rcu: Re-arrange code to reduce #ifdef pain
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
6ebb237b 49#include <linux/kernel_stat.h>
64db4cff 50
9f77da9f
PM
51#include "rcutree.h"
52
64db4cff
PM
53/* Data structures. */
54
b668c9cf 55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 56
64db4cff
PM
57#define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
64 }, \
83f5b01f 65 .signaled = RCU_GP_IDLE, \
64db4cff
PM
66 .gpnum = -300, \
67 .completed = -300, \
68 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
e74f4c45
PM
69 .orphan_cbs_list = NULL, \
70 .orphan_cbs_tail = &name.orphan_cbs_list, \
71 .orphan_qlen = 0, \
64db4cff
PM
72 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75}
76
d6714c22
PM
77struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
78DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 79
6258c4fb
IM
80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 82
6ebb237b
PM
83static int rcu_scheduler_active __read_mostly;
84
f41d911f 85
fc2219d4
PM
86/*
87 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
88 * permit this function to be invoked without holding the root rcu_node
89 * structure's ->lock, but of course results can be subject to change.
90 */
91static int rcu_gp_in_progress(struct rcu_state *rsp)
92{
93 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
94}
95
b1f77b05 96/*
d6714c22 97 * Note a quiescent state. Because we do not need to know
b1f77b05 98 * how many quiescent states passed, just if there was at least
d6714c22 99 * one since the start of the grace period, this just sets a flag.
b1f77b05 100 */
d6714c22 101void rcu_sched_qs(int cpu)
b1f77b05 102{
f41d911f
PM
103 struct rcu_data *rdp;
104
f41d911f 105 rdp = &per_cpu(rcu_sched_data, cpu);
c64ac3ce 106 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
107 barrier();
108 rdp->passed_quiesc = 1;
109 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
110}
111
d6714c22 112void rcu_bh_qs(int cpu)
b1f77b05 113{
f41d911f
PM
114 struct rcu_data *rdp;
115
f41d911f 116 rdp = &per_cpu(rcu_bh_data, cpu);
c64ac3ce 117 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
118 barrier();
119 rdp->passed_quiesc = 1;
b1f77b05 120}
64db4cff
PM
121
122#ifdef CONFIG_NO_HZ
90a4d2c0
PM
123DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
124 .dynticks_nesting = 1,
125 .dynticks = 1,
126};
64db4cff
PM
127#endif /* #ifdef CONFIG_NO_HZ */
128
129static int blimit = 10; /* Maximum callbacks per softirq. */
130static int qhimark = 10000; /* If this many pending, ignore blimit. */
131static int qlowmark = 100; /* Once only this many pending, use blimit. */
132
3d76c082
PM
133module_param(blimit, int, 0);
134module_param(qhimark, int, 0);
135module_param(qlowmark, int, 0);
136
64db4cff 137static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 138static int rcu_pending(int cpu);
64db4cff
PM
139
140/*
d6714c22 141 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 142 */
d6714c22 143long rcu_batches_completed_sched(void)
64db4cff 144{
d6714c22 145 return rcu_sched_state.completed;
64db4cff 146}
d6714c22 147EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
148
149/*
150 * Return the number of RCU BH batches processed thus far for debug & stats.
151 */
152long rcu_batches_completed_bh(void)
153{
154 return rcu_bh_state.completed;
155}
156EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
157
158/*
159 * Does the CPU have callbacks ready to be invoked?
160 */
161static int
162cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
163{
164 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
165}
166
167/*
168 * Does the current CPU require a yet-as-unscheduled grace period?
169 */
170static int
171cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
172{
fc2219d4 173 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
174}
175
176/*
177 * Return the root node of the specified rcu_state structure.
178 */
179static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
180{
181 return &rsp->node[0];
182}
183
184#ifdef CONFIG_SMP
185
186/*
187 * If the specified CPU is offline, tell the caller that it is in
188 * a quiescent state. Otherwise, whack it with a reschedule IPI.
189 * Grace periods can end up waiting on an offline CPU when that
190 * CPU is in the process of coming online -- it will be added to the
191 * rcu_node bitmasks before it actually makes it online. The same thing
192 * can happen while a CPU is in the process of coming online. Because this
193 * race is quite rare, we check for it after detecting that the grace
194 * period has been delayed rather than checking each and every CPU
195 * each and every time we start a new grace period.
196 */
197static int rcu_implicit_offline_qs(struct rcu_data *rdp)
198{
199 /*
200 * If the CPU is offline, it is in a quiescent state. We can
201 * trust its state not to change because interrupts are disabled.
202 */
203 if (cpu_is_offline(rdp->cpu)) {
204 rdp->offline_fqs++;
205 return 1;
206 }
207
f41d911f
PM
208 /* If preemptable RCU, no point in sending reschedule IPI. */
209 if (rdp->preemptable)
210 return 0;
211
64db4cff
PM
212 /* The CPU is online, so send it a reschedule IPI. */
213 if (rdp->cpu != smp_processor_id())
214 smp_send_reschedule(rdp->cpu);
215 else
216 set_need_resched();
217 rdp->resched_ipi++;
218 return 0;
219}
220
221#endif /* #ifdef CONFIG_SMP */
222
223#ifdef CONFIG_NO_HZ
64db4cff
PM
224
225/**
226 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
227 *
228 * Enter nohz mode, in other words, -leave- the mode in which RCU
229 * read-side critical sections can occur. (Though RCU read-side
230 * critical sections can occur in irq handlers in nohz mode, a possibility
231 * handled by rcu_irq_enter() and rcu_irq_exit()).
232 */
233void rcu_enter_nohz(void)
234{
235 unsigned long flags;
236 struct rcu_dynticks *rdtp;
237
238 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
239 local_irq_save(flags);
240 rdtp = &__get_cpu_var(rcu_dynticks);
241 rdtp->dynticks++;
242 rdtp->dynticks_nesting--;
86848966 243 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
244 local_irq_restore(flags);
245}
246
247/*
248 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
249 *
250 * Exit nohz mode, in other words, -enter- the mode in which RCU
251 * read-side critical sections normally occur.
252 */
253void rcu_exit_nohz(void)
254{
255 unsigned long flags;
256 struct rcu_dynticks *rdtp;
257
258 local_irq_save(flags);
259 rdtp = &__get_cpu_var(rcu_dynticks);
260 rdtp->dynticks++;
261 rdtp->dynticks_nesting++;
86848966 262 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
263 local_irq_restore(flags);
264 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
265}
266
267/**
268 * rcu_nmi_enter - inform RCU of entry to NMI context
269 *
270 * If the CPU was idle with dynamic ticks active, and there is no
271 * irq handler running, this updates rdtp->dynticks_nmi to let the
272 * RCU grace-period handling know that the CPU is active.
273 */
274void rcu_nmi_enter(void)
275{
276 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
277
278 if (rdtp->dynticks & 0x1)
279 return;
280 rdtp->dynticks_nmi++;
86848966 281 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
282 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
283}
284
285/**
286 * rcu_nmi_exit - inform RCU of exit from NMI context
287 *
288 * If the CPU was idle with dynamic ticks active, and there is no
289 * irq handler running, this updates rdtp->dynticks_nmi to let the
290 * RCU grace-period handling know that the CPU is no longer active.
