rcu: Allow RCU grace-period initialization to be preempted
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
6c90cc7b 76 .name = #sname, \
64db4cff
PM
77}
78
037b64ed
PM
79struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 81DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 82
037b64ed 83struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 84DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 85
27f4d280 86static struct rcu_state *rcu_state;
6ce75a23 87LIST_HEAD(rcu_struct_flavors);
27f4d280 88
f885b7f2
PM
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
b0d30417
PM
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
bbad9379
PM
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
b0d30417
PM
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
a46e0899
PM
128#ifdef CONFIG_RCU_BOOST
129
a26ac245
PM
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 136DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 138DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 139
a46e0899
PM
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
0f962a5e 142static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 145
4a298656
PM
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
fc2219d4
PM
158/*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163static int rcu_gp_in_progress(struct rcu_state *rsp)
164{
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166}
167
b1f77b05 168/*
d6714c22 169 * Note a quiescent state. Because we do not need to know
b1f77b05 170 * how many quiescent states passed, just if there was at least
d6714c22 171 * one since the start of the grace period, this just sets a flag.
e4cc1f22 172 * The caller must have disabled preemption.
b1f77b05 173 */
d6714c22 174void rcu_sched_qs(int cpu)
b1f77b05 175{
25502a6c 176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 177
e4cc1f22 178 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 179 barrier();
e4cc1f22 180 if (rdp->passed_quiesce == 0)
d4c08f2a 181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 182 rdp->passed_quiesce = 1;
b1f77b05
IM
183}
184
d6714c22 185void rcu_bh_qs(int cpu)
b1f77b05 186{
25502a6c 187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 188
e4cc1f22 189 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 190 barrier();
e4cc1f22 191 if (rdp->passed_quiesce == 0)
d4c08f2a 192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 193 rdp->passed_quiesce = 1;
b1f77b05 194}
64db4cff 195
25502a6c
PM
196/*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
e4cc1f22 199 * The caller must have disabled preemption.
25502a6c
PM
200 */
201void rcu_note_context_switch(int cpu)
202{
300df91c 203 trace_rcu_utilization("Start context switch");
25502a6c 204 rcu_sched_qs(cpu);
cba6d0d6 205 rcu_preempt_note_context_switch(cpu);
300df91c 206 trace_rcu_utilization("End context switch");
25502a6c 207}
29ce8310 208EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 209
90a4d2c0 210DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 212 .dynticks = ATOMIC_INIT(1),
90a4d2c0 213};
64db4cff 214
e0f23060 215static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
216static int qhimark = 10000; /* If this many pending, ignore blimit. */
217static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
3d76c082
PM
219module_param(blimit, int, 0);
220module_param(qhimark, int, 0);
221module_param(qlowmark, int, 0);
222
13cfcca0
PM
223int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
f2e0dd70 226module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 227module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 228
64db4cff 229static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 230static int rcu_pending(int cpu);
64db4cff
PM
231
232/*
d6714c22 233 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 234 */
d6714c22 235long rcu_batches_completed_sched(void)
64db4cff 236{
d6714c22 237 return rcu_sched_state.completed;
64db4cff 238}
d6714c22 239EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
240
241/*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244long rcu_batches_completed_bh(void)
245{
246 return rcu_bh_state.completed;
247}
248EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
bf66f18e
PM
250/*
251 * Force a quiescent state for RCU BH.
252 */
253void rcu_bh_force_quiescent_state(void)
254{
255 force_quiescent_state(&rcu_bh_state, 0);
256}
257EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
4a298656
PM
259/*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266void rcutorture_record_test_transition(void)
267{
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270}
271EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273/*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278void rcutorture_record_progress(unsigned long vernum)
279{
280 rcutorture_vernum++;
281}
282EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
bf66f18e
PM
284/*
285 * Force a quiescent state for RCU-sched.
286 */
287void rcu_sched_force_quiescent_state(void)
288{
289 force_quiescent_state(&rcu_sched_state, 0);
290}
291EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
64db4cff
PM
293/*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296static int
297cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298{
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300}
301
302/*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305static int
306cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307{
a10d206e
PM
308 return *rdp->nxttail[RCU_DONE_TAIL +
309 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
310 !rcu_gp_in_progress(rsp);
64db4cff
PM
311}
312
313/*
314 * Return the root node of the specified rcu_state structure.
315 */
316static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
317{
318 return &rsp->node[0];
319}
320
64db4cff
PM
321/*
322 * If the specified CPU is offline, tell the caller that it is in
323 * a quiescent state. Otherwise, whack it with a reschedule IPI.
324 * Grace periods can end up waiting on an offline CPU when that
325 * CPU is in the process of coming online -- it will be added to the
326 * rcu_node bitmasks before it actually makes it online. The same thing
327 * can happen while a CPU is in the process of coming online. Because this
328 * race is quite rare, we check for it after detecting that the grace
329 * period has been delayed rather than checking each and every CPU
330 * each and every time we start a new grace period.
331 */
332static int rcu_implicit_offline_qs(struct rcu_data *rdp)
333{
334 /*
2036d94a
PM
335 * If the CPU is offline for more than a jiffy, it is in a quiescent
336 * state. We can trust its state not to change because interrupts
337 * are disabled. The reason for the jiffy's worth of slack is to
338 * handle CPUs initializing on the way up and finding their way
339 * to the idle loop on the way down.
64db4cff 340 */
2036d94a
PM
341 if (cpu_is_offline(rdp->cpu) &&
342 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 343 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
344 rdp->offline_fqs++;
345 return 1;
346 }
64db4cff
PM
347 return 0;
348}
349
9b2e4f18
PM
350/*
351 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
352 *
353 * If the new value of the ->dynticks_nesting counter now is zero,
354 * we really have entered idle, and must do the appropriate accounting.
355 * The caller must have disabled interrupts.
356 */
4145fa7f 357static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 358{
facc4e15 359 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 360 if (!is_idle_task(current)) {
0989cb46
PM
361 struct task_struct *idle = idle_task(smp_processor_id());
362
facc4e15 363 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 364 ftrace_dump(DUMP_ORIG);
0989cb46
PM
365 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
366 current->pid, current->comm,
367 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 368 }
aea1b35e 369 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp->dynticks);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
375
376 /*
377 * The idle task is not permitted to enter the idle loop while
378 * in an RCU read-side critical section.
379 */
380 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
381 "Illegal idle entry in RCU read-side critical section.");
382 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
383 "Illegal idle entry in RCU-bh read-side critical section.");
384 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
385 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 386}
64db4cff
PM
387
388/**
9b2e4f18 389 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 390 *
9b2e4f18 391 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 392 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
393 * critical sections can occur in irq handlers in idle, a possibility
394 * handled by irq_enter() and irq_exit().)
395 *
396 * We crowbar the ->dynticks_nesting field to zero to allow for
397 * the possibility of usermode upcalls having messed up our count
398 * of interrupt nesting level during the prior busy period.
64db4cff 399 */
9b2e4f18 400void rcu_idle_enter(void)
64db4cff
PM
401{
402 unsigned long flags;
4145fa7f 403 long long oldval;
64db4cff
PM
404 struct rcu_dynticks *rdtp;
405
64db4cff
PM
406 local_irq_save(flags);
407 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 408 oldval = rdtp->dynticks_nesting;
29e37d81
PM
409 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
410 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
411 rdtp->dynticks_nesting = 0;
412 else
413 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 414 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
415 local_irq_restore(flags);
416}
8a2ecf47 417EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 418
9b2e4f18
PM
419/**
420 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
421 *
422 * Exit from an interrupt handler, which might possibly result in entering
423 * idle mode, in other words, leaving the mode in which read-side critical
424 * sections can occur.
64db4cff 425 *
9b2e4f18
PM
426 * This code assumes that the idle loop never does anything that might
427 * result in unbalanced calls to irq_enter() and irq_exit(). If your
428 * architecture violates this assumption, RCU will give you what you
429 * deserve, good and hard. But very infrequently and irreproducibly.
430 *
431 * Use things like work queues to work around this limitation.
432 *
433 * You have been warned.
64db4cff 434 */
9b2e4f18 435void rcu_irq_exit(void)
64db4cff
PM
436{
437 unsigned long flags;
4145fa7f 438 long long oldval;
64db4cff
PM
439 struct rcu_dynticks *rdtp;
440
441 local_irq_save(flags);
442 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 443 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
444 rdtp->dynticks_nesting--;
445 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
446 if (rdtp->dynticks_nesting)
447 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
448 else
449 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
450 local_irq_restore(flags);
451}
452
453/*
454 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
455 *
456 * If the new value of the ->dynticks_nesting counter was previously zero,
457 * we really have exited idle, and must do the appropriate accounting.
458 * The caller must have disabled interrupts.
459 */
460static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
461{
23b5c8fa
PM
462 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
463 atomic_inc(&rdtp->dynticks);
464 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
465 smp_mb__after_atomic_inc(); /* See above. */
466 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 467 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 468 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 469 if (!is_idle_task(current)) {
0989cb46
PM
470 struct task_struct *idle = idle_task(smp_processor_id());
471
4145fa7f
PM
472 trace_rcu_dyntick("Error on exit: not idle task",
473 oldval, rdtp->dynticks_nesting);
bf1304e9 474 ftrace_dump(DUMP_ORIG);
0989cb46
PM
475 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
476 current->pid, current->comm,
477 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
478 }
479}
480
481/**
482 * rcu_idle_exit - inform RCU that current CPU is leaving idle
483 *
484 * Exit idle mode, in other words, -enter- the mode in which RCU
485 * read-side critical sections can occur.
486 *
29e37d81 487 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 488 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
489 * of interrupt nesting level during the busy period that is just
490 * now starting.
491 */
492void rcu_idle_exit(void)
493{
494 unsigned long flags;
495 struct rcu_dynticks *rdtp;
496 long long oldval;
497
498 local_irq_save(flags);
499 rdtp = &__get_cpu_var(rcu_dynticks);
500 oldval = rdtp->dynticks_nesting;
29e37d81
PM
501 WARN_ON_ONCE(oldval < 0);
502 if (oldval & DYNTICK_TASK_NEST_MASK)
503 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
504 else
505 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
506 rcu_idle_exit_common(rdtp, oldval);
507 local_irq_restore(flags);
508}
8a2ecf47 509EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
510
511/**
512 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
513 *
514 * Enter an interrupt handler, which might possibly result in exiting
515 * idle mode, in other words, entering the mode in which read-side critical
516 * sections can occur.
517 *
518 * Note that the Linux kernel is fully capable of entering an interrupt
519 * handler that it never exits, for example when doing upcalls to
520 * user mode! This code assumes that the idle loop never does upcalls to
521 * user mode. If your architecture does do upcalls from the idle loop (or
522 * does anything else that results in unbalanced calls to the irq_enter()
523 * and irq_exit() functions), RCU will give you what you deserve, good
524 * and hard. But very infrequently and irreproducibly.
