rcu: Move _rcu_barrier()'s rcu_head structures to rcu_data structures
[linux-2.6-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
74 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
64db4cff
PM
75 .n_force_qs = 0, \
76 .n_force_qs_ngp = 0, \
6c90cc7b 77 .name = #sname, \
64db4cff
PM
78}
79
037b64ed
PM
80struct rcu_state rcu_sched_state =
81 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 82DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 83
037b64ed 84struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 85DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 86
27f4d280
PM
87static struct rcu_state *rcu_state;
88
f885b7f2
PM
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
b0d30417
PM
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
bbad9379
PM
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
b0d30417
PM
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
a46e0899
PM
128#ifdef CONFIG_RCU_BOOST
129
a26ac245
PM
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 136DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 138DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 139
a46e0899
PM
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
0f962a5e 142static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 145
4a298656
PM
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
b1420f1c
PM
158/* State information for rcu_barrier() and friends. */
159
b1420f1c
PM
160static atomic_t rcu_barrier_cpu_count;
161static DEFINE_MUTEX(rcu_barrier_mutex);
162static struct completion rcu_barrier_completion;
163
fc2219d4
PM
164/*
165 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
166 * permit this function to be invoked without holding the root rcu_node
167 * structure's ->lock, but of course results can be subject to change.
168 */
169static int rcu_gp_in_progress(struct rcu_state *rsp)
170{
171 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
172}
173
b1f77b05 174/*
d6714c22 175 * Note a quiescent state. Because we do not need to know
b1f77b05 176 * how many quiescent states passed, just if there was at least
d6714c22 177 * one since the start of the grace period, this just sets a flag.
e4cc1f22 178 * The caller must have disabled preemption.
b1f77b05 179 */
d6714c22 180void rcu_sched_qs(int cpu)
b1f77b05 181{
25502a6c 182 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 183
e4cc1f22 184 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 185 barrier();
e4cc1f22 186 if (rdp->passed_quiesce == 0)
d4c08f2a 187 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 188 rdp->passed_quiesce = 1;
b1f77b05
IM
189}
190
d6714c22 191void rcu_bh_qs(int cpu)
b1f77b05 192{
25502a6c 193 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 194
e4cc1f22 195 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 196 barrier();
e4cc1f22 197 if (rdp->passed_quiesce == 0)
d4c08f2a 198 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 199 rdp->passed_quiesce = 1;
b1f77b05 200}
64db4cff 201
25502a6c
PM
202/*
203 * Note a context switch. This is a quiescent state for RCU-sched,
204 * and requires special handling for preemptible RCU.
e4cc1f22 205 * The caller must have disabled preemption.
25502a6c
PM
206 */
207void rcu_note_context_switch(int cpu)
208{
300df91c 209 trace_rcu_utilization("Start context switch");
25502a6c 210 rcu_sched_qs(cpu);
cba6d0d6 211 rcu_preempt_note_context_switch(cpu);
300df91c 212 trace_rcu_utilization("End context switch");
25502a6c 213}
29ce8310 214EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 215
90a4d2c0 216DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 217 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 218 .dynticks = ATOMIC_INIT(1),
90a4d2c0 219};
64db4cff 220
e0f23060 221static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
222static int qhimark = 10000; /* If this many pending, ignore blimit. */
223static int qlowmark = 100; /* Once only this many pending, use blimit. */
224
3d76c082
PM
225module_param(blimit, int, 0);
226module_param(qhimark, int, 0);
227module_param(qlowmark, int, 0);
228
13cfcca0
PM
229int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
230int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
231
f2e0dd70 232module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 233module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 234
64db4cff 235static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 236static int rcu_pending(int cpu);
64db4cff
PM
237
238/*
d6714c22 239 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 240 */
d6714c22 241long rcu_batches_completed_sched(void)
64db4cff 242{
d6714c22 243 return rcu_sched_state.completed;
64db4cff 244}
d6714c22 245EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
246
247/*
248 * Return the number of RCU BH batches processed thus far for debug & stats.
249 */
250long rcu_batches_completed_bh(void)
251{
252 return rcu_bh_state.completed;
253}
254EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
255
bf66f18e
PM
256/*
257 * Force a quiescent state for RCU BH.
258 */
259void rcu_bh_force_quiescent_state(void)
260{
261 force_quiescent_state(&rcu_bh_state, 0);
262}
263EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
264
4a298656
PM
265/*
266 * Record the number of times rcutorture tests have been initiated and
267 * terminated. This information allows the debugfs tracing stats to be
268 * correlated to the rcutorture messages, even when the rcutorture module
269 * is being repeatedly loaded and unloaded. In other words, we cannot
270 * store this state in rcutorture itself.
271 */
272void rcutorture_record_test_transition(void)
273{
274 rcutorture_testseq++;
275 rcutorture_vernum = 0;
276}
277EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
278
279/*
280 * Record the number of writer passes through the current rcutorture test.
281 * This is also used to correlate debugfs tracing stats with the rcutorture
282 * messages.
283 */
284void rcutorture_record_progress(unsigned long vernum)
285{
286 rcutorture_vernum++;
287}
288EXPORT_SYMBOL_GPL(rcutorture_record_progress);
289
bf66f18e
PM
290/*
291 * Force a quiescent state for RCU-sched.
292 */
293void rcu_sched_force_quiescent_state(void)
294{
295 force_quiescent_state(&rcu_sched_state, 0);
296}
297EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
298
64db4cff
PM
299/*
300 * Does the CPU have callbacks ready to be invoked?
301 */
302static int
303cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
304{
305 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
306}
307
308/*
309 * Does the current CPU require a yet-as-unscheduled grace period?
310 */
311static int
312cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
313{
fc2219d4 314 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
315}
316
317/*
318 * Return the root node of the specified rcu_state structure.
319 */
320static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
321{
322 return &rsp->node[0];
323}
324
64db4cff
PM
325/*
326 * If the specified CPU is offline, tell the caller that it is in
327 * a quiescent state. Otherwise, whack it with a reschedule IPI.
328 * Grace periods can end up waiting on an offline CPU when that
329 * CPU is in the process of coming online -- it will be added to the
330 * rcu_node bitmasks before it actually makes it online. The same thing
331 * can happen while a CPU is in the process of coming online. Because this
332 * race is quite rare, we check for it after detecting that the grace
333 * period has been delayed rather than checking each and every CPU
334 * each and every time we start a new grace period.
335 */
336static int rcu_implicit_offline_qs(struct rcu_data *rdp)
337{
338 /*
2036d94a
PM
339 * If the CPU is offline for more than a jiffy, it is in a quiescent
340 * state. We can trust its state not to change because interrupts
341 * are disabled. The reason for the jiffy's worth of slack is to
342 * handle CPUs initializing on the way up and finding their way
343 * to the idle loop on the way down.
64db4cff 344 */
2036d94a
PM
345 if (cpu_is_offline(rdp->cpu) &&
346 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 347 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
348 rdp->offline_fqs++;
349 return 1;
350 }
64db4cff
PM
351 return 0;
352}
353
9b2e4f18
PM
354/*
355 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
356 *
357 * If the new value of the ->dynticks_nesting counter now is zero,
358 * we really have entered idle, and must do the appropriate accounting.
359 * The caller must have disabled interrupts.
360 */
4145fa7f 361static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 362{
facc4e15 363 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 364 if (!is_idle_task(current)) {
0989cb46
PM
365 struct task_struct *idle = idle_task(smp_processor_id());
366
facc4e15 367 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 368 ftrace_dump(DUMP_ALL);
0989cb46
PM
369 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
370 current->pid, current->comm,
371 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 372 }
aea1b35e 373 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
374 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
375 smp_mb__before_atomic_inc(); /* See above. */
376 atomic_inc(&rdtp->dynticks);
377 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
378 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
379
380 /*
381 * The idle task is not permitted to enter the idle loop while
382 * in an RCU read-side critical section.
383 */
384 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
385 "Illegal idle entry in RCU read-side critical section.");
386 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
387 "Illegal idle entry in RCU-bh read-side critical section.");
388 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
389 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 390}
64db4cff
PM
391
392/**
9b2e4f18 393 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 394 *
9b2e4f18 395 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 396 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
397 * critical sections can occur in irq handlers in idle, a possibility
398 * handled by irq_enter() and irq_exit().)
