping
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52/* Data structures. */
53
b668c9cf 54static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 55
64db4cff
PM
56#define RCU_STATE_INITIALIZER(name) { \
57 .level = { &name.node[0] }, \
58 .levelcnt = { \
59 NUM_RCU_LVL_0, /* root of hierarchy. */ \
60 NUM_RCU_LVL_1, \
61 NUM_RCU_LVL_2, \
62 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
63 }, \
83f5b01f 64 .signaled = RCU_GP_IDLE, \
64db4cff
PM
65 .gpnum = -300, \
66 .completed = -300, \
67 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
e74f4c45
PM
68 .orphan_cbs_list = NULL, \
69 .orphan_cbs_tail = &name.orphan_cbs_list, \
70 .orphan_qlen = 0, \
64db4cff
PM
71 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
72 .n_force_qs = 0, \
73 .n_force_qs_ngp = 0, \
74}
75
d6714c22
PM
76struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
77DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 78
6258c4fb
IM
79struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
80DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 81
f41d911f 82
fc2219d4
PM
83/*
84 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
85 * permit this function to be invoked without holding the root rcu_node
86 * structure's ->lock, but of course results can be subject to change.
87 */
88static int rcu_gp_in_progress(struct rcu_state *rsp)
89{
90 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
91}
92
b1f77b05 93/*
d6714c22 94 * Note a quiescent state. Because we do not need to know
b1f77b05 95 * how many quiescent states passed, just if there was at least
d6714c22 96 * one since the start of the grace period, this just sets a flag.
b1f77b05 97 */
d6714c22 98void rcu_sched_qs(int cpu)
b1f77b05 99{
f41d911f
PM
100 struct rcu_data *rdp;
101
f41d911f 102 rdp = &per_cpu(rcu_sched_data, cpu);
c64ac3ce 103 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
104 barrier();
105 rdp->passed_quiesc = 1;
106 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
107}
108
d6714c22 109void rcu_bh_qs(int cpu)
b1f77b05 110{
f41d911f
PM
111 struct rcu_data *rdp;
112
f41d911f 113 rdp = &per_cpu(rcu_bh_data, cpu);
c64ac3ce 114 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
115 barrier();
116 rdp->passed_quiesc = 1;
b1f77b05 117}
64db4cff
PM
118
119#ifdef CONFIG_NO_HZ
90a4d2c0
PM
120DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
121 .dynticks_nesting = 1,
122 .dynticks = 1,
123};
64db4cff
PM
124#endif /* #ifdef CONFIG_NO_HZ */
125
126static int blimit = 10; /* Maximum callbacks per softirq. */
127static int qhimark = 10000; /* If this many pending, ignore blimit. */
128static int qlowmark = 100; /* Once only this many pending, use blimit. */
129
3d76c082
PM
130module_param(blimit, int, 0);
131module_param(qhimark, int, 0);
132module_param(qlowmark, int, 0);
133
64db4cff 134static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 135static int rcu_pending(int cpu);
64db4cff
PM
136
137/*
d6714c22 138 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 139 */
d6714c22 140long rcu_batches_completed_sched(void)
64db4cff 141{
d6714c22 142 return rcu_sched_state.completed;
64db4cff 143}
d6714c22 144EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
145
146/*
147 * Return the number of RCU BH batches processed thus far for debug & stats.
148 */
149long rcu_batches_completed_bh(void)
150{
151 return rcu_bh_state.completed;
152}
153EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
154
155/*
156 * Does the CPU have callbacks ready to be invoked?
157 */
158static int
159cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
160{
161 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
162}
163
164/*
165 * Does the current CPU require a yet-as-unscheduled grace period?
166 */
167static int
168cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
169{
fc2219d4 170 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
171}
172
173/*
174 * Return the root node of the specified rcu_state structure.
175 */
176static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
177{
178 return &rsp->node[0];
179}
180
181#ifdef CONFIG_SMP
182
183/*
184 * If the specified CPU is offline, tell the caller that it is in
185 * a quiescent state. Otherwise, whack it with a reschedule IPI.
186 * Grace periods can end up waiting on an offline CPU when that
187 * CPU is in the process of coming online -- it will be added to the
188 * rcu_node bitmasks before it actually makes it online. The same thing
189 * can happen while a CPU is in the process of coming online. Because this
190 * race is quite rare, we check for it after detecting that the grace
191 * period has been delayed rather than checking each and every CPU
192 * each and every time we start a new grace period.
193 */
194static int rcu_implicit_offline_qs(struct rcu_data *rdp)
195{
196 /*
197 * If the CPU is offline, it is in a quiescent state. We can
198 * trust its state not to change because interrupts are disabled.
199 */
200 if (cpu_is_offline(rdp->cpu)) {
201 rdp->offline_fqs++;
202 return 1;
203 }
204
f41d911f
PM
205 /* If preemptable RCU, no point in sending reschedule IPI. */
206 if (rdp->preemptable)
207 return 0;
208
64db4cff
PM
209 /* The CPU is online, so send it a reschedule IPI. */
210 if (rdp->cpu != smp_processor_id())
211 smp_send_reschedule(rdp->cpu);
212 else
213 set_need_resched();
214 rdp->resched_ipi++;
215 return 0;
216}
217
218#endif /* #ifdef CONFIG_SMP */
219
220#ifdef CONFIG_NO_HZ
64db4cff
PM
221
222/**
223 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
224 *
225 * Enter nohz mode, in other words, -leave- the mode in which RCU
226 * read-side critical sections can occur. (Though RCU read-side
227 * critical sections can occur in irq handlers in nohz mode, a possibility
228 * handled by rcu_irq_enter() and rcu_irq_exit()).
229 */
230void rcu_enter_nohz(void)
231{
232 unsigned long flags;
233 struct rcu_dynticks *rdtp;
234
235 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
236 local_irq_save(flags);
237 rdtp = &__get_cpu_var(rcu_dynticks);
238 rdtp->dynticks++;
239 rdtp->dynticks_nesting--;
86848966 240 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
241 local_irq_restore(flags);
242}
243
244/*
245 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
246 *
247 * Exit nohz mode, in other words, -enter- the mode in which RCU
248 * read-side critical sections normally occur.
249 */
250void rcu_exit_nohz(void)
251{
252 unsigned long flags;
253 struct rcu_dynticks *rdtp;
254
255 local_irq_save(flags);
256 rdtp = &__get_cpu_var(rcu_dynticks);
257 rdtp->dynticks++;
258 rdtp->dynticks_nesting++;
86848966 259 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
260 local_irq_restore(flags);
261 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
262}
263
264/**
265 * rcu_nmi_enter - inform RCU of entry to NMI context
266 *
267 * If the CPU was idle with dynamic ticks active, and there is no
268 * irq handler running, this updates rdtp->dynticks_nmi to let the
269 * RCU grace-period handling know that the CPU is active.
