rcu: Convert to raw_spinlocks
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
6ebb237b 49#include <linux/kernel_stat.h>
64db4cff 50
9f77da9f
PM
51#include "rcutree.h"
52
64db4cff
PM
53/* Data structures. */
54
b668c9cf 55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 56
64db4cff
PM
57#define RCU_STATE_INITIALIZER(name) { \
58 .level = { &name.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
cf244dc0
PM
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 65 }, \
83f5b01f 66 .signaled = RCU_GP_IDLE, \
64db4cff
PM
67 .gpnum = -300, \
68 .completed = -300, \
1304afb2 69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \
e74f4c45
PM
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &name.orphan_cbs_list, \
72 .orphan_qlen = 0, \
1304afb2 73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \
64db4cff
PM
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
6ebb237b
PM
84static int rcu_scheduler_active __read_mostly;
85
f41d911f 86
fc2219d4
PM
87/*
88 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
89 * permit this function to be invoked without holding the root rcu_node
90 * structure's ->lock, but of course results can be subject to change.
91 */
92static int rcu_gp_in_progress(struct rcu_state *rsp)
93{
94 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
95}
96
b1f77b05 97/*
d6714c22 98 * Note a quiescent state. Because we do not need to know
b1f77b05 99 * how many quiescent states passed, just if there was at least
d6714c22 100 * one since the start of the grace period, this just sets a flag.
b1f77b05 101 */
d6714c22 102void rcu_sched_qs(int cpu)
b1f77b05 103{
f41d911f
PM
104 struct rcu_data *rdp;
105
f41d911f 106 rdp = &per_cpu(rcu_sched_data, cpu);
c64ac3ce 107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
108 barrier();
109 rdp->passed_quiesc = 1;
110 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
111}
112
d6714c22 113void rcu_bh_qs(int cpu)
b1f77b05 114{
f41d911f
PM
115 struct rcu_data *rdp;
116
f41d911f 117 rdp = &per_cpu(rcu_bh_data, cpu);
c64ac3ce 118 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
119 barrier();
120 rdp->passed_quiesc = 1;
b1f77b05 121}
64db4cff
PM
122
123#ifdef CONFIG_NO_HZ
90a4d2c0
PM
124DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
125 .dynticks_nesting = 1,
126 .dynticks = 1,
127};
64db4cff
PM
128#endif /* #ifdef CONFIG_NO_HZ */
129
130static int blimit = 10; /* Maximum callbacks per softirq. */
131static int qhimark = 10000; /* If this many pending, ignore blimit. */
132static int qlowmark = 100; /* Once only this many pending, use blimit. */
133
3d76c082
PM
134module_param(blimit, int, 0);
135module_param(qhimark, int, 0);
136module_param(qlowmark, int, 0);
137
64db4cff 138static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 139static int rcu_pending(int cpu);
64db4cff
PM
140
141/*
d6714c22 142 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 143 */
d6714c22 144long rcu_batches_completed_sched(void)
64db4cff 145{
d6714c22 146 return rcu_sched_state.completed;
64db4cff 147}
d6714c22 148EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
149
150/*
151 * Return the number of RCU BH batches processed thus far for debug & stats.
152 */
153long rcu_batches_completed_bh(void)
154{
155 return rcu_bh_state.completed;
156}
157EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
158
bf66f18e
PM
159/*
160 * Force a quiescent state for RCU BH.
161 */
162void rcu_bh_force_quiescent_state(void)
163{
164 force_quiescent_state(&rcu_bh_state, 0);
165}
166EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
167
168/*
169 * Force a quiescent state for RCU-sched.
170 */
171void rcu_sched_force_quiescent_state(void)
172{
173 force_quiescent_state(&rcu_sched_state, 0);
174}
175EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
176
64db4cff
PM
177/*
178 * Does the CPU have callbacks ready to be invoked?
179 */
180static int
181cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
182{
183 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
184}
185
186/*
187 * Does the current CPU require a yet-as-unscheduled grace period?
188 */
189static int
190cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
191{
fc2219d4 192 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
193}
194
195/*
196 * Return the root node of the specified rcu_state structure.
197 */
198static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
199{
200 return &rsp->node[0];
201}
202
203#ifdef CONFIG_SMP
204
205/*
206 * If the specified CPU is offline, tell the caller that it is in
207 * a quiescent state. Otherwise, whack it with a reschedule IPI.
208 * Grace periods can end up waiting on an offline CPU when that
209 * CPU is in the process of coming online -- it will be added to the
210 * rcu_node bitmasks before it actually makes it online. The same thing
211 * can happen while a CPU is in the process of coming online. Because this
212 * race is quite rare, we check for it after detecting that the grace
213 * period has been delayed rather than checking each and every CPU
214 * each and every time we start a new grace period.
215 */
216static int rcu_implicit_offline_qs(struct rcu_data *rdp)
217{
218 /*
219 * If the CPU is offline, it is in a quiescent state. We can
220 * trust its state not to change because interrupts are disabled.
221 */
222 if (cpu_is_offline(rdp->cpu)) {
223 rdp->offline_fqs++;
224 return 1;
225 }
226
f41d911f
PM
227 /* If preemptable RCU, no point in sending reschedule IPI. */
228 if (rdp->preemptable)
229 return 0;
230
64db4cff
PM
231 /* The CPU is online, so send it a reschedule IPI. */
232 if (rdp->cpu != smp_processor_id())
233 smp_send_reschedule(rdp->cpu);
234 else
235 set_need_resched();
236 rdp->resched_ipi++;
237 return 0;
238}
239
240#endif /* #ifdef CONFIG_SMP */
241
242#ifdef CONFIG_NO_HZ
64db4cff
PM
243
244/**
245 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
246 *
247 * Enter nohz mode, in other words, -leave- the mode in which RCU
248 * read-side critical sections can occur. (Though RCU read-side
249 * critical sections can occur in irq handlers in nohz mode, a possibility
250 * handled by rcu_irq_enter() and rcu_irq_exit()).
251 */
252void rcu_enter_nohz(void)
253{
254 unsigned long flags;
255 struct rcu_dynticks *rdtp;
256
257 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
258 local_irq_save(flags);
259 rdtp = &__get_cpu_var(rcu_dynticks);
260 rdtp->dynticks++;
261 rdtp->dynticks_nesting--;
86848966 262 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
263 local_irq_restore(flags);
264}
265
266/*
267 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
268 *
269 * Exit nohz mode, in other words, -enter- the mode in which RCU
270 * read-side critical sections normally occur.
271 */
272void rcu_exit_nohz(void)
273{
274 unsigned long flags;
275 struct rcu_dynticks *rdtp;
276
277 local_irq_save(flags);
278 rdtp = &__get_cpu_var(rcu_dynticks);
279 rdtp->dynticks++;
280 rdtp->dynticks_nesting++;
86848966 281 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
282 local_irq_restore(flags);
283 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
284}
285
286/**
287 * rcu_nmi_enter - inform RCU of entry to NMI context
288 *
289 * If the CPU was idle with dynamic ticks active, and there is no
290 * irq handler running, this updates rdtp->dynticks_nmi to let the
291 * RCU grace-period handling know that the CPU is active.