525 *
526 * Use things like work queues to work around this limitation.
527 *
528 * You have been warned.
529 */
530void rcu_irq_enter(void)
531{
532 unsigned long flags;
533 struct rcu_dynticks *rdtp;
534 long long oldval;
535
536 local_irq_save(flags);
537 rdtp = &__get_cpu_var(rcu_dynticks);
538 oldval = rdtp->dynticks_nesting;
539 rdtp->dynticks_nesting++;
540 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
541 if (oldval)
542 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
543 else
544 rcu_idle_exit_common(rdtp, oldval);
64db4cff 545 local_irq_restore(flags);
64db4cff
PM
546}
547
548/**
549 * rcu_nmi_enter - inform RCU of entry to NMI context
550 *
551 * If the CPU was idle with dynamic ticks active, and there is no
552 * irq handler running, this updates rdtp->dynticks_nmi to let the
553 * RCU grace-period handling know that the CPU is active.
554 */
555void rcu_nmi_enter(void)
556{
557 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
558
23b5c8fa
PM
559 if (rdtp->dynticks_nmi_nesting == 0 &&
560 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 561 return;
23b5c8fa
PM
562 rdtp->dynticks_nmi_nesting++;
563 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
564 atomic_inc(&rdtp->dynticks);
565 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
566 smp_mb__after_atomic_inc(); /* See above. */
567 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
568}
569
570/**
571 * rcu_nmi_exit - inform RCU of exit from NMI context
572 *
573 * If the CPU was idle with dynamic ticks active, and there is no
574 * irq handler running, this updates rdtp->dynticks_nmi to let the
575 * RCU grace-period handling know that the CPU is no longer active.
576 */
577void rcu_nmi_exit(void)
578{
579 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
580
23b5c8fa
PM
581 if (rdtp->dynticks_nmi_nesting == 0 ||
582 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 583 return;
23b5c8fa
PM
584 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
585 smp_mb__before_atomic_inc(); /* See above. */
586 atomic_inc(&rdtp->dynticks);
587 smp_mb__after_atomic_inc(); /* Force delay to next write. */
588 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
589}
590
591/**
9b2e4f18 592 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 593 *
9b2e4f18 594 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 595 * or NMI handler, return true.
64db4cff 596 */
9b2e4f18 597int rcu_is_cpu_idle(void)
64db4cff 598{
34240697
PM
599 int ret;
600
601 preempt_disable();
602 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
603 preempt_enable();
604 return ret;
64db4cff 605}
e6b80a3b 606EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 607
62fde6ed 608#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
609
610/*
611 * Is the current CPU online? Disable preemption to avoid false positives
612 * that could otherwise happen due to the current CPU number being sampled,
613 * this task being preempted, its old CPU being taken offline, resuming
614 * on some other CPU, then determining that its old CPU is now offline.
615 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
616 * the check for rcu_scheduler_fully_active. Note also that it is OK
617 * for a CPU coming online to use RCU for one jiffy prior to marking itself
618 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
619 * offline to continue to use RCU for one jiffy after marking itself
620 * offline in the cpu_online_mask. This leniency is necessary given the
621 * non-atomic nature of the online and offline processing, for example,
622 * the fact that a CPU enters the scheduler after completing the CPU_DYING
623 * notifiers.
624 *
625 * This is also why RCU internally marks CPUs online during the
626 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
627 *
628 * Disable checking if in an NMI handler because we cannot safely report
629 * errors from NMI handlers anyway.
630 */
631bool rcu_lockdep_current_cpu_online(void)
632{
2036d94a
PM
633 struct rcu_data *rdp;
634 struct rcu_node *rnp;
c0d6d01b
PM
635 bool ret;
636
637 if (in_nmi())
638 return 1;
639 preempt_disable();
2036d94a
PM
640 rdp = &__get_cpu_var(rcu_sched_data);
641 rnp = rdp->mynode;
642 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
643 !rcu_scheduler_fully_active;
644 preempt_enable();
645 return ret;
646}
647EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
648
62fde6ed 649#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 650
64db4cff 651/**
9b2e4f18 652 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 653 *
9b2e4f18
PM
654 * If the current CPU is idle or running at a first-level (not nested)
655 * interrupt from idle, return true. The caller must have at least
656 * disabled preemption.
64db4cff 657 */
9b2e4f18 658int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 659{
9b2e4f18 660 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
661}
662
64db4cff
PM
663/*
664 * Snapshot the specified CPU's dynticks counter so that we can later
665 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 666 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
667 */
668static int dyntick_save_progress_counter(struct rcu_data *rdp)
669{
23b5c8fa 670 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 671 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
672}
673
674/*
675 * Return true if the specified CPU has passed through a quiescent
676 * state by virtue of being in or having passed through an dynticks
677 * idle state since the last call to dyntick_save_progress_counter()
678 * for this same CPU.
679 */
680static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
681{
7eb4f455
PM
682 unsigned int curr;
683 unsigned int snap;
64db4cff 684
7eb4f455
PM
685 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
686 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
687
688 /*
689 * If the CPU passed through or entered a dynticks idle phase with
690 * no active irq/NMI handlers, then we can safely pretend that the CPU
691 * already acknowledged the request to pass through a quiescent
692 * state. Either way, that CPU cannot possibly be in an RCU
693 * read-side critical section that started before the beginning
694 * of the current RCU grace period.
695 */
7eb4f455 696 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 697 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
698 rdp->dynticks_fqs++;
699 return 1;
700 }
701
702 /* Go check for the CPU being offline. */
703 return rcu_implicit_offline_qs(rdp);
704}
705
13cfcca0
PM
706static int jiffies_till_stall_check(void)
707{
708 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
709
710 /*
711 * Limit check must be consistent with the Kconfig limits
712 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
713 */
714 if (till_stall_check < 3) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
716 till_stall_check = 3;
717 } else if (till_stall_check > 300) {
718 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
719 till_stall_check = 300;
720 }
721 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
722}
723
64db4cff
PM
724static void record_gp_stall_check_time(struct rcu_state *rsp)
725{
726 rsp->gp_start = jiffies;
13cfcca0 727 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
728}
729
730static void print_other_cpu_stall(struct rcu_state *rsp)
731{
732 int cpu;
733 long delta;
734 unsigned long flags;
285fe294 735 int ndetected = 0;
64db4cff 736 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
737
738 /* Only let one CPU complain about others per time interval. */
739
1304afb2 740 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 741 delta = jiffies - rsp->jiffies_stall;
fc2219d4 742 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 743 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
744 return;
745 }
13cfcca0 746 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 748
8cdd32a9
PM
749 /*
750 * OK, time to rat on our buddy...
751 * See Documentation/RCU/stallwarn.txt for info on how to debug
752 * RCU CPU stall warnings.
753 */
a858af28 754 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 755 rsp->name);
a858af28 756 print_cpu_stall_info_begin();
a0b6c9a7 757 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 758 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 759 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 761 if (rnp->qsmask == 0)
64db4cff 762 continue;
a0b6c9a7 763 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 764 if (rnp->qsmask & (1UL << cpu)) {
a858af28 765 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
766 ndetected++;
767 }
64db4cff 768 }
a858af28
PM
769
770 /*
771 * Now rat on any tasks that got kicked up to the root rcu_node
772 * due to CPU offlining.
773 */
774 rnp = rcu_get_root(rsp);
775 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 776 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
778
779 print_cpu_stall_info_end();
780 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 781 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
782 if (ndetected == 0)
783 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
784 else if (!trigger_all_cpu_backtrace())
4627e240 785 dump_stack();
c1dc0b9c 786
1ed509a2
PM
787 /* If so configured, complain about tasks blocking the grace period. */
788
789 rcu_print_detail_task_stall(rsp);
790
64db4cff
PM
791 force_quiescent_state(rsp, 0); /* Kick them all. */
792}
793
794static void print_cpu_stall(struct rcu_state *rsp)
795{
796 unsigned long flags;
797 struct rcu_node *rnp = rcu_get_root(rsp);
798
8cdd32a9
PM
799 /*
800 * OK, time to rat on ourselves...
801 * See Documentation/RCU/stallwarn.txt for info on how to debug
802 * RCU CPU stall warnings.
803 */
a858af28
PM
804 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
805 print_cpu_stall_info_begin();
806 print_cpu_stall_info(rsp, smp_processor_id());
807 print_cpu_stall_info_end();
808 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
809 if (!trigger_all_cpu_backtrace())
810 dump_stack();
c1dc0b9c 811
1304afb2 812 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 813 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
814 rsp->jiffies_stall = jiffies +
815 3 * jiffies_till_stall_check() + 3;
1304afb2 816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 817
64db4cff
PM
818 set_need_resched(); /* kick ourselves to get things going. */
819}
820
821static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
822{
bad6e139
PM
823 unsigned long j;
824 unsigned long js;
64db4cff
PM
825 struct rcu_node *rnp;
826
742734ee 827 if (rcu_cpu_stall_suppress)
c68de209 828 return;
bad6e139
PM
829 j = ACCESS_ONCE(jiffies);
830 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 831 rnp = rdp->mynode;
bad6e139 832 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
833
834 /* We haven't checked in, so go dump stack. */
835 print_cpu_stall(rsp);
836
bad6e139
PM
837 } else if (rcu_gp_in_progress(rsp) &&
838 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 839
bad6e139 840 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
841 print_other_cpu_stall(rsp);
842 }
843}
844
c68de209
PM
845static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
846{
742734ee 847 rcu_cpu_stall_suppress = 1;
c68de209
PM
848 return NOTIFY_DONE;
849}
850
53d84e00
PM
851/**
852 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
853 *
854 * Set the stall-warning timeout way off into the future, thus preventing
855 * any RCU CPU stall-warning messages from appearing in the current set of
856 * RCU grace periods.
857 *
858 * The caller must disable hard irqs.
859 */
860void rcu_cpu_stall_reset(void)
861{
6ce75a23
PM
862 struct rcu_state *rsp;
863
864 for_each_rcu_flavor(rsp)
865 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
866}
867
c68de209
PM
868static struct notifier_block rcu_panic_block = {
869 .notifier_call = rcu_panic,
870};
871
872static void __init check_cpu_stall_init(void)
873{
874 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
875}
876
64db4cff
PM
877/*
878 * Update CPU-local rcu_data state to record the newly noticed grace period.
879 * This is used both when we started the grace period and when we notice
9160306e
PM
880 * that someone else started the grace period. The caller must hold the
881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
882 * and must have irqs disabled.
64db4cff 883 */
9160306e
PM
884static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
885{
886 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
887 /*
888 * If the current grace period is waiting for this CPU,
889 * set up to detect a quiescent state, otherwise don't
890 * go looking for one.