270 */
271void rcu_nmi_enter(void)
272{
273 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
274
275 if (rdtp->dynticks & 0x1)
276 return;
277 rdtp->dynticks_nmi++;
86848966 278 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
279 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
280}
281
282/**
283 * rcu_nmi_exit - inform RCU of exit from NMI context
284 *
285 * If the CPU was idle with dynamic ticks active, and there is no
286 * irq handler running, this updates rdtp->dynticks_nmi to let the
287 * RCU grace-period handling know that the CPU is no longer active.
288 */
289void rcu_nmi_exit(void)
290{
291 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
292
293 if (rdtp->dynticks & 0x1)
294 return;
295 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
296 rdtp->dynticks_nmi++;
86848966 297 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
298}
299
300/**
301 * rcu_irq_enter - inform RCU of entry to hard irq context
302 *
303 * If the CPU was idle with dynamic ticks active, this updates the
304 * rdtp->dynticks to let the RCU handling know that the CPU is active.
305 */
306void rcu_irq_enter(void)
307{
308 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
309
310 if (rdtp->dynticks_nesting++)
311 return;
312 rdtp->dynticks++;
86848966 313 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
314 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
315}
316
317/**
318 * rcu_irq_exit - inform RCU of exit from hard irq context
319 *
320 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
321 * to put let the RCU handling be aware that the CPU is going back to idle
322 * with no ticks.
323 */
324void rcu_irq_exit(void)
325{
326 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
327
328 if (--rdtp->dynticks_nesting)
329 return;
330 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
331 rdtp->dynticks++;
86848966 332 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
333
334 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 335 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
336 __get_cpu_var(rcu_bh_data).nxtlist)
337 set_need_resched();
338}
339
64db4cff
PM
340#ifdef CONFIG_SMP
341
64db4cff
PM
342/*
343 * Snapshot the specified CPU's dynticks counter so that we can later
344 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 345 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
346 */
347static int dyntick_save_progress_counter(struct rcu_data *rdp)
348{
349 int ret;
350 int snap;
351 int snap_nmi;
352
353 snap = rdp->dynticks->dynticks;
354 snap_nmi = rdp->dynticks->dynticks_nmi;
355 smp_mb(); /* Order sampling of snap with end of grace period. */
356 rdp->dynticks_snap = snap;
357 rdp->dynticks_nmi_snap = snap_nmi;
358 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
359 if (ret)
360 rdp->dynticks_fqs++;
361 return ret;
362}
363
364/*
365 * Return true if the specified CPU has passed through a quiescent
366 * state by virtue of being in or having passed through an dynticks
367 * idle state since the last call to dyntick_save_progress_counter()
368 * for this same CPU.
369 */
370static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
371{
372 long curr;
373 long curr_nmi;
374 long snap;
375 long snap_nmi;
376
377 curr = rdp->dynticks->dynticks;
378 snap = rdp->dynticks_snap;
379 curr_nmi = rdp->dynticks->dynticks_nmi;
380 snap_nmi = rdp->dynticks_nmi_snap;
381 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
382
383 /*
384 * If the CPU passed through or entered a dynticks idle phase with
385 * no active irq/NMI handlers, then we can safely pretend that the CPU
386 * already acknowledged the request to pass through a quiescent
387 * state. Either way, that CPU cannot possibly be in an RCU
388 * read-side critical section that started before the beginning
389 * of the current RCU grace period.
390 */
391 if ((curr != snap || (curr & 0x1) == 0) &&
392 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
393 rdp->dynticks_fqs++;
394 return 1;
395 }
396
397 /* Go check for the CPU being offline. */
398 return rcu_implicit_offline_qs(rdp);
399}
400
401#endif /* #ifdef CONFIG_SMP */
402
403#else /* #ifdef CONFIG_NO_HZ */
404
64db4cff
PM
405#ifdef CONFIG_SMP
406
64db4cff
PM
407static int dyntick_save_progress_counter(struct rcu_data *rdp)
408{
409 return 0;
410}
411
412static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
413{
414 return rcu_implicit_offline_qs(rdp);
415}
416
417#endif /* #ifdef CONFIG_SMP */
418
419#endif /* #else #ifdef CONFIG_NO_HZ */
420
421#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
422
423static void record_gp_stall_check_time(struct rcu_state *rsp)
424{
425 rsp->gp_start = jiffies;
426 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
427}
428
429static void print_other_cpu_stall(struct rcu_state *rsp)
430{
431 int cpu;
432 long delta;
433 unsigned long flags;
434 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
435
436 /* Only let one CPU complain about others per time interval. */
437
438 spin_lock_irqsave(&rnp->lock, flags);
439 delta = jiffies - rsp->jiffies_stall;
fc2219d4 440 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
64db4cff
PM
441 spin_unlock_irqrestore(&rnp->lock, flags);
442 return;
443 }
444 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
445
446 /*
447 * Now rat on any tasks that got kicked up to the root rcu_node
448 * due to CPU offlining.
449 */
450 rcu_print_task_stall(rnp);
64db4cff
PM
451 spin_unlock_irqrestore(&rnp->lock, flags);
452
453 /* OK, time to rat on our buddy... */
454
455 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
a0b6c9a7 456 rcu_for_each_leaf_node(rsp, rnp) {
f41d911f 457 rcu_print_task_stall(rnp);
a0b6c9a7 458 if (rnp->qsmask == 0)
64db4cff 459 continue;
a0b6c9a7
PM
460 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
461 if (rnp->qsmask & (1UL << cpu))
462 printk(" %d", rnp->grplo + cpu);
64db4cff
PM
463 }
464 printk(" (detected by %d, t=%ld jiffies)\n",
465 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
466 trigger_all_cpu_backtrace();
467
64db4cff
PM
468 force_quiescent_state(rsp, 0); /* Kick them all. */
469}
470
471static void print_cpu_stall(struct rcu_state *rsp)
472{
473 unsigned long flags;
474 struct rcu_node *rnp = rcu_get_root(rsp);
475
476 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
477 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
478 trigger_all_cpu_backtrace();
479
64db4cff
PM
480 spin_lock_irqsave(&rnp->lock, flags);
481 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
482 rsp->jiffies_stall =
483 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
484 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 485
64db4cff
PM
486 set_need_resched(); /* kick ourselves to get things going. */
487}
488
489static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
490{
491 long delta;
492 struct rcu_node *rnp;
493
494 delta = jiffies - rsp->jiffies_stall;
495 rnp = rdp->mynode;
496 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
497
498 /* We haven't checked in, so go dump stack. */
499 print_cpu_stall(rsp);
500
fc2219d4 501 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
502
503 /* They had two time units to dump stack, so complain. */
504 print_other_cpu_stall(rsp);
505 }
506}
507
508#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
509
510static void record_gp_stall_check_time(struct rcu_state *rsp)
511{
512}
513
514static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
515{
516}
517
518#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
519
520/*
521 * Update CPU-local rcu_data state to record the newly noticed grace period.
522 * This is used both when we started the grace period and when we notice
9160306e
PM
523 * that someone else started the grace period. The caller must hold the
524 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
525 * and must have irqs disabled.