399 *
400 * We crowbar the ->dynticks_nesting field to zero to allow for
401 * the possibility of usermode upcalls having messed up our count
402 * of interrupt nesting level during the prior busy period.
64db4cff 403 */
9b2e4f18 404void rcu_idle_enter(void)
64db4cff
PM
405{
406 unsigned long flags;
4145fa7f 407 long long oldval;
64db4cff
PM
408 struct rcu_dynticks *rdtp;
409
64db4cff
PM
410 local_irq_save(flags);
411 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 412 oldval = rdtp->dynticks_nesting;
29e37d81
PM
413 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
414 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
415 rdtp->dynticks_nesting = 0;
416 else
417 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 418 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
419 local_irq_restore(flags);
420}
8a2ecf47 421EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 422
9b2e4f18
PM
423/**
424 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
425 *
426 * Exit from an interrupt handler, which might possibly result in entering
427 * idle mode, in other words, leaving the mode in which read-side critical
428 * sections can occur.
64db4cff 429 *
9b2e4f18
PM
430 * This code assumes that the idle loop never does anything that might
431 * result in unbalanced calls to irq_enter() and irq_exit(). If your
432 * architecture violates this assumption, RCU will give you what you
433 * deserve, good and hard. But very infrequently and irreproducibly.
434 *
435 * Use things like work queues to work around this limitation.
436 *
437 * You have been warned.
64db4cff 438 */
9b2e4f18 439void rcu_irq_exit(void)
64db4cff
PM
440{
441 unsigned long flags;
4145fa7f 442 long long oldval;
64db4cff
PM
443 struct rcu_dynticks *rdtp;
444
445 local_irq_save(flags);
446 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 447 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
448 rdtp->dynticks_nesting--;
449 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
450 if (rdtp->dynticks_nesting)
451 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
452 else
453 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
454 local_irq_restore(flags);
455}
456
457/*
458 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
459 *
460 * If the new value of the ->dynticks_nesting counter was previously zero,
461 * we really have exited idle, and must do the appropriate accounting.
462 * The caller must have disabled interrupts.
463 */
464static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
465{
23b5c8fa
PM
466 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
467 atomic_inc(&rdtp->dynticks);
468 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
469 smp_mb__after_atomic_inc(); /* See above. */
470 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 471 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 472 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 473 if (!is_idle_task(current)) {
0989cb46
PM
474 struct task_struct *idle = idle_task(smp_processor_id());
475
4145fa7f
PM
476 trace_rcu_dyntick("Error on exit: not idle task",
477 oldval, rdtp->dynticks_nesting);
9b2e4f18 478 ftrace_dump(DUMP_ALL);
0989cb46
PM
479 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
480 current->pid, current->comm,
481 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
482 }
483}
484
485/**
486 * rcu_idle_exit - inform RCU that current CPU is leaving idle
487 *
488 * Exit idle mode, in other words, -enter- the mode in which RCU
489 * read-side critical sections can occur.
490 *
29e37d81 491 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 492 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
493 * of interrupt nesting level during the busy period that is just
494 * now starting.
495 */
496void rcu_idle_exit(void)
497{
498 unsigned long flags;
499 struct rcu_dynticks *rdtp;
500 long long oldval;
501
502 local_irq_save(flags);
503 rdtp = &__get_cpu_var(rcu_dynticks);
504 oldval = rdtp->dynticks_nesting;
29e37d81
PM
505 WARN_ON_ONCE(oldval < 0);
506 if (oldval & DYNTICK_TASK_NEST_MASK)
507 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
508 else
509 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
510 rcu_idle_exit_common(rdtp, oldval);
511 local_irq_restore(flags);
512}
8a2ecf47 513EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
514
515/**
516 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
517 *
518 * Enter an interrupt handler, which might possibly result in exiting
519 * idle mode, in other words, entering the mode in which read-side critical
520 * sections can occur.
521 *
522 * Note that the Linux kernel is fully capable of entering an interrupt
523 * handler that it never exits, for example when doing upcalls to
524 * user mode! This code assumes that the idle loop never does upcalls to
525 * user mode. If your architecture does do upcalls from the idle loop (or
526 * does anything else that results in unbalanced calls to the irq_enter()
527 * and irq_exit() functions), RCU will give you what you deserve, good
528 * and hard. But very infrequently and irreproducibly.
529 *
530 * Use things like work queues to work around this limitation.
531 *
532 * You have been warned.
533 */
534void rcu_irq_enter(void)
535{
536 unsigned long flags;
537 struct rcu_dynticks *rdtp;
538 long long oldval;
539
540 local_irq_save(flags);
541 rdtp = &__get_cpu_var(rcu_dynticks);
542 oldval = rdtp->dynticks_nesting;
543 rdtp->dynticks_nesting++;
544 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
545 if (oldval)
546 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
547 else
548 rcu_idle_exit_common(rdtp, oldval);
64db4cff 549 local_irq_restore(flags);
64db4cff
PM
550}
551
552/**
553 * rcu_nmi_enter - inform RCU of entry to NMI context
554 *
555 * If the CPU was idle with dynamic ticks active, and there is no
556 * irq handler running, this updates rdtp->dynticks_nmi to let the
557 * RCU grace-period handling know that the CPU is active.
558 */
559void rcu_nmi_enter(void)
560{
561 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
562
23b5c8fa
PM
563 if (rdtp->dynticks_nmi_nesting == 0 &&
564 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 565 return;
23b5c8fa
PM
566 rdtp->dynticks_nmi_nesting++;
567 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
568 atomic_inc(&rdtp->dynticks);
569 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
570 smp_mb__after_atomic_inc(); /* See above. */
571 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
572}
573
574/**
575 * rcu_nmi_exit - inform RCU of exit from NMI context
576 *
577 * If the CPU was idle with dynamic ticks active, and there is no
578 * irq handler running, this updates rdtp->dynticks_nmi to let the
579 * RCU grace-period handling know that the CPU is no longer active.
580 */
581void rcu_nmi_exit(void)
582{
583 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
584
23b5c8fa
PM
585 if (rdtp->dynticks_nmi_nesting == 0 ||
586 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 587 return;
23b5c8fa
PM
588 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
589 smp_mb__before_atomic_inc(); /* See above. */
590 atomic_inc(&rdtp->dynticks);
591 smp_mb__after_atomic_inc(); /* Force delay to next write. */
592 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
593}
594
9b2e4f18
PM
595#ifdef CONFIG_PROVE_RCU
596
64db4cff 597/**
9b2e4f18 598 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 599 *
9b2e4f18 600 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 601 * or NMI handler, return true.
64db4cff 602 */
9b2e4f18 603int rcu_is_cpu_idle(void)
64db4cff 604{
34240697
PM
605 int ret;
606
607 preempt_disable();
608 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
609 preempt_enable();
610 return ret;
64db4cff 611}
e6b80a3b 612EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 613
c0d6d01b
PM
614#ifdef CONFIG_HOTPLUG_CPU
615
616/*
617 * Is the current CPU online? Disable preemption to avoid false positives
618 * that could otherwise happen due to the current CPU number being sampled,
619 * this task being preempted, its old CPU being taken offline, resuming
620 * on some other CPU, then determining that its old CPU is now offline.
621 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
622 * the check for rcu_scheduler_fully_active. Note also that it is OK
623 * for a CPU coming online to use RCU for one jiffy prior to marking itself
624 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
625 * offline to continue to use RCU for one jiffy after marking itself
626 * offline in the cpu_online_mask. This leniency is necessary given the
627 * non-atomic nature of the online and offline processing, for example,
628 * the fact that a CPU enters the scheduler after completing the CPU_DYING
629 * notifiers.
630 *
631 * This is also why RCU internally marks CPUs online during the
632 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
633 *
634 * Disable checking if in an NMI handler because we cannot safely report
635 * errors from NMI handlers anyway.
636 */
637bool rcu_lockdep_current_cpu_online(void)
638{
2036d94a
PM
639 struct rcu_data *rdp;
640 struct rcu_node *rnp;
c0d6d01b
PM
641 bool ret;
642
643 if (in_nmi())
644 return 1;
645 preempt_disable();
2036d94a
PM
646 rdp = &__get_cpu_var(rcu_sched_data);
647 rnp = rdp->mynode;
648 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
649 !rcu_scheduler_fully_active;
650 preempt_enable();
651 return ret;
652}
653EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
654
655#endif /* #ifdef CONFIG_HOTPLUG_CPU */
656
9b2e4f18
PM
657#endif /* #ifdef CONFIG_PROVE_RCU */
658
64db4cff 659/**
9b2e4f18 660 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 661 *
9b2e4f18
PM
662 * If the current CPU is idle or running at a first-level (not nested)
663 * interrupt from idle, return true. The caller must have at least
664 * disabled preemption.