291 */
292void rcu_nmi_exit(void)
293{
294 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
295
296 if (rdtp->dynticks & 0x1)
297 return;
298 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
299 rdtp->dynticks_nmi++;
86848966 300 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
301}
302
303/**
304 * rcu_irq_enter - inform RCU of entry to hard irq context
305 *
306 * If the CPU was idle with dynamic ticks active, this updates the
307 * rdtp->dynticks to let the RCU handling know that the CPU is active.
308 */
309void rcu_irq_enter(void)
310{
311 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
312
313 if (rdtp->dynticks_nesting++)
314 return;
315 rdtp->dynticks++;
86848966 316 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
317 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
318}
319
320/**
321 * rcu_irq_exit - inform RCU of exit from hard irq context
322 *
323 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
324 * to put let the RCU handling be aware that the CPU is going back to idle
325 * with no ticks.
326 */
327void rcu_irq_exit(void)
328{
329 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
330
331 if (--rdtp->dynticks_nesting)
332 return;
333 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
334 rdtp->dynticks++;
86848966 335 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
336
337 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 338 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
339 __get_cpu_var(rcu_bh_data).nxtlist)
340 set_need_resched();
341}
342
64db4cff
PM
343#ifdef CONFIG_SMP
344
64db4cff
PM
345/*
346 * Snapshot the specified CPU's dynticks counter so that we can later
347 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 348 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
349 */
350static int dyntick_save_progress_counter(struct rcu_data *rdp)
351{
352 int ret;
353 int snap;
354 int snap_nmi;
355
356 snap = rdp->dynticks->dynticks;
357 snap_nmi = rdp->dynticks->dynticks_nmi;
358 smp_mb(); /* Order sampling of snap with end of grace period. */
359 rdp->dynticks_snap = snap;
360 rdp->dynticks_nmi_snap = snap_nmi;
361 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
362 if (ret)
363 rdp->dynticks_fqs++;
364 return ret;
365}
366
367/*
368 * Return true if the specified CPU has passed through a quiescent
369 * state by virtue of being in or having passed through an dynticks
370 * idle state since the last call to dyntick_save_progress_counter()
371 * for this same CPU.
372 */
373static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
374{
375 long curr;
376 long curr_nmi;
377 long snap;
378 long snap_nmi;
379
380 curr = rdp->dynticks->dynticks;
381 snap = rdp->dynticks_snap;
382 curr_nmi = rdp->dynticks->dynticks_nmi;
383 snap_nmi = rdp->dynticks_nmi_snap;
384 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
385
386 /*
387 * If the CPU passed through or entered a dynticks idle phase with
388 * no active irq/NMI handlers, then we can safely pretend that the CPU
389 * already acknowledged the request to pass through a quiescent
390 * state. Either way, that CPU cannot possibly be in an RCU
391 * read-side critical section that started before the beginning
392 * of the current RCU grace period.
393 */
394 if ((curr != snap || (curr & 0x1) == 0) &&
395 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
396 rdp->dynticks_fqs++;
397 return 1;
398 }
399
400 /* Go check for the CPU being offline. */
401 return rcu_implicit_offline_qs(rdp);
402}
403
404#endif /* #ifdef CONFIG_SMP */
405
406#else /* #ifdef CONFIG_NO_HZ */
407
64db4cff
PM
408#ifdef CONFIG_SMP
409
64db4cff
PM
410static int dyntick_save_progress_counter(struct rcu_data *rdp)
411{
412 return 0;
413}
414
415static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
416{
417 return rcu_implicit_offline_qs(rdp);
418}
419
420#endif /* #ifdef CONFIG_SMP */
421
422#endif /* #else #ifdef CONFIG_NO_HZ */
423
424#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
425
426static void record_gp_stall_check_time(struct rcu_state *rsp)
427{
428 rsp->gp_start = jiffies;
429 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
430}
431
432static void print_other_cpu_stall(struct rcu_state *rsp)
433{
434 int cpu;
435 long delta;
436 unsigned long flags;
437 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
438
439 /* Only let one CPU complain about others per time interval. */
440
441 spin_lock_irqsave(&rnp->lock, flags);
442 delta = jiffies - rsp->jiffies_stall;
fc2219d4 443 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
64db4cff
PM
444 spin_unlock_irqrestore(&rnp->lock, flags);
445 return;
446 }
447 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
448
449 /*
450 * Now rat on any tasks that got kicked up to the root rcu_node
451 * due to CPU offlining.
452 */
453 rcu_print_task_stall(rnp);
64db4cff
PM
454 spin_unlock_irqrestore(&rnp->lock, flags);
455
456 /* OK, time to rat on our buddy... */
457
458 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
a0b6c9a7 459 rcu_for_each_leaf_node(rsp, rnp) {
f41d911f 460 rcu_print_task_stall(rnp);
a0b6c9a7 461 if (rnp->qsmask == 0)
64db4cff 462 continue;
a0b6c9a7
PM
463 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
464 if (rnp->qsmask & (1UL << cpu))
465 printk(" %d", rnp->grplo + cpu);
64db4cff
PM
466 }
467 printk(" (detected by %d, t=%ld jiffies)\n",
468 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
469 trigger_all_cpu_backtrace();
470
64db4cff
PM
471 force_quiescent_state(rsp, 0); /* Kick them all. */
472}
473
474static void print_cpu_stall(struct rcu_state *rsp)
475{
476 unsigned long flags;
477 struct rcu_node *rnp = rcu_get_root(rsp);
478
479 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
480 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
481 trigger_all_cpu_backtrace();
482
64db4cff
PM
483 spin_lock_irqsave(&rnp->lock, flags);
484 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
485 rsp->jiffies_stall =
486 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
487 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 488
64db4cff
PM
489 set_need_resched(); /* kick ourselves to get things going. */
490}
491
492static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
493{
494 long delta;
495 struct rcu_node *rnp;
496
497 delta = jiffies - rsp->jiffies_stall;
498 rnp = rdp->mynode;
499 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
500
501 /* We haven't checked in, so go dump stack. */
502 print_cpu_stall(rsp);
503
fc2219d4 504 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
505
506 /* They had two time units to dump stack, so complain. */
507 print_other_cpu_stall(rsp);
508 }
509}
510
511#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
512
513static void record_gp_stall_check_time(struct rcu_state *rsp)
514{
515}
516
517static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
518{
519}
520
521#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
522
523/*
524 * Update CPU-local rcu_data state to record the newly noticed grace period.
525 * This is used both when we started the grace period and when we notice
9160306e
PM
526 * that someone else started the grace period. The caller must hold the
527 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
528 * and must have irqs disabled.
64db4cff 529 */
9160306e
PM
530static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
531{
532 if (rdp->gpnum != rnp->gpnum) {
533 rdp->qs_pending = 1;
534 rdp->passed_quiesc = 0;
535 rdp->gpnum = rnp->gpnum;
536 }
537}
538
64db4cff
PM
539static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
540{
9160306e
PM
541 unsigned long flags;
542 struct rcu_node *rnp;
543
544 local_irq_save(flags);
545 rnp = rdp->mynode;
546 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
547 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
548 local_irq_restore(flags);
549 return;
550 }
551 __note_new_gpnum(rsp, rnp, rdp);
552 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
553}
554
555/*
556 * Did someone else start a new RCU grace period start since we last
557 * checked? Update local state appropriately if so. Must be called
558 * on the CPU corresponding to rdp.