64db4cff 526 */
9160306e
PM
527static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
528{
529 if (rdp->gpnum != rnp->gpnum) {
530 rdp->qs_pending = 1;
531 rdp->passed_quiesc = 0;
532 rdp->gpnum = rnp->gpnum;
533 }
534}
535
64db4cff
PM
536static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
537{
9160306e
PM
538 unsigned long flags;
539 struct rcu_node *rnp;
540
541 local_irq_save(flags);
542 rnp = rdp->mynode;
543 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
544 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
545 local_irq_restore(flags);
546 return;
547 }
548 __note_new_gpnum(rsp, rnp, rdp);
549 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
550}
551
552/*
553 * Did someone else start a new RCU grace period start since we last
554 * checked? Update local state appropriately if so. Must be called
555 * on the CPU corresponding to rdp.
556 */
557static int
558check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
559{
560 unsigned long flags;
561 int ret = 0;
562
563 local_irq_save(flags);
564 if (rdp->gpnum != rsp->gpnum) {
565 note_new_gpnum(rsp, rdp);
566 ret = 1;
567 }
568 local_irq_restore(flags);
569 return ret;
570}
571
d09b62df
PM
572/*
573 * Advance this CPU's callbacks, but only if the current grace period
574 * has ended. This may be called only from the CPU to whom the rdp
575 * belongs. In addition, the corresponding leaf rcu_node structure's
576 * ->lock must be held by the caller, with irqs disabled.
577 */
578static void
579__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
580{
581 /* Did another grace period end? */
582 if (rdp->completed != rnp->completed) {
583
584 /* Advance callbacks. No harm if list empty. */
585 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
586 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
587 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
588
589 /* Remember that we saw this grace-period completion. */
590 rdp->completed = rnp->completed;
591 }
592}
593
594/*
595 * Advance this CPU's callbacks, but only if the current grace period
596 * has ended. This may be called only from the CPU to whom the rdp
597 * belongs.
598 */
599static void
600rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
601{
602 unsigned long flags;
603 struct rcu_node *rnp;
604
605 local_irq_save(flags);
606 rnp = rdp->mynode;
607 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
608 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
609 local_irq_restore(flags);
610 return;
611 }
612 __rcu_process_gp_end(rsp, rnp, rdp);
613 spin_unlock_irqrestore(&rnp->lock, flags);
614}
615
616/*
617 * Do per-CPU grace-period initialization for running CPU. The caller
618 * must hold the lock of the leaf rcu_node structure corresponding to
619 * this CPU.
620 */
621static void
622rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
623{
624 /* Prior grace period ended, so advance callbacks for current CPU. */
625 __rcu_process_gp_end(rsp, rnp, rdp);
626
627 /*
628 * Because this CPU just now started the new grace period, we know
629 * that all of its callbacks will be covered by this upcoming grace
630 * period, even the ones that were registered arbitrarily recently.
631 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
632 *
633 * Other CPUs cannot be sure exactly when the grace period started.
634 * Therefore, their recently registered callbacks must pass through
635 * an additional RCU_NEXT_READY stage, so that they will be handled
636 * by the next RCU grace period.
637 */
638 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
639 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
640
641 /* Set state so that this CPU will detect the next quiescent state. */
642 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
643}
644
64db4cff
PM
645/*
646 * Start a new RCU grace period if warranted, re-initializing the hierarchy
647 * in preparation for detecting the next grace period. The caller must hold
648 * the root node's ->lock, which is released before return. Hard irqs must
649 * be disabled.
650 */
651static void
652rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
653 __releases(rcu_get_root(rsp)->lock)
654{
655 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
656 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
657
658 if (!cpu_needs_another_gp(rsp, rdp)) {
b32e9eb6
PM
659 if (rnp->completed == rsp->completed) {
660 spin_unlock_irqrestore(&rnp->lock, flags);
661 return;
662 }
663 spin_unlock(&rnp->lock); /* irqs remain disabled. */
664
665 /*
666 * Propagate new ->completed value to rcu_node structures
667 * so that other CPUs don't have to wait until the start
668 * of the next grace period to process their callbacks.
669 */
670 rcu_for_each_node_breadth_first(rsp, rnp) {
671 spin_lock(&rnp->lock); /* irqs already disabled. */
672 rnp->completed = rsp->completed;
673 spin_unlock(&rnp->lock); /* irqs remain disabled. */
674 }
675 local_irq_restore(flags);
64db4cff
PM
676 return;
677 }
678
679 /* Advance to a new grace period and initialize state. */
680 rsp->gpnum++;
c3422bea 681 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
682 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
683 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 684 record_gp_stall_check_time(rsp);
64db4cff 685
64db4cff
PM
686 /* Special-case the common single-level case. */
687 if (NUM_RCU_NODES == 1) {
b0e165c0 688 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 689 rnp->qsmask = rnp->qsmaskinit;
de078d87 690 rnp->gpnum = rsp->gpnum;
d09b62df 691 rnp->completed = rsp->completed;
c12172c0 692 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 693 rcu_start_gp_per_cpu(rsp, rnp, rdp);
64db4cff
PM
694 spin_unlock_irqrestore(&rnp->lock, flags);
695 return;
696 }
697
698 spin_unlock(&rnp->lock); /* leave irqs disabled. */
699
700
701 /* Exclude any concurrent CPU-hotplug operations. */
702 spin_lock(&rsp->onofflock); /* irqs already disabled. */
703
704 /*
b835db1f
PM
705 * Set the quiescent-state-needed bits in all the rcu_node
706 * structures for all currently online CPUs in breadth-first
707 * order, starting from the root rcu_node structure. This
708 * operation relies on the layout of the hierarchy within the
709 * rsp->node[] array. Note that other CPUs will access only
710 * the leaves of the hierarchy, which still indicate that no
711 * grace period is in progress, at least until the corresponding
712 * leaf node has been initialized. In addition, we have excluded
713 * CPU-hotplug operations.
64db4cff
PM
714 *
715 * Note that the grace period cannot complete until we finish
716 * the initialization process, as there will be at least one
717 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
718 * one corresponding to this CPU, due to the fact that we have
719 * irqs disabled.
64db4cff 720 */
a0b6c9a7 721 rcu_for_each_node_breadth_first(rsp, rnp) {
83f5b01f 722 spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 723 rcu_preempt_check_blocked_tasks(rnp);
49e29126 724 rnp->qsmask = rnp->qsmaskinit;
de078d87 725 rnp->gpnum = rsp->gpnum;
d09b62df
PM
726 rnp->completed = rsp->completed;
727 if (rnp == rdp->mynode)
728 rcu_start_gp_per_cpu(rsp, rnp, rdp);
83f5b01f 729 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
730 }
731
83f5b01f
PM
732 rnp = rcu_get_root(rsp);
733 spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 734 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
83f5b01f 735 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
736 spin_unlock_irqrestore(&rsp->onofflock, flags);
737}
738
f41d911f
PM
739/*
740 * Clean up after the prior grace period and let rcu_start_gp() start up
741 * the next grace period if one is needed. Note that the caller must
742 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
743 */
744static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
fc2219d4 745 __releases(rcu_get_root(rsp)->lock)
f41d911f 746{
fc2219d4 747 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 748 rsp->completed = rsp->gpnum;
83f5b01f 749 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
750 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
751}
752
64db4cff
PM
753/*
754 * Similar to cpu_quiet(), for which it is a helper function. Allows
755 * a group of CPUs to be quieted at one go, though all the CPUs in the
756 * group must be represented by the same leaf rcu_node structure.