891 */
9160306e 892 rdp->gpnum = rnp->gpnum;
d4c08f2a 893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
894 if (rnp->qsmask & rdp->grpmask) {
895 rdp->qs_pending = 1;
e4cc1f22 896 rdp->passed_quiesce = 0;
c701d5d9 897 } else {
121dfc4b 898 rdp->qs_pending = 0;
c701d5d9 899 }
a858af28 900 zero_cpu_stall_ticks(rdp);
9160306e
PM
901 }
902}
903
64db4cff
PM
904static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
905{
9160306e
PM
906 unsigned long flags;
907 struct rcu_node *rnp;
908
909 local_irq_save(flags);
910 rnp = rdp->mynode;
911 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 912 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
913 local_irq_restore(flags);
914 return;
915 }
916 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
918}
919
920/*
921 * Did someone else start a new RCU grace period start since we last
922 * checked? Update local state appropriately if so. Must be called
923 * on the CPU corresponding to rdp.
924 */
925static int
926check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
927{
928 unsigned long flags;
929 int ret = 0;
930
931 local_irq_save(flags);
932 if (rdp->gpnum != rsp->gpnum) {
933 note_new_gpnum(rsp, rdp);
934 ret = 1;
935 }
936 local_irq_restore(flags);
937 return ret;
938}
939
3f5d3ea6
PM
940/*
941 * Initialize the specified rcu_data structure's callback list to empty.
942 */
943static void init_callback_list(struct rcu_data *rdp)
944{
945 int i;
946
947 rdp->nxtlist = NULL;
948 for (i = 0; i < RCU_NEXT_SIZE; i++)
949 rdp->nxttail[i] = &rdp->nxtlist;
950}
951
d09b62df
PM
952/*
953 * Advance this CPU's callbacks, but only if the current grace period
954 * has ended. This may be called only from the CPU to whom the rdp
955 * belongs. In addition, the corresponding leaf rcu_node structure's
956 * ->lock must be held by the caller, with irqs disabled.
957 */
958static void
959__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
960{
961 /* Did another grace period end? */
962 if (rdp->completed != rnp->completed) {
963
964 /* Advance callbacks. No harm if list empty. */
965 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
966 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
967 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
968
969 /* Remember that we saw this grace-period completion. */
970 rdp->completed = rnp->completed;
d4c08f2a 971 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 972
5ff8e6f0
FW
973 /*
974 * If we were in an extended quiescent state, we may have
121dfc4b 975 * missed some grace periods that others CPUs handled on
5ff8e6f0 976 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
977 * spurious new grace periods. If another grace period
978 * has started, then rnp->gpnum will have advanced, so
979 * we will detect this later on.
5ff8e6f0 980 */
121dfc4b 981 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
982 rdp->gpnum = rdp->completed;
983
20377f32 984 /*
121dfc4b
PM
985 * If RCU does not need a quiescent state from this CPU,
986 * then make sure that this CPU doesn't go looking for one.
20377f32 987 */
121dfc4b 988 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 989 rdp->qs_pending = 0;
d09b62df
PM
990 }
991}
992
993/*
994 * Advance this CPU's callbacks, but only if the current grace period
995 * has ended. This may be called only from the CPU to whom the rdp
996 * belongs.
997 */
998static void
999rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1000{
1001 unsigned long flags;
1002 struct rcu_node *rnp;
1003
1004 local_irq_save(flags);
1005 rnp = rdp->mynode;
1006 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1007 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1008 local_irq_restore(flags);
1009 return;
1010 }
1011 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1012 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1013}
1014
1015/*
1016 * Do per-CPU grace-period initialization for running CPU. The caller
1017 * must hold the lock of the leaf rcu_node structure corresponding to
1018 * this CPU.
1019 */
1020static void
1021rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1022{
1023 /* Prior grace period ended, so advance callbacks for current CPU. */
1024 __rcu_process_gp_end(rsp, rnp, rdp);
1025
9160306e
PM
1026 /* Set state so that this CPU will detect the next quiescent state. */
1027 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1028}
1029
b3dbec76
PM
1030/*
1031 * Body of kthread that handles grace periods.
1032 */
755609a9 1033static int __noreturn rcu_gp_kthread(void *arg)
b3dbec76
PM
1034{
1035 struct rcu_data *rdp;
1036 struct rcu_node *rnp;
1037 struct rcu_state *rsp = arg;
1038
1039 for (;;) {
1040
1041 /* Handle grace-period start. */
1042 rnp = rcu_get_root(rsp);
1043 for (;;) {
1044 wait_event_interruptible(rsp->gp_wq, rsp->gp_flags);
1045 if (rsp->gp_flags)
1046 break;
1047 flush_signals(current);
1048 }
1049 raw_spin_lock_irq(&rnp->lock);
1050 rsp->gp_flags = 0;
1051 rdp = this_cpu_ptr(rsp->rda);
1052
1053 if (rcu_gp_in_progress(rsp)) {
1054 /*
1055 * A grace period is already in progress, so
1056 * don't start another one.
1057 */
1058 raw_spin_unlock_irq(&rnp->lock);
755609a9 1059 cond_resched();
b3dbec76
PM
1060 continue;
1061 }
1062
1063 if (rsp->fqs_active) {
1064 /*
1065 * We need a grace period, but force_quiescent_state()
1066 * is running. Tell it to start one on our behalf.
1067 */
1068 rsp->fqs_need_gp = 1;
1069 raw_spin_unlock_irq(&rnp->lock);
755609a9 1070 cond_resched();
b3dbec76
PM
1071 continue;
1072 }
1073
1074 /* Advance to a new grace period and initialize state. */
1075 rsp->gpnum++;
1076 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1077 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1078 rsp->fqs_state = RCU_GP_INIT; /* Stop force_quiescent_state. */
1079 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1080 record_gp_stall_check_time(rsp);
755609a9 1081 raw_spin_unlock_irq(&rnp->lock);
b3dbec76
PM
1082
1083 /* Exclude any concurrent CPU-hotplug operations. */
755609a9 1084 get_online_cpus();
b3dbec76
PM
1085
1086 /*
1087 * Set the quiescent-state-needed bits in all the rcu_node
1088 * structures for all currently online CPUs in breadth-first
1089 * order, starting from the root rcu_node structure.
1090 * This operation relies on the layout of the hierarchy
1091 * within the rsp->node[] array. Note that other CPUs will
1092 * access only the leaves of the hierarchy, which still
1093 * indicate that no grace period is in progress, at least
1094 * until the corresponding leaf node has been initialized.
1095 * In addition, we have excluded CPU-hotplug operations.
b3dbec76
PM
1096 */
1097 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1098 raw_spin_lock_irq(&rnp->lock);
b3dbec76
PM
1099 rcu_preempt_check_blocked_tasks(rnp);
1100 rnp->qsmask = rnp->qsmaskinit;
1101 rnp->gpnum = rsp->gpnum;
1102 rnp->completed = rsp->completed;
1103 if (rnp == rdp->mynode)
1104 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1105 rcu_preempt_boost_start_gp(rnp);
1106 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1107 rnp->level, rnp->grplo,
1108 rnp->grphi, rnp->qsmask);
755609a9
PM
1109 raw_spin_unlock_irq(&rnp->lock);
1110 cond_resched();
b3dbec76
PM
1111 }
1112
1113 rnp = rcu_get_root(rsp);
755609a9 1114 raw_spin_lock_irq(&rnp->lock);
b3dbec76
PM
1115 /* force_quiescent_state() now OK. */
1116 rsp->fqs_state = RCU_SIGNAL_INIT;
755609a9
PM
1117 raw_spin_unlock_irq(&rnp->lock);
1118 put_online_cpus();
b3dbec76 1119 }
b3dbec76
PM
1120}
1121
64db4cff
PM
1122/*
1123 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1124 * in preparation for detecting the next grace period. The caller must hold
1125 * the root node's ->lock, which is released before return. Hard irqs must
1126 * be disabled.
e5601400
PM
1127 *
1128 * Note that it is legal for a dying CPU (which is marked as offline) to
1129 * invoke this function. This can happen when the dying CPU reports its
1130 * quiescent state.
64db4cff
PM
1131 */
1132static void
1133rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1134 __releases(rcu_get_root(rsp)->lock)
1135{
394f99a9 1136 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1137 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1138
b3dbec76 1139 if (!rsp->gp_kthread ||
afe24b12
PM
1140 !cpu_needs_another_gp(rsp, rdp)) {
1141 /*
b3dbec76
PM
1142 * Either we have not yet spawned the grace-period
1143 * task or this CPU does not need another grace period.
1144 * Either way, don't start a new grace period.
afe24b12
PM
1145 */
1146 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1147 return;
1148 }
b32e9eb6 1149
b3dbec76
PM
1150 rsp->gp_flags = 1;
1151 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1152 wake_up(&rsp->gp_wq);
64db4cff
PM
1153}
1154
f41d911f 1155/*
d3f6bad3
PM
1156 * Report a full set of quiescent states to the specified rcu_state
1157 * data structure. This involves cleaning up after the prior grace
1158 * period and letting rcu_start_gp() start up the next grace period
1159 * if one is needed. Note that the caller must hold rnp->lock, as
1160 * required by rcu_start_gp(), which will release it.
f41d911f 1161 */
d3f6bad3 1162static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1163 __releases(rcu_get_root(rsp)->lock)
f41d911f 1164{
15ba0ba8 1165 unsigned long gp_duration;
afe24b12
PM
1166 struct rcu_node *rnp = rcu_get_root(rsp);
1167 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1168
fc2219d4 1169 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1170
1171 /*
1172 * Ensure that all grace-period and pre-grace-period activity
1173 * is seen before the assignment to rsp->completed.
1174 */
1175 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1176 gp_duration = jiffies - rsp->gp_start;
1177 if (gp_duration > rsp->gp_max)
1178 rsp->gp_max = gp_duration;
afe24b12
PM
1179
1180 /*
1181 * We know the grace period is complete, but to everyone else
1182 * it appears to still be ongoing. But it is also the case
1183 * that to everyone else it looks like there is nothing that
1184 * they can do to advance the grace period. It is therefore
1185 * safe for us to drop the lock in order to mark the grace
1186 * period as completed in all of the rcu_node structures.
1187 *
1188 * But if this CPU needs another grace period, it will take
1189 * care of this while initializing the next grace period.
1190 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1191 * because the callbacks have not yet been advanced: Those
1192 * callbacks are waiting on the grace period that just now
1193 * completed.
1194 */
1195 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1196 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1197
1198 /*
1199 * Propagate new ->completed value to rcu_node structures
1200 * so that other CPUs don't have to wait until the start
1201 * of the next grace period to process their callbacks.