559 */
560static int
561check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
562{
563 unsigned long flags;
564 int ret = 0;
565
566 local_irq_save(flags);
567 if (rdp->gpnum != rsp->gpnum) {
568 note_new_gpnum(rsp, rdp);
569 ret = 1;
570 }
571 local_irq_restore(flags);
572 return ret;
573}
574
d09b62df
PM
575/*
576 * Advance this CPU's callbacks, but only if the current grace period
577 * has ended. This may be called only from the CPU to whom the rdp
578 * belongs. In addition, the corresponding leaf rcu_node structure's
579 * ->lock must be held by the caller, with irqs disabled.
580 */
581static void
582__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
583{
584 /* Did another grace period end? */
585 if (rdp->completed != rnp->completed) {
586
587 /* Advance callbacks. No harm if list empty. */
588 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
589 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
590 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
591
592 /* Remember that we saw this grace-period completion. */
593 rdp->completed = rnp->completed;
594 }
595}
596
597/*
598 * Advance this CPU's callbacks, but only if the current grace period
599 * has ended. This may be called only from the CPU to whom the rdp
600 * belongs.
601 */
602static void
603rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
604{
605 unsigned long flags;
606 struct rcu_node *rnp;
607
608 local_irq_save(flags);
609 rnp = rdp->mynode;
610 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
611 !spin_trylock(&rnp->lock)) { /* irqs already off, retry later. */
612 local_irq_restore(flags);
613 return;
614 }
615 __rcu_process_gp_end(rsp, rnp, rdp);
616 spin_unlock_irqrestore(&rnp->lock, flags);
617}
618
619/*
620 * Do per-CPU grace-period initialization for running CPU. The caller
621 * must hold the lock of the leaf rcu_node structure corresponding to
622 * this CPU.
623 */
624static void
625rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
626{
627 /* Prior grace period ended, so advance callbacks for current CPU. */
628 __rcu_process_gp_end(rsp, rnp, rdp);
629
630 /*
631 * Because this CPU just now started the new grace period, we know
632 * that all of its callbacks will be covered by this upcoming grace
633 * period, even the ones that were registered arbitrarily recently.
634 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
635 *
636 * Other CPUs cannot be sure exactly when the grace period started.
637 * Therefore, their recently registered callbacks must pass through
638 * an additional RCU_NEXT_READY stage, so that they will be handled
639 * by the next RCU grace period.
640 */
641 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
642 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
643
644 /* Set state so that this CPU will detect the next quiescent state. */
645 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
646}
647
64db4cff
PM
648/*
649 * Start a new RCU grace period if warranted, re-initializing the hierarchy
650 * in preparation for detecting the next grace period. The caller must hold
651 * the root node's ->lock, which is released before return. Hard irqs must
652 * be disabled.
653 */
654static void
655rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
656 __releases(rcu_get_root(rsp)->lock)
657{
658 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
659 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
660
661 if (!cpu_needs_another_gp(rsp, rdp)) {
b32e9eb6
PM
662 if (rnp->completed == rsp->completed) {
663 spin_unlock_irqrestore(&rnp->lock, flags);
664 return;
665 }
666 spin_unlock(&rnp->lock); /* irqs remain disabled. */
667
668 /*
669 * Propagate new ->completed value to rcu_node structures
670 * so that other CPUs don't have to wait until the start
671 * of the next grace period to process their callbacks.
672 */
673 rcu_for_each_node_breadth_first(rsp, rnp) {
674 spin_lock(&rnp->lock); /* irqs already disabled. */
675 rnp->completed = rsp->completed;
676 spin_unlock(&rnp->lock); /* irqs remain disabled. */
677 }
678 local_irq_restore(flags);
64db4cff
PM
679 return;
680 }
681
682 /* Advance to a new grace period and initialize state. */
683 rsp->gpnum++;
c3422bea 684 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
685 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
686 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 687 record_gp_stall_check_time(rsp);
64db4cff 688
64db4cff
PM
689 /* Special-case the common single-level case. */
690 if (NUM_RCU_NODES == 1) {
b0e165c0 691 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 692 rnp->qsmask = rnp->qsmaskinit;
de078d87 693 rnp->gpnum = rsp->gpnum;
d09b62df 694 rnp->completed = rsp->completed;
c12172c0 695 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 696 rcu_start_gp_per_cpu(rsp, rnp, rdp);
64db4cff
PM
697 spin_unlock_irqrestore(&rnp->lock, flags);
698 return;
699 }
700
701 spin_unlock(&rnp->lock); /* leave irqs disabled. */
702
703
704 /* Exclude any concurrent CPU-hotplug operations. */
705 spin_lock(&rsp->onofflock); /* irqs already disabled. */
706
707 /*
b835db1f
PM
708 * Set the quiescent-state-needed bits in all the rcu_node
709 * structures for all currently online CPUs in breadth-first
710 * order, starting from the root rcu_node structure. This
711 * operation relies on the layout of the hierarchy within the
712 * rsp->node[] array. Note that other CPUs will access only
713 * the leaves of the hierarchy, which still indicate that no
714 * grace period is in progress, at least until the corresponding
715 * leaf node has been initialized. In addition, we have excluded
716 * CPU-hotplug operations.
64db4cff
PM
717 *
718 * Note that the grace period cannot complete until we finish
719 * the initialization process, as there will be at least one
720 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
721 * one corresponding to this CPU, due to the fact that we have
722 * irqs disabled.
64db4cff 723 */
a0b6c9a7 724 rcu_for_each_node_breadth_first(rsp, rnp) {
83f5b01f 725 spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 726 rcu_preempt_check_blocked_tasks(rnp);
49e29126 727 rnp->qsmask = rnp->qsmaskinit;
de078d87 728 rnp->gpnum = rsp->gpnum;
d09b62df
PM
729 rnp->completed = rsp->completed;
730 if (rnp == rdp->mynode)
731 rcu_start_gp_per_cpu(rsp, rnp, rdp);
83f5b01f 732 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
733 }
734
83f5b01f
PM
735 rnp = rcu_get_root(rsp);
736 spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 737 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
83f5b01f 738 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
739 spin_unlock_irqrestore(&rsp->onofflock, flags);
740}
741
f41d911f
PM
742/*
743 * Clean up after the prior grace period and let rcu_start_gp() start up
744 * the next grace period if one is needed. Note that the caller must
745 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
746 */
747static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
fc2219d4 748 __releases(rcu_get_root(rsp)->lock)
f41d911f 749{
fc2219d4 750 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 751 rsp->completed = rsp->gpnum;
83f5b01f 752 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
753 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
754}
755
64db4cff
PM
756/*
757 * Similar to cpu_quiet(), for which it is a helper function. Allows
758 * a group of CPUs to be quieted at one go, though all the CPUs in the
759 * group must be represented by the same leaf rcu_node structure.
760 * That structure's lock must be held upon entry, and it is released
761 * before return.