64db4cff 665 */
9b2e4f18 666int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 667{
9b2e4f18 668 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
669}
670
64db4cff
PM
671/*
672 * Snapshot the specified CPU's dynticks counter so that we can later
673 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 674 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
675 */
676static int dyntick_save_progress_counter(struct rcu_data *rdp)
677{
23b5c8fa 678 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 679 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
680}
681
682/*
683 * Return true if the specified CPU has passed through a quiescent
684 * state by virtue of being in or having passed through an dynticks
685 * idle state since the last call to dyntick_save_progress_counter()
686 * for this same CPU.
687 */
688static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
689{
7eb4f455
PM
690 unsigned int curr;
691 unsigned int snap;
64db4cff 692
7eb4f455
PM
693 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
694 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
695
696 /*
697 * If the CPU passed through or entered a dynticks idle phase with
698 * no active irq/NMI handlers, then we can safely pretend that the CPU
699 * already acknowledged the request to pass through a quiescent
700 * state. Either way, that CPU cannot possibly be in an RCU
701 * read-side critical section that started before the beginning
702 * of the current RCU grace period.
703 */
7eb4f455 704 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 705 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
706 rdp->dynticks_fqs++;
707 return 1;
708 }
709
710 /* Go check for the CPU being offline. */
711 return rcu_implicit_offline_qs(rdp);
712}
713
13cfcca0
PM
714static int jiffies_till_stall_check(void)
715{
716 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
717
718 /*
719 * Limit check must be consistent with the Kconfig limits
720 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
721 */
722 if (till_stall_check < 3) {
723 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
724 till_stall_check = 3;
725 } else if (till_stall_check > 300) {
726 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
727 till_stall_check = 300;
728 }
729 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
730}
731
64db4cff
PM
732static void record_gp_stall_check_time(struct rcu_state *rsp)
733{
734 rsp->gp_start = jiffies;
13cfcca0 735 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
736}
737
738static void print_other_cpu_stall(struct rcu_state *rsp)
739{
740 int cpu;
741 long delta;
742 unsigned long flags;
9bc8b558 743 int ndetected;
64db4cff 744 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
745
746 /* Only let one CPU complain about others per time interval. */
747
1304afb2 748 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 749 delta = jiffies - rsp->jiffies_stall;
fc2219d4 750 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
752 return;
753 }
13cfcca0 754 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 755 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 756
8cdd32a9
PM
757 /*
758 * OK, time to rat on our buddy...
759 * See Documentation/RCU/stallwarn.txt for info on how to debug
760 * RCU CPU stall warnings.
761 */
a858af28 762 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 763 rsp->name);
a858af28 764 print_cpu_stall_info_begin();
a0b6c9a7 765 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 766 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 767 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 768 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 769 if (rnp->qsmask == 0)
64db4cff 770 continue;
a0b6c9a7 771 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 772 if (rnp->qsmask & (1UL << cpu)) {
a858af28 773 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
774 ndetected++;
775 }
64db4cff 776 }
a858af28
PM
777
778 /*
779 * Now rat on any tasks that got kicked up to the root rcu_node
780 * due to CPU offlining.
781 */
782 rnp = rcu_get_root(rsp);
783 raw_spin_lock_irqsave(&rnp->lock, flags);
784 ndetected = rcu_print_task_stall(rnp);
785 raw_spin_unlock_irqrestore(&rnp->lock, flags);
786
787 print_cpu_stall_info_end();
788 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 789 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
790 if (ndetected == 0)
791 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
792 else if (!trigger_all_cpu_backtrace())
4627e240 793 dump_stack();
c1dc0b9c 794
1ed509a2
PM
795 /* If so configured, complain about tasks blocking the grace period. */
796
797 rcu_print_detail_task_stall(rsp);
798
64db4cff
PM
799 force_quiescent_state(rsp, 0); /* Kick them all. */
800}
801
802static void print_cpu_stall(struct rcu_state *rsp)
803{
804 unsigned long flags;
805 struct rcu_node *rnp = rcu_get_root(rsp);
806
8cdd32a9
PM
807 /*
808 * OK, time to rat on ourselves...
809 * See Documentation/RCU/stallwarn.txt for info on how to debug
810 * RCU CPU stall warnings.
811 */
a858af28
PM
812 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
813 print_cpu_stall_info_begin();
814 print_cpu_stall_info(rsp, smp_processor_id());
815 print_cpu_stall_info_end();
816 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
817 if (!trigger_all_cpu_backtrace())
818 dump_stack();
c1dc0b9c 819
1304afb2 820 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 821 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
822 rsp->jiffies_stall = jiffies +
823 3 * jiffies_till_stall_check() + 3;
1304afb2 824 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 825
64db4cff
PM
826 set_need_resched(); /* kick ourselves to get things going. */
827}
828
829static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
830{
bad6e139
PM
831 unsigned long j;
832 unsigned long js;
64db4cff
PM
833 struct rcu_node *rnp;
834
742734ee 835 if (rcu_cpu_stall_suppress)
c68de209 836 return;
bad6e139
PM
837 j = ACCESS_ONCE(jiffies);
838 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 839 rnp = rdp->mynode;
bad6e139 840 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
841
842 /* We haven't checked in, so go dump stack. */
843 print_cpu_stall(rsp);
844
bad6e139
PM
845 } else if (rcu_gp_in_progress(rsp) &&
846 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 847
bad6e139 848 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
849 print_other_cpu_stall(rsp);
850 }
851}
852
c68de209
PM
853static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
854{
742734ee 855 rcu_cpu_stall_suppress = 1;
c68de209
PM
856 return NOTIFY_DONE;
857}
858
53d84e00
PM
859/**
860 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
861 *
862 * Set the stall-warning timeout way off into the future, thus preventing
863 * any RCU CPU stall-warning messages from appearing in the current set of
864 * RCU grace periods.
865 *
866 * The caller must disable hard irqs.
867 */
868void rcu_cpu_stall_reset(void)
869{
870 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
871 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
872 rcu_preempt_stall_reset();
873}
874
c68de209
PM
875static struct notifier_block rcu_panic_block = {
876 .notifier_call = rcu_panic,
877};
878
879static void __init check_cpu_stall_init(void)
880{
881 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
882}
883
64db4cff
PM
884/*
885 * Update CPU-local rcu_data state to record the newly noticed grace period.
886 * This is used both when we started the grace period and when we notice
9160306e
PM
887 * that someone else started the grace period. The caller must hold the
888 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
889 * and must have irqs disabled.
64db4cff 890 */
9160306e
PM
891static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
892{
893 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
894 /*
895 * If the current grace period is waiting for this CPU,
896 * set up to detect a quiescent state, otherwise don't
897 * go looking for one.
898 */
9160306e 899 rdp->gpnum = rnp->gpnum;
d4c08f2a 900 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
901 if (rnp->qsmask & rdp->grpmask) {
902 rdp->qs_pending = 1;
e4cc1f22 903 rdp->passed_quiesce = 0;
121dfc4b
PM
904 } else
905 rdp->qs_pending = 0;
a858af28 906 zero_cpu_stall_ticks(rdp);
9160306e
PM
907 }
908}
909
64db4cff
PM
910static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
911{
9160306e
PM
912 unsigned long flags;
913 struct rcu_node *rnp;
914
915 local_irq_save(flags);
916 rnp = rdp->mynode;
917 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 918 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
919 local_irq_restore(flags);
920 return;
921 }
922 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 923 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
924}
925
926/*
927 * Did someone else start a new RCU grace period start since we last
928 * checked? Update local state appropriately if so. Must be called
929 * on the CPU corresponding to rdp.
930 */
931static int
932check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
933{
934 unsigned long flags;
935 int ret = 0;
936
937 local_irq_save(flags);
938 if (rdp->gpnum != rsp->gpnum) {
939 note_new_gpnum(rsp, rdp);
940 ret = 1;
941 }
942 local_irq_restore(flags);
943 return ret;
944}
945
d09b62df
PM
946/*
947 * Advance this CPU's callbacks, but only if the current grace period
948 * has ended. This may be called only from the CPU to whom the rdp
949 * belongs. In addition, the corresponding leaf rcu_node structure's
950 * ->lock must be held by the caller, with irqs disabled.