292 */
293void rcu_nmi_enter(void)
294{
295 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
296
297 if (rdtp->dynticks & 0x1)
298 return;
299 rdtp->dynticks_nmi++;
86848966 300 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
301 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
302}
303
304/**
305 * rcu_nmi_exit - inform RCU of exit from NMI context
306 *
307 * If the CPU was idle with dynamic ticks active, and there is no
308 * irq handler running, this updates rdtp->dynticks_nmi to let the
309 * RCU grace-period handling know that the CPU is no longer active.
310 */
311void rcu_nmi_exit(void)
312{
313 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
314
315 if (rdtp->dynticks & 0x1)
316 return;
317 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
318 rdtp->dynticks_nmi++;
86848966 319 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
320}
321
322/**
323 * rcu_irq_enter - inform RCU of entry to hard irq context
324 *
325 * If the CPU was idle with dynamic ticks active, this updates the
326 * rdtp->dynticks to let the RCU handling know that the CPU is active.
327 */
328void rcu_irq_enter(void)
329{
330 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
331
332 if (rdtp->dynticks_nesting++)
333 return;
334 rdtp->dynticks++;
86848966 335 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
336 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
337}
338
339/**
340 * rcu_irq_exit - inform RCU of exit from hard irq context
341 *
342 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
343 * to put let the RCU handling be aware that the CPU is going back to idle
344 * with no ticks.
345 */
346void rcu_irq_exit(void)
347{
348 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
349
350 if (--rdtp->dynticks_nesting)
351 return;
352 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
353 rdtp->dynticks++;
86848966 354 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
355
356 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 357 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
358 __get_cpu_var(rcu_bh_data).nxtlist)
359 set_need_resched();
360}
361
64db4cff
PM
362#ifdef CONFIG_SMP
363
64db4cff
PM
364/*
365 * Snapshot the specified CPU's dynticks counter so that we can later
366 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 367 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
368 */
369static int dyntick_save_progress_counter(struct rcu_data *rdp)
370{
371 int ret;
372 int snap;
373 int snap_nmi;
374
375 snap = rdp->dynticks->dynticks;
376 snap_nmi = rdp->dynticks->dynticks_nmi;
377 smp_mb(); /* Order sampling of snap with end of grace period. */
378 rdp->dynticks_snap = snap;
379 rdp->dynticks_nmi_snap = snap_nmi;
380 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
381 if (ret)
382 rdp->dynticks_fqs++;
383 return ret;
384}
385
386/*
387 * Return true if the specified CPU has passed through a quiescent
388 * state by virtue of being in or having passed through an dynticks
389 * idle state since the last call to dyntick_save_progress_counter()
390 * for this same CPU.
391 */
392static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
393{
394 long curr;
395 long curr_nmi;
396 long snap;
397 long snap_nmi;
398
399 curr = rdp->dynticks->dynticks;
400 snap = rdp->dynticks_snap;
401 curr_nmi = rdp->dynticks->dynticks_nmi;
402 snap_nmi = rdp->dynticks_nmi_snap;
403 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
404
405 /*
406 * If the CPU passed through or entered a dynticks idle phase with
407 * no active irq/NMI handlers, then we can safely pretend that the CPU
408 * already acknowledged the request to pass through a quiescent
409 * state. Either way, that CPU cannot possibly be in an RCU
410 * read-side critical section that started before the beginning
411 * of the current RCU grace period.
412 */
413 if ((curr != snap || (curr & 0x1) == 0) &&
414 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
415 rdp->dynticks_fqs++;
416 return 1;
417 }
418
419 /* Go check for the CPU being offline. */
420 return rcu_implicit_offline_qs(rdp);
421}
422
423#endif /* #ifdef CONFIG_SMP */
424
425#else /* #ifdef CONFIG_NO_HZ */
426
64db4cff
PM
427#ifdef CONFIG_SMP
428
64db4cff
PM
429static int dyntick_save_progress_counter(struct rcu_data *rdp)
430{
431 return 0;
432}
433
434static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
435{
436 return rcu_implicit_offline_qs(rdp);
437}
438
439#endif /* #ifdef CONFIG_SMP */
440
441#endif /* #else #ifdef CONFIG_NO_HZ */
442
443#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
444
445static void record_gp_stall_check_time(struct rcu_state *rsp)
446{
447 rsp->gp_start = jiffies;
448 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
449}
450
451static void print_other_cpu_stall(struct rcu_state *rsp)
452{
453 int cpu;
454 long delta;
455 unsigned long flags;
456 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
457
458 /* Only let one CPU complain about others per time interval. */
459
1304afb2 460 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 461 delta = jiffies - rsp->jiffies_stall;
fc2219d4 462 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 463 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
464 return;
465 }
466 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
467
468 /*
469 * Now rat on any tasks that got kicked up to the root rcu_node
470 * due to CPU offlining.
471 */
472 rcu_print_task_stall(rnp);
1304afb2 473 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
474
475 /* OK, time to rat on our buddy... */
476
477 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
a0b6c9a7 478 rcu_for_each_leaf_node(rsp, rnp) {
f41d911f 479 rcu_print_task_stall(rnp);
a0b6c9a7 480 if (rnp->qsmask == 0)
64db4cff 481 continue;
a0b6c9a7
PM
482 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
483 if (rnp->qsmask & (1UL << cpu))
484 printk(" %d", rnp->grplo + cpu);
64db4cff
PM
485 }
486 printk(" (detected by %d, t=%ld jiffies)\n",
487 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
488 trigger_all_cpu_backtrace();
489
64db4cff
PM
490 force_quiescent_state(rsp, 0); /* Kick them all. */
491}
492
493static void print_cpu_stall(struct rcu_state *rsp)
494{
495 unsigned long flags;
496 struct rcu_node *rnp = rcu_get_root(rsp);
497
498 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
499 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
500 trigger_all_cpu_backtrace();
501
1304afb2 502 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 503 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
504 rsp->jiffies_stall =
505 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 506 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 507
64db4cff
PM
508 set_need_resched(); /* kick ourselves to get things going. */
509}
510
511static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
512{
513 long delta;
514 struct rcu_node *rnp;
515
516 delta = jiffies - rsp->jiffies_stall;
517 rnp = rdp->mynode;
518 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
519
520 /* We haven't checked in, so go dump stack. */
521 print_cpu_stall(rsp);
522
fc2219d4 523 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
524
525 /* They had two time units to dump stack, so complain. */
526 print_other_cpu_stall(rsp);
527 }
528}
529
530#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
531
532static void record_gp_stall_check_time(struct rcu_state *rsp)
533{
534}
535
536static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
537{
538}
539
540#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
541
542/*
543 * Update CPU-local rcu_data state to record the newly noticed grace period.
544 * This is used both when we started the grace period and when we notice
9160306e
PM
545 * that someone else started the grace period. The caller must hold the
546 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
547 * and must have irqs disabled.