762 */
763static void
764cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
765 unsigned long flags)
766 __releases(rnp->lock)
767{
28ecd580
PM
768 struct rcu_node *rnp_c;
769
64db4cff
PM
770 /* Walk up the rcu_node hierarchy. */
771 for (;;) {
772 if (!(rnp->qsmask & mask)) {
773
774 /* Our bit has already been cleared, so done. */
775 spin_unlock_irqrestore(&rnp->lock, flags);
776 return;
777 }
778 rnp->qsmask &= ~mask;
f41d911f 779 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
780
781 /* Other bits still set at this level, so done. */
782 spin_unlock_irqrestore(&rnp->lock, flags);
783 return;
784 }
785 mask = rnp->grpmask;
786 if (rnp->parent == NULL) {
787
788 /* No more levels. Exit loop holding root lock. */
789
790 break;
791 }
792 spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 793 rnp_c = rnp;
64db4cff
PM
794 rnp = rnp->parent;
795 spin_lock_irqsave(&rnp->lock, flags);
28ecd580 796 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
797 }
798
799 /*
800 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
801 * state for this grace period. Invoke cpu_quiet_msk_finish()
802 * to clean up and start the next grace period if one is needed.
64db4cff 803 */
f41d911f 804 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
805}
806
807/*
808 * Record a quiescent state for the specified CPU, which must either be
e7d8842e
PM
809 * the current CPU. The lastcomp argument is used to make sure we are
810 * still in the grace period of interest. We don't want to end the current
811 * grace period based on quiescent states detected in an earlier grace
812 * period!
64db4cff
PM
813 */
814static void
815cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
816{
817 unsigned long flags;
818 unsigned long mask;
819 struct rcu_node *rnp;
820
821 rnp = rdp->mynode;
822 spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 823 if (lastcomp != rnp->completed) {
64db4cff
PM
824
825 /*
826 * Someone beat us to it for this grace period, so leave.
827 * The race with GP start is resolved by the fact that we
828 * hold the leaf rcu_node lock, so that the per-CPU bits
829 * cannot yet be initialized -- so we would simply find our
830 * CPU's bit already cleared in cpu_quiet_msk() if this race
831 * occurred.
832 */
833 rdp->passed_quiesc = 0; /* try again later! */
834 spin_unlock_irqrestore(&rnp->lock, flags);
835 return;
836 }
837 mask = rdp->grpmask;
838 if ((rnp->qsmask & mask) == 0) {
839 spin_unlock_irqrestore(&rnp->lock, flags);
840 } else {
841 rdp->qs_pending = 0;
842
843 /*
844 * This GP can't end until cpu checks in, so all of our
845 * callbacks can be processed during the next GP.
846 */
64db4cff
PM
847 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
848
849 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
850 }
851}
852
853/*
854 * Check to see if there is a new grace period of which this CPU
855 * is not yet aware, and if so, set up local rcu_data state for it.
856 * Otherwise, see if this CPU has just passed through its first
857 * quiescent state for this grace period, and record that fact if so.
858 */
859static void
860rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
861{
862 /* If there is now a new grace period, record and return. */
863 if (check_for_new_grace_period(rsp, rdp))
864 return;
865
866 /*
867 * Does this CPU still need to do its part for current grace period?
868 * If no, return and let the other CPUs do their part as well.
869 */
870 if (!rdp->qs_pending)
871 return;
872
873 /*
874 * Was there a quiescent state since the beginning of the grace
875 * period? If no, then exit and wait for the next call.
876 */
877 if (!rdp->passed_quiesc)
878 return;
879
880 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
881 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
882}
883
884#ifdef CONFIG_HOTPLUG_CPU
885
e74f4c45
PM
886/*
887 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
888 * specified flavor of RCU. The callbacks will be adopted by the next
889 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
890 * comes first. Because this is invoked from the CPU_DYING notifier,
891 * irqs are already disabled.
892 */
893static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
894{
895 int i;
896 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
897
898 if (rdp->nxtlist == NULL)
899 return; /* irqs disabled, so comparison is stable. */
900 spin_lock(&rsp->onofflock); /* irqs already disabled. */
901 *rsp->orphan_cbs_tail = rdp->nxtlist;
902 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
903 rdp->nxtlist = NULL;
904 for (i = 0; i < RCU_NEXT_SIZE; i++)
905 rdp->nxttail[i] = &rdp->nxtlist;
906 rsp->orphan_qlen += rdp->qlen;
907 rdp->qlen = 0;
908 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
909}
910
911/*
912 * Adopt previously orphaned RCU callbacks.
913 */
914static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
915{
916 unsigned long flags;
917 struct rcu_data *rdp;
918
919 spin_lock_irqsave(&rsp->onofflock, flags);
920 rdp = rsp->rda[smp_processor_id()];
921 if (rsp->orphan_cbs_list == NULL) {
922 spin_unlock_irqrestore(&rsp->onofflock, flags);
923 return;
924 }
925 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
926 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
927 rdp->qlen += rsp->orphan_qlen;
928 rsp->orphan_cbs_list = NULL;
929 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
930 rsp->orphan_qlen = 0;
931 spin_unlock_irqrestore(&rsp->onofflock, flags);
932}
933
64db4cff
PM
934/*
935 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
936 * and move all callbacks from the outgoing CPU to the current one.
937 */
938static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
939{
64db4cff 940 unsigned long flags;
64db4cff 941 unsigned long mask;
b668c9cf 942 int need_quiet = 0;
64db4cff 943 struct rcu_data *rdp = rsp->rda[cpu];
64db4cff
PM
944 struct rcu_node *rnp;
945
946 /* Exclude any attempts to start a new grace period. */
947 spin_lock_irqsave(&rsp->onofflock, flags);
948
949 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 950 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
951 mask = rdp->grpmask; /* rnp->grplo is constant. */
952 do {
953 spin_lock(&rnp->lock); /* irqs already disabled. */
954 rnp->qsmaskinit &= ~mask;
955 if (rnp->qsmaskinit != 0) {
b668c9cf
PM
956 if (rnp != rdp->mynode)
957 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
958 break;
959 }
b668c9cf
PM
960 if (rnp == rdp->mynode)
961 need_quiet = rcu_preempt_offline_tasks(rsp, rnp, rdp);
962 else
963 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 964 mask = rnp->grpmask;
64db4cff
PM
965 rnp = rnp->parent;
966 } while (rnp != NULL);
64db4cff 967
b668c9cf
PM
968 /*
969 * We still hold the leaf rcu_node structure lock here, and
970 * irqs are still disabled. The reason for this subterfuge is
971 * because invoking task_quiet() with ->onofflock held leads
972 * to deadlock.
973 */
974 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
975 rnp = rdp->mynode;
976 if (need_quiet)
977 task_quiet(rnp, flags);
978 else
979 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 980
e74f4c45 981 rcu_adopt_orphan_cbs(rsp);
64db4cff
PM
982}
983
984/*
985 * Remove the specified CPU from the RCU hierarchy and move any pending
986 * callbacks that it might have to the current CPU. This code assumes
987 * that at least one CPU in the system will remain running at all times.
988 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
989 */
990static void rcu_offline_cpu(int cpu)
991{
d6714c22 992 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 993 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 994 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
995}
996
997#else /* #ifdef CONFIG_HOTPLUG_CPU */
998
e74f4c45
PM
999static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1000{
1001}
1002
1003static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1004{
1005}
1006
64db4cff
PM
1007static void rcu_offline_cpu(int cpu)
1008{
1009}
1010
1011#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1012
1013/*
1014 * Invoke any RCU callbacks that have made it to the end of their grace
1015 * period. Thottle as specified by rdp->blimit.
1016 */
37c72e56 1017static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1018{
1019 unsigned long flags;
1020 struct rcu_head *next, *list, **tail;
1021 int count;
1022
1023 /* If no callbacks are ready, just return.*/
1024 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1025 return;
1026
1027 /*
1028 * Extract the list of ready callbacks, disabling to prevent
1029 * races with call_rcu() from interrupt handlers.