951 */
952static void
953__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
954{
955 /* Did another grace period end? */
956 if (rdp->completed != rnp->completed) {
957
958 /* Advance callbacks. No harm if list empty. */
959 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
960 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
961 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
962
963 /* Remember that we saw this grace-period completion. */
964 rdp->completed = rnp->completed;
d4c08f2a 965 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 966
5ff8e6f0
FW
967 /*
968 * If we were in an extended quiescent state, we may have
121dfc4b 969 * missed some grace periods that others CPUs handled on
5ff8e6f0 970 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
971 * spurious new grace periods. If another grace period
972 * has started, then rnp->gpnum will have advanced, so
973 * we will detect this later on.
5ff8e6f0 974 */
121dfc4b 975 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
976 rdp->gpnum = rdp->completed;
977
20377f32 978 /*
121dfc4b
PM
979 * If RCU does not need a quiescent state from this CPU,
980 * then make sure that this CPU doesn't go looking for one.
20377f32 981 */
121dfc4b 982 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 983 rdp->qs_pending = 0;
d09b62df
PM
984 }
985}
986
987/*
988 * Advance this CPU's callbacks, but only if the current grace period
989 * has ended. This may be called only from the CPU to whom the rdp
990 * belongs.
991 */
992static void
993rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
994{
995 unsigned long flags;
996 struct rcu_node *rnp;
997
998 local_irq_save(flags);
999 rnp = rdp->mynode;
1000 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1001 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1002 local_irq_restore(flags);
1003 return;
1004 }
1005 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1006 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1007}
1008
1009/*
1010 * Do per-CPU grace-period initialization for running CPU. The caller
1011 * must hold the lock of the leaf rcu_node structure corresponding to
1012 * this CPU.
1013 */
1014static void
1015rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1016{
1017 /* Prior grace period ended, so advance callbacks for current CPU. */
1018 __rcu_process_gp_end(rsp, rnp, rdp);
1019
1020 /*
1021 * Because this CPU just now started the new grace period, we know
1022 * that all of its callbacks will be covered by this upcoming grace
1023 * period, even the ones that were registered arbitrarily recently.
1024 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1025 *
1026 * Other CPUs cannot be sure exactly when the grace period started.
1027 * Therefore, their recently registered callbacks must pass through
1028 * an additional RCU_NEXT_READY stage, so that they will be handled
1029 * by the next RCU grace period.
1030 */
1031 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1032 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1033
1034 /* Set state so that this CPU will detect the next quiescent state. */
1035 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1036}
1037
64db4cff
PM
1038/*
1039 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1040 * in preparation for detecting the next grace period. The caller must hold
1041 * the root node's ->lock, which is released before return. Hard irqs must
1042 * be disabled.
e5601400
PM
1043 *
1044 * Note that it is legal for a dying CPU (which is marked as offline) to
1045 * invoke this function. This can happen when the dying CPU reports its
1046 * quiescent state.
64db4cff
PM
1047 */
1048static void
1049rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1050 __releases(rcu_get_root(rsp)->lock)
1051{
394f99a9 1052 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1053 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1054
037067a1 1055 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1056 !cpu_needs_another_gp(rsp, rdp)) {
1057 /*
1058 * Either the scheduler hasn't yet spawned the first
1059 * non-idle task or this CPU does not need another
1060 * grace period. Either way, don't start a new grace
1061 * period.
1062 */
1063 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1064 return;
1065 }
b32e9eb6 1066
afe24b12 1067 if (rsp->fqs_active) {
b32e9eb6 1068 /*
afe24b12
PM
1069 * This CPU needs a grace period, but force_quiescent_state()
1070 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1071 */
afe24b12
PM
1072 rsp->fqs_need_gp = 1;
1073 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1074 return;
1075 }
1076
1077 /* Advance to a new grace period and initialize state. */
1078 rsp->gpnum++;
d4c08f2a 1079 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1080 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1081 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1082 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1083 record_gp_stall_check_time(rsp);
1304afb2 1084 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1085
64db4cff 1086 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1087 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1088
1089 /*
b835db1f
PM
1090 * Set the quiescent-state-needed bits in all the rcu_node
1091 * structures for all currently online CPUs in breadth-first
1092 * order, starting from the root rcu_node structure. This
1093 * operation relies on the layout of the hierarchy within the
1094 * rsp->node[] array. Note that other CPUs will access only
1095 * the leaves of the hierarchy, which still indicate that no
1096 * grace period is in progress, at least until the corresponding
1097 * leaf node has been initialized. In addition, we have excluded
1098 * CPU-hotplug operations.
64db4cff
PM
1099 *
1100 * Note that the grace period cannot complete until we finish
1101 * the initialization process, as there will be at least one
1102 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1103 * one corresponding to this CPU, due to the fact that we have
1104 * irqs disabled.
64db4cff 1105 */
a0b6c9a7 1106 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1107 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1108 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1109 rnp->qsmask = rnp->qsmaskinit;
de078d87 1110 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1111 rnp->completed = rsp->completed;
1112 if (rnp == rdp->mynode)
1113 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1114 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1115 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1116 rnp->level, rnp->grplo,
1117 rnp->grphi, rnp->qsmask);
1304afb2 1118 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1119 }
1120
83f5b01f 1121 rnp = rcu_get_root(rsp);
1304afb2 1122 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1123 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1124 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1125 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1126}
1127
f41d911f 1128/*
d3f6bad3
PM
1129 * Report a full set of quiescent states to the specified rcu_state
1130 * data structure. This involves cleaning up after the prior grace
1131 * period and letting rcu_start_gp() start up the next grace period
1132 * if one is needed. Note that the caller must hold rnp->lock, as
1133 * required by rcu_start_gp(), which will release it.
f41d911f 1134 */
d3f6bad3 1135static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1136 __releases(rcu_get_root(rsp)->lock)
f41d911f 1137{
15ba0ba8 1138 unsigned long gp_duration;
afe24b12
PM
1139 struct rcu_node *rnp = rcu_get_root(rsp);
1140 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1141
fc2219d4 1142 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1143
1144 /*
1145 * Ensure that all grace-period and pre-grace-period activity
1146 * is seen before the assignment to rsp->completed.
1147 */
1148 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1149 gp_duration = jiffies - rsp->gp_start;
1150 if (gp_duration > rsp->gp_max)
1151 rsp->gp_max = gp_duration;
afe24b12
PM
1152
1153 /*
1154 * We know the grace period is complete, but to everyone else
1155 * it appears to still be ongoing. But it is also the case
1156 * that to everyone else it looks like there is nothing that
1157 * they can do to advance the grace period. It is therefore
1158 * safe for us to drop the lock in order to mark the grace
1159 * period as completed in all of the rcu_node structures.
1160 *
1161 * But if this CPU needs another grace period, it will take
1162 * care of this while initializing the next grace period.
1163 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1164 * because the callbacks have not yet been advanced: Those
1165 * callbacks are waiting on the grace period that just now
1166 * completed.
1167 */
1168 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1169 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1170
1171 /*
1172 * Propagate new ->completed value to rcu_node structures
1173 * so that other CPUs don't have to wait until the start
1174 * of the next grace period to process their callbacks.