64db4cff 548 */
9160306e
PM
549static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
550{
551 if (rdp->gpnum != rnp->gpnum) {
552 rdp->qs_pending = 1;
553 rdp->passed_quiesc = 0;
554 rdp->gpnum = rnp->gpnum;
555 }
556}
557
64db4cff
PM
558static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
559{
9160306e
PM
560 unsigned long flags;
561 struct rcu_node *rnp;
562
563 local_irq_save(flags);
564 rnp = rdp->mynode;
565 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 566 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
567 local_irq_restore(flags);
568 return;
569 }
570 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 571 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
572}
573
574/*
575 * Did someone else start a new RCU grace period start since we last
576 * checked? Update local state appropriately if so. Must be called
577 * on the CPU corresponding to rdp.
578 */
579static int
580check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
581{
582 unsigned long flags;
583 int ret = 0;
584
585 local_irq_save(flags);
586 if (rdp->gpnum != rsp->gpnum) {
587 note_new_gpnum(rsp, rdp);
588 ret = 1;
589 }
590 local_irq_restore(flags);
591 return ret;
592}
593
d09b62df
PM
594/*
595 * Advance this CPU's callbacks, but only if the current grace period
596 * has ended. This may be called only from the CPU to whom the rdp
597 * belongs. In addition, the corresponding leaf rcu_node structure's
598 * ->lock must be held by the caller, with irqs disabled.
599 */
600static void
601__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
602{
603 /* Did another grace period end? */
604 if (rdp->completed != rnp->completed) {
605
606 /* Advance callbacks. No harm if list empty. */
607 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
608 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
609 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
610
611 /* Remember that we saw this grace-period completion. */
612 rdp->completed = rnp->completed;
613 }
614}
615
616/*
617 * Advance this CPU's callbacks, but only if the current grace period
618 * has ended. This may be called only from the CPU to whom the rdp
619 * belongs.
620 */
621static void
622rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
623{
624 unsigned long flags;
625 struct rcu_node *rnp;
626
627 local_irq_save(flags);
628 rnp = rdp->mynode;
629 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 630 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
631 local_irq_restore(flags);
632 return;
633 }
634 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 635 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
636}
637
638/*
639 * Do per-CPU grace-period initialization for running CPU. The caller
640 * must hold the lock of the leaf rcu_node structure corresponding to
641 * this CPU.
642 */
643static void
644rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
645{
646 /* Prior grace period ended, so advance callbacks for current CPU. */
647 __rcu_process_gp_end(rsp, rnp, rdp);
648
649 /*
650 * Because this CPU just now started the new grace period, we know
651 * that all of its callbacks will be covered by this upcoming grace
652 * period, even the ones that were registered arbitrarily recently.
653 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
654 *
655 * Other CPUs cannot be sure exactly when the grace period started.
656 * Therefore, their recently registered callbacks must pass through
657 * an additional RCU_NEXT_READY stage, so that they will be handled
658 * by the next RCU grace period.
659 */
660 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
661 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
662
663 /* Set state so that this CPU will detect the next quiescent state. */
664 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
665}
666
64db4cff
PM
667/*
668 * Start a new RCU grace period if warranted, re-initializing the hierarchy
669 * in preparation for detecting the next grace period. The caller must hold
670 * the root node's ->lock, which is released before return. Hard irqs must
671 * be disabled.
672 */
673static void
674rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
675 __releases(rcu_get_root(rsp)->lock)
676{
677 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
678 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 679
07079d53 680 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
46a1e34e
PM
681 if (cpu_needs_another_gp(rsp, rdp))
682 rsp->fqs_need_gp = 1;
b32e9eb6 683 if (rnp->completed == rsp->completed) {
1304afb2 684 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b32e9eb6
PM
685 return;
686 }
1304afb2 687 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
688
689 /*
690 * Propagate new ->completed value to rcu_node structures
691 * so that other CPUs don't have to wait until the start
692 * of the next grace period to process their callbacks.
693 */
694 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 695 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b32e9eb6 696 rnp->completed = rsp->completed;
1304afb2 697 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
698 }
699 local_irq_restore(flags);
64db4cff
PM
700 return;
701 }
702
703 /* Advance to a new grace period and initialize state. */
704 rsp->gpnum++;
c3422bea 705 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
706 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
707 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 708 record_gp_stall_check_time(rsp);
64db4cff 709
64db4cff
PM
710 /* Special-case the common single-level case. */
711 if (NUM_RCU_NODES == 1) {
b0e165c0 712 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 713 rnp->qsmask = rnp->qsmaskinit;
de078d87 714 rnp->gpnum = rsp->gpnum;
d09b62df 715 rnp->completed = rsp->completed;
c12172c0 716 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 717 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 718 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
719 return;
720 }
721
1304afb2 722 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
723
724
725 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 726 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
727
728 /*
b835db1f
PM
729 * Set the quiescent-state-needed bits in all the rcu_node
730 * structures for all currently online CPUs in breadth-first
731 * order, starting from the root rcu_node structure. This
732 * operation relies on the layout of the hierarchy within the
733 * rsp->node[] array. Note that other CPUs will access only
734 * the leaves of the hierarchy, which still indicate that no
735 * grace period is in progress, at least until the corresponding
736 * leaf node has been initialized. In addition, we have excluded
737 * CPU-hotplug operations.
64db4cff
PM
738 *
739 * Note that the grace period cannot complete until we finish
740 * the initialization process, as there will be at least one
741 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
742 * one corresponding to this CPU, due to the fact that we have
743 * irqs disabled.
64db4cff 744 */
a0b6c9a7 745 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 746 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 747 rcu_preempt_check_blocked_tasks(rnp);
49e29126 748 rnp->qsmask = rnp->qsmaskinit;
de078d87 749 rnp->gpnum = rsp->gpnum;
d09b62df
PM
750 rnp->completed = rsp->completed;
751 if (rnp == rdp->mynode)
752 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 753 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
754 }
755
83f5b01f 756 rnp = rcu_get_root(rsp);
1304afb2 757 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 758 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
759 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
760 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
761}
762
f41d911f 763/*
d3f6bad3
PM
764 * Report a full set of quiescent states to the specified rcu_state
765 * data structure. This involves cleaning up after the prior grace
766 * period and letting rcu_start_gp() start up the next grace period
767 * if one is needed. Note that the caller must hold rnp->lock, as
768 * required by rcu_start_gp(), which will release it.
f41d911f 769 */
d3f6bad3 770static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 771 __releases(rcu_get_root(rsp)->lock)
f41d911f 772{
fc2219d4 773 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 774 rsp->completed = rsp->gpnum;
83f5b01f 775 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
776 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
777}
778
64db4cff 779/*
d3f6bad3
PM
780 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
781 * Allows quiescent states for a group of CPUs to be reported at one go
782 * to the specified rcu_node structure, though all the CPUs in the group
783 * must be represented by the same rcu_node structure (which need not be
784 * a leaf rcu_node structure, though it often will be). That structure's
785 * lock must be held upon entry, and it is released before return.