1030 */
1031 local_irq_save(flags);
1032 list = rdp->nxtlist;
1033 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1034 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1035 tail = rdp->nxttail[RCU_DONE_TAIL];
1036 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1037 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1038 rdp->nxttail[count] = &rdp->nxtlist;
1039 local_irq_restore(flags);
1040
1041 /* Invoke callbacks. */
1042 count = 0;
1043 while (list) {
1044 next = list->next;
1045 prefetch(next);
1046 list->func(list);
1047 list = next;
1048 if (++count >= rdp->blimit)
1049 break;
1050 }
1051
1052 local_irq_save(flags);
1053
1054 /* Update count, and requeue any remaining callbacks. */
1055 rdp->qlen -= count;
1056 if (list != NULL) {
1057 *tail = rdp->nxtlist;
1058 rdp->nxtlist = list;
1059 for (count = 0; count < RCU_NEXT_SIZE; count++)
1060 if (&rdp->nxtlist == rdp->nxttail[count])
1061 rdp->nxttail[count] = tail;
1062 else
1063 break;
1064 }
1065
1066 /* Reinstate batch limit if we have worked down the excess. */
1067 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1068 rdp->blimit = blimit;
1069
37c72e56
PM
1070 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1071 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1072 rdp->qlen_last_fqs_check = 0;
1073 rdp->n_force_qs_snap = rsp->n_force_qs;
1074 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1075 rdp->qlen_last_fqs_check = rdp->qlen;
1076
64db4cff
PM
1077 local_irq_restore(flags);
1078
1079 /* Re-raise the RCU softirq if there are callbacks remaining. */
1080 if (cpu_has_callbacks_ready_to_invoke(rdp))
1081 raise_softirq(RCU_SOFTIRQ);
1082}
1083
1084/*
1085 * Check to see if this CPU is in a non-context-switch quiescent state
1086 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1087 * Also schedule the RCU softirq handler.
1088 *
1089 * This function must be called with hardirqs disabled. It is normally
1090 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1091 * false, there is no point in invoking rcu_check_callbacks().
1092 */
1093void rcu_check_callbacks(int cpu, int user)
1094{
a157229c
PM
1095 if (!rcu_pending(cpu))
1096 return; /* if nothing for RCU to do. */
64db4cff 1097 if (user ||
a6826048
PM
1098 (idle_cpu(cpu) && rcu_scheduler_active &&
1099 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1100
1101 /*
1102 * Get here if this CPU took its interrupt from user
1103 * mode or from the idle loop, and if this is not a
1104 * nested interrupt. In this case, the CPU is in
d6714c22 1105 * a quiescent state, so note it.
64db4cff
PM
1106 *
1107 * No memory barrier is required here because both
d6714c22
PM
1108 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1109 * variables that other CPUs neither access nor modify,
1110 * at least not while the corresponding CPU is online.
64db4cff
PM
1111 */
1112
d6714c22
PM
1113 rcu_sched_qs(cpu);
1114 rcu_bh_qs(cpu);
64db4cff
PM
1115
1116 } else if (!in_softirq()) {
1117
1118 /*
1119 * Get here if this CPU did not take its interrupt from
1120 * softirq, in other words, if it is not interrupting
1121 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1122 * critical section, so note it.
64db4cff
PM
1123 */
1124
d6714c22 1125 rcu_bh_qs(cpu);
64db4cff 1126 }
f41d911f 1127 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1128 raise_softirq(RCU_SOFTIRQ);
1129}
1130
1131#ifdef CONFIG_SMP
1132
1133/*
1134 * Scan the leaf rcu_node structures, processing dyntick state for any that
1135 * have not yet encountered a quiescent state, using the function specified.
1136 * Returns 1 if the current grace period ends while scanning (possibly
1137 * because we made it end).
1138 */
1139static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1140 int (*f)(struct rcu_data *))
1141{
1142 unsigned long bit;
1143 int cpu;
1144 unsigned long flags;
1145 unsigned long mask;
a0b6c9a7 1146 struct rcu_node *rnp;
64db4cff 1147
a0b6c9a7 1148 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1149 mask = 0;
a0b6c9a7 1150 spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 1151 if (rnp->completed != lastcomp) {
a0b6c9a7 1152 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1153 return 1;
1154 }
a0b6c9a7
PM
1155 if (rnp->qsmask == 0) {
1156 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1157 continue;
1158 }
a0b6c9a7 1159 cpu = rnp->grplo;
64db4cff 1160 bit = 1;
a0b6c9a7
PM
1161 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1162 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
64db4cff
PM
1163 mask |= bit;
1164 }
560d4bc0 1165 if (mask != 0 && rnp->completed == lastcomp) {
64db4cff 1166
a0b6c9a7
PM
1167 /* cpu_quiet_msk() releases rnp->lock. */
1168 cpu_quiet_msk(mask, rsp, rnp, flags);
64db4cff
PM
1169 continue;
1170 }
a0b6c9a7 1171 spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1172 }
1173 return 0;
1174}
1175
1176/*
1177 * Force quiescent states on reluctant CPUs, and also detect which
1178 * CPUs are in dyntick-idle mode.
1179 */
1180static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1181{
1182 unsigned long flags;
1183 long lastcomp;
64db4cff
PM
1184 struct rcu_node *rnp = rcu_get_root(rsp);
1185 u8 signaled;
281d150c 1186 u8 forcenow;
64db4cff 1187
fc2219d4 1188 if (!rcu_gp_in_progress(rsp))
64db4cff
PM
1189 return; /* No grace period in progress, nothing to force. */
1190 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1191 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1192 return; /* Someone else is already on the job. */
1193 }
1194 if (relaxed &&
ef631b0c 1195 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1196 goto unlock_ret; /* no emergency and done recently. */
1197 rsp->n_force_qs++;
1198 spin_lock(&rnp->lock);
8e9aa8f0 1199 lastcomp = rsp->gpnum - 1;
64db4cff
PM
1200 signaled = rsp->signaled;
1201 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1202 if(!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1203 rsp->n_force_qs_ngp++;
1204 spin_unlock(&rnp->lock);
1205 goto unlock_ret; /* no GP in progress, time updated. */
1206 }
1207 spin_unlock(&rnp->lock);
1208 switch (signaled) {
83f5b01f 1209 case RCU_GP_IDLE:
64db4cff
PM
1210 case RCU_GP_INIT:
1211
83f5b01f 1212 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1213
1214 case RCU_SAVE_DYNTICK:
1215
1216 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1217 break; /* So gcc recognizes the dead code. */
1218
1219 /* Record dyntick-idle state. */
1220 if (rcu_process_dyntick(rsp, lastcomp,
1221 dyntick_save_progress_counter))
1222 goto unlock_ret;
281d150c
PM
1223 /* fall into next case. */
1224
1225 case RCU_SAVE_COMPLETED:
64db4cff
PM
1226
1227 /* Update state, record completion counter. */
281d150c 1228 forcenow = 0;
64db4cff 1229 spin_lock(&rnp->lock);
560d4bc0
PM
1230 if (lastcomp + 1 == rsp->gpnum &&
1231 lastcomp == rsp->completed &&
281d150c 1232 rsp->signaled == signaled) {
64db4cff 1233 rsp->signaled = RCU_FORCE_QS;
8e9aa8f0 1234 rsp->completed_fqs = lastcomp;
281d150c 1235 forcenow = signaled == RCU_SAVE_COMPLETED;
64db4cff
PM
1236 }
1237 spin_unlock(&rnp->lock);
281d150c
PM
1238 if (!forcenow)
1239 break;
1240 /* fall into next case. */
64db4cff
PM
1241
1242 case RCU_FORCE_QS:
1243
1244 /* Check dyntick-idle state, send IPI to laggarts. */
8e9aa8f0 1245 if (rcu_process_dyntick(rsp, rsp->completed_fqs,
64db4cff
PM
1246 rcu_implicit_dynticks_qs))
1247 goto unlock_ret;
1248
1249 /* Leave state in case more forcing is required. */
1250
1251 break;
1252 }
1253unlock_ret:
1254 spin_unlock_irqrestore(&rsp->fqslock, flags);
1255}
1256
1257#else /* #ifdef CONFIG_SMP */
1258
1259static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1260{
1261 set_need_resched();
1262}
1263
1264#endif /* #else #ifdef CONFIG_SMP */
1265
1266/*
1267 * This does the RCU processing work from softirq context for the
1268 * specified rcu_state and rcu_data structures. This may be called
1269 * only from the CPU to whom the rdp belongs.