757 * That structure's lock must be held upon entry, and it is released
758 * before return.
759 */
760static void
761cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
762 unsigned long flags)
763 __releases(rnp->lock)
764{
28ecd580
PM
765 struct rcu_node *rnp_c;
766
64db4cff
PM
767 /* Walk up the rcu_node hierarchy. */
768 for (;;) {
769 if (!(rnp->qsmask & mask)) {
770
771 /* Our bit has already been cleared, so done. */
772 spin_unlock_irqrestore(&rnp->lock, flags);
773 return;
774 }
775 rnp->qsmask &= ~mask;
f41d911f 776 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
777
778 /* Other bits still set at this level, so done. */
779 spin_unlock_irqrestore(&rnp->lock, flags);
780 return;
781 }
782 mask = rnp->grpmask;
783 if (rnp->parent == NULL) {
784
785 /* No more levels. Exit loop holding root lock. */
786
787 break;
788 }
789 spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 790 rnp_c = rnp;
64db4cff
PM
791 rnp = rnp->parent;
792 spin_lock_irqsave(&rnp->lock, flags);
28ecd580 793 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
794 }
795
796 /*
797 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
798 * state for this grace period. Invoke cpu_quiet_msk_finish()
799 * to clean up and start the next grace period if one is needed.
64db4cff 800 */
f41d911f 801 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
802}
803
804/*
805 * Record a quiescent state for the specified CPU, which must either be
e7d8842e
PM
806 * the current CPU. The lastcomp argument is used to make sure we are
807 * still in the grace period of interest. We don't want to end the current
808 * grace period based on quiescent states detected in an earlier grace
809 * period!
64db4cff
PM
810 */
811static void
812cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
813{
814 unsigned long flags;
815 unsigned long mask;
816 struct rcu_node *rnp;
817
818 rnp = rdp->mynode;
819 spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 820 if (lastcomp != rnp->completed) {
64db4cff
PM
821
822 /*
823 * Someone beat us to it for this grace period, so leave.
824 * The race with GP start is resolved by the fact that we
825 * hold the leaf rcu_node lock, so that the per-CPU bits
826 * cannot yet be initialized -- so we would simply find our
827 * CPU's bit already cleared in cpu_quiet_msk() if this race
828 * occurred.
829 */
830 rdp->passed_quiesc = 0; /* try again later! */
831 spin_unlock_irqrestore(&rnp->lock, flags);
832 return;
833 }
834 mask = rdp->grpmask;
835 if ((rnp->qsmask & mask) == 0) {
836 spin_unlock_irqrestore(&rnp->lock, flags);
837 } else {
838 rdp->qs_pending = 0;
839
840 /*
841 * This GP can't end until cpu checks in, so all of our
842 * callbacks can be processed during the next GP.
843 */
64db4cff
PM
844 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
845
846 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
847 }
848}
849
850/*
851 * Check to see if there is a new grace period of which this CPU
852 * is not yet aware, and if so, set up local rcu_data state for it.
853 * Otherwise, see if this CPU has just passed through its first
854 * quiescent state for this grace period, and record that fact if so.
855 */
856static void
857rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
858{
859 /* If there is now a new grace period, record and return. */
860 if (check_for_new_grace_period(rsp, rdp))
861 return;
862
863 /*
864 * Does this CPU still need to do its part for current grace period?
865 * If no, return and let the other CPUs do their part as well.
866 */
867 if (!rdp->qs_pending)
868 return;
869
870 /*
871 * Was there a quiescent state since the beginning of the grace
872 * period? If no, then exit and wait for the next call.
873 */
874 if (!rdp->passed_quiesc)
875 return;
876
877 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
878 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
879}
880
881#ifdef CONFIG_HOTPLUG_CPU
882
e74f4c45
PM
883/*
884 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
885 * specified flavor of RCU. The callbacks will be adopted by the next
886 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
887 * comes first. Because this is invoked from the CPU_DYING notifier,
888 * irqs are already disabled.
889 */
890static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
891{
892 int i;
893 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
894
895 if (rdp->nxtlist == NULL)
896 return; /* irqs disabled, so comparison is stable. */
897 spin_lock(&rsp->onofflock); /* irqs already disabled. */
898 *rsp->orphan_cbs_tail = rdp->nxtlist;
899 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
900 rdp->nxtlist = NULL;
901 for (i = 0; i < RCU_NEXT_SIZE; i++)
902 rdp->nxttail[i] = &rdp->nxtlist;
903 rsp->orphan_qlen += rdp->qlen;
904 rdp->qlen = 0;
905 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
906}
907
908/*
909 * Adopt previously orphaned RCU callbacks.
910 */
911static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
912{
913 unsigned long flags;
914 struct rcu_data *rdp;
915
916 spin_lock_irqsave(&rsp->onofflock, flags);
917 rdp = rsp->rda[smp_processor_id()];
918 if (rsp->orphan_cbs_list == NULL) {
919 spin_unlock_irqrestore(&rsp->onofflock, flags);
920 return;
921 }
922 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
923 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
924 rdp->qlen += rsp->orphan_qlen;
925 rsp->orphan_cbs_list = NULL;
926 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
927 rsp->orphan_qlen = 0;
928 spin_unlock_irqrestore(&rsp->onofflock, flags);
929}
930
64db4cff
PM
931/*
932 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
933 * and move all callbacks from the outgoing CPU to the current one.
934 */
935static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
936{
64db4cff 937 unsigned long flags;
64db4cff 938 unsigned long mask;
b668c9cf 939 int need_quiet = 0;
64db4cff 940 struct rcu_data *rdp = rsp->rda[cpu];
64db4cff
PM
941 struct rcu_node *rnp;
942
943 /* Exclude any attempts to start a new grace period. */
944 spin_lock_irqsave(&rsp->onofflock, flags);
945
946 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 947 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
948 mask = rdp->grpmask; /* rnp->grplo is constant. */
949 do {
950 spin_lock(&rnp->lock); /* irqs already disabled. */
951 rnp->qsmaskinit &= ~mask;
952 if (rnp->qsmaskinit != 0) {
b668c9cf
PM
953 if (rnp != rdp->mynode)
954 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
955 break;
956 }
b668c9cf
PM
957 if (rnp == rdp->mynode)
958 need_quiet = rcu_preempt_offline_tasks(rsp, rnp, rdp);
959 else
960 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 961 mask = rnp->grpmask;
64db4cff
PM
962 rnp = rnp->parent;
963 } while (rnp != NULL);
64db4cff 964
b668c9cf
PM
965 /*
966 * We still hold the leaf rcu_node structure lock here, and
967 * irqs are still disabled. The reason for this subterfuge is
968 * because invoking task_quiet() with ->onofflock held leads
969 * to deadlock.