64db4cff
PM
786 */
787static void
d3f6bad3
PM
788rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
789 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
790 __releases(rnp->lock)
791{
28ecd580
PM
792 struct rcu_node *rnp_c;
793
64db4cff
PM
794 /* Walk up the rcu_node hierarchy. */
795 for (;;) {
796 if (!(rnp->qsmask & mask)) {
797
798 /* Our bit has already been cleared, so done. */
1304afb2 799 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
800 return;
801 }
802 rnp->qsmask &= ~mask;
f41d911f 803 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
804
805 /* Other bits still set at this level, so done. */
1304afb2 806 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
807 return;
808 }
809 mask = rnp->grpmask;
810 if (rnp->parent == NULL) {
811
812 /* No more levels. Exit loop holding root lock. */
813
814 break;
815 }
1304afb2 816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 817 rnp_c = rnp;
64db4cff 818 rnp = rnp->parent;
1304afb2 819 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 820 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
821 }
822
823 /*
824 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 825 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 826 * to clean up and start the next grace period if one is needed.
64db4cff 827 */
d3f6bad3 828 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
829}
830
831/*
d3f6bad3
PM
832 * Record a quiescent state for the specified CPU to that CPU's rcu_data
833 * structure. This must be either called from the specified CPU, or
834 * called when the specified CPU is known to be offline (and when it is
835 * also known that no other CPU is concurrently trying to help the offline
836 * CPU). The lastcomp argument is used to make sure we are still in the
837 * grace period of interest. We don't want to end the current grace period
838 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
839 */
840static void
d3f6bad3 841rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
842{
843 unsigned long flags;
844 unsigned long mask;
845 struct rcu_node *rnp;
846
847 rnp = rdp->mynode;
1304afb2 848 raw_spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 849 if (lastcomp != rnp->completed) {
64db4cff
PM
850
851 /*
852 * Someone beat us to it for this grace period, so leave.
853 * The race with GP start is resolved by the fact that we
854 * hold the leaf rcu_node lock, so that the per-CPU bits
855 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
856 * CPU's bit already cleared in rcu_report_qs_rnp() if this
857 * race occurred.
64db4cff
PM
858 */
859 rdp->passed_quiesc = 0; /* try again later! */
1304afb2 860 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
861 return;
862 }
863 mask = rdp->grpmask;
864 if ((rnp->qsmask & mask) == 0) {
1304afb2 865 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
866 } else {
867 rdp->qs_pending = 0;
868
869 /*
870 * This GP can't end until cpu checks in, so all of our
871 * callbacks can be processed during the next GP.
872 */
64db4cff
PM
873 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
874
d3f6bad3 875 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
876 }
877}
878
879/*
880 * Check to see if there is a new grace period of which this CPU
881 * is not yet aware, and if so, set up local rcu_data state for it.
882 * Otherwise, see if this CPU has just passed through its first
883 * quiescent state for this grace period, and record that fact if so.
884 */
885static void
886rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
887{
888 /* If there is now a new grace period, record and return. */
889 if (check_for_new_grace_period(rsp, rdp))
890 return;
891
892 /*
893 * Does this CPU still need to do its part for current grace period?
894 * If no, return and let the other CPUs do their part as well.
895 */
896 if (!rdp->qs_pending)
897 return;
898
899 /*
900 * Was there a quiescent state since the beginning of the grace
901 * period? If no, then exit and wait for the next call.
902 */
903 if (!rdp->passed_quiesc)
904 return;
905
d3f6bad3
PM
906 /*
907 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
908 * judge of that).
909 */
910 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
911}
912
913#ifdef CONFIG_HOTPLUG_CPU
914
e74f4c45
PM
915/*
916 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
917 * specified flavor of RCU. The callbacks will be adopted by the next
918 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
919 * comes first. Because this is invoked from the CPU_DYING notifier,
920 * irqs are already disabled.
921 */
922static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
923{
924 int i;
925 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
926
927 if (rdp->nxtlist == NULL)
928 return; /* irqs disabled, so comparison is stable. */
1304afb2 929 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
e74f4c45
PM
930 *rsp->orphan_cbs_tail = rdp->nxtlist;
931 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
932 rdp->nxtlist = NULL;
933 for (i = 0; i < RCU_NEXT_SIZE; i++)
934 rdp->nxttail[i] = &rdp->nxtlist;
935 rsp->orphan_qlen += rdp->qlen;
936 rdp->qlen = 0;
1304afb2 937 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
e74f4c45
PM
938}
939
940/*
941 * Adopt previously orphaned RCU callbacks.
942 */
943static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
944{
945 unsigned long flags;
946 struct rcu_data *rdp;
947
1304afb2 948 raw_spin_lock_irqsave(&rsp->onofflock, flags);
e74f4c45
PM
949 rdp = rsp->rda[smp_processor_id()];
950 if (rsp->orphan_cbs_list == NULL) {
1304afb2 951 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
952 return;
953 }
954 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
955 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
956 rdp->qlen += rsp->orphan_qlen;
957 rsp->orphan_cbs_list = NULL;
958 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
959 rsp->orphan_qlen = 0;
1304afb2 960 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
961}
962
64db4cff
PM
963/*
964 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
965 * and move all callbacks from the outgoing CPU to the current one.
966 */
967static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
968{
64db4cff 969 unsigned long flags;
64db4cff 970 unsigned long mask;
d9a3da06 971 int need_report = 0;
64db4cff 972 struct rcu_data *rdp = rsp->rda[cpu];
64db4cff
PM
973 struct rcu_node *rnp;
974
975 /* Exclude any attempts to start a new grace period. */
1304afb2 976 raw_spin_lock_irqsave(&rsp->onofflock, flags);
64db4cff
PM
977
978 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 979 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
980 mask = rdp->grpmask; /* rnp->grplo is constant. */
981 do {
1304afb2 982 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
983 rnp->qsmaskinit &= ~mask;
984 if (rnp->qsmaskinit != 0) {
b668c9cf 985 if (rnp != rdp->mynode)
1304afb2 986 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
987 break;
988 }
b668c9cf 989 if (rnp == rdp->mynode)
d9a3da06 990 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
b668c9cf 991 else
1304afb2 992 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 993 mask = rnp->grpmask;
64db4cff
PM
994 rnp = rnp->parent;
995 } while (rnp != NULL);
64db4cff 996
b668c9cf
PM
997 /*
998 * We still hold the leaf rcu_node structure lock here, and
999 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
1000 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1001 * held leads to deadlock.
b668c9cf 1002 */
1304afb2 1003 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
b668c9cf 1004 rnp = rdp->mynode;
d9a3da06 1005 if (need_report & RCU_OFL_TASKS_NORM_GP)
d3f6bad3 1006 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf 1007 else
1304afb2 1008 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
1009 if (need_report & RCU_OFL_TASKS_EXP_GP)
1010 rcu_report_exp_rnp(rsp, rnp);
64db4cff 1011
e74f4c45 1012 rcu_adopt_orphan_cbs(rsp);
64db4cff
PM
1013}
1014
1015/*
1016 * Remove the specified CPU from the RCU hierarchy and move any pending
1017 * callbacks that it might have to the current CPU. This code assumes
1018 * that at least one CPU in the system will remain running at all times.