1202 */
1203 rcu_for_each_node_breadth_first(rsp, rnp) {
1204 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1205 rnp->completed = rsp->gpnum;
1206 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1207 }
1208 rnp = rcu_get_root(rsp);
1209 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1210 }
1211
1212 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1213 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1214 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1215 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1216}
1217
64db4cff 1218/*
d3f6bad3
PM
1219 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1220 * Allows quiescent states for a group of CPUs to be reported at one go
1221 * to the specified rcu_node structure, though all the CPUs in the group
1222 * must be represented by the same rcu_node structure (which need not be
1223 * a leaf rcu_node structure, though it often will be). That structure's
1224 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1225 */
1226static void
d3f6bad3
PM
1227rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1228 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1229 __releases(rnp->lock)
1230{
28ecd580
PM
1231 struct rcu_node *rnp_c;
1232
64db4cff
PM
1233 /* Walk up the rcu_node hierarchy. */
1234 for (;;) {
1235 if (!(rnp->qsmask & mask)) {
1236
1237 /* Our bit has already been cleared, so done. */
1304afb2 1238 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1239 return;
1240 }
1241 rnp->qsmask &= ~mask;
d4c08f2a
PM
1242 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1243 mask, rnp->qsmask, rnp->level,
1244 rnp->grplo, rnp->grphi,
1245 !!rnp->gp_tasks);
27f4d280 1246 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1247
1248 /* Other bits still set at this level, so done. */
1304afb2 1249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1250 return;
1251 }
1252 mask = rnp->grpmask;
1253 if (rnp->parent == NULL) {
1254
1255 /* No more levels. Exit loop holding root lock. */
1256
1257 break;
1258 }
1304afb2 1259 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1260 rnp_c = rnp;
64db4cff 1261 rnp = rnp->parent;
1304afb2 1262 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1263 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1264 }
1265
1266 /*
1267 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1268 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1269 * to clean up and start the next grace period if one is needed.
64db4cff 1270 */
d3f6bad3 1271 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1272}
1273
1274/*
d3f6bad3
PM
1275 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1276 * structure. This must be either called from the specified CPU, or
1277 * called when the specified CPU is known to be offline (and when it is
1278 * also known that no other CPU is concurrently trying to help the offline
1279 * CPU). The lastcomp argument is used to make sure we are still in the
1280 * grace period of interest. We don't want to end the current grace period
1281 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1282 */
1283static void
e4cc1f22 1284rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1285{
1286 unsigned long flags;
1287 unsigned long mask;
1288 struct rcu_node *rnp;
1289
1290 rnp = rdp->mynode;
1304afb2 1291 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1292 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1293
1294 /*
e4cc1f22
PM
1295 * The grace period in which this quiescent state was
1296 * recorded has ended, so don't report it upwards.
1297 * We will instead need a new quiescent state that lies
1298 * within the current grace period.
64db4cff 1299 */
e4cc1f22 1300 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1301 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1302 return;
1303 }
1304 mask = rdp->grpmask;
1305 if ((rnp->qsmask & mask) == 0) {
1304afb2 1306 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1307 } else {
1308 rdp->qs_pending = 0;
1309
1310 /*
1311 * This GP can't end until cpu checks in, so all of our
1312 * callbacks can be processed during the next GP.
1313 */
64db4cff
PM
1314 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1315
d3f6bad3 1316 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1317 }
1318}
1319
1320/*
1321 * Check to see if there is a new grace period of which this CPU
1322 * is not yet aware, and if so, set up local rcu_data state for it.
1323 * Otherwise, see if this CPU has just passed through its first
1324 * quiescent state for this grace period, and record that fact if so.
1325 */
1326static void
1327rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1328{
1329 /* If there is now a new grace period, record and return. */
1330 if (check_for_new_grace_period(rsp, rdp))
1331 return;
1332
1333 /*
1334 * Does this CPU still need to do its part for current grace period?
1335 * If no, return and let the other CPUs do their part as well.
1336 */
1337 if (!rdp->qs_pending)
1338 return;
1339
1340 /*
1341 * Was there a quiescent state since the beginning of the grace
1342 * period? If no, then exit and wait for the next call.
1343 */
e4cc1f22 1344 if (!rdp->passed_quiesce)
64db4cff
PM
1345 return;
1346
d3f6bad3
PM
1347 /*
1348 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1349 * judge of that).
1350 */
e4cc1f22 1351 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1352}
1353
1354#ifdef CONFIG_HOTPLUG_CPU
1355
e74f4c45 1356/*
b1420f1c
PM
1357 * Send the specified CPU's RCU callbacks to the orphanage. The
1358 * specified CPU must be offline, and the caller must hold the
1359 * ->onofflock.
e74f4c45 1360 */
b1420f1c
PM
1361static void
1362rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1363 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1364{
b1420f1c
PM
1365 /*
1366 * Orphan the callbacks. First adjust the counts. This is safe
1367 * because ->onofflock excludes _rcu_barrier()'s adoption of
1368 * the callbacks, thus no memory barrier is required.
1369 */
a50c3af9 1370 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1371 rsp->qlen_lazy += rdp->qlen_lazy;
1372 rsp->qlen += rdp->qlen;
1373 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1374 rdp->qlen_lazy = 0;
1d1fb395 1375 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1376 }
1377
1378 /*
b1420f1c
PM
1379 * Next, move those callbacks still needing a grace period to
1380 * the orphanage, where some other CPU will pick them up.
1381 * Some of the callbacks might have gone partway through a grace
1382 * period, but that is too bad. They get to start over because we
1383 * cannot assume that grace periods are synchronized across CPUs.
1384 * We don't bother updating the ->nxttail[] array yet, instead
1385 * we just reset the whole thing later on.
a50c3af9 1386 */
b1420f1c
PM
1387 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1388 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1389 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1390 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1391 }
1392
1393 /*
b1420f1c
PM
1394 * Then move the ready-to-invoke callbacks to the orphanage,
1395 * where some other CPU will pick them up. These will not be
1396 * required to pass though another grace period: They are done.
a50c3af9 1397 */
e5601400 1398 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1399 *rsp->orphan_donetail = rdp->nxtlist;
1400 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1401 }
e74f4c45 1402
b1420f1c 1403 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1404 init_callback_list(rdp);
b1420f1c
PM
1405}
1406
1407/*
1408 * Adopt the RCU callbacks from the specified rcu_state structure's
1409 * orphanage. The caller must hold the ->onofflock.
1410 */
1411static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1412{
1413 int i;
1414 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1415
a50c3af9 1416 /*
b1420f1c
PM
1417 * If there is an rcu_barrier() operation in progress, then
1418 * only the task doing that operation is permitted to adopt
1419 * callbacks. To do otherwise breaks rcu_barrier() and friends
1420 * by causing them to fail to wait for the callbacks in the
1421 * orphanage.
a50c3af9 1422 */
b1420f1c
PM
1423 if (rsp->rcu_barrier_in_progress &&
1424 rsp->rcu_barrier_in_progress != current)
1425 return;
1426
1427 /* Do the accounting first. */
1428 rdp->qlen_lazy += rsp->qlen_lazy;
1429 rdp->qlen += rsp->qlen;
1430 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1431 if (rsp->qlen_lazy != rsp->qlen)
1432 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1433 rsp->qlen_lazy = 0;
1434 rsp->qlen = 0;
1435
1436 /*
1437 * We do not need a memory barrier here because the only way we
1438 * can get here if there is an rcu_barrier() in flight is if
1439 * we are the task doing the rcu_barrier().
1440 */
1441
1442 /* First adopt the ready-to-invoke callbacks. */
1443 if (rsp->orphan_donelist != NULL) {
1444 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1445 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1446 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1447 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1448 rdp->nxttail[i] = rsp->orphan_donetail;
1449 rsp->orphan_donelist = NULL;
1450 rsp->orphan_donetail = &rsp->orphan_donelist;
1451 }
1452
1453 /* And then adopt the callbacks that still need a grace period. */
1454 if (rsp->orphan_nxtlist != NULL) {
1455 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1456 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1457 rsp->orphan_nxtlist = NULL;
1458 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1459 }
1460}
1461
1462/*
1463 * Trace the fact that this CPU is going offline.
1464 */
1465static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1466{
1467 RCU_TRACE(unsigned long mask);
1468 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1469 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1470
1471 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1472 trace_rcu_grace_period(rsp->name,
1473 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1474 "cpuofl");
64db4cff
PM
1475}
1476
1477/*
e5601400 1478 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1479 * this fact from process context. Do the remainder of the cleanup,
1480 * including orphaning the outgoing CPU's RCU callbacks, and also
1481 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1482 * There can only be one CPU hotplug operation at a time, so no other
1483 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1484 */
e5601400 1485static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1486{
2036d94a
PM
1487 unsigned long flags;
1488 unsigned long mask;
1489 int need_report = 0;
e5601400 1490 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1491 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1492
2036d94a 1493 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1494 rcu_stop_cpu_kthread(cpu);
1495 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1496
b1420f1c 1497 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1498
1499 /* Exclude any attempts to start a new grace period. */
1500 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1501
b1420f1c
PM
1502 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1503 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1504 rcu_adopt_orphan_cbs(rsp);
1505
2036d94a
PM
1506 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1507 mask = rdp->grpmask; /* rnp->grplo is constant. */
1508 do {
1509 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1510 rnp->qsmaskinit &= ~mask;
1511 if (rnp->qsmaskinit != 0) {
1512 if (rnp != rdp->mynode)
1513 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1514 break;
1515 }
1516 if (rnp == rdp->mynode)
1517 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1518 else
1519 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1520 mask = rnp->grpmask;
1521 rnp = rnp->parent;
1522 } while (rnp != NULL);
1523
1524 /*
1525 * We still hold the leaf rcu_node structure lock here, and
1526 * irqs are still disabled. The reason for this subterfuge is
1527 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1528 * held leads to deadlock.
1529 */
1530 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1531 rnp = rdp->mynode;
1532 if (need_report & RCU_OFL_TASKS_NORM_GP)
1533 rcu_report_unblock_qs_rnp(rnp, flags);
1534 else
1535 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1536 if (need_report & RCU_OFL_TASKS_EXP_GP)
1537 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1538 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1539 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1540 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
1541}
1542
1543#else /* #ifdef CONFIG_HOTPLUG_CPU */
1544
b1420f1c
PM
1545static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1546{
1547}
1548
e5601400 1549static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1550{
1551}
1552
e5601400 1553static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1554{
1555}
1556
1557#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1558
1559/*
1560 * Invoke any RCU callbacks that have made it to the end of their grace
1561 * period. Thottle as specified by rdp->blimit.