970 */
971 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
972 rnp = rdp->mynode;
973 if (need_quiet)
974 task_quiet(rnp, flags);
975 else
976 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 977
e74f4c45 978 rcu_adopt_orphan_cbs(rsp);
64db4cff
PM
979}
980
981/*
982 * Remove the specified CPU from the RCU hierarchy and move any pending
983 * callbacks that it might have to the current CPU. This code assumes
984 * that at least one CPU in the system will remain running at all times.
985 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
986 */
987static void rcu_offline_cpu(int cpu)
988{
d6714c22 989 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 990 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 991 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
992}
993
994#else /* #ifdef CONFIG_HOTPLUG_CPU */
995
e74f4c45
PM
996static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
997{
998}
999
1000static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1001{
1002}
1003
64db4cff
PM
1004static void rcu_offline_cpu(int cpu)
1005{
1006}
1007
1008#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1009
1010/*
1011 * Invoke any RCU callbacks that have made it to the end of their grace
1012 * period. Thottle as specified by rdp->blimit.
1013 */
37c72e56 1014static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1015{
1016 unsigned long flags;
1017 struct rcu_head *next, *list, **tail;
1018 int count;
1019
1020 /* If no callbacks are ready, just return.*/
1021 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1022 return;
1023
1024 /*
1025 * Extract the list of ready callbacks, disabling to prevent
1026 * races with call_rcu() from interrupt handlers.
1027 */
1028 local_irq_save(flags);
1029 list = rdp->nxtlist;
1030 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1031 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1032 tail = rdp->nxttail[RCU_DONE_TAIL];
1033 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1034 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1035 rdp->nxttail[count] = &rdp->nxtlist;
1036 local_irq_restore(flags);
1037
1038 /* Invoke callbacks. */
1039 count = 0;
1040 while (list) {
1041 next = list->next;
1042 prefetch(next);
1043 list->func(list);
1044 list = next;
1045 if (++count >= rdp->blimit)
1046 break;
1047 }
1048
1049 local_irq_save(flags);
1050
1051 /* Update count, and requeue any remaining callbacks. */
1052 rdp->qlen -= count;
1053 if (list != NULL) {
1054 *tail = rdp->nxtlist;
1055 rdp->nxtlist = list;
1056 for (count = 0; count < RCU_NEXT_SIZE; count++)
1057 if (&rdp->nxtlist == rdp->nxttail[count])
1058 rdp->nxttail[count] = tail;
1059 else
1060 break;
1061 }
1062
1063 /* Reinstate batch limit if we have worked down the excess. */
1064 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1065 rdp->blimit = blimit;
1066
37c72e56
PM
1067 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1068 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1069 rdp->qlen_last_fqs_check = 0;
1070 rdp->n_force_qs_snap = rsp->n_force_qs;
1071 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1072 rdp->qlen_last_fqs_check = rdp->qlen;
1073
64db4cff
PM
1074 local_irq_restore(flags);
1075
1076 /* Re-raise the RCU softirq if there are callbacks remaining. */
1077 if (cpu_has_callbacks_ready_to_invoke(rdp))
1078 raise_softirq(RCU_SOFTIRQ);
1079}
1080
1081/*
1082 * Check to see if this CPU is in a non-context-switch quiescent state
1083 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1084 * Also schedule the RCU softirq handler.
1085 *
1086 * This function must be called with hardirqs disabled. It is normally
1087 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1088 * false, there is no point in invoking rcu_check_callbacks().
1089 */
1090void rcu_check_callbacks(int cpu, int user)
1091{
a157229c
PM
1092 if (!rcu_pending(cpu))
1093 return; /* if nothing for RCU to do. */
64db4cff 1094 if (user ||
a6826048
PM
1095 (idle_cpu(cpu) && rcu_scheduler_active &&
1096 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1097
1098 /*
1099 * Get here if this CPU took its interrupt from user
1100 * mode or from the idle loop, and if this is not a
1101 * nested interrupt. In this case, the CPU is in
d6714c22 1102 * a quiescent state, so note it.
64db4cff
PM
1103 *
1104 * No memory barrier is required here because both
d6714c22
PM
1105 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1106 * variables that other CPUs neither access nor modify,
1107 * at least not while the corresponding CPU is online.
64db4cff
PM
1108 */
1109
d6714c22
PM
1110 rcu_sched_qs(cpu);
1111 rcu_bh_qs(cpu);
64db4cff
PM
1112
1113 } else if (!in_softirq()) {
1114
1115 /*
1116 * Get here if this CPU did not take its interrupt from
1117 * softirq, in other words, if it is not interrupting
1118 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1119 * critical section, so note it.
64db4cff
PM
1120 */
1121
d6714c22 1122 rcu_bh_qs(cpu);
64db4cff 1123 }
f41d911f 1124 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1125 raise_softirq(RCU_SOFTIRQ);
1126}
1127
1128#ifdef CONFIG_SMP
1129
1130/*
1131 * Scan the leaf rcu_node structures, processing dyntick state for any that
1132 * have not yet encountered a quiescent state, using the function specified.
1133 * Returns 1 if the current grace period ends while scanning (possibly
1134 * because we made it end).
1135 */
1136static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1137 int (*f)(struct rcu_data *))
1138{
1139 unsigned long bit;
1140 int cpu;
1141 unsigned long flags;
1142 unsigned long mask;
a0b6c9a7 1143 struct rcu_node *rnp;
64db4cff 1144
a0b6c9a7 1145 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1146 mask = 0;
a0b6c9a7 1147 spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 1148 if (rnp->completed != lastcomp) {
a0b6c9a7 1149 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1150 return 1;
1151 }
a0b6c9a7
PM
1152 if (rnp->qsmask == 0) {
1153 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1154 continue;
1155 }
a0b6c9a7 1156 cpu = rnp->grplo;
64db4cff 1157 bit = 1;
a0b6c9a7
PM
1158 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1159 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
64db4cff
PM
1160 mask |= bit;
1161 }
560d4bc0 1162 if (mask != 0 && rnp->completed == lastcomp) {
64db4cff 1163
a0b6c9a7
PM
1164 /* cpu_quiet_msk() releases rnp->lock. */
1165 cpu_quiet_msk(mask, rsp, rnp, flags);
64db4cff
PM
1166 continue;
1167 }
a0b6c9a7 1168 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1169 }
1170 return 0;
1171}
1172
1173/*
1174 * Force quiescent states on reluctant CPUs, and also detect which
1175 * CPUs are in dyntick-idle mode.