1270 */
1271static void
1272__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1273{
1274 unsigned long flags;
1275
2e597558
PM
1276 WARN_ON_ONCE(rdp->beenonline == 0);
1277
64db4cff
PM
1278 /*
1279 * If an RCU GP has gone long enough, go check for dyntick
1280 * idle CPUs and, if needed, send resched IPIs.
1281 */
ef631b0c 1282 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1283 force_quiescent_state(rsp, 1);
1284
1285 /*
1286 * Advance callbacks in response to end of earlier grace
1287 * period that some other CPU ended.
1288 */
1289 rcu_process_gp_end(rsp, rdp);
1290
1291 /* Update RCU state based on any recent quiescent states. */
1292 rcu_check_quiescent_state(rsp, rdp);
1293
1294 /* Does this CPU require a not-yet-started grace period? */
1295 if (cpu_needs_another_gp(rsp, rdp)) {
1296 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1297 rcu_start_gp(rsp, flags); /* releases above lock */
1298 }
1299
1300 /* If there are callbacks ready, invoke them. */
37c72e56 1301 rcu_do_batch(rsp, rdp);
64db4cff
PM
1302}
1303
1304/*
1305 * Do softirq processing for the current CPU.
1306 */
1307static void rcu_process_callbacks(struct softirq_action *unused)
1308{
1309 /*
1310 * Memory references from any prior RCU read-side critical sections
1311 * executed by the interrupted code must be seen before any RCU
1312 * grace-period manipulations below.
1313 */
1314 smp_mb(); /* See above block comment. */
1315
d6714c22
PM
1316 __rcu_process_callbacks(&rcu_sched_state,
1317 &__get_cpu_var(rcu_sched_data));
64db4cff 1318 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1319 rcu_preempt_process_callbacks();
64db4cff
PM
1320
1321 /*
1322 * Memory references from any later RCU read-side critical sections
1323 * executed by the interrupted code must be seen after any RCU
1324 * grace-period manipulations above.
1325 */
1326 smp_mb(); /* See above block comment. */
1327}
1328
1329static void
1330__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1331 struct rcu_state *rsp)
1332{
1333 unsigned long flags;
1334 struct rcu_data *rdp;
1335
1336 head->func = func;
1337 head->next = NULL;
1338
1339 smp_mb(); /* Ensure RCU update seen before callback registry. */
1340
1341 /*
1342 * Opportunistically note grace-period endings and beginnings.
1343 * Note that we might see a beginning right after we see an
1344 * end, but never vice versa, since this CPU has to pass through
1345 * a quiescent state betweentimes.
1346 */
1347 local_irq_save(flags);
1348 rdp = rsp->rda[smp_processor_id()];
1349 rcu_process_gp_end(rsp, rdp);
1350 check_for_new_grace_period(rsp, rdp);
1351
1352 /* Add the callback to our list. */
1353 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1354 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1355
1356 /* Start a new grace period if one not already started. */
fc2219d4 1357 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1358 unsigned long nestflag;
1359 struct rcu_node *rnp_root = rcu_get_root(rsp);
1360
1361 spin_lock_irqsave(&rnp_root->lock, nestflag);
1362 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1363 }
1364
37c72e56
PM
1365 /*
1366 * Force the grace period if too many callbacks or too long waiting.
1367 * Enforce hysteresis, and don't invoke force_quiescent_state()
1368 * if some other CPU has recently done so. Also, don't bother
1369 * invoking force_quiescent_state() if the newly enqueued callback
1370 * is the only one waiting for a grace period to complete.
1371 */
1372 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1373 rdp->blimit = LONG_MAX;
37c72e56
PM
1374 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1375 *rdp->nxttail[RCU_DONE_TAIL] != head)
1376 force_quiescent_state(rsp, 0);
1377 rdp->n_force_qs_snap = rsp->n_force_qs;
1378 rdp->qlen_last_fqs_check = rdp->qlen;
ef631b0c 1379 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1380 force_quiescent_state(rsp, 1);
1381 local_irq_restore(flags);
1382}
1383
1384/*
d6714c22 1385 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1386 */
d6714c22 1387void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1388{
d6714c22 1389 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1390}
d6714c22 1391EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1392
1393/*
1394 * Queue an RCU for invocation after a quicker grace period.
1395 */
1396void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1397{
1398 __call_rcu(head, func, &rcu_bh_state);
1399}
1400EXPORT_SYMBOL_GPL(call_rcu_bh);
1401
6ebb237b
PM
1402/**
1403 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1404 *
1405 * Control will return to the caller some time after a full rcu-sched
1406 * grace period has elapsed, in other words after all currently executing
1407 * rcu-sched read-side critical sections have completed. These read-side
1408 * critical sections are delimited by rcu_read_lock_sched() and
1409 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1410 * local_irq_disable(), and so on may be used in place of
1411 * rcu_read_lock_sched().
1412 *
1413 * This means that all preempt_disable code sequences, including NMI and
1414 * hardware-interrupt handlers, in progress on entry will have completed
1415 * before this primitive returns. However, this does not guarantee that
1416 * softirq handlers will have completed, since in some kernels, these
1417 * handlers can run in process context, and can block.
1418 *
1419 * This primitive provides the guarantees made by the (now removed)
1420 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1421 * guarantees that rcu_read_lock() sections will have completed.
1422 * In "classic RCU", these two guarantees happen to be one and
1423 * the same, but can differ in realtime RCU implementations.
1424 */
1425void synchronize_sched(void)
1426{
1427 struct rcu_synchronize rcu;
1428
1429 if (rcu_blocking_is_gp())
1430 return;
1431
1432 init_completion(&rcu.completion);
1433 /* Will wake me after RCU finished. */
1434 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1435 /* Wait for it. */
1436 wait_for_completion(&rcu.completion);
1437}
1438EXPORT_SYMBOL_GPL(synchronize_sched);
1439
1440/**
1441 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1442 *
1443 * Control will return to the caller some time after a full rcu_bh grace
1444 * period has elapsed, in other words after all currently executing rcu_bh
1445 * read-side critical sections have completed. RCU read-side critical
1446 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1447 * and may be nested.