1175 */
1176 rcu_for_each_node_breadth_first(rsp, rnp) {
1177 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1178 rnp->completed = rsp->gpnum;
1179 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1180 }
1181 rnp = rcu_get_root(rsp);
1182 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1183 }
1184
1185 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1186 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1187 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1188 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1189}
1190
64db4cff 1191/*
d3f6bad3
PM
1192 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1193 * Allows quiescent states for a group of CPUs to be reported at one go
1194 * to the specified rcu_node structure, though all the CPUs in the group
1195 * must be represented by the same rcu_node structure (which need not be
1196 * a leaf rcu_node structure, though it often will be). That structure's
1197 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1198 */
1199static void
d3f6bad3
PM
1200rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1201 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1202 __releases(rnp->lock)
1203{
28ecd580
PM
1204 struct rcu_node *rnp_c;
1205
64db4cff
PM
1206 /* Walk up the rcu_node hierarchy. */
1207 for (;;) {
1208 if (!(rnp->qsmask & mask)) {
1209
1210 /* Our bit has already been cleared, so done. */
1304afb2 1211 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1212 return;
1213 }
1214 rnp->qsmask &= ~mask;
d4c08f2a
PM
1215 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1216 mask, rnp->qsmask, rnp->level,
1217 rnp->grplo, rnp->grphi,
1218 !!rnp->gp_tasks);
27f4d280 1219 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1220
1221 /* Other bits still set at this level, so done. */
1304afb2 1222 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1223 return;
1224 }
1225 mask = rnp->grpmask;
1226 if (rnp->parent == NULL) {
1227
1228 /* No more levels. Exit loop holding root lock. */
1229
1230 break;
1231 }
1304afb2 1232 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1233 rnp_c = rnp;
64db4cff 1234 rnp = rnp->parent;
1304afb2 1235 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1236 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1237 }
1238
1239 /*
1240 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1241 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1242 * to clean up and start the next grace period if one is needed.
64db4cff 1243 */
d3f6bad3 1244 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1245}
1246
1247/*
d3f6bad3
PM
1248 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1249 * structure. This must be either called from the specified CPU, or
1250 * called when the specified CPU is known to be offline (and when it is
1251 * also known that no other CPU is concurrently trying to help the offline
1252 * CPU). The lastcomp argument is used to make sure we are still in the
1253 * grace period of interest. We don't want to end the current grace period
1254 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1255 */
1256static void
e4cc1f22 1257rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1258{
1259 unsigned long flags;
1260 unsigned long mask;
1261 struct rcu_node *rnp;
1262
1263 rnp = rdp->mynode;
1304afb2 1264 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1265 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1266
1267 /*
e4cc1f22
PM
1268 * The grace period in which this quiescent state was
1269 * recorded has ended, so don't report it upwards.
1270 * We will instead need a new quiescent state that lies
1271 * within the current grace period.
64db4cff 1272 */
e4cc1f22 1273 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1275 return;
1276 }
1277 mask = rdp->grpmask;
1278 if ((rnp->qsmask & mask) == 0) {
1304afb2 1279 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1280 } else {
1281 rdp->qs_pending = 0;
1282
1283 /*
1284 * This GP can't end until cpu checks in, so all of our
1285 * callbacks can be processed during the next GP.
1286 */
64db4cff
PM
1287 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1288
d3f6bad3 1289 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1290 }
1291}
1292
1293/*
1294 * Check to see if there is a new grace period of which this CPU
1295 * is not yet aware, and if so, set up local rcu_data state for it.
1296 * Otherwise, see if this CPU has just passed through its first
1297 * quiescent state for this grace period, and record that fact if so.
1298 */
1299static void
1300rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1301{
1302 /* If there is now a new grace period, record and return. */
1303 if (check_for_new_grace_period(rsp, rdp))
1304 return;
1305
1306 /*
1307 * Does this CPU still need to do its part for current grace period?
1308 * If no, return and let the other CPUs do their part as well.
1309 */
1310 if (!rdp->qs_pending)
1311 return;
1312
1313 /*
1314 * Was there a quiescent state since the beginning of the grace
1315 * period? If no, then exit and wait for the next call.
1316 */
e4cc1f22 1317 if (!rdp->passed_quiesce)
64db4cff
PM
1318 return;
1319
d3f6bad3
PM
1320 /*
1321 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1322 * judge of that).
1323 */
e4cc1f22 1324 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1325}
1326
1327#ifdef CONFIG_HOTPLUG_CPU
1328
e74f4c45 1329/*
b1420f1c
PM
1330 * Send the specified CPU's RCU callbacks to the orphanage. The
1331 * specified CPU must be offline, and the caller must hold the
1332 * ->onofflock.
e74f4c45 1333 */
b1420f1c
PM
1334static void
1335rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1336 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45
PM
1337{
1338 int i;
e5601400 1339
b1420f1c
PM
1340 /*
1341 * Orphan the callbacks. First adjust the counts. This is safe
1342 * because ->onofflock excludes _rcu_barrier()'s adoption of
1343 * the callbacks, thus no memory barrier is required.
1344 */
a50c3af9 1345 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1346 rsp->qlen_lazy += rdp->qlen_lazy;
1347 rsp->qlen += rdp->qlen;
1348 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9
PM
1349 rdp->qlen_lazy = 0;
1350 rdp->qlen = 0;
1351 }
1352
1353 /*
b1420f1c
PM
1354 * Next, move those callbacks still needing a grace period to
1355 * the orphanage, where some other CPU will pick them up.
1356 * Some of the callbacks might have gone partway through a grace
1357 * period, but that is too bad. They get to start over because we
1358 * cannot assume that grace periods are synchronized across CPUs.
1359 * We don't bother updating the ->nxttail[] array yet, instead
1360 * we just reset the whole thing later on.
a50c3af9 1361 */
b1420f1c
PM
1362 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1363 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1364 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1365 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1366 }
1367
1368 /*
b1420f1c
PM
1369 * Then move the ready-to-invoke callbacks to the orphanage,
1370 * where some other CPU will pick them up. These will not be
1371 * required to pass though another grace period: They are done.
a50c3af9 1372 */
e5601400 1373 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1374 *rsp->orphan_donetail = rdp->nxtlist;
1375 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1376 }
e74f4c45 1377
b1420f1c
PM
1378 /* Finally, initialize the rcu_data structure's list to empty. */
1379 rdp->nxtlist = NULL;
1380 for (i = 0; i < RCU_NEXT_SIZE; i++)
1381 rdp->nxttail[i] = &rdp->nxtlist;
1382}
1383
1384/*
1385 * Adopt the RCU callbacks from the specified rcu_state structure's
1386 * orphanage. The caller must hold the ->onofflock.
1387 */
1388static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1389{
1390 int i;
1391 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1392
a50c3af9 1393 /*
b1420f1c
PM
1394 * If there is an rcu_barrier() operation in progress, then
1395 * only the task doing that operation is permitted to adopt
1396 * callbacks. To do otherwise breaks rcu_barrier() and friends
1397 * by causing them to fail to wait for the callbacks in the
1398 * orphanage.
a50c3af9 1399 */
b1420f1c
PM
1400 if (rsp->rcu_barrier_in_progress &&
1401 rsp->rcu_barrier_in_progress != current)
1402 return;
1403
1404 /* Do the accounting first. */
1405 rdp->qlen_lazy += rsp->qlen_lazy;
1406 rdp->qlen += rsp->qlen;
1407 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1408 if (rsp->qlen_lazy != rsp->qlen)
1409 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1410 rsp->qlen_lazy = 0;
1411 rsp->qlen = 0;
1412
1413 /*
1414 * We do not need a memory barrier here because the only way we
1415 * can get here if there is an rcu_barrier() in flight is if
1416 * we are the task doing the rcu_barrier().
1417 */
1418
1419 /* First adopt the ready-to-invoke callbacks. */
1420 if (rsp->orphan_donelist != NULL) {
1421 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1422 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1423 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1424 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1425 rdp->nxttail[i] = rsp->orphan_donetail;
1426 rsp->orphan_donelist = NULL;
1427 rsp->orphan_donetail = &rsp->orphan_donelist;
1428 }
1429
1430 /* And then adopt the callbacks that still need a grace period. */
1431 if (rsp->orphan_nxtlist != NULL) {
1432 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1433 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1434 rsp->orphan_nxtlist = NULL;
1435 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1436 }
1437}
1438
1439/*
1440 * Trace the fact that this CPU is going offline.