1176 */
1177static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1178{
1179 unsigned long flags;
1180 long lastcomp;
64db4cff
PM
1181 struct rcu_node *rnp = rcu_get_root(rsp);
1182 u8 signaled;
281d150c 1183 u8 forcenow;
64db4cff 1184
fc2219d4 1185 if (!rcu_gp_in_progress(rsp))
64db4cff
PM
1186 return; /* No grace period in progress, nothing to force. */
1187 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1188 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1189 return; /* Someone else is already on the job. */
1190 }
1191 if (relaxed &&
ef631b0c 1192 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1193 goto unlock_ret; /* no emergency and done recently. */
1194 rsp->n_force_qs++;
1195 spin_lock(&rnp->lock);
8e9aa8f0 1196 lastcomp = rsp->gpnum - 1;
64db4cff
PM
1197 signaled = rsp->signaled;
1198 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1199 if(!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1200 rsp->n_force_qs_ngp++;
1201 spin_unlock(&rnp->lock);
1202 goto unlock_ret; /* no GP in progress, time updated. */
1203 }
1204 spin_unlock(&rnp->lock);
1205 switch (signaled) {
83f5b01f 1206 case RCU_GP_IDLE:
64db4cff
PM
1207 case RCU_GP_INIT:
1208
83f5b01f 1209 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1210
1211 case RCU_SAVE_DYNTICK:
1212
1213 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1214 break; /* So gcc recognizes the dead code. */
1215
1216 /* Record dyntick-idle state. */
1217 if (rcu_process_dyntick(rsp, lastcomp,
1218 dyntick_save_progress_counter))
1219 goto unlock_ret;
281d150c
PM
1220 /* fall into next case. */
1221
1222 case RCU_SAVE_COMPLETED:
64db4cff
PM
1223
1224 /* Update state, record completion counter. */
281d150c 1225 forcenow = 0;
64db4cff 1226 spin_lock(&rnp->lock);
560d4bc0
PM
1227 if (lastcomp + 1 == rsp->gpnum &&
1228 lastcomp == rsp->completed &&
281d150c 1229 rsp->signaled == signaled) {
64db4cff 1230 rsp->signaled = RCU_FORCE_QS;
8e9aa8f0 1231 rsp->completed_fqs = lastcomp;
281d150c 1232 forcenow = signaled == RCU_SAVE_COMPLETED;
64db4cff
PM
1233 }
1234 spin_unlock(&rnp->lock);
281d150c
PM
1235 if (!forcenow)
1236 break;
1237 /* fall into next case. */
64db4cff
PM
1238
1239 case RCU_FORCE_QS:
1240
1241 /* Check dyntick-idle state, send IPI to laggarts. */
8e9aa8f0 1242 if (rcu_process_dyntick(rsp, rsp->completed_fqs,
64db4cff
PM
1243 rcu_implicit_dynticks_qs))
1244 goto unlock_ret;
1245
1246 /* Leave state in case more forcing is required. */
1247
1248 break;
1249 }
1250unlock_ret:
1251 spin_unlock_irqrestore(&rsp->fqslock, flags);
1252}
1253
1254#else /* #ifdef CONFIG_SMP */
1255
1256static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1257{
1258 set_need_resched();
1259}
1260
1261#endif /* #else #ifdef CONFIG_SMP */
1262
1263/*
1264 * This does the RCU processing work from softirq context for the
1265 * specified rcu_state and rcu_data structures. This may be called
1266 * only from the CPU to whom the rdp belongs.
1267 */
1268static void
1269__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1270{
1271 unsigned long flags;
1272
2e597558
PM
1273 WARN_ON_ONCE(rdp->beenonline == 0);
1274
64db4cff
PM
1275 /*
1276 * If an RCU GP has gone long enough, go check for dyntick
1277 * idle CPUs and, if needed, send resched IPIs.
1278 */
ef631b0c 1279 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1280 force_quiescent_state(rsp, 1);
1281
1282 /*
1283 * Advance callbacks in response to end of earlier grace
1284 * period that some other CPU ended.
1285 */
1286 rcu_process_gp_end(rsp, rdp);
1287
1288 /* Update RCU state based on any recent quiescent states. */
1289 rcu_check_quiescent_state(rsp, rdp);
1290
1291 /* Does this CPU require a not-yet-started grace period? */
1292 if (cpu_needs_another_gp(rsp, rdp)) {
1293 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1294 rcu_start_gp(rsp, flags); /* releases above lock */
1295 }
1296
1297 /* If there are callbacks ready, invoke them. */
37c72e56 1298 rcu_do_batch(rsp, rdp);
64db4cff
PM
1299}
1300
1301/*
1302 * Do softirq processing for the current CPU.
1303 */
1304static void rcu_process_callbacks(struct softirq_action *unused)
1305{
1306 /*
1307 * Memory references from any prior RCU read-side critical sections
1308 * executed by the interrupted code must be seen before any RCU
1309 * grace-period manipulations below.
1310 */
1311 smp_mb(); /* See above block comment. */
1312
d6714c22
PM
1313 __rcu_process_callbacks(&rcu_sched_state,
1314 &__get_cpu_var(rcu_sched_data));
64db4cff 1315 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1316 rcu_preempt_process_callbacks();
64db4cff
PM
1317
1318 /*
1319 * Memory references from any later RCU read-side critical sections
1320 * executed by the interrupted code must be seen after any RCU
1321 * grace-period manipulations above.
1322 */
1323 smp_mb(); /* See above block comment. */
1324}
1325
1326static void
1327__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1328 struct rcu_state *rsp)
1329{
1330 unsigned long flags;
1331 struct rcu_data *rdp;
1332
1333 head->func = func;
1334 head->next = NULL;
1335
1336 smp_mb(); /* Ensure RCU update seen before callback registry. */
1337
1338 /*
1339 * Opportunistically note grace-period endings and beginnings.
1340 * Note that we might see a beginning right after we see an
1341 * end, but never vice versa, since this CPU has to pass through
1342 * a quiescent state betweentimes.
1343 */
1344 local_irq_save(flags);
1345 rdp = rsp->rda[smp_processor_id()];
1346 rcu_process_gp_end(rsp, rdp);
1347 check_for_new_grace_period(rsp, rdp);
1348
1349 /* Add the callback to our list. */
1350 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1351 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1352
1353 /* Start a new grace period if one not already started. */
fc2219d4 1354 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1355 unsigned long nestflag;
1356 struct rcu_node *rnp_root = rcu_get_root(rsp);
1357
1358 spin_lock_irqsave(&rnp_root->lock, nestflag);
1359 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1360 }
1361
37c72e56
PM
1362 /*
1363 * Force the grace period if too many callbacks or too long waiting.
1364 * Enforce hysteresis, and don't invoke force_quiescent_state()
1365 * if some other CPU has recently done so. Also, don't bother
1366 * invoking force_quiescent_state() if the newly enqueued callback
1367 * is the only one waiting for a grace period to complete.
1368 */
1369 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1370 rdp->blimit = LONG_MAX;
37c72e56
PM
1371 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1372 *rdp->nxttail[RCU_DONE_TAIL] != head)
1373 force_quiescent_state(rsp, 0);
1374 rdp->n_force_qs_snap = rsp->n_force_qs;
1375 rdp->qlen_last_fqs_check = rdp->qlen;
ef631b0c 1376 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1377 force_quiescent_state(rsp, 1);
1378 local_irq_restore(flags);
1379}
1380
1381/*
d6714c22 1382 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1383 */
d6714c22 1384void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1385{
d6714c22 1386 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1387}
d6714c22 1388EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1389
1390/*
1391 * Queue an RCU for invocation after a quicker grace period.