1562 */
37c72e56 1563static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1564{
1565 unsigned long flags;
1566 struct rcu_head *next, *list, **tail;
b41772ab 1567 int bl, count, count_lazy, i;
64db4cff
PM
1568
1569 /* If no callbacks are ready, just return.*/
29c00b4a 1570 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1571 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1572 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1573 need_resched(), is_idle_task(current),
1574 rcu_is_callbacks_kthread());
64db4cff 1575 return;
29c00b4a 1576 }
64db4cff
PM
1577
1578 /*
1579 * Extract the list of ready callbacks, disabling to prevent
1580 * races with call_rcu() from interrupt handlers.
1581 */
1582 local_irq_save(flags);
8146c4e2 1583 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1584 bl = rdp->blimit;
486e2593 1585 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1586 list = rdp->nxtlist;
1587 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1588 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1589 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1590 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1591 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1592 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1593 local_irq_restore(flags);
1594
1595 /* Invoke callbacks. */
486e2593 1596 count = count_lazy = 0;
64db4cff
PM
1597 while (list) {
1598 next = list->next;
1599 prefetch(next);
551d55a9 1600 debug_rcu_head_unqueue(list);
486e2593
PM
1601 if (__rcu_reclaim(rsp->name, list))
1602 count_lazy++;
64db4cff 1603 list = next;
dff1672d
PM
1604 /* Stop only if limit reached and CPU has something to do. */
1605 if (++count >= bl &&
1606 (need_resched() ||
1607 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1608 break;
1609 }
1610
1611 local_irq_save(flags);
4968c300
PM
1612 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1613 is_idle_task(current),
1614 rcu_is_callbacks_kthread());
64db4cff
PM
1615
1616 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1617 if (list != NULL) {
1618 *tail = rdp->nxtlist;
1619 rdp->nxtlist = list;
b41772ab
PM
1620 for (i = 0; i < RCU_NEXT_SIZE; i++)
1621 if (&rdp->nxtlist == rdp->nxttail[i])
1622 rdp->nxttail[i] = tail;
64db4cff
PM
1623 else
1624 break;
1625 }
b1420f1c
PM
1626 smp_mb(); /* List handling before counting for rcu_barrier(). */
1627 rdp->qlen_lazy -= count_lazy;
1d1fb395 1628 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1629 rdp->n_cbs_invoked += count;
64db4cff
PM
1630
1631 /* Reinstate batch limit if we have worked down the excess. */
1632 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1633 rdp->blimit = blimit;
1634
37c72e56
PM
1635 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1636 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1637 rdp->qlen_last_fqs_check = 0;
1638 rdp->n_force_qs_snap = rsp->n_force_qs;
1639 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1640 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1641 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1642
64db4cff
PM
1643 local_irq_restore(flags);
1644
e0f23060 1645 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1646 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1647 invoke_rcu_core();
64db4cff
PM
1648}
1649
1650/*
1651 * Check to see if this CPU is in a non-context-switch quiescent state
1652 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1653 * Also schedule RCU core processing.
64db4cff 1654 *
9b2e4f18 1655 * This function must be called from hardirq context. It is normally
64db4cff
PM
1656 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1657 * false, there is no point in invoking rcu_check_callbacks().
1658 */
1659void rcu_check_callbacks(int cpu, int user)
1660{
300df91c 1661 trace_rcu_utilization("Start scheduler-tick");
a858af28 1662 increment_cpu_stall_ticks();
9b2e4f18 1663 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1664
1665 /*
1666 * Get here if this CPU took its interrupt from user
1667 * mode or from the idle loop, and if this is not a
1668 * nested interrupt. In this case, the CPU is in
d6714c22 1669 * a quiescent state, so note it.
64db4cff
PM
1670 *
1671 * No memory barrier is required here because both
d6714c22
PM
1672 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1673 * variables that other CPUs neither access nor modify,
1674 * at least not while the corresponding CPU is online.
64db4cff
PM
1675 */
1676
d6714c22
PM
1677 rcu_sched_qs(cpu);
1678 rcu_bh_qs(cpu);
64db4cff
PM
1679
1680 } else if (!in_softirq()) {
1681
1682 /*
1683 * Get here if this CPU did not take its interrupt from
1684 * softirq, in other words, if it is not interrupting
1685 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1686 * critical section, so note it.
64db4cff
PM
1687 */
1688
d6714c22 1689 rcu_bh_qs(cpu);
64db4cff 1690 }
f41d911f 1691 rcu_preempt_check_callbacks(cpu);
d21670ac 1692 if (rcu_pending(cpu))
a46e0899 1693 invoke_rcu_core();
300df91c 1694 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1695}
1696
64db4cff
PM
1697/*
1698 * Scan the leaf rcu_node structures, processing dyntick state for any that
1699 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1700 * Also initiate boosting for any threads blocked on the root rcu_node.
1701 *
ee47eb9f 1702 * The caller must have suppressed start of new grace periods.
64db4cff 1703 */
45f014c5 1704static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1705{
1706 unsigned long bit;
1707 int cpu;
1708 unsigned long flags;
1709 unsigned long mask;
a0b6c9a7 1710 struct rcu_node *rnp;
64db4cff 1711
a0b6c9a7 1712 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1713 mask = 0;
1304afb2 1714 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1715 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1716 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1717 return;
64db4cff 1718 }
a0b6c9a7 1719 if (rnp->qsmask == 0) {
1217ed1b 1720 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1721 continue;
1722 }
a0b6c9a7 1723 cpu = rnp->grplo;
64db4cff 1724 bit = 1;
a0b6c9a7 1725 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1726 if ((rnp->qsmask & bit) != 0 &&
1727 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1728 mask |= bit;
1729 }
45f014c5 1730 if (mask != 0) {
64db4cff 1731
d3f6bad3
PM
1732 /* rcu_report_qs_rnp() releases rnp->lock. */
1733 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1734 continue;
1735 }
1304afb2 1736 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1737 }
27f4d280 1738 rnp = rcu_get_root(rsp);
1217ed1b
PM
1739 if (rnp->qsmask == 0) {
1740 raw_spin_lock_irqsave(&rnp->lock, flags);
1741 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1742 }
64db4cff
PM
1743}
1744
1745/*
1746 * Force quiescent states on reluctant CPUs, and also detect which
1747 * CPUs are in dyntick-idle mode.
1748 */
1749static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1750{
1751 unsigned long flags;
64db4cff 1752 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1753
300df91c
PM
1754 trace_rcu_utilization("Start fqs");
1755 if (!rcu_gp_in_progress(rsp)) {
1756 trace_rcu_utilization("End fqs");
64db4cff 1757 return; /* No grace period in progress, nothing to force. */
300df91c 1758 }
1304afb2 1759 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1760 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1761 trace_rcu_utilization("End fqs");
64db4cff
PM
1762 return; /* Someone else is already on the job. */
1763 }
20133cfc 1764 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1765 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1766 rsp->n_force_qs++;
1304afb2 1767 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1768 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1769 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1770 rsp->n_force_qs_ngp++;
1304afb2 1771 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1772 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1773 }
07079d53 1774 rsp->fqs_active = 1;
af446b70 1775 switch (rsp->fqs_state) {
83f5b01f 1776 case RCU_GP_IDLE:
64db4cff
PM
1777 case RCU_GP_INIT:
1778
83f5b01f 1779 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1780
1781 case RCU_SAVE_DYNTICK:
64db4cff 1782
f261414f
LJ
1783 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1784
64db4cff 1785 /* Record dyntick-idle state. */
45f014c5 1786 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1787 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1788 if (rcu_gp_in_progress(rsp))
af446b70 1789 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1790 break;
64db4cff
PM
1791
1792 case RCU_FORCE_QS:
1793
1794 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1795 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1796 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1797
1798 /* Leave state in case more forcing is required. */
1799
1304afb2 1800 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1801 break;
64db4cff 1802 }
07079d53 1803 rsp->fqs_active = 0;
46a1e34e 1804 if (rsp->fqs_need_gp) {
1304afb2 1805 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1806 rsp->fqs_need_gp = 0;
1807 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1808 trace_rcu_utilization("End fqs");
46a1e34e
PM
1809 return;
1810 }
1304afb2 1811 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1812unlock_fqs_ret:
1304afb2 1813 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1814 trace_rcu_utilization("End fqs");
64db4cff
PM
1815}
1816
64db4cff 1817/*
e0f23060
PM
1818 * This does the RCU core processing work for the specified rcu_state
1819 * and rcu_data structures. This may be called only from the CPU to
1820 * whom the rdp belongs.
64db4cff
PM
1821 */
1822static void
1bca8cf1 1823__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1824{
1825 unsigned long flags;
1bca8cf1 1826 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1827
2e597558
PM
1828 WARN_ON_ONCE(rdp->beenonline == 0);
1829
64db4cff
PM
1830 /*
1831 * If an RCU GP has gone long enough, go check for dyntick
1832 * idle CPUs and, if needed, send resched IPIs.
1833 */
20133cfc 1834 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1835 force_quiescent_state(rsp, 1);
1836
1837 /*
1838 * Advance callbacks in response to end of earlier grace
1839 * period that some other CPU ended.
1840 */
1841 rcu_process_gp_end(rsp, rdp);
1842
1843 /* Update RCU state based on any recent quiescent states. */
1844 rcu_check_quiescent_state(rsp, rdp);
1845
1846 /* Does this CPU require a not-yet-started grace period? */
1847 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1848 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1849 rcu_start_gp(rsp, flags); /* releases above lock */
1850 }
1851
1852 /* If there are callbacks ready, invoke them. */
09223371 1853 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1854 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1855}
1856
64db4cff 1857/*
e0f23060 1858 * Do RCU core processing for the current CPU.
64db4cff 1859 */
09223371 1860static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1861{
6ce75a23
PM
1862 struct rcu_state *rsp;
1863
300df91c 1864 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
1865 for_each_rcu_flavor(rsp)
1866 __rcu_process_callbacks(rsp);
300df91c 1867 trace_rcu_utilization("End RCU core");
64db4cff
PM
1868}
1869
a26ac245 1870/*
e0f23060
PM
1871 * Schedule RCU callback invocation. If the specified type of RCU
1872 * does not support RCU priority boosting, just do a direct call,
1873 * otherwise wake up the per-CPU kernel kthread. Note that because we
1874 * are running on the current CPU with interrupts disabled, the
1875 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1876 */
a46e0899 1877static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1878{
b0d30417
PM
1879 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1880 return;
a46e0899
PM
1881 if (likely(!rsp->boost)) {
1882 rcu_do_batch(rsp, rdp);
a26ac245
PM
1883 return;
1884 }
a46e0899 1885 invoke_rcu_callbacks_kthread();
a26ac245
PM
1886}
1887
a46e0899 1888static void invoke_rcu_core(void)
09223371
SL
1889{
1890 raise_softirq(RCU_SOFTIRQ);
1891}
1892
29154c57
PM
1893/*
1894 * Handle any core-RCU processing required by a call_rcu() invocation.