1019 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1020 */
1021static void rcu_offline_cpu(int cpu)
1022{
d6714c22 1023 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1024 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1025 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1026}
1027
1028#else /* #ifdef CONFIG_HOTPLUG_CPU */
1029
e74f4c45
PM
1030static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1031{
1032}
1033
1034static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1035{
1036}
1037
64db4cff
PM
1038static void rcu_offline_cpu(int cpu)
1039{
1040}
1041
1042#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1043
1044/*
1045 * Invoke any RCU callbacks that have made it to the end of their grace
1046 * period. Thottle as specified by rdp->blimit.
1047 */
37c72e56 1048static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1049{
1050 unsigned long flags;
1051 struct rcu_head *next, *list, **tail;
1052 int count;
1053
1054 /* If no callbacks are ready, just return.*/
1055 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1056 return;
1057
1058 /*
1059 * Extract the list of ready callbacks, disabling to prevent
1060 * races with call_rcu() from interrupt handlers.
1061 */
1062 local_irq_save(flags);
1063 list = rdp->nxtlist;
1064 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1065 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1066 tail = rdp->nxttail[RCU_DONE_TAIL];
1067 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1068 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1069 rdp->nxttail[count] = &rdp->nxtlist;
1070 local_irq_restore(flags);
1071
1072 /* Invoke callbacks. */
1073 count = 0;
1074 while (list) {
1075 next = list->next;
1076 prefetch(next);
1077 list->func(list);
1078 list = next;
1079 if (++count >= rdp->blimit)
1080 break;
1081 }
1082
1083 local_irq_save(flags);
1084
1085 /* Update count, and requeue any remaining callbacks. */
1086 rdp->qlen -= count;
1087 if (list != NULL) {
1088 *tail = rdp->nxtlist;
1089 rdp->nxtlist = list;
1090 for (count = 0; count < RCU_NEXT_SIZE; count++)
1091 if (&rdp->nxtlist == rdp->nxttail[count])
1092 rdp->nxttail[count] = tail;
1093 else
1094 break;
1095 }
1096
1097 /* Reinstate batch limit if we have worked down the excess. */
1098 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1099 rdp->blimit = blimit;
1100
37c72e56
PM
1101 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1102 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1103 rdp->qlen_last_fqs_check = 0;
1104 rdp->n_force_qs_snap = rsp->n_force_qs;
1105 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1106 rdp->qlen_last_fqs_check = rdp->qlen;
1107
64db4cff
PM
1108 local_irq_restore(flags);
1109
1110 /* Re-raise the RCU softirq if there are callbacks remaining. */
1111 if (cpu_has_callbacks_ready_to_invoke(rdp))
1112 raise_softirq(RCU_SOFTIRQ);
1113}
1114
1115/*
1116 * Check to see if this CPU is in a non-context-switch quiescent state
1117 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1118 * Also schedule the RCU softirq handler.
1119 *
1120 * This function must be called with hardirqs disabled. It is normally
1121 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1122 * false, there is no point in invoking rcu_check_callbacks().
1123 */
1124void rcu_check_callbacks(int cpu, int user)
1125{
a157229c
PM
1126 if (!rcu_pending(cpu))
1127 return; /* if nothing for RCU to do. */
64db4cff 1128 if (user ||
a6826048
PM
1129 (idle_cpu(cpu) && rcu_scheduler_active &&
1130 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1131
1132 /*
1133 * Get here if this CPU took its interrupt from user
1134 * mode or from the idle loop, and if this is not a
1135 * nested interrupt. In this case, the CPU is in
d6714c22 1136 * a quiescent state, so note it.
64db4cff
PM
1137 *
1138 * No memory barrier is required here because both
d6714c22
PM
1139 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1140 * variables that other CPUs neither access nor modify,
1141 * at least not while the corresponding CPU is online.
64db4cff
PM
1142 */
1143
d6714c22
PM
1144 rcu_sched_qs(cpu);
1145 rcu_bh_qs(cpu);
64db4cff
PM
1146
1147 } else if (!in_softirq()) {
1148
1149 /*
1150 * Get here if this CPU did not take its interrupt from
1151 * softirq, in other words, if it is not interrupting
1152 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1153 * critical section, so note it.
64db4cff
PM
1154 */
1155
d6714c22 1156 rcu_bh_qs(cpu);
64db4cff 1157 }
f41d911f 1158 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1159 raise_softirq(RCU_SOFTIRQ);
1160}
1161
1162#ifdef CONFIG_SMP
1163
1164/*
1165 * Scan the leaf rcu_node structures, processing dyntick state for any that
1166 * have not yet encountered a quiescent state, using the function specified.
ee47eb9f 1167 * The caller must have suppressed start of new grace periods.
64db4cff 1168 */
45f014c5 1169static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1170{
1171 unsigned long bit;
1172 int cpu;
1173 unsigned long flags;
1174 unsigned long mask;
a0b6c9a7 1175 struct rcu_node *rnp;
64db4cff 1176
a0b6c9a7 1177 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1178 mask = 0;
1304afb2 1179 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1180 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1181 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1182 return;
64db4cff 1183 }
a0b6c9a7 1184 if (rnp->qsmask == 0) {
1304afb2 1185 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1186 continue;
1187 }
a0b6c9a7 1188 cpu = rnp->grplo;
64db4cff 1189 bit = 1;
a0b6c9a7
PM
1190 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1191 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
64db4cff
PM
1192 mask |= bit;
1193 }
45f014c5 1194 if (mask != 0) {
64db4cff 1195
d3f6bad3
PM
1196 /* rcu_report_qs_rnp() releases rnp->lock. */
1197 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1198 continue;
1199 }
1304afb2 1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1201 }
64db4cff
PM
1202}
1203
1204/*
1205 * Force quiescent states on reluctant CPUs, and also detect which
1206 * CPUs are in dyntick-idle mode.
1207 */
1208static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1209{
1210 unsigned long flags;
64db4cff 1211 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1212
fc2219d4 1213 if (!rcu_gp_in_progress(rsp))
64db4cff 1214 return; /* No grace period in progress, nothing to force. */
1304afb2 1215 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff
PM
1216 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1217 return; /* Someone else is already on the job. */
1218 }
20133cfc 1219 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1220 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1221 rsp->n_force_qs++;
1304afb2 1222 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1223 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1224 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1225 rsp->n_force_qs_ngp++;
1304afb2 1226 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1227 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1228 }
07079d53 1229 rsp->fqs_active = 1;
f3a8b5c6 1230 switch (rsp->signaled) {
83f5b01f 1231 case RCU_GP_IDLE:
64db4cff
PM
1232 case RCU_GP_INIT:
1233
83f5b01f 1234 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1235
1236 case RCU_SAVE_DYNTICK:
1237
1304afb2 1238 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
64db4cff
PM
1239 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1240 break; /* So gcc recognizes the dead code. */
1241
1242 /* Record dyntick-idle state. */
45f014c5 1243 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1244 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1245 if (rcu_gp_in_progress(rsp))
64db4cff 1246 rsp->signaled = RCU_FORCE_QS;
ee47eb9f 1247 break;
64db4cff
PM
1248
1249 case RCU_FORCE_QS:
1250
1251 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1252 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1253 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1254
1255 /* Leave state in case more forcing is required. */
1256
1304afb2 1257 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1258 break;
64db4cff 1259 }
07079d53 1260 rsp->fqs_active = 0;
46a1e34e 1261 if (rsp->fqs_need_gp) {
1304afb2 1262 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1263 rsp->fqs_need_gp = 0;
1264 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1265 return;
1266 }
1304afb2 1267 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1268unlock_fqs_ret:
1304afb2 1269 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
64db4cff
PM
1270}
1271
1272#else /* #ifdef CONFIG_SMP */
1273
1274static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1275{
1276 set_need_resched();
1277}
1278
1279#endif /* #else #ifdef CONFIG_SMP */
1280
1281/*
1282 * This does the RCU processing work from softirq context for the
1283 * specified rcu_state and rcu_data structures. This may be called
1284 * only from the CPU to whom the rdp belongs.