1392 */
1393void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1394{
1395 __call_rcu(head, func, &rcu_bh_state);
1396}
1397EXPORT_SYMBOL_GPL(call_rcu_bh);
1398
1399/*
1400 * Check to see if there is any immediate RCU-related work to be done
1401 * by the current CPU, for the specified type of RCU, returning 1 if so.
1402 * The checks are in order of increasing expense: checks that can be
1403 * carried out against CPU-local state are performed first. However,
1404 * we must check for CPU stalls first, else we might not get a chance.
1405 */
1406static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1407{
2f51f988
PM
1408 struct rcu_node *rnp = rdp->mynode;
1409
64db4cff
PM
1410 rdp->n_rcu_pending++;
1411
1412 /* Check for CPU stalls, if enabled. */
1413 check_cpu_stall(rsp, rdp);
1414
1415 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1416 if (rdp->qs_pending) {
1417 rdp->n_rp_qs_pending++;
64db4cff 1418 return 1;
7ba5c840 1419 }
64db4cff
PM
1420
1421 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1422 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1423 rdp->n_rp_cb_ready++;
64db4cff 1424 return 1;
7ba5c840 1425 }
64db4cff
PM
1426
1427 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1428 if (cpu_needs_another_gp(rsp, rdp)) {
1429 rdp->n_rp_cpu_needs_gp++;
64db4cff 1430 return 1;
7ba5c840 1431 }
64db4cff
PM
1432
1433 /* Has another RCU grace period completed? */
2f51f988 1434 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1435 rdp->n_rp_gp_completed++;
64db4cff 1436 return 1;
7ba5c840 1437 }
64db4cff
PM
1438
1439 /* Has a new RCU grace period started? */
2f51f988 1440 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1441 rdp->n_rp_gp_started++;
64db4cff 1442 return 1;
7ba5c840 1443 }
64db4cff
PM
1444
1445 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1446 if (rcu_gp_in_progress(rsp) &&
7ba5c840
PM
1447 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1448 rdp->n_rp_need_fqs++;
64db4cff 1449 return 1;
7ba5c840 1450 }
64db4cff
PM
1451
1452 /* nothing to do */
7ba5c840 1453 rdp->n_rp_need_nothing++;
64db4cff
PM
1454 return 0;
1455}
1456
1457/*
1458 * Check to see if there is any immediate RCU-related work to be done
1459 * by the current CPU, returning 1 if so. This function is part of the
1460 * RCU implementation; it is -not- an exported member of the RCU API.
1461 */
a157229c 1462static int rcu_pending(int cpu)
64db4cff 1463{
d6714c22 1464 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1465 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1466 rcu_preempt_pending(cpu);
64db4cff
PM
1467}
1468
1469/*
1470 * Check to see if any future RCU-related work will need to be done
1471 * by the current CPU, even if none need be done immediately, returning
1472 * 1 if so. This function is part of the RCU implementation; it is -not-
1473 * an exported member of the RCU API.
1474 */
1475int rcu_needs_cpu(int cpu)
1476{
1477 /* RCU callbacks either ready or pending? */
d6714c22 1478 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1479 per_cpu(rcu_bh_data, cpu).nxtlist ||
1480 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1481}
1482
d0ec774c
PM
1483static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1484static atomic_t rcu_barrier_cpu_count;
1485static DEFINE_MUTEX(rcu_barrier_mutex);
1486static struct completion rcu_barrier_completion;
d0ec774c
PM
1487
1488static void rcu_barrier_callback(struct rcu_head *notused)
1489{
1490 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1491 complete(&rcu_barrier_completion);
1492}
1493
1494/*
1495 * Called with preemption disabled, and from cross-cpu IRQ context.
1496 */
1497static void rcu_barrier_func(void *type)
1498{
1499 int cpu = smp_processor_id();
1500 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1501 void (*call_rcu_func)(struct rcu_head *head,
1502 void (*func)(struct rcu_head *head));
1503
1504 atomic_inc(&rcu_barrier_cpu_count);
1505 call_rcu_func = type;
1506 call_rcu_func(head, rcu_barrier_callback);
1507}
1508
d0ec774c
PM
1509/*
1510 * Orchestrate the specified type of RCU barrier, waiting for all
1511 * RCU callbacks of the specified type to complete.
1512 */
e74f4c45
PM
1513static void _rcu_barrier(struct rcu_state *rsp,
1514 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1515 void (*func)(struct rcu_head *head)))
1516{
1517 BUG_ON(in_interrupt());
e74f4c45 1518 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1519 mutex_lock(&rcu_barrier_mutex);
1520 init_completion(&rcu_barrier_completion);
1521 /*
1522 * Initialize rcu_barrier_cpu_count to 1, then invoke
1523 * rcu_barrier_func() on each CPU, so that each CPU also has
1524 * incremented rcu_barrier_cpu_count. Only then is it safe to
1525 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1526 * might complete its grace period before all of the other CPUs
1527 * did their increment, causing this function to return too
1528 * early.
1529 */
1530 atomic_set(&rcu_barrier_cpu_count, 1);
e74f4c45
PM
1531 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1532 rcu_adopt_orphan_cbs(rsp);
d0ec774c 1533 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
e74f4c45 1534 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
d0ec774c
PM
1535 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1536 complete(&rcu_barrier_completion);
1537 wait_for_completion(&rcu_barrier_completion);
1538 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1539}
d0ec774c
PM
1540
1541/**
1542 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1543 */
1544void rcu_barrier_bh(void)
1545{
e74f4c45 1546 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1547}
1548EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1549
1550/**
1551 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1552 */
1553void rcu_barrier_sched(void)
1554{
e74f4c45 1555 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1556}
1557EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1558
64db4cff 1559/*
27569620 1560 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1561 */
27569620
PM
1562static void __init
1563rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1564{
1565 unsigned long flags;
1566 int i;
27569620
PM
1567 struct rcu_data *rdp = rsp->rda[cpu];
1568 struct rcu_node *rnp = rcu_get_root(rsp);
1569
1570 /* Set up local state, ensuring consistent view of global state. */
1571 spin_lock_irqsave(&rnp->lock, flags);
1572 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1573 rdp->nxtlist = NULL;
1574 for (i = 0; i < RCU_NEXT_SIZE; i++)
1575 rdp->nxttail[i] = &rdp->nxtlist;
1576 rdp->qlen = 0;
1577#ifdef CONFIG_NO_HZ
1578 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1579#endif /* #ifdef CONFIG_NO_HZ */
1580 rdp->cpu = cpu;
1581 spin_unlock_irqrestore(&rnp->lock, flags);
1582}
1583
1584/*
1585 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1586 * offline event can be happening at a given time. Note also that we
1587 * can accept some slop in the rsp->completed access due to the fact
1588 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1589 */
e4fa4c97 1590static void __cpuinit
f41d911f 1591rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1592{
1593 unsigned long flags;
64db4cff
PM
1594 unsigned long mask;
1595 struct rcu_data *rdp = rsp->rda[cpu];
1596 struct rcu_node *rnp = rcu_get_root(rsp);
1597
1598 /* Set up local state, ensuring consistent view of global state. */
1599 spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1600 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1601 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1602 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1603 rdp->preemptable = preemptable;
37c72e56
PM
1604 rdp->qlen_last_fqs_check = 0;
1605 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1606 rdp->blimit = blimit;
64db4cff
PM
1607 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1608
1609 /*
1610 * A new grace period might start here. If so, we won't be part
1611 * of it, but that is OK, as we are currently in a quiescent state.