1448 */
1449void synchronize_rcu_bh(void)
1450{
1451 struct rcu_synchronize rcu;
1452
1453 if (rcu_blocking_is_gp())
1454 return;
1455
1456 init_completion(&rcu.completion);
1457 /* Will wake me after RCU finished. */
1458 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1459 /* Wait for it. */
1460 wait_for_completion(&rcu.completion);
1461}
1462EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1463
64db4cff
PM
1464/*
1465 * Check to see if there is any immediate RCU-related work to be done
1466 * by the current CPU, for the specified type of RCU, returning 1 if so.
1467 * The checks are in order of increasing expense: checks that can be
1468 * carried out against CPU-local state are performed first. However,
1469 * we must check for CPU stalls first, else we might not get a chance.
1470 */
1471static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1472{
2f51f988
PM
1473 struct rcu_node *rnp = rdp->mynode;
1474
64db4cff
PM
1475 rdp->n_rcu_pending++;
1476
1477 /* Check for CPU stalls, if enabled. */
1478 check_cpu_stall(rsp, rdp);
1479
1480 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1481 if (rdp->qs_pending) {
1482 rdp->n_rp_qs_pending++;
64db4cff 1483 return 1;
7ba5c840 1484 }
64db4cff
PM
1485
1486 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1487 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1488 rdp->n_rp_cb_ready++;
64db4cff 1489 return 1;
7ba5c840 1490 }
64db4cff
PM
1491
1492 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1493 if (cpu_needs_another_gp(rsp, rdp)) {
1494 rdp->n_rp_cpu_needs_gp++;
64db4cff 1495 return 1;
7ba5c840 1496 }
64db4cff
PM
1497
1498 /* Has another RCU grace period completed? */
2f51f988 1499 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1500 rdp->n_rp_gp_completed++;
64db4cff 1501 return 1;
7ba5c840 1502 }
64db4cff
PM
1503
1504 /* Has a new RCU grace period started? */
2f51f988 1505 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1506 rdp->n_rp_gp_started++;
64db4cff 1507 return 1;
7ba5c840 1508 }
64db4cff
PM
1509
1510 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1511 if (rcu_gp_in_progress(rsp) &&
7ba5c840
PM
1512 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1513 rdp->n_rp_need_fqs++;
64db4cff 1514 return 1;
7ba5c840 1515 }
64db4cff
PM
1516
1517 /* nothing to do */
7ba5c840 1518 rdp->n_rp_need_nothing++;
64db4cff
PM
1519 return 0;
1520}
1521
1522/*
1523 * Check to see if there is any immediate RCU-related work to be done
1524 * by the current CPU, returning 1 if so. This function is part of the
1525 * RCU implementation; it is -not- an exported member of the RCU API.
1526 */
a157229c 1527static int rcu_pending(int cpu)
64db4cff 1528{
d6714c22 1529 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1530 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1531 rcu_preempt_pending(cpu);
64db4cff
PM
1532}
1533
1534/*
1535 * Check to see if any future RCU-related work will need to be done
1536 * by the current CPU, even if none need be done immediately, returning
1537 * 1 if so. This function is part of the RCU implementation; it is -not-
1538 * an exported member of the RCU API.
1539 */
1540int rcu_needs_cpu(int cpu)
1541{
1542 /* RCU callbacks either ready or pending? */
d6714c22 1543 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1544 per_cpu(rcu_bh_data, cpu).nxtlist ||
1545 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1546}
1547
6ebb237b
PM
1548/*
1549 * This function is invoked towards the end of the scheduler's initialization
1550 * process. Before this is called, the idle task might contain
1551 * RCU read-side critical sections (during which time, this idle
1552 * task is booting the system). After this function is called, the
1553 * idle tasks are prohibited from containing RCU read-side critical
1554 * sections.
1555 */
1556void rcu_scheduler_starting(void)
1557{
1558 WARN_ON(num_online_cpus() != 1);
1559 WARN_ON(nr_context_switches() > 0);
1560 rcu_scheduler_active = 1;
1561}
1562
d0ec774c
PM
1563static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1564static atomic_t rcu_barrier_cpu_count;
1565static DEFINE_MUTEX(rcu_barrier_mutex);
1566static struct completion rcu_barrier_completion;
d0ec774c
PM
1567
1568static void rcu_barrier_callback(struct rcu_head *notused)
1569{
1570 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1571 complete(&rcu_barrier_completion);
1572}
1573
1574/*
1575 * Called with preemption disabled, and from cross-cpu IRQ context.
1576 */
1577static void rcu_barrier_func(void *type)
1578{
1579 int cpu = smp_processor_id();
1580 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1581 void (*call_rcu_func)(struct rcu_head *head,
1582 void (*func)(struct rcu_head *head));
1583
1584 atomic_inc(&rcu_barrier_cpu_count);
1585 call_rcu_func = type;
1586 call_rcu_func(head, rcu_barrier_callback);
1587}
1588
d0ec774c
PM
1589/*
1590 * Orchestrate the specified type of RCU barrier, waiting for all
1591 * RCU callbacks of the specified type to complete.
1592 */
e74f4c45
PM
1593static void _rcu_barrier(struct rcu_state *rsp,
1594 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1595 void (*func)(struct rcu_head *head)))
1596{
1597 BUG_ON(in_interrupt());
e74f4c45 1598 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1599 mutex_lock(&rcu_barrier_mutex);
1600 init_completion(&rcu_barrier_completion);
1601 /*
1602 * Initialize rcu_barrier_cpu_count to 1, then invoke
1603 * rcu_barrier_func() on each CPU, so that each CPU also has
1604 * incremented rcu_barrier_cpu_count. Only then is it safe to
1605 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1606 * might complete its grace period before all of the other CPUs
1607 * did their increment, causing this function to return too
1608 * early.
1609 */
1610 atomic_set(&rcu_barrier_cpu_count, 1);
e74f4c45
PM
1611 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1612 rcu_adopt_orphan_cbs(rsp);
d0ec774c 1613 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
e74f4c45 1614 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
d0ec774c
PM
1615 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1616 complete(&rcu_barrier_completion);
1617 wait_for_completion(&rcu_barrier_completion);
1618 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1619}
d0ec774c
PM
1620
1621/**
1622 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1623 */
1624void rcu_barrier_bh(void)
1625{
e74f4c45 1626 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1627}
1628EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1629
1630/**
1631 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1632 */
1633void rcu_barrier_sched(void)
1634{
e74f4c45 1635 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1636}
1637EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1638
64db4cff 1639/*
27569620 1640 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1641 */
27569620
PM
1642static void __init
1643rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1644{
1645 unsigned long flags;
1646 int i;
27569620
PM
1647 struct rcu_data *rdp = rsp->rda[cpu];
1648 struct rcu_node *rnp = rcu_get_root(rsp);
1649
1650 /* Set up local state, ensuring consistent view of global state. */
1651 spin_lock_irqsave(&rnp->lock, flags);
1652 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1653 rdp->nxtlist = NULL;
1654 for (i = 0; i < RCU_NEXT_SIZE; i++)
1655 rdp->nxttail[i] = &rdp->nxtlist;
1656 rdp->qlen = 0;
1657#ifdef CONFIG_NO_HZ
1658 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1659#endif /* #ifdef CONFIG_NO_HZ */
1660 rdp->cpu = cpu;
1661 spin_unlock_irqrestore(&rnp->lock, flags);
1662}
1663
1664/*
1665 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1666 * offline event can be happening at a given time. Note also that we
1667 * can accept some slop in the rsp->completed access due to the fact
1668 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1669 */
e4fa4c97 1670static void __cpuinit
f41d911f 1671rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1672{
1673 unsigned long flags;
64db4cff
PM
1674 unsigned long mask;
1675 struct rcu_data *rdp = rsp->rda[cpu];
1676 struct rcu_node *rnp = rcu_get_root(rsp);
1677
1678 /* Set up local state, ensuring consistent view of global state. */
1679 spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1680 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1681 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1682 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1683 rdp->preemptable = preemptable;
37c72e56
PM
1684 rdp->qlen_last_fqs_check = 0;
1685 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1686 rdp->blimit = blimit;
64db4cff
PM
1687 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1688
1689 /*
1690 * A new grace period might start here. If so, we won't be part
1691 * of it, but that is OK, as we are currently in a quiescent state.