1895 */
1896static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1897 struct rcu_head *head, unsigned long flags)
64db4cff 1898{
62fde6ed
PM
1899 /*
1900 * If called from an extended quiescent state, invoke the RCU
1901 * core in order to force a re-evaluation of RCU's idleness.
1902 */
a16b7a69 1903 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
1904 invoke_rcu_core();
1905
a16b7a69 1906 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 1907 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 1908 return;
64db4cff 1909
37c72e56
PM
1910 /*
1911 * Force the grace period if too many callbacks or too long waiting.
1912 * Enforce hysteresis, and don't invoke force_quiescent_state()
1913 * if some other CPU has recently done so. Also, don't bother
1914 * invoking force_quiescent_state() if the newly enqueued callback
1915 * is the only one waiting for a grace period to complete.
1916 */
2655d57e 1917 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1918
1919 /* Are we ignoring a completed grace period? */
1920 rcu_process_gp_end(rsp, rdp);
1921 check_for_new_grace_period(rsp, rdp);
1922
1923 /* Start a new grace period if one not already started. */
1924 if (!rcu_gp_in_progress(rsp)) {
1925 unsigned long nestflag;
1926 struct rcu_node *rnp_root = rcu_get_root(rsp);
1927
1928 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1929 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1930 } else {
1931 /* Give the grace period a kick. */
1932 rdp->blimit = LONG_MAX;
1933 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1934 *rdp->nxttail[RCU_DONE_TAIL] != head)
1935 force_quiescent_state(rsp, 0);
1936 rdp->n_force_qs_snap = rsp->n_force_qs;
1937 rdp->qlen_last_fqs_check = rdp->qlen;
1938 }
20133cfc 1939 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff 1940 force_quiescent_state(rsp, 1);
29154c57
PM
1941}
1942
64db4cff
PM
1943static void
1944__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1945 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1946{
1947 unsigned long flags;
1948 struct rcu_data *rdp;
1949
0bb7b59d 1950 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1951 debug_rcu_head_queue(head);
64db4cff
PM
1952 head->func = func;
1953 head->next = NULL;
1954
1955 smp_mb(); /* Ensure RCU update seen before callback registry. */
1956
1957 /*
1958 * Opportunistically note grace-period endings and beginnings.
1959 * Note that we might see a beginning right after we see an
1960 * end, but never vice versa, since this CPU has to pass through
1961 * a quiescent state betweentimes.
1962 */
1963 local_irq_save(flags);
394f99a9 1964 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1965
1966 /* Add the callback to our list. */
29154c57 1967 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
1968 if (lazy)
1969 rdp->qlen_lazy++;
c57afe80
PM
1970 else
1971 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1972 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1973 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1974 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1975
d4c08f2a
PM
1976 if (__is_kfree_rcu_offset((unsigned long)func))
1977 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1978 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1979 else
486e2593 1980 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1981
29154c57
PM
1982 /* Go handle any RCU core processing required. */
1983 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
1984 local_irq_restore(flags);
1985}
1986
1987/*
d6714c22 1988 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1989 */
d6714c22 1990void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1991{
486e2593 1992 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1993}
d6714c22 1994EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1995
1996/*
486e2593 1997 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1998 */
1999void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2000{
486e2593 2001 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
2002}
2003EXPORT_SYMBOL_GPL(call_rcu_bh);
2004
6d813391
PM
2005/*
2006 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2007 * any blocking grace-period wait automatically implies a grace period
2008 * if there is only one CPU online at any point time during execution
2009 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2010 * occasionally incorrectly indicate that there are multiple CPUs online
2011 * when there was in fact only one the whole time, as this just adds
2012 * some overhead: RCU still operates correctly.
6d813391
PM
2013 */
2014static inline int rcu_blocking_is_gp(void)
2015{
95f0c1de
PM
2016 int ret;
2017
6d813391 2018 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2019 preempt_disable();
2020 ret = num_online_cpus() <= 1;
2021 preempt_enable();
2022 return ret;
6d813391
PM
2023}
2024
6ebb237b
PM
2025/**
2026 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2027 *
2028 * Control will return to the caller some time after a full rcu-sched
2029 * grace period has elapsed, in other words after all currently executing
2030 * rcu-sched read-side critical sections have completed. These read-side
2031 * critical sections are delimited by rcu_read_lock_sched() and
2032 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2033 * local_irq_disable(), and so on may be used in place of
2034 * rcu_read_lock_sched().
2035 *
2036 * This means that all preempt_disable code sequences, including NMI and
2037 * hardware-interrupt handlers, in progress on entry will have completed
2038 * before this primitive returns. However, this does not guarantee that
2039 * softirq handlers will have completed, since in some kernels, these
2040 * handlers can run in process context, and can block.
2041 *
2042 * This primitive provides the guarantees made by the (now removed)
2043 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2044 * guarantees that rcu_read_lock() sections will have completed.
2045 * In "classic RCU", these two guarantees happen to be one and
2046 * the same, but can differ in realtime RCU implementations.
2047 */
2048void synchronize_sched(void)
2049{
fe15d706
PM
2050 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2051 !lock_is_held(&rcu_lock_map) &&
2052 !lock_is_held(&rcu_sched_lock_map),
2053 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2054 if (rcu_blocking_is_gp())
2055 return;
2c42818e 2056 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2057}
2058EXPORT_SYMBOL_GPL(synchronize_sched);
2059
2060/**
2061 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2062 *
2063 * Control will return to the caller some time after a full rcu_bh grace
2064 * period has elapsed, in other words after all currently executing rcu_bh
2065 * read-side critical sections have completed. RCU read-side critical
2066 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2067 * and may be nested.
2068 */
2069void synchronize_rcu_bh(void)
2070{
fe15d706
PM
2071 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2072 !lock_is_held(&rcu_lock_map) &&
2073 !lock_is_held(&rcu_sched_lock_map),
2074 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2075 if (rcu_blocking_is_gp())
2076 return;
2c42818e 2077 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2078}
2079EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2080
3d3b7db0
PM
2081static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2082static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2083
2084static int synchronize_sched_expedited_cpu_stop(void *data)
2085{
2086 /*
2087 * There must be a full memory barrier on each affected CPU
2088 * between the time that try_stop_cpus() is called and the
2089 * time that it returns.
2090 *
2091 * In the current initial implementation of cpu_stop, the
2092 * above condition is already met when the control reaches
2093 * this point and the following smp_mb() is not strictly
2094 * necessary. Do smp_mb() anyway for documentation and
2095 * robustness against future implementation changes.
2096 */
2097 smp_mb(); /* See above comment block. */
2098 return 0;
2099}
2100
236fefaf
PM
2101/**
2102 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2103 *
2104 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2105 * approach to force the grace period to end quickly. This consumes
2106 * significant time on all CPUs and is unfriendly to real-time workloads,
2107 * so is thus not recommended for any sort of common-case code. In fact,
2108 * if you are using synchronize_sched_expedited() in a loop, please
2109 * restructure your code to batch your updates, and then use a single
2110 * synchronize_sched() instead.
3d3b7db0 2111 *
236fefaf
PM
2112 * Note that it is illegal to call this function while holding any lock
2113 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2114 * to call this function from a CPU-hotplug notifier. Failing to observe
2115 * these restriction will result in deadlock.
3d3b7db0
PM
2116 *
2117 * This implementation can be thought of as an application of ticket
2118 * locking to RCU, with sync_sched_expedited_started and
2119 * sync_sched_expedited_done taking on the roles of the halves
2120 * of the ticket-lock word. Each task atomically increments
2121 * sync_sched_expedited_started upon entry, snapshotting the old value,
2122 * then attempts to stop all the CPUs. If this succeeds, then each
2123 * CPU will have executed a context switch, resulting in an RCU-sched
2124 * grace period. We are then done, so we use atomic_cmpxchg() to
2125 * update sync_sched_expedited_done to match our snapshot -- but
2126 * only if someone else has not already advanced past our snapshot.
2127 *
2128 * On the other hand, if try_stop_cpus() fails, we check the value
2129 * of sync_sched_expedited_done. If it has advanced past our
2130 * initial snapshot, then someone else must have forced a grace period
2131 * some time after we took our snapshot. In this case, our work is
2132 * done for us, and we can simply return. Otherwise, we try again,
2133 * but keep our initial snapshot for purposes of checking for someone
2134 * doing our work for us.
2135 *
2136 * If we fail too many times in a row, we fall back to synchronize_sched().
2137 */
2138void synchronize_sched_expedited(void)
2139{
2140 int firstsnap, s, snap, trycount = 0;
2141
2142 /* Note that atomic_inc_return() implies full memory barrier. */
2143 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2144 get_online_cpus();
1cc85961 2145 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2146
2147 /*
2148 * Each pass through the following loop attempts to force a
2149 * context switch on each CPU.
2150 */
2151 while (try_stop_cpus(cpu_online_mask,
2152 synchronize_sched_expedited_cpu_stop,
2153 NULL) == -EAGAIN) {
2154 put_online_cpus();
2155
2156 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2157 if (trycount++ < 10) {
3d3b7db0 2158 udelay(trycount * num_online_cpus());
c701d5d9 2159 } else {
3d3b7db0
PM
2160 synchronize_sched();
2161 return;
2162 }
2163
2164 /* Check to see if someone else did our work for us. */
2165 s = atomic_read(&sync_sched_expedited_done);
2166 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2167 smp_mb(); /* ensure test happens before caller kfree */
2168 return;
2169 }
2170
2171 /*
2172 * Refetching sync_sched_expedited_started allows later
2173 * callers to piggyback on our grace period. We subtract
2174 * 1 to get the same token that the last incrementer got.
2175 * We retry after they started, so our grace period works
2176 * for them, and they started after our first try, so their
2177 * grace period works for us.
2178 */
2179 get_online_cpus();
2180 snap = atomic_read(&sync_sched_expedited_started);
2181 smp_mb(); /* ensure read is before try_stop_cpus(). */
2182 }
2183
2184 /*
2185 * Everyone up to our most recent fetch is covered by our grace
2186 * period. Update the counter, but only if our work is still
2187 * relevant -- which it won't be if someone who started later
2188 * than we did beat us to the punch.
2189 */
2190 do {
2191 s = atomic_read(&sync_sched_expedited_done);
2192 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2193 smp_mb(); /* ensure test happens before caller kfree */
2194 break;
2195 }
2196 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2197
2198 put_online_cpus();
2199}
2200EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2201
64db4cff
PM
2202/*
2203 * Check to see if there is any immediate RCU-related work to be done
2204 * by the current CPU, for the specified type of RCU, returning 1 if so.
2205 * The checks are in order of increasing expense: checks that can be
2206 * carried out against CPU-local state are performed first. However,
2207 * we must check for CPU stalls first, else we might not get a chance.