1612 */
1613
1614 /* Exclude any attempts to start a new GP on large systems. */
1615 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1616
1617 /* Add CPU to rcu_node bitmasks. */
1618 rnp = rdp->mynode;
1619 mask = rdp->grpmask;
1620 do {
1621 /* Exclude any attempts to start a new GP on small systems. */
1622 spin_lock(&rnp->lock); /* irqs already disabled. */
1623 rnp->qsmaskinit |= mask;
1624 mask = rnp->grpmask;
d09b62df
PM
1625 if (rnp == rdp->mynode) {
1626 rdp->gpnum = rnp->completed; /* if GP in progress... */
1627 rdp->completed = rnp->completed;
1628 rdp->passed_quiesc_completed = rnp->completed - 1;
1629 }
64db4cff
PM
1630 spin_unlock(&rnp->lock); /* irqs already disabled. */
1631 rnp = rnp->parent;
1632 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1633
e7d8842e 1634 spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1635}
1636
1637static void __cpuinit rcu_online_cpu(int cpu)
1638{
f41d911f
PM
1639 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1640 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1641 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1642}
1643
1644/*
f41d911f 1645 * Handle CPU online/offline notification events.
64db4cff 1646 */
9f680ab4
PM
1647static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1648 unsigned long action, void *hcpu)
64db4cff
PM
1649{
1650 long cpu = (long)hcpu;
1651
1652 switch (action) {
1653 case CPU_UP_PREPARE:
1654 case CPU_UP_PREPARE_FROZEN:
1655 rcu_online_cpu(cpu);
1656 break;
d0ec774c
PM
1657 case CPU_DYING:
1658 case CPU_DYING_FROZEN:
1659 /*
e74f4c45 1660 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
d0ec774c 1661 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
e74f4c45
PM
1662 * returns, all online cpus have queued rcu_barrier_func().
1663 * The dying CPU clears its cpu_online_mask bit and
1664 * moves all of its RCU callbacks to ->orphan_cbs_list
1665 * in the context of stop_machine(), so subsequent calls
1666 * to _rcu_barrier() will adopt these callbacks and only
1667 * then queue rcu_barrier_func() on all remaining CPUs.
d0ec774c 1668 */
e74f4c45
PM
1669 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1670 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1671 rcu_preempt_send_cbs_to_orphanage();
d0ec774c 1672 break;
64db4cff
PM
1673 case CPU_DEAD:
1674 case CPU_DEAD_FROZEN:
1675 case CPU_UP_CANCELED:
1676 case CPU_UP_CANCELED_FROZEN:
1677 rcu_offline_cpu(cpu);
1678 break;
1679 default:
1680 break;
1681 }
1682 return NOTIFY_OK;
1683}
1684
1685/*
1686 * Compute the per-level fanout, either using the exact fanout specified
1687 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1688 */
1689#ifdef CONFIG_RCU_FANOUT_EXACT
1690static void __init rcu_init_levelspread(struct rcu_state *rsp)
1691{
1692 int i;
1693
1694 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1695 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1696}
1697#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1698static void __init rcu_init_levelspread(struct rcu_state *rsp)
1699{
1700 int ccur;
1701 int cprv;
1702 int i;
1703
1704 cprv = NR_CPUS;
1705 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1706 ccur = rsp->levelcnt[i];
1707 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1708 cprv = ccur;
1709 }
1710}
1711#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1712
1713/*
1714 * Helper function for rcu_init() that initializes one rcu_state structure.
1715 */
1716static void __init rcu_init_one(struct rcu_state *rsp)
1717{
1718 int cpustride = 1;
1719 int i;
1720 int j;
1721 struct rcu_node *rnp;
1722
1723 /* Initialize the level-tracking arrays. */
1724
1725 for (i = 1; i < NUM_RCU_LVLS; i++)
1726 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1727 rcu_init_levelspread(rsp);
1728
1729 /* Initialize the elements themselves, starting from the leaves. */
1730
1731 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1732 cpustride *= rsp->levelspread[i];
1733 rnp = rsp->level[i];
1734 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
88b91c7c 1735 spin_lock_init(&rnp->lock);
b668c9cf 1736 lockdep_set_class(&rnp->lock, &rcu_node_class[i]);
f41d911f 1737 rnp->gpnum = 0;
64db4cff
PM
1738 rnp->qsmask = 0;
1739 rnp->qsmaskinit = 0;
1740 rnp->grplo = j * cpustride;
1741 rnp->grphi = (j + 1) * cpustride - 1;
1742 if (rnp->grphi >= NR_CPUS)
1743 rnp->grphi = NR_CPUS - 1;
1744 if (i == 0) {
1745 rnp->grpnum = 0;
1746 rnp->grpmask = 0;
1747 rnp->parent = NULL;
1748 } else {
1749 rnp->grpnum = j % rsp->levelspread[i - 1];
1750 rnp->grpmask = 1UL << rnp->grpnum;
1751 rnp->parent = rsp->level[i - 1] +
1752 j / rsp->levelspread[i - 1];
1753 }
1754 rnp->level = i;
f41d911f
PM
1755 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1756 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1757 }
1758 }
1759}
1760
1761/*
f41d911f
PM
1762 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1763 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1764 * structure.
64db4cff 1765 */
65cf8f86 1766#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1767do { \
a0b6c9a7
PM
1768 int i; \
1769 int j; \
1770 struct rcu_node *rnp; \
1771 \
65cf8f86 1772 rcu_init_one(rsp); \
64db4cff
PM
1773 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1774 j = 0; \
1775 for_each_possible_cpu(i) { \
1776 if (i > rnp[j].grphi) \
1777 j++; \
1778 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1779 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1780 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1781 } \
1782} while (0)
1783
9f680ab4 1784void __init rcu_init(void)
64db4cff 1785{
9f680ab4
PM
1786 int i;
1787
f41d911f 1788 rcu_bootup_announce();
64db4cff
PM
1789#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1790 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1791#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1792 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1793 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1794 __rcu_init_preempt();
2e597558 1795 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1796
1797 /*
1798 * We don't need protection against CPU-hotplug here because
1799 * this is called early in boot, before either interrupts
1800 * or the scheduler are operational.
1801 */
1802 cpu_notifier(rcu_cpu_notify, 0);
1803 for_each_online_cpu(i)
1804 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i);
64db4cff
PM
1805}
1806
1eba8f84 1807#include "rcutree_plugin.h"