1285 */
1286static void
1287__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1288{
1289 unsigned long flags;
1290
2e597558
PM
1291 WARN_ON_ONCE(rdp->beenonline == 0);
1292
64db4cff
PM
1293 /*
1294 * If an RCU GP has gone long enough, go check for dyntick
1295 * idle CPUs and, if needed, send resched IPIs.
1296 */
20133cfc 1297 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1298 force_quiescent_state(rsp, 1);
1299
1300 /*
1301 * Advance callbacks in response to end of earlier grace
1302 * period that some other CPU ended.
1303 */
1304 rcu_process_gp_end(rsp, rdp);
1305
1306 /* Update RCU state based on any recent quiescent states. */
1307 rcu_check_quiescent_state(rsp, rdp);
1308
1309 /* Does this CPU require a not-yet-started grace period? */
1310 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1311 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1312 rcu_start_gp(rsp, flags); /* releases above lock */
1313 }
1314
1315 /* If there are callbacks ready, invoke them. */
37c72e56 1316 rcu_do_batch(rsp, rdp);
64db4cff
PM
1317}
1318
1319/*
1320 * Do softirq processing for the current CPU.
1321 */
1322static void rcu_process_callbacks(struct softirq_action *unused)
1323{
1324 /*
1325 * Memory references from any prior RCU read-side critical sections
1326 * executed by the interrupted code must be seen before any RCU
1327 * grace-period manipulations below.
1328 */
1329 smp_mb(); /* See above block comment. */
1330
d6714c22
PM
1331 __rcu_process_callbacks(&rcu_sched_state,
1332 &__get_cpu_var(rcu_sched_data));
64db4cff 1333 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1334 rcu_preempt_process_callbacks();
64db4cff
PM
1335
1336 /*
1337 * Memory references from any later RCU read-side critical sections
1338 * executed by the interrupted code must be seen after any RCU
1339 * grace-period manipulations above.
1340 */
1341 smp_mb(); /* See above block comment. */
1342}
1343
1344static void
1345__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1346 struct rcu_state *rsp)
1347{
1348 unsigned long flags;
1349 struct rcu_data *rdp;
1350
1351 head->func = func;
1352 head->next = NULL;
1353
1354 smp_mb(); /* Ensure RCU update seen before callback registry. */
1355
1356 /*
1357 * Opportunistically note grace-period endings and beginnings.
1358 * Note that we might see a beginning right after we see an
1359 * end, but never vice versa, since this CPU has to pass through
1360 * a quiescent state betweentimes.
1361 */
1362 local_irq_save(flags);
1363 rdp = rsp->rda[smp_processor_id()];
1364 rcu_process_gp_end(rsp, rdp);
1365 check_for_new_grace_period(rsp, rdp);
1366
1367 /* Add the callback to our list. */
1368 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1369 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1370
1371 /* Start a new grace period if one not already started. */
fc2219d4 1372 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1373 unsigned long nestflag;
1374 struct rcu_node *rnp_root = rcu_get_root(rsp);
1375
1304afb2 1376 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
64db4cff
PM
1377 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1378 }
1379
37c72e56
PM
1380 /*
1381 * Force the grace period if too many callbacks or too long waiting.
1382 * Enforce hysteresis, and don't invoke force_quiescent_state()
1383 * if some other CPU has recently done so. Also, don't bother
1384 * invoking force_quiescent_state() if the newly enqueued callback
1385 * is the only one waiting for a grace period to complete.
1386 */
1387 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1388 rdp->blimit = LONG_MAX;
37c72e56
PM
1389 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1390 *rdp->nxttail[RCU_DONE_TAIL] != head)
1391 force_quiescent_state(rsp, 0);
1392 rdp->n_force_qs_snap = rsp->n_force_qs;
1393 rdp->qlen_last_fqs_check = rdp->qlen;
20133cfc 1394 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1395 force_quiescent_state(rsp, 1);
1396 local_irq_restore(flags);
1397}
1398
1399/*
d6714c22 1400 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1401 */
d6714c22 1402void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1403{
d6714c22 1404 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1405}
d6714c22 1406EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1407
1408/*
1409 * Queue an RCU for invocation after a quicker grace period.
1410 */
1411void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1412{
1413 __call_rcu(head, func, &rcu_bh_state);
1414}
1415EXPORT_SYMBOL_GPL(call_rcu_bh);
1416
6ebb237b
PM
1417/**
1418 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1419 *
1420 * Control will return to the caller some time after a full rcu-sched
1421 * grace period has elapsed, in other words after all currently executing
1422 * rcu-sched read-side critical sections have completed. These read-side
1423 * critical sections are delimited by rcu_read_lock_sched() and
1424 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1425 * local_irq_disable(), and so on may be used in place of
1426 * rcu_read_lock_sched().
1427 *
1428 * This means that all preempt_disable code sequences, including NMI and
1429 * hardware-interrupt handlers, in progress on entry will have completed
1430 * before this primitive returns. However, this does not guarantee that
1431 * softirq handlers will have completed, since in some kernels, these
1432 * handlers can run in process context, and can block.
1433 *
1434 * This primitive provides the guarantees made by the (now removed)
1435 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1436 * guarantees that rcu_read_lock() sections will have completed.
1437 * In "classic RCU", these two guarantees happen to be one and
1438 * the same, but can differ in realtime RCU implementations.
1439 */
1440void synchronize_sched(void)
1441{
1442 struct rcu_synchronize rcu;
1443
1444 if (rcu_blocking_is_gp())
1445 return;
1446
1447 init_completion(&rcu.completion);
1448 /* Will wake me after RCU finished. */
1449 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1450 /* Wait for it. */
1451 wait_for_completion(&rcu.completion);
1452}
1453EXPORT_SYMBOL_GPL(synchronize_sched);
1454
1455/**
1456 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1457 *
1458 * Control will return to the caller some time after a full rcu_bh grace
1459 * period has elapsed, in other words after all currently executing rcu_bh
1460 * read-side critical sections have completed. RCU read-side critical
1461 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1462 * and may be nested.
1463 */
1464void synchronize_rcu_bh(void)
1465{
1466 struct rcu_synchronize rcu;
1467
1468 if (rcu_blocking_is_gp())
1469 return;
1470
1471 init_completion(&rcu.completion);
1472 /* Will wake me after RCU finished. */
1473 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1474 /* Wait for it. */
1475 wait_for_completion(&rcu.completion);
1476}
1477EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1478
64db4cff
PM
1479/*
1480 * Check to see if there is any immediate RCU-related work to be done
1481 * by the current CPU, for the specified type of RCU, returning 1 if so.