2208 */
2209static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2210{
2f51f988
PM
2211 struct rcu_node *rnp = rdp->mynode;
2212
64db4cff
PM
2213 rdp->n_rcu_pending++;
2214
2215 /* Check for CPU stalls, if enabled. */
2216 check_cpu_stall(rsp, rdp);
2217
2218 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2219 if (rcu_scheduler_fully_active &&
2220 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2221
2222 /*
2223 * If force_quiescent_state() coming soon and this CPU
2224 * needs a quiescent state, and this is either RCU-sched
2225 * or RCU-bh, force a local reschedule.
2226 */
d21670ac 2227 rdp->n_rp_qs_pending++;
6cc68793 2228 if (!rdp->preemptible &&
d25eb944
PM
2229 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2230 jiffies))
2231 set_need_resched();
e4cc1f22 2232 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2233 rdp->n_rp_report_qs++;
64db4cff 2234 return 1;
7ba5c840 2235 }
64db4cff
PM
2236
2237 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2238 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2239 rdp->n_rp_cb_ready++;
64db4cff 2240 return 1;
7ba5c840 2241 }
64db4cff
PM
2242
2243 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2244 if (cpu_needs_another_gp(rsp, rdp)) {
2245 rdp->n_rp_cpu_needs_gp++;
64db4cff 2246 return 1;
7ba5c840 2247 }
64db4cff
PM
2248
2249 /* Has another RCU grace period completed? */
2f51f988 2250 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2251 rdp->n_rp_gp_completed++;
64db4cff 2252 return 1;
7ba5c840 2253 }
64db4cff
PM
2254
2255 /* Has a new RCU grace period started? */
2f51f988 2256 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2257 rdp->n_rp_gp_started++;
64db4cff 2258 return 1;
7ba5c840 2259 }
64db4cff
PM
2260
2261 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2262 if (rcu_gp_in_progress(rsp) &&
20133cfc 2263 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2264 rdp->n_rp_need_fqs++;
64db4cff 2265 return 1;
7ba5c840 2266 }
64db4cff
PM
2267
2268 /* nothing to do */
7ba5c840 2269 rdp->n_rp_need_nothing++;
64db4cff
PM
2270 return 0;
2271}
2272
2273/*
2274 * Check to see if there is any immediate RCU-related work to be done
2275 * by the current CPU, returning 1 if so. This function is part of the
2276 * RCU implementation; it is -not- an exported member of the RCU API.
2277 */
a157229c 2278static int rcu_pending(int cpu)
64db4cff 2279{
6ce75a23
PM
2280 struct rcu_state *rsp;
2281
2282 for_each_rcu_flavor(rsp)
2283 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2284 return 1;
2285 return 0;
64db4cff
PM
2286}
2287
2288/*
2289 * Check to see if any future RCU-related work will need to be done
2290 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2291 * 1 if so.
64db4cff 2292 */
aea1b35e 2293static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2294{
6ce75a23
PM
2295 struct rcu_state *rsp;
2296
64db4cff 2297 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2298 for_each_rcu_flavor(rsp)
2299 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2300 return 1;
2301 return 0;
64db4cff
PM
2302}
2303
a83eff0a
PM
2304/*
2305 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2306 * the compiler is expected to optimize this away.
2307 */
2308static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2309 int cpu, unsigned long done)
2310{
2311 trace_rcu_barrier(rsp->name, s, cpu,
2312 atomic_read(&rsp->barrier_cpu_count), done);
2313}
2314
b1420f1c
PM
2315/*
2316 * RCU callback function for _rcu_barrier(). If we are last, wake
2317 * up the task executing _rcu_barrier().
2318 */
24ebbca8 2319static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2320{
24ebbca8
PM
2321 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2322 struct rcu_state *rsp = rdp->rsp;
2323
a83eff0a
PM
2324 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2325 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2326 complete(&rsp->barrier_completion);
a83eff0a
PM
2327 } else {
2328 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2329 }
d0ec774c
PM
2330}
2331
2332/*
2333 * Called with preemption disabled, and from cross-cpu IRQ context.
2334 */
2335static void rcu_barrier_func(void *type)
2336{
037b64ed 2337 struct rcu_state *rsp = type;
06668efa 2338 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2339
a83eff0a 2340 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2341 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2342 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2343}
2344
d0ec774c
PM
2345/*
2346 * Orchestrate the specified type of RCU barrier, waiting for all
2347 * RCU callbacks of the specified type to complete.
2348 */
037b64ed 2349static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2350{
b1420f1c
PM
2351 int cpu;
2352 unsigned long flags;
2353 struct rcu_data *rdp;
24ebbca8 2354 struct rcu_data rd;
cf3a9c48
PM
2355 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2356 unsigned long snap_done;
b1420f1c 2357
24ebbca8 2358 init_rcu_head_on_stack(&rd.barrier_head);
a83eff0a 2359 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2360
e74f4c45 2361 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2362 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2363
cf3a9c48
PM
2364 /*
2365 * Ensure that all prior references, including to ->n_barrier_done,
2366 * are ordered before the _rcu_barrier() machinery.
2367 */
2368 smp_mb(); /* See above block comment. */
2369
2370 /*
2371 * Recheck ->n_barrier_done to see if others did our work for us.
2372 * This means checking ->n_barrier_done for an even-to-odd-to-even
2373 * transition. The "if" expression below therefore rounds the old
2374 * value up to the next even number and adds two before comparing.
2375 */
2376 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2377 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2378 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2379 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2380 smp_mb(); /* caller's subsequent code after above check. */
2381 mutex_unlock(&rsp->barrier_mutex);
2382 return;
2383 }
2384
2385 /*
2386 * Increment ->n_barrier_done to avoid duplicate work. Use
2387 * ACCESS_ONCE() to prevent the compiler from speculating
2388 * the increment to precede the early-exit check.
2389 */
2390 ACCESS_ONCE(rsp->n_barrier_done)++;
2391 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2392 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2393 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2394
d0ec774c 2395 /*
b1420f1c
PM
2396 * Initialize the count to one rather than to zero in order to
2397 * avoid a too-soon return to zero in case of a short grace period
2398 * (or preemption of this task). Also flag this task as doing
2399 * an rcu_barrier(). This will prevent anyone else from adopting
2400 * orphaned callbacks, which could cause otherwise failure if a
2401 * CPU went offline and quickly came back online. To see this,
2402 * consider the following sequence of events:
2403 *
2404 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2405 * 2. CPU 1 goes offline, orphaning its callbacks.
2406 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2407 * 4. CPU 1 comes back online.
2408 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2409 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2410 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2411 */
7db74df8 2412 init_completion(&rsp->barrier_completion);
24ebbca8 2413 atomic_set(&rsp->barrier_cpu_count, 1);
b1420f1c
PM
2414 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2415 rsp->rcu_barrier_in_progress = current;
2416 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2417
2418 /*
2419 * Force every CPU with callbacks to register a new callback
2420 * that will tell us when all the preceding callbacks have
2421 * been invoked. If an offline CPU has callbacks, wait for
2422 * it to either come back online or to finish orphaning those
2423 * callbacks.
2424 */
2425 for_each_possible_cpu(cpu) {
2426 preempt_disable();
2427 rdp = per_cpu_ptr(rsp->rda, cpu);
2428 if (cpu_is_offline(cpu)) {
a83eff0a
PM
2429 _rcu_barrier_trace(rsp, "Offline", cpu,
2430 rsp->n_barrier_done);
b1420f1c
PM
2431 preempt_enable();
2432 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2433 schedule_timeout_interruptible(1);
2434 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2435 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2436 rsp->n_barrier_done);
037b64ed 2437 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2438 preempt_enable();
2439 } else {
a83eff0a
PM
2440 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2441 rsp->n_barrier_done);
b1420f1c
PM
2442 preempt_enable();
2443 }
2444 }
2445
2446 /*
2447 * Now that all online CPUs have rcu_barrier_callback() callbacks
2448 * posted, we can adopt all of the orphaned callbacks and place
2449 * an rcu_barrier_callback() callback after them. When that is done,
2450 * we are guaranteed to have an rcu_barrier_callback() callback
2451 * following every callback that could possibly have been
2452 * registered before _rcu_barrier() was called.
2453 */
2454 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2455 rcu_adopt_orphan_cbs(rsp);
2456 rsp->rcu_barrier_in_progress = NULL;
2457 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
24ebbca8 2458 atomic_inc(&rsp->barrier_cpu_count);
b1420f1c 2459 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
24ebbca8
PM
2460 rd.rsp = rsp;
2461 rsp->call(&rd.barrier_head, rcu_barrier_callback);
b1420f1c
PM
2462
2463 /*
2464 * Now that we have an rcu_barrier_callback() callback on each
2465 * CPU, and thus each counted, remove the initial count.
2466 */
24ebbca8 2467 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2468 complete(&rsp->barrier_completion);
b1420f1c 2469
cf3a9c48
PM
2470 /* Increment ->n_barrier_done to prevent duplicate work. */
2471 smp_mb(); /* Keep increment after above mechanism. */
2472 ACCESS_ONCE(rsp->n_barrier_done)++;
2473 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2474 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2475 smp_mb(); /* Keep increment before caller's subsequent code. */
2476
b1420f1c 2477 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2478 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2479
2480 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2481 mutex_unlock(&rsp->barrier_mutex);
b1420f1c 2482
24ebbca8 2483 destroy_rcu_head_on_stack(&rd.barrier_head);
d0ec774c 2484}
d0ec774c
PM
2485
2486/**
2487 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2488 */
2489void rcu_barrier_bh(void)
2490{
037b64ed 2491 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2492}
2493EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2494
2495/**
2496 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2497 */
2498void rcu_barrier_sched(void)
2499{
037b64ed 2500 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2501}
2502EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2503
64db4cff 2504/*
27569620 2505 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2506 */
27569620
PM
2507static void __init
2508rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2509{
2510 unsigned long flags;
394f99a9 2511 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2512 struct rcu_node *rnp = rcu_get_root(rsp);
2513
2514 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2515 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2516 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2517 init_callback_list(rdp);
486e2593 2518 rdp->qlen_lazy = 0;
1d1fb395 2519 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2520 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2521 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2522 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2523 rdp->cpu = cpu;
d4c08f2a 2524 rdp->rsp = rsp;
1304afb2 2525 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2526}
2527
2528/*
2529 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2530 * offline event can be happening at a given time. Note also that we
2531 * can accept some slop in the rsp->completed access due to the fact
2532 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2533 */
e4fa4c97 2534static void __cpuinit
6cc68793 2535rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2536{
2537 unsigned long flags;
64db4cff 2538 unsigned long mask;
394f99a9 2539 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2540 struct rcu_node *rnp = rcu_get_root(rsp);
2541
2542 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2543 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2544 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2545 rdp->preemptible = preemptible;
37c72e56
PM
2546 rdp->qlen_last_fqs_check = 0;
2547 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2548 rdp->blimit = blimit;
29e37d81 2549 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2550 atomic_set(&rdp->dynticks->dynticks,
2551 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2552 rcu_prepare_for_idle_init(cpu);
1304afb2 2553 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2554
2555 /*
2556 * A new grace period might start here. If so, we won't be part
2557 * of it, but that is OK, as we are currently in a quiescent state.