1441 */
1442static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1443{
1444 RCU_TRACE(unsigned long mask);
1445 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1446 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1447
1448 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1449 trace_rcu_grace_period(rsp->name,
1450 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1451 "cpuofl");
64db4cff
PM
1452}
1453
1454/*
e5601400 1455 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1456 * this fact from process context. Do the remainder of the cleanup,
1457 * including orphaning the outgoing CPU's RCU callbacks, and also
1458 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1459 * There can only be one CPU hotplug operation at a time, so no other
1460 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1461 */
e5601400 1462static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1463{
2036d94a
PM
1464 unsigned long flags;
1465 unsigned long mask;
1466 int need_report = 0;
e5601400 1467 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1468 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1469
2036d94a 1470 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1471 rcu_stop_cpu_kthread(cpu);
1472 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1473
b1420f1c 1474 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1475
1476 /* Exclude any attempts to start a new grace period. */
1477 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1478
b1420f1c
PM
1479 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1480 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1481 rcu_adopt_orphan_cbs(rsp);
1482
2036d94a
PM
1483 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1484 mask = rdp->grpmask; /* rnp->grplo is constant. */
1485 do {
1486 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1487 rnp->qsmaskinit &= ~mask;
1488 if (rnp->qsmaskinit != 0) {
1489 if (rnp != rdp->mynode)
1490 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1491 break;
1492 }
1493 if (rnp == rdp->mynode)
1494 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1495 else
1496 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1497 mask = rnp->grpmask;
1498 rnp = rnp->parent;
1499 } while (rnp != NULL);
1500
1501 /*
1502 * We still hold the leaf rcu_node structure lock here, and
1503 * irqs are still disabled. The reason for this subterfuge is
1504 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1505 * held leads to deadlock.
1506 */
1507 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1508 rnp = rdp->mynode;
1509 if (need_report & RCU_OFL_TASKS_NORM_GP)
1510 rcu_report_unblock_qs_rnp(rnp, flags);
1511 else
1512 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1513 if (need_report & RCU_OFL_TASKS_EXP_GP)
1514 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1515}
1516
1517#else /* #ifdef CONFIG_HOTPLUG_CPU */
1518
b1420f1c
PM
1519static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1520{
1521}
1522
e5601400 1523static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1524{
1525}
1526
e5601400 1527static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1528{
1529}
1530
1531#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1532
1533/*
1534 * Invoke any RCU callbacks that have made it to the end of their grace
1535 * period. Thottle as specified by rdp->blimit.
1536 */
37c72e56 1537static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1538{
1539 unsigned long flags;
1540 struct rcu_head *next, *list, **tail;
b41772ab 1541 int bl, count, count_lazy, i;
64db4cff
PM
1542
1543 /* If no callbacks are ready, just return.*/
29c00b4a 1544 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1545 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1546 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1547 need_resched(), is_idle_task(current),
1548 rcu_is_callbacks_kthread());
64db4cff 1549 return;
29c00b4a 1550 }
64db4cff
PM
1551
1552 /*
1553 * Extract the list of ready callbacks, disabling to prevent
1554 * races with call_rcu() from interrupt handlers.
1555 */
1556 local_irq_save(flags);
8146c4e2 1557 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1558 bl = rdp->blimit;
486e2593 1559 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1560 list = rdp->nxtlist;
1561 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1562 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1563 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1564 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1565 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1566 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1567 local_irq_restore(flags);
1568
1569 /* Invoke callbacks. */
486e2593 1570 count = count_lazy = 0;
64db4cff
PM
1571 while (list) {
1572 next = list->next;
1573 prefetch(next);
551d55a9 1574 debug_rcu_head_unqueue(list);
486e2593
PM
1575 if (__rcu_reclaim(rsp->name, list))
1576 count_lazy++;
64db4cff 1577 list = next;
dff1672d
PM
1578 /* Stop only if limit reached and CPU has something to do. */
1579 if (++count >= bl &&
1580 (need_resched() ||
1581 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1582 break;
1583 }
1584
1585 local_irq_save(flags);
4968c300
PM
1586 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1587 is_idle_task(current),
1588 rcu_is_callbacks_kthread());
64db4cff
PM
1589
1590 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1591 if (list != NULL) {
1592 *tail = rdp->nxtlist;
1593 rdp->nxtlist = list;
b41772ab
PM
1594 for (i = 0; i < RCU_NEXT_SIZE; i++)
1595 if (&rdp->nxtlist == rdp->nxttail[i])
1596 rdp->nxttail[i] = tail;
64db4cff
PM
1597 else
1598 break;
1599 }
b1420f1c
PM
1600 smp_mb(); /* List handling before counting for rcu_barrier(). */
1601 rdp->qlen_lazy -= count_lazy;
1602 rdp->qlen -= count;
1603 rdp->n_cbs_invoked += count;
64db4cff
PM
1604
1605 /* Reinstate batch limit if we have worked down the excess. */
1606 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1607 rdp->blimit = blimit;
1608
37c72e56
PM
1609 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1610 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1611 rdp->qlen_last_fqs_check = 0;
1612 rdp->n_force_qs_snap = rsp->n_force_qs;
1613 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1614 rdp->qlen_last_fqs_check = rdp->qlen;
1615
64db4cff
PM
1616 local_irq_restore(flags);
1617
e0f23060 1618 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1619 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1620 invoke_rcu_core();
64db4cff
PM
1621}
1622
1623/*
1624 * Check to see if this CPU is in a non-context-switch quiescent state
1625 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1626 * Also schedule RCU core processing.
64db4cff 1627 *
9b2e4f18 1628 * This function must be called from hardirq context. It is normally
64db4cff
PM
1629 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1630 * false, there is no point in invoking rcu_check_callbacks().
1631 */
1632void rcu_check_callbacks(int cpu, int user)
1633{
300df91c 1634 trace_rcu_utilization("Start scheduler-tick");
a858af28 1635 increment_cpu_stall_ticks();
9b2e4f18 1636 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1637
1638 /*
1639 * Get here if this CPU took its interrupt from user
1640 * mode or from the idle loop, and if this is not a
1641 * nested interrupt. In this case, the CPU is in
d6714c22 1642 * a quiescent state, so note it.
64db4cff
PM
1643 *
1644 * No memory barrier is required here because both
d6714c22
PM
1645 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1646 * variables that other CPUs neither access nor modify,
1647 * at least not while the corresponding CPU is online.
64db4cff
PM
1648 */
1649
d6714c22
PM
1650 rcu_sched_qs(cpu);
1651 rcu_bh_qs(cpu);
64db4cff
PM
1652
1653 } else if (!in_softirq()) {
1654
1655 /*
1656 * Get here if this CPU did not take its interrupt from
1657 * softirq, in other words, if it is not interrupting
1658 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1659 * critical section, so note it.
64db4cff
PM
1660 */
1661
d6714c22 1662 rcu_bh_qs(cpu);
64db4cff 1663 }
f41d911f 1664 rcu_preempt_check_callbacks(cpu);
d21670ac 1665 if (rcu_pending(cpu))
a46e0899 1666 invoke_rcu_core();
300df91c 1667 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1668}
1669
64db4cff
PM
1670/*
1671 * Scan the leaf rcu_node structures, processing dyntick state for any that
1672 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1673 * Also initiate boosting for any threads blocked on the root rcu_node.
1674 *
ee47eb9f 1675 * The caller must have suppressed start of new grace periods.
64db4cff 1676 */
45f014c5 1677static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1678{
1679 unsigned long bit;
1680 int cpu;
1681 unsigned long flags;
1682 unsigned long mask;
a0b6c9a7 1683 struct rcu_node *rnp;
64db4cff 1684
a0b6c9a7 1685 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1686 mask = 0;
1304afb2 1687 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1688 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1689 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1690 return;
64db4cff 1691 }
a0b6c9a7 1692 if (rnp->qsmask == 0) {
1217ed1b 1693 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1694 continue;
1695 }
a0b6c9a7 1696 cpu = rnp->grplo;
64db4cff 1697 bit = 1;
a0b6c9a7 1698 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1699 if ((rnp->qsmask & bit) != 0 &&
1700 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1701 mask |= bit;
1702 }
45f014c5 1703 if (mask != 0) {
64db4cff 1704
d3f6bad3
PM
1705 /* rcu_report_qs_rnp() releases rnp->lock. */
1706 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1707 continue;
1708 }
1304afb2 1709 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1710 }
27f4d280 1711 rnp = rcu_get_root(rsp);
1217ed1b
PM
1712 if (rnp->qsmask == 0) {
1713 raw_spin_lock_irqsave(&rnp->lock, flags);
1714 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1715 }
64db4cff
PM
1716}
1717
1718/*
1719 * Force quiescent states on reluctant CPUs, and also detect which
1720 * CPUs are in dyntick-idle mode.