1482 * The checks are in order of increasing expense: checks that can be
1483 * carried out against CPU-local state are performed first. However,
1484 * we must check for CPU stalls first, else we might not get a chance.
1485 */
1486static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1487{
2f51f988
PM
1488 struct rcu_node *rnp = rdp->mynode;
1489
64db4cff
PM
1490 rdp->n_rcu_pending++;
1491
1492 /* Check for CPU stalls, if enabled. */
1493 check_cpu_stall(rsp, rdp);
1494
1495 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1496 if (rdp->qs_pending) {
1497 rdp->n_rp_qs_pending++;
64db4cff 1498 return 1;
7ba5c840 1499 }
64db4cff
PM
1500
1501 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1502 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1503 rdp->n_rp_cb_ready++;
64db4cff 1504 return 1;
7ba5c840 1505 }
64db4cff
PM
1506
1507 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1508 if (cpu_needs_another_gp(rsp, rdp)) {
1509 rdp->n_rp_cpu_needs_gp++;
64db4cff 1510 return 1;
7ba5c840 1511 }
64db4cff
PM
1512
1513 /* Has another RCU grace period completed? */
2f51f988 1514 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1515 rdp->n_rp_gp_completed++;
64db4cff 1516 return 1;
7ba5c840 1517 }
64db4cff
PM
1518
1519 /* Has a new RCU grace period started? */
2f51f988 1520 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1521 rdp->n_rp_gp_started++;
64db4cff 1522 return 1;
7ba5c840 1523 }
64db4cff
PM
1524
1525 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1526 if (rcu_gp_in_progress(rsp) &&
20133cfc 1527 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1528 rdp->n_rp_need_fqs++;
64db4cff 1529 return 1;
7ba5c840 1530 }
64db4cff
PM
1531
1532 /* nothing to do */
7ba5c840 1533 rdp->n_rp_need_nothing++;
64db4cff
PM
1534 return 0;
1535}
1536
1537/*
1538 * Check to see if there is any immediate RCU-related work to be done
1539 * by the current CPU, returning 1 if so. This function is part of the
1540 * RCU implementation; it is -not- an exported member of the RCU API.
1541 */
a157229c 1542static int rcu_pending(int cpu)
64db4cff 1543{
d6714c22 1544 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1545 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1546 rcu_preempt_pending(cpu);
64db4cff
PM
1547}
1548
1549/*
1550 * Check to see if any future RCU-related work will need to be done
1551 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1552 * 1 if so.
64db4cff 1553 */
8bd93a2c 1554static int rcu_needs_cpu_quick_check(int cpu)
64db4cff
PM
1555{
1556 /* RCU callbacks either ready or pending? */
d6714c22 1557 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1558 per_cpu(rcu_bh_data, cpu).nxtlist ||
1559 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1560}
1561
6ebb237b
PM
1562/*
1563 * This function is invoked towards the end of the scheduler's initialization
1564 * process. Before this is called, the idle task might contain
1565 * RCU read-side critical sections (during which time, this idle
1566 * task is booting the system). After this function is called, the
1567 * idle tasks are prohibited from containing RCU read-side critical
1568 * sections.
1569 */
1570void rcu_scheduler_starting(void)
1571{
1572 WARN_ON(num_online_cpus() != 1);
1573 WARN_ON(nr_context_switches() > 0);
1574 rcu_scheduler_active = 1;
1575}
1576
d0ec774c
PM
1577static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1578static atomic_t rcu_barrier_cpu_count;
1579static DEFINE_MUTEX(rcu_barrier_mutex);
1580static struct completion rcu_barrier_completion;
d0ec774c
PM
1581
1582static void rcu_barrier_callback(struct rcu_head *notused)
1583{
1584 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1585 complete(&rcu_barrier_completion);
1586}
1587
1588/*
1589 * Called with preemption disabled, and from cross-cpu IRQ context.
1590 */
1591static void rcu_barrier_func(void *type)
1592{
1593 int cpu = smp_processor_id();
1594 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1595 void (*call_rcu_func)(struct rcu_head *head,
1596 void (*func)(struct rcu_head *head));
1597
1598 atomic_inc(&rcu_barrier_cpu_count);
1599 call_rcu_func = type;
1600 call_rcu_func(head, rcu_barrier_callback);
1601}
1602
d0ec774c
PM
1603/*
1604 * Orchestrate the specified type of RCU barrier, waiting for all
1605 * RCU callbacks of the specified type to complete.
1606 */
e74f4c45
PM
1607static void _rcu_barrier(struct rcu_state *rsp,
1608 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1609 void (*func)(struct rcu_head *head)))
1610{
1611 BUG_ON(in_interrupt());
e74f4c45 1612 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1613 mutex_lock(&rcu_barrier_mutex);
1614 init_completion(&rcu_barrier_completion);
1615 /*
1616 * Initialize rcu_barrier_cpu_count to 1, then invoke
1617 * rcu_barrier_func() on each CPU, so that each CPU also has
1618 * incremented rcu_barrier_cpu_count. Only then is it safe to
1619 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1620 * might complete its grace period before all of the other CPUs
1621 * did their increment, causing this function to return too
1622 * early.
1623 */
1624 atomic_set(&rcu_barrier_cpu_count, 1);
e74f4c45
PM
1625 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1626 rcu_adopt_orphan_cbs(rsp);
d0ec774c 1627 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
e74f4c45 1628 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
d0ec774c
PM
1629 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1630 complete(&rcu_barrier_completion);
1631 wait_for_completion(&rcu_barrier_completion);
1632 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1633}
d0ec774c
PM
1634
1635/**
1636 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1637 */
1638void rcu_barrier_bh(void)
1639{
e74f4c45 1640 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1641}
1642EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1643
1644/**
1645 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1646 */
1647void rcu_barrier_sched(void)
1648{
e74f4c45 1649 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1650}
1651EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1652
64db4cff 1653/*
27569620 1654 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1655 */
27569620
PM
1656static void __init
1657rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1658{
1659 unsigned long flags;
1660 int i;
27569620
PM
1661 struct rcu_data *rdp = rsp->rda[cpu];
1662 struct rcu_node *rnp = rcu_get_root(rsp);
1663
1664 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1665 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
1666 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1667 rdp->nxtlist = NULL;
1668 for (i = 0; i < RCU_NEXT_SIZE; i++)
1669 rdp->nxttail[i] = &rdp->nxtlist;
1670 rdp->qlen = 0;
1671#ifdef CONFIG_NO_HZ
1672 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1673#endif /* #ifdef CONFIG_NO_HZ */
1674 rdp->cpu = cpu;
1304afb2 1675 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
1676}
1677
1678/*
1679 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1680 * offline event can be happening at a given time. Note also that we
1681 * can accept some slop in the rsp->completed access due to the fact
1682 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1683 */
e4fa4c97 1684static void __cpuinit
f41d911f 1685rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1686{
1687 unsigned long flags;
64db4cff
PM
1688 unsigned long mask;
1689 struct rcu_data *rdp = rsp->rda[cpu];
1690 struct rcu_node *rnp = rcu_get_root(rsp);
1691
1692 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1693 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1694 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1695 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1696 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1697 rdp->preemptable = preemptable;
37c72e56
PM
1698 rdp->qlen_last_fqs_check = 0;
1699 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1700 rdp->blimit = blimit;
1304afb2 1701 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1702
1703 /*
1704 * A new grace period might start here. If so, we won't be part
1705 * of it, but that is OK, as we are currently in a quiescent state.