2558 */
2559
2560 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2561 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2562
2563 /* Add CPU to rcu_node bitmasks. */
2564 rnp = rdp->mynode;
2565 mask = rdp->grpmask;
2566 do {
2567 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2568 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2569 rnp->qsmaskinit |= mask;
2570 mask = rnp->grpmask;
d09b62df 2571 if (rnp == rdp->mynode) {
06ae115a
PM
2572 /*
2573 * If there is a grace period in progress, we will
2574 * set up to wait for it next time we run the
2575 * RCU core code.
2576 */
2577 rdp->gpnum = rnp->completed;
d09b62df 2578 rdp->completed = rnp->completed;
06ae115a
PM
2579 rdp->passed_quiesce = 0;
2580 rdp->qs_pending = 0;
e4cc1f22 2581 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2582 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2583 }
1304afb2 2584 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2585 rnp = rnp->parent;
2586 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2587
1304afb2 2588 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2589}
2590
d72bce0e 2591static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2592{
6ce75a23
PM
2593 struct rcu_state *rsp;
2594
2595 for_each_rcu_flavor(rsp)
2596 rcu_init_percpu_data(cpu, rsp,
2597 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2598}
2599
2600/*
f41d911f 2601 * Handle CPU online/offline notification events.
64db4cff 2602 */
9f680ab4
PM
2603static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2604 unsigned long action, void *hcpu)
64db4cff
PM
2605{
2606 long cpu = (long)hcpu;
27f4d280 2607 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2608 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2609 struct rcu_state *rsp;
64db4cff 2610
300df91c 2611 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2612 switch (action) {
2613 case CPU_UP_PREPARE:
2614 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2615 rcu_prepare_cpu(cpu);
2616 rcu_prepare_kthreads(cpu);
a26ac245
PM
2617 break;
2618 case CPU_ONLINE:
0f962a5e
PM
2619 case CPU_DOWN_FAILED:
2620 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2621 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2622 break;
2623 case CPU_DOWN_PREPARE:
2624 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2625 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2626 break;
d0ec774c
PM
2627 case CPU_DYING:
2628 case CPU_DYING_FROZEN:
2629 /*
2d999e03
PM
2630 * The whole machine is "stopped" except this CPU, so we can
2631 * touch any data without introducing corruption. We send the
2632 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2633 */
6ce75a23
PM
2634 for_each_rcu_flavor(rsp)
2635 rcu_cleanup_dying_cpu(rsp);
7cb92499 2636 rcu_cleanup_after_idle(cpu);
d0ec774c 2637 break;
64db4cff
PM
2638 case CPU_DEAD:
2639 case CPU_DEAD_FROZEN:
2640 case CPU_UP_CANCELED:
2641 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2642 for_each_rcu_flavor(rsp)
2643 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2644 break;
2645 default:
2646 break;
2647 }
300df91c 2648 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2649 return NOTIFY_OK;
2650}
2651
b3dbec76
PM
2652/*
2653 * Spawn the kthread that handles this RCU flavor's grace periods.
2654 */
2655static int __init rcu_spawn_gp_kthread(void)
2656{
2657 unsigned long flags;
2658 struct rcu_node *rnp;
2659 struct rcu_state *rsp;
2660 struct task_struct *t;
2661
2662 for_each_rcu_flavor(rsp) {
2663 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2664 BUG_ON(IS_ERR(t));
2665 rnp = rcu_get_root(rsp);
2666 raw_spin_lock_irqsave(&rnp->lock, flags);
2667 rsp->gp_kthread = t;
2668 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2669 }
2670 return 0;
2671}
2672early_initcall(rcu_spawn_gp_kthread);
2673
bbad9379
PM
2674/*
2675 * This function is invoked towards the end of the scheduler's initialization
2676 * process. Before this is called, the idle task might contain
2677 * RCU read-side critical sections (during which time, this idle
2678 * task is booting the system). After this function is called, the
2679 * idle tasks are prohibited from containing RCU read-side critical
2680 * sections. This function also enables RCU lockdep checking.
2681 */
2682void rcu_scheduler_starting(void)
2683{
2684 WARN_ON(num_online_cpus() != 1);
2685 WARN_ON(nr_context_switches() > 0);
2686 rcu_scheduler_active = 1;
2687}
2688
64db4cff
PM
2689/*
2690 * Compute the per-level fanout, either using the exact fanout specified
2691 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2692 */
2693#ifdef CONFIG_RCU_FANOUT_EXACT
2694static void __init rcu_init_levelspread(struct rcu_state *rsp)
2695{
2696 int i;
2697
f885b7f2 2698 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2699 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2700 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2701}
2702#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2703static void __init rcu_init_levelspread(struct rcu_state *rsp)
2704{
2705 int ccur;
2706 int cprv;
2707 int i;
2708
2709 cprv = NR_CPUS;
f885b7f2 2710 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2711 ccur = rsp->levelcnt[i];
2712 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2713 cprv = ccur;
2714 }
2715}
2716#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2717
2718/*
2719 * Helper function for rcu_init() that initializes one rcu_state structure.
2720 */
394f99a9
LJ
2721static void __init rcu_init_one(struct rcu_state *rsp,
2722 struct rcu_data __percpu *rda)
64db4cff 2723{
b6407e86
PM
2724 static char *buf[] = { "rcu_node_level_0",
2725 "rcu_node_level_1",
2726 "rcu_node_level_2",
2727 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2728 int cpustride = 1;
2729 int i;
2730 int j;
2731 struct rcu_node *rnp;
2732
b6407e86
PM
2733 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2734
64db4cff
PM
2735 /* Initialize the level-tracking arrays. */
2736
f885b7f2
PM
2737 for (i = 0; i < rcu_num_lvls; i++)
2738 rsp->levelcnt[i] = num_rcu_lvl[i];
2739 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2740 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2741 rcu_init_levelspread(rsp);
2742
2743 /* Initialize the elements themselves, starting from the leaves. */
2744
f885b7f2 2745 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2746 cpustride *= rsp->levelspread[i];
2747 rnp = rsp->level[i];
2748 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2749 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2750 lockdep_set_class_and_name(&rnp->lock,
2751 &rcu_node_class[i], buf[i]);
f41d911f 2752 rnp->gpnum = 0;
64db4cff
PM
2753 rnp->qsmask = 0;
2754 rnp->qsmaskinit = 0;
2755 rnp->grplo = j * cpustride;
2756 rnp->grphi = (j + 1) * cpustride - 1;
2757 if (rnp->grphi >= NR_CPUS)
2758 rnp->grphi = NR_CPUS - 1;
2759 if (i == 0) {
2760 rnp->grpnum = 0;
2761 rnp->grpmask = 0;
2762 rnp->parent = NULL;
2763 } else {
2764 rnp->grpnum = j % rsp->levelspread[i - 1];
2765 rnp->grpmask = 1UL << rnp->grpnum;
2766 rnp->parent = rsp->level[i - 1] +
2767 j / rsp->levelspread[i - 1];
2768 }
2769 rnp->level = i;
12f5f524 2770 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2771 }
2772 }
0c34029a 2773
394f99a9 2774 rsp->rda = rda;
b3dbec76 2775 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 2776 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2777 for_each_possible_cpu(i) {
4a90a068 2778 while (i > rnp->grphi)
0c34029a 2779 rnp++;
394f99a9 2780 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2781 rcu_boot_init_percpu_data(i, rsp);
2782 }
6ce75a23 2783 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2784}
2785
f885b7f2
PM
2786/*
2787 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2788 * replace the definitions in rcutree.h because those are needed to size
2789 * the ->node array in the rcu_state structure.
2790 */
2791static void __init rcu_init_geometry(void)
2792{
2793 int i;
2794 int j;
cca6f393 2795 int n = nr_cpu_ids;
f885b7f2
PM
2796 int rcu_capacity[MAX_RCU_LVLS + 1];
2797
2798 /* If the compile-time values are accurate, just leave. */
2799 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2800 return;
2801
2802 /*
2803 * Compute number of nodes that can be handled an rcu_node tree
2804 * with the given number of levels. Setting rcu_capacity[0] makes
2805 * some of the arithmetic easier.
2806 */
2807 rcu_capacity[0] = 1;
2808 rcu_capacity[1] = rcu_fanout_leaf;
2809 for (i = 2; i <= MAX_RCU_LVLS; i++)
2810 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2811
2812 /*
2813 * The boot-time rcu_fanout_leaf parameter is only permitted
2814 * to increase the leaf-level fanout, not decrease it. Of course,
2815 * the leaf-level fanout cannot exceed the number of bits in
2816 * the rcu_node masks. Finally, the tree must be able to accommodate
2817 * the configured number of CPUs. Complain and fall back to the
2818 * compile-time values if these limits are exceeded.
2819 */
2820 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2821 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2822 n > rcu_capacity[MAX_RCU_LVLS]) {
2823 WARN_ON(1);
2824 return;
2825 }
2826
2827 /* Calculate the number of rcu_nodes at each level of the tree. */
2828 for (i = 1; i <= MAX_RCU_LVLS; i++)
2829 if (n <= rcu_capacity[i]) {
2830 for (j = 0; j <= i; j++)
2831 num_rcu_lvl[j] =
2832 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2833 rcu_num_lvls = i;
2834 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2835 num_rcu_lvl[j] = 0;
2836 break;
2837 }
2838
2839 /* Calculate the total number of rcu_node structures. */
2840 rcu_num_nodes = 0;
2841 for (i = 0; i <= MAX_RCU_LVLS; i++)
2842 rcu_num_nodes += num_rcu_lvl[i];
2843 rcu_num_nodes -= n;
2844}
2845
9f680ab4 2846void __init rcu_init(void)
64db4cff 2847{
017c4261 2848 int cpu;
9f680ab4 2849
f41d911f 2850 rcu_bootup_announce();
f885b7f2 2851 rcu_init_geometry();
394f99a9
LJ
2852 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2853 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2854 __rcu_init_preempt();
09223371 2855 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2856
2857 /*
2858 * We don't need protection against CPU-hotplug here because
2859 * this is called early in boot, before either interrupts
2860 * or the scheduler are operational.
2861 */
2862 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2863 for_each_online_cpu(cpu)
2864 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2865 check_cpu_stall_init();
64db4cff
PM
2866}
2867
1eba8f84 2868#include "rcutree_plugin.h"