1692 */
1693
1694 /* Exclude any attempts to start a new GP on large systems. */
1695 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1696
1697 /* Add CPU to rcu_node bitmasks. */
1698 rnp = rdp->mynode;
1699 mask = rdp->grpmask;
1700 do {
1701 /* Exclude any attempts to start a new GP on small systems. */
1702 spin_lock(&rnp->lock); /* irqs already disabled. */
1703 rnp->qsmaskinit |= mask;
1704 mask = rnp->grpmask;
d09b62df
PM
1705 if (rnp == rdp->mynode) {
1706 rdp->gpnum = rnp->completed; /* if GP in progress... */
1707 rdp->completed = rnp->completed;
1708 rdp->passed_quiesc_completed = rnp->completed - 1;
1709 }
64db4cff
PM
1710 spin_unlock(&rnp->lock); /* irqs already disabled. */
1711 rnp = rnp->parent;
1712 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1713
e7d8842e 1714 spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1715}
1716
1717static void __cpuinit rcu_online_cpu(int cpu)
1718{
f41d911f
PM
1719 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1720 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1721 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1722}
1723
1724/*
f41d911f 1725 * Handle CPU online/offline notification events.
64db4cff 1726 */
9f680ab4
PM
1727static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1728 unsigned long action, void *hcpu)
64db4cff
PM
1729{
1730 long cpu = (long)hcpu;
1731
1732 switch (action) {
1733 case CPU_UP_PREPARE:
1734 case CPU_UP_PREPARE_FROZEN:
1735 rcu_online_cpu(cpu);
1736 break;
d0ec774c
PM
1737 case CPU_DYING:
1738 case CPU_DYING_FROZEN:
1739 /*
e74f4c45 1740 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
d0ec774c 1741 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
e74f4c45
PM
1742 * returns, all online cpus have queued rcu_barrier_func().
1743 * The dying CPU clears its cpu_online_mask bit and
1744 * moves all of its RCU callbacks to ->orphan_cbs_list
1745 * in the context of stop_machine(), so subsequent calls
1746 * to _rcu_barrier() will adopt these callbacks and only
1747 * then queue rcu_barrier_func() on all remaining CPUs.
d0ec774c 1748 */
e74f4c45
PM
1749 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1750 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1751 rcu_preempt_send_cbs_to_orphanage();
d0ec774c 1752 break;
64db4cff
PM
1753 case CPU_DEAD:
1754 case CPU_DEAD_FROZEN:
1755 case CPU_UP_CANCELED:
1756 case CPU_UP_CANCELED_FROZEN:
1757 rcu_offline_cpu(cpu);
1758 break;
1759 default:
1760 break;
1761 }
1762 return NOTIFY_OK;
1763}
1764
1765/*
1766 * Compute the per-level fanout, either using the exact fanout specified
1767 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1768 */
1769#ifdef CONFIG_RCU_FANOUT_EXACT
1770static void __init rcu_init_levelspread(struct rcu_state *rsp)
1771{
1772 int i;
1773
1774 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1775 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1776}
1777#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1778static void __init rcu_init_levelspread(struct rcu_state *rsp)
1779{
1780 int ccur;
1781 int cprv;
1782 int i;
1783
1784 cprv = NR_CPUS;
1785 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1786 ccur = rsp->levelcnt[i];
1787 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1788 cprv = ccur;
1789 }
1790}
1791#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1792
1793/*
1794 * Helper function for rcu_init() that initializes one rcu_state structure.
1795 */
1796static void __init rcu_init_one(struct rcu_state *rsp)
1797{
1798 int cpustride = 1;
1799 int i;
1800 int j;
1801 struct rcu_node *rnp;
1802
1803 /* Initialize the level-tracking arrays. */
1804
1805 for (i = 1; i < NUM_RCU_LVLS; i++)
1806 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1807 rcu_init_levelspread(rsp);
1808
1809 /* Initialize the elements themselves, starting from the leaves. */
1810
1811 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1812 cpustride *= rsp->levelspread[i];
1813 rnp = rsp->level[i];
1814 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
88b91c7c 1815 spin_lock_init(&rnp->lock);
b668c9cf 1816 lockdep_set_class(&rnp->lock, &rcu_node_class[i]);
f41d911f 1817 rnp->gpnum = 0;
64db4cff
PM
1818 rnp->qsmask = 0;
1819 rnp->qsmaskinit = 0;
1820 rnp->grplo = j * cpustride;
1821 rnp->grphi = (j + 1) * cpustride - 1;
1822 if (rnp->grphi >= NR_CPUS)
1823 rnp->grphi = NR_CPUS - 1;
1824 if (i == 0) {
1825 rnp->grpnum = 0;
1826 rnp->grpmask = 0;
1827 rnp->parent = NULL;
1828 } else {
1829 rnp->grpnum = j % rsp->levelspread[i - 1];
1830 rnp->grpmask = 1UL << rnp->grpnum;
1831 rnp->parent = rsp->level[i - 1] +
1832 j / rsp->levelspread[i - 1];
1833 }
1834 rnp->level = i;
f41d911f
PM
1835 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1836 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1837 }
1838 }
1839}
1840
1841/*
f41d911f
PM
1842 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1843 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1844 * structure.
64db4cff 1845 */
65cf8f86 1846#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1847do { \
a0b6c9a7
PM
1848 int i; \
1849 int j; \
1850 struct rcu_node *rnp; \
1851 \
65cf8f86 1852 rcu_init_one(rsp); \
64db4cff
PM
1853 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1854 j = 0; \
1855 for_each_possible_cpu(i) { \
1856 if (i > rnp[j].grphi) \
1857 j++; \
1858 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1859 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1860 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1861 } \
1862} while (0)
1863
9f680ab4 1864void __init rcu_init(void)
64db4cff 1865{
9f680ab4
PM
1866 int i;
1867
f41d911f 1868 rcu_bootup_announce();
64db4cff
PM
1869#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1870 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1871#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1872 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1873 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1874 __rcu_init_preempt();
2e597558 1875 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1876
1877 /*
1878 * We don't need protection against CPU-hotplug here because
1879 * this is called early in boot, before either interrupts
1880 * or the scheduler are operational.
1881 */
1882 cpu_notifier(rcu_cpu_notify, 0);
1883 for_each_online_cpu(i)
1884 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)i);
64db4cff
PM
1885}
1886
1eba8f84 1887#include "rcutree_plugin.h"