1706 */
1707
1708 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 1709 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1710
1711 /* Add CPU to rcu_node bitmasks. */
1712 rnp = rdp->mynode;
1713 mask = rdp->grpmask;
1714 do {
1715 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 1716 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1717 rnp->qsmaskinit |= mask;
1718 mask = rnp->grpmask;
d09b62df
PM
1719 if (rnp == rdp->mynode) {
1720 rdp->gpnum = rnp->completed; /* if GP in progress... */
1721 rdp->completed = rnp->completed;
1722 rdp->passed_quiesc_completed = rnp->completed - 1;
1723 }
1304afb2 1724 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1725 rnp = rnp->parent;
1726 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1727
1304afb2 1728 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1729}
1730
1731static void __cpuinit rcu_online_cpu(int cpu)
1732{
f41d911f
PM
1733 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1734 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1735 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1736}
1737
1738/*
f41d911f 1739 * Handle CPU online/offline notification events.
64db4cff 1740 */
9f680ab4
PM
1741static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1742 unsigned long action, void *hcpu)
64db4cff
PM
1743{
1744 long cpu = (long)hcpu;
1745
1746 switch (action) {
1747 case CPU_UP_PREPARE:
1748 case CPU_UP_PREPARE_FROZEN:
1749 rcu_online_cpu(cpu);
1750 break;
d0ec774c
PM
1751 case CPU_DYING:
1752 case CPU_DYING_FROZEN:
1753 /*
e74f4c45 1754 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
d0ec774c 1755 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
e74f4c45
PM
1756 * returns, all online cpus have queued rcu_barrier_func().
1757 * The dying CPU clears its cpu_online_mask bit and
1758 * moves all of its RCU callbacks to ->orphan_cbs_list
1759 * in the context of stop_machine(), so subsequent calls
1760 * to _rcu_barrier() will adopt these callbacks and only
1761 * then queue rcu_barrier_func() on all remaining CPUs.
d0ec774c 1762 */
e74f4c45
PM
1763 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1764 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1765 rcu_preempt_send_cbs_to_orphanage();
d0ec774c 1766 break;
64db4cff
PM
1767 case CPU_DEAD:
1768 case CPU_DEAD_FROZEN:
1769 case CPU_UP_CANCELED:
1770 case CPU_UP_CANCELED_FROZEN:
1771 rcu_offline_cpu(cpu);
1772 break;
1773 default:
1774 break;
1775 }
1776 return NOTIFY_OK;
1777}
1778
1779/*
1780 * Compute the per-level fanout, either using the exact fanout specified
1781 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1782 */
1783#ifdef CONFIG_RCU_FANOUT_EXACT
1784static void __init rcu_init_levelspread(struct rcu_state *rsp)
1785{
1786 int i;
1787
1788 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1789 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1790}
1791#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1792static void __init rcu_init_levelspread(struct rcu_state *rsp)
1793{
1794 int ccur;
1795 int cprv;
1796 int i;
1797
1798 cprv = NR_CPUS;
1799 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1800 ccur = rsp->levelcnt[i];
1801 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1802 cprv = ccur;
1803 }
1804}
1805#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1806
1807/*
1808 * Helper function for rcu_init() that initializes one rcu_state structure.
1809 */
1810static void __init rcu_init_one(struct rcu_state *rsp)
1811{
b6407e86
PM
1812 static char *buf[] = { "rcu_node_level_0",
1813 "rcu_node_level_1",
1814 "rcu_node_level_2",
1815 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
1816 int cpustride = 1;
1817 int i;
1818 int j;
1819 struct rcu_node *rnp;
1820
b6407e86
PM
1821 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1822
64db4cff
PM
1823 /* Initialize the level-tracking arrays. */
1824
1825 for (i = 1; i < NUM_RCU_LVLS; i++)
1826 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1827 rcu_init_levelspread(rsp);
1828
1829 /* Initialize the elements themselves, starting from the leaves. */
1830
1831 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1832 cpustride *= rsp->levelspread[i];
1833 rnp = rsp->level[i];
1834 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 1835 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
1836 lockdep_set_class_and_name(&rnp->lock,
1837 &rcu_node_class[i], buf[i]);
f41d911f 1838 rnp->gpnum = 0;
64db4cff
PM
1839 rnp->qsmask = 0;
1840 rnp->qsmaskinit = 0;
1841 rnp->grplo = j * cpustride;
1842 rnp->grphi = (j + 1) * cpustride - 1;
1843 if (rnp->grphi >= NR_CPUS)
1844 rnp->grphi = NR_CPUS - 1;
1845 if (i == 0) {
1846 rnp->grpnum = 0;
1847 rnp->grpmask = 0;
1848 rnp->parent = NULL;
1849 } else {
1850 rnp->grpnum = j % rsp->levelspread[i - 1];
1851 rnp->grpmask = 1UL << rnp->grpnum;
1852 rnp->parent = rsp->level[i - 1] +
1853 j / rsp->levelspread[i - 1];
1854 }
1855 rnp->level = i;
f41d911f
PM
1856 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1857 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
d9a3da06
PM
1858 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1859 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
64db4cff
PM
1860 }
1861 }
1862}
1863
1864/*
f41d911f
PM
1865 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1866 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1867 * structure.
64db4cff 1868 */
65cf8f86 1869#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1870do { \
a0b6c9a7
PM
1871 int i; \
1872 int j; \
1873 struct rcu_node *rnp; \
1874 \
65cf8f86 1875 rcu_init_one(rsp); \
64db4cff
PM
1876 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1877 j = 0; \
1878 for_each_possible_cpu(i) { \
1879 if (i > rnp[j].grphi) \
1880 j++; \
1881 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1882 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1883 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1884 } \
1885} while (0)
1886
9f680ab4 1887void __init rcu_init(void)
64db4cff 1888{
017c4261 1889 int cpu;
9f680ab4 1890
f41d911f 1891 rcu_bootup_announce();
64db4cff
PM
1892#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1893 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1894#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
cf244dc0
PM
1895#if NUM_RCU_LVL_4 != 0
1896 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1897#endif /* #if NUM_RCU_LVL_4 != 0 */
65cf8f86
PM
1898 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1899 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1900 __rcu_init_preempt();
2e597558 1901 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1902
1903 /*
1904 * We don't need protection against CPU-hotplug here because
1905 * this is called early in boot, before either interrupts
1906 * or the scheduler are operational.
1907 */
1908 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
1909 for_each_online_cpu(cpu)
1910 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
1911}
1912
1eba8f84 1913#include "rcutree_plugin.h"