1721 */
1722static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1723{
1724 unsigned long flags;
64db4cff 1725 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1726
300df91c
PM
1727 trace_rcu_utilization("Start fqs");
1728 if (!rcu_gp_in_progress(rsp)) {
1729 trace_rcu_utilization("End fqs");
64db4cff 1730 return; /* No grace period in progress, nothing to force. */
300df91c 1731 }
1304afb2 1732 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1733 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1734 trace_rcu_utilization("End fqs");
64db4cff
PM
1735 return; /* Someone else is already on the job. */
1736 }
20133cfc 1737 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1738 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1739 rsp->n_force_qs++;
1304afb2 1740 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1741 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1742 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1743 rsp->n_force_qs_ngp++;
1304afb2 1744 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1745 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1746 }
07079d53 1747 rsp->fqs_active = 1;
af446b70 1748 switch (rsp->fqs_state) {
83f5b01f 1749 case RCU_GP_IDLE:
64db4cff
PM
1750 case RCU_GP_INIT:
1751
83f5b01f 1752 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1753
1754 case RCU_SAVE_DYNTICK:
64db4cff
PM
1755 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1756 break; /* So gcc recognizes the dead code. */
1757
f261414f
LJ
1758 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1759
64db4cff 1760 /* Record dyntick-idle state. */
45f014c5 1761 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1762 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1763 if (rcu_gp_in_progress(rsp))
af446b70 1764 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1765 break;
64db4cff
PM
1766
1767 case RCU_FORCE_QS:
1768
1769 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1770 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1771 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1772
1773 /* Leave state in case more forcing is required. */
1774
1304afb2 1775 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1776 break;
64db4cff 1777 }
07079d53 1778 rsp->fqs_active = 0;
46a1e34e 1779 if (rsp->fqs_need_gp) {
1304afb2 1780 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1781 rsp->fqs_need_gp = 0;
1782 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1783 trace_rcu_utilization("End fqs");
46a1e34e
PM
1784 return;
1785 }
1304afb2 1786 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1787unlock_fqs_ret:
1304afb2 1788 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1789 trace_rcu_utilization("End fqs");
64db4cff
PM
1790}
1791
64db4cff 1792/*
e0f23060
PM
1793 * This does the RCU core processing work for the specified rcu_state
1794 * and rcu_data structures. This may be called only from the CPU to
1795 * whom the rdp belongs.
64db4cff
PM
1796 */
1797static void
1798__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1799{
1800 unsigned long flags;
1801
2e597558
PM
1802 WARN_ON_ONCE(rdp->beenonline == 0);
1803
64db4cff
PM
1804 /*
1805 * If an RCU GP has gone long enough, go check for dyntick
1806 * idle CPUs and, if needed, send resched IPIs.
1807 */
20133cfc 1808 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1809 force_quiescent_state(rsp, 1);
1810
1811 /*
1812 * Advance callbacks in response to end of earlier grace
1813 * period that some other CPU ended.
1814 */
1815 rcu_process_gp_end(rsp, rdp);
1816
1817 /* Update RCU state based on any recent quiescent states. */
1818 rcu_check_quiescent_state(rsp, rdp);
1819
1820 /* Does this CPU require a not-yet-started grace period? */
1821 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1822 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1823 rcu_start_gp(rsp, flags); /* releases above lock */
1824 }
1825
1826 /* If there are callbacks ready, invoke them. */
09223371 1827 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1828 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1829}
1830
64db4cff 1831/*
e0f23060 1832 * Do RCU core processing for the current CPU.
64db4cff 1833 */
09223371 1834static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1835{
300df91c 1836 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1837 __rcu_process_callbacks(&rcu_sched_state,
1838 &__get_cpu_var(rcu_sched_data));
64db4cff 1839 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1840 rcu_preempt_process_callbacks();
300df91c 1841 trace_rcu_utilization("End RCU core");
64db4cff
PM
1842}
1843
a26ac245 1844/*
e0f23060
PM
1845 * Schedule RCU callback invocation. If the specified type of RCU
1846 * does not support RCU priority boosting, just do a direct call,
1847 * otherwise wake up the per-CPU kernel kthread. Note that because we
1848 * are running on the current CPU with interrupts disabled, the
1849 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1850 */
a46e0899 1851static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1852{
b0d30417
PM
1853 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1854 return;
a46e0899
PM
1855 if (likely(!rsp->boost)) {
1856 rcu_do_batch(rsp, rdp);
a26ac245
PM
1857 return;
1858 }
a46e0899 1859 invoke_rcu_callbacks_kthread();
a26ac245
PM
1860}
1861
a46e0899 1862static void invoke_rcu_core(void)
09223371
SL
1863{
1864 raise_softirq(RCU_SOFTIRQ);
1865}
1866
64db4cff
PM
1867static void
1868__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1869 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1870{
1871 unsigned long flags;
1872 struct rcu_data *rdp;
1873
0bb7b59d 1874 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1875 debug_rcu_head_queue(head);
64db4cff
PM
1876 head->func = func;
1877 head->next = NULL;
1878
1879 smp_mb(); /* Ensure RCU update seen before callback registry. */
1880
1881 /*
1882 * Opportunistically note grace-period endings and beginnings.
1883 * Note that we might see a beginning right after we see an
1884 * end, but never vice versa, since this CPU has to pass through
1885 * a quiescent state betweentimes.
1886 */
1887 local_irq_save(flags);
394f99a9 1888 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1889
1890 /* Add the callback to our list. */
2655d57e 1891 rdp->qlen++;
486e2593
PM
1892 if (lazy)
1893 rdp->qlen_lazy++;
c57afe80
PM
1894 else
1895 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1896 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1897 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1898 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1899
d4c08f2a
PM
1900 if (__is_kfree_rcu_offset((unsigned long)func))
1901 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1902 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1903 else
486e2593 1904 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1905
2655d57e
PM
1906 /* If interrupts were disabled, don't dive into RCU core. */
1907 if (irqs_disabled_flags(flags)) {
1908 local_irq_restore(flags);
1909 return;
1910 }
64db4cff 1911
37c72e56
PM
1912 /*
1913 * Force the grace period if too many callbacks or too long waiting.
1914 * Enforce hysteresis, and don't invoke force_quiescent_state()
1915 * if some other CPU has recently done so. Also, don't bother
1916 * invoking force_quiescent_state() if the newly enqueued callback
1917 * is the only one waiting for a grace period to complete.
1918 */
2655d57e 1919 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1920
1921 /* Are we ignoring a completed grace period? */
1922 rcu_process_gp_end(rsp, rdp);
1923 check_for_new_grace_period(rsp, rdp);
1924
1925 /* Start a new grace period if one not already started. */
1926 if (!rcu_gp_in_progress(rsp)) {
1927 unsigned long nestflag;
1928 struct rcu_node *rnp_root = rcu_get_root(rsp);
1929
1930 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1931 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1932 } else {
1933 /* Give the grace period a kick. */
1934 rdp->blimit = LONG_MAX;
1935 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1936 *rdp->nxttail[RCU_DONE_TAIL] != head)
1937 force_quiescent_state(rsp, 0);
1938 rdp->n_force_qs_snap = rsp->n_force_qs;
1939 rdp->qlen_last_fqs_check = rdp->qlen;
1940 }
20133cfc 1941 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1942 force_quiescent_state(rsp, 1);
1943 local_irq_restore(flags);
1944}
1945
1946/*
d6714c22 1947 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1948 */
d6714c22 1949void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1950{
486e2593 1951 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1952}
d6714c22 1953EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1954
1955/*
486e2593 1956 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1957 */
1958void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1959{
486e2593 1960 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1961}
1962EXPORT_SYMBOL_GPL(call_rcu_bh);
1963
6d813391
PM
1964/*
1965 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1966 * any blocking grace-period wait automatically implies a grace period
1967 * if there is only one CPU online at any point time during execution
1968 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1969 * occasionally incorrectly indicate that there are multiple CPUs online
1970 * when there was in fact only one the whole time, as this just adds
1971 * some overhead: RCU still operates correctly.
1972 *
1973 * Of course, sampling num_online_cpus() with preemption enabled can
1974 * give erroneous results if there are concurrent CPU-hotplug operations.
1975 * For example, given a demonic sequence of preemptions in num_online_cpus()
1976 * and CPU-hotplug operations, there could be two or more CPUs online at
1977 * all times, but num_online_cpus() might well return one (or even zero).
1978 *
1979 * However, all such demonic sequences require at least one CPU-offline
1980 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1981 * is only a problem if there is an RCU read-side critical section executing
1982 * throughout. But RCU-sched and RCU-bh read-side critical sections
1983 * disable either preemption or bh, which prevents a CPU from going offline.
1984 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1985 * that there is only one CPU when in fact there was more than one throughout
1986 * is when there were no RCU readers in the system. If there are no
1987 * RCU readers, the grace period by definition can be of zero length,
1988 * regardless of the number of online CPUs.
1989 */
1990static inline int rcu_blocking_is_gp(void)
1991{
1992 might_sleep(); /* Check for RCU read-side critical section. */
1993 return num_online_cpus() <= 1;
1994}
1995
6ebb237b
PM
1996/**
1997 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1998 *
1999 * Control will return to the caller some time after a full rcu-sched
2000 * grace period has elapsed, in other words after all currently executing
2001 * rcu-sched read-side critical sections have completed. These read-side
2002 * critical sections are delimited by rcu_read_lock_sched() and
2003 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2004 * local_irq_disable(), and so on may be used in place of
2005 * rcu_read_lock_sched().
2006 *
2007 * This means that all preempt_disable code sequences, including NMI and
2008 * hardware-interrupt handlers, in progress on entry will have completed
2009 * before this primitive returns. However, this does not guarantee that
2010 * softirq handlers will have completed, since in some kernels, these
2011 * handlers can run in process context, and can block.
2012 *
2013 * This primitive provides the guarantees made by the (now removed)
2014 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2015 * guarantees that rcu_read_lock() sections will have completed.
2016 * In "classic RCU", these two guarantees happen to be one and
2017 * the same, but can differ in realtime RCU implementations.
2018 */
2019void synchronize_sched(void)
2020{
fe15d706
PM
2021 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2022 !lock_is_held(&rcu_lock_map) &&
2023 !lock_is_held(&rcu_sched_lock_map),
2024 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2025 if (rcu_blocking_is_gp())
2026 return;
2c42818e 2027 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2028}
2029EXPORT_SYMBOL_GPL(synchronize_sched);
2030
2031/**
2032 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2033 *
2034 * Control will return to the caller some time after a full rcu_bh grace
2035 * period has elapsed, in other words after all currently executing rcu_bh
2036 * read-side critical sections have completed. RCU read-side critical
2037 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2038 * and may be nested.
2039 */
2040void synchronize_rcu_bh(void)
2041{
fe15d706
PM
2042 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2043 !lock_is_held(&rcu_lock_map) &&
2044 !lock_is_held(&rcu_sched_lock_map),
2045 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2046 if (rcu_blocking_is_gp())
2047 return;
2c42818e 2048 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2049}
2050EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2051
3d3b7db0
PM
2052static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2053static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2054
2055static int synchronize_sched_expedited_cpu_stop(void *data)
2056{
2057 /*
2058 * There must be a full memory barrier on each affected CPU
2059 * between the time that try_stop_cpus() is called and the
2060 * time that it returns.
2061 *
2062 * In the current initial implementation of cpu_stop, the
2063 * above condition is already met when the control reaches
2064 * this point and the following smp_mb() is not strictly
2065 * necessary. Do smp_mb() anyway for documentation and
2066 * robustness against future implementation changes.
2067 */
2068 smp_mb(); /* See above comment block. */
2069 return 0;
2070}
2071
236fefaf
PM
2072/**
2073 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2074 *
2075 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2076 * approach to force the grace period to end quickly. This consumes
2077 * significant time on all CPUs and is unfriendly to real-time workloads,
2078 * so is thus not recommended for any sort of common-case code. In fact,
2079 * if you are using synchronize_sched_expedited() in a loop, please
2080 * restructure your code to batch your updates, and then use a single
2081 * synchronize_sched() instead.
3d3b7db0 2082 *
236fefaf
PM
2083 * Note that it is illegal to call this function while holding any lock
2084 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2085 * to call this function from a CPU-hotplug notifier. Failing to observe
2086 * these restriction will result in deadlock.
3d3b7db0
PM
2087 *
2088 * This implementation can be thought of as an application of ticket
2089 * locking to RCU, with sync_sched_expedited_started and
2090 * sync_sched_expedited_done taking on the roles of the halves
2091 * of the ticket-lock word. Each task atomically increments
2092 * sync_sched_expedited_started upon entry, snapshotting the old value,
2093 * then attempts to stop all the CPUs. If this succeeds, then each
2094 * CPU will have executed a context switch, resulting in an RCU-sched
2095 * grace period. We are then done, so we use atomic_cmpxchg() to
2096 * update sync_sched_expedited_done to match our snapshot -- but
2097 * only if someone else has not already advanced past our snapshot.
2098 *
2099 * On the other hand, if try_stop_cpus() fails, we check the value
2100 * of sync_sched_expedited_done. If it has advanced past our
2101 * initial snapshot, then someone else must have forced a grace period
2102 * some time after we took our snapshot. In this case, our work is
2103 * done for us, and we can simply return. Otherwise, we try again,
2104 * but keep our initial snapshot for purposes of checking for someone
2105 * doing our work for us.
2106 *
2107 * If we fail too many times in a row, we fall back to synchronize_sched().
2108 */
2109void synchronize_sched_expedited(void)
2110{
2111 int firstsnap, s, snap, trycount = 0;
2112
2113 /* Note that atomic_inc_return() implies full memory barrier. */
2114 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2115 get_online_cpus();
1cc85961 2116 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2117
2118 /*
2119 * Each pass through the following loop attempts to force a
2120 * context switch on each CPU.
2121 */
2122 while (try_stop_cpus(cpu_online_mask,
2123 synchronize_sched_expedited_cpu_stop,
2124 NULL) == -EAGAIN) {
2125 put_online_cpus();
2126
2127 /* No joy, try again later. Or just synchronize_sched(). */
2128 if (trycount++ < 10)
2129 udelay(trycount * num_online_cpus());
2130 else {
2131 synchronize_sched();
2132 return;
2133 }
2134
2135 /* Check to see if someone else did our work for us. */
2136 s = atomic_read(&sync_sched_expedited_done);
2137 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2138 smp_mb(); /* ensure test happens before caller kfree */
2139 return;
2140 }
2141
2142 /*
2143 * Refetching sync_sched_expedited_started allows later
2144 * callers to piggyback on our grace period. We subtract
2145 * 1 to get the same token that the last incrementer got.
2146 * We retry after they started, so our grace period works
2147 * for them, and they started after our first try, so their
2148 * grace period works for us.
2149 */
2150 get_online_cpus();
2151 snap = atomic_read(&sync_sched_expedited_started);
2152 smp_mb(); /* ensure read is before try_stop_cpus(). */
2153 }
2154
2155 /*
2156 * Everyone up to our most recent fetch is covered by our grace
2157 * period. Update the counter, but only if our work is still
2158 * relevant -- which it won't be if someone who started later
2159 * than we did beat us to the punch.
2160 */
2161 do {
2162 s = atomic_read(&sync_sched_expedited_done);
2163 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2164 smp_mb(); /* ensure test happens before caller kfree */
2165 break;
2166 }
2167 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2168
2169 put_online_cpus();
2170}
2171EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2172
64db4cff
PM
2173/*
2174 * Check to see if there is any immediate RCU-related work to be done
2175 * by the current CPU, for the specified type of RCU, returning 1 if so.
2176 * The checks are in order of increasing expense: checks that can be
2177 * carried out against CPU-local state are performed first. However,
2178 * we must check for CPU stalls first, else we might not get a chance.
2179 */
2180static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2181{
2f51f988
PM
2182 struct rcu_node *rnp = rdp->mynode;
2183
64db4cff
PM
2184 rdp->n_rcu_pending++;
2185
2186 /* Check for CPU stalls, if enabled. */
2187 check_cpu_stall(rsp, rdp);
2188
2189 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2190 if (rcu_scheduler_fully_active &&
2191 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2192
2193 /*
2194 * If force_quiescent_state() coming soon and this CPU
2195 * needs a quiescent state, and this is either RCU-sched
2196 * or RCU-bh, force a local reschedule.
2197 */
d21670ac 2198 rdp->n_rp_qs_pending++;
6cc68793 2199 if (!rdp->preemptible &&
d25eb944
PM
2200 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2201 jiffies))
2202 set_need_resched();
e4cc1f22 2203 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2204 rdp->n_rp_report_qs++;
64db4cff 2205 return 1;
7ba5c840 2206 }
64db4cff
PM
2207
2208 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2209 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2210 rdp->n_rp_cb_ready++;
64db4cff 2211 return 1;
7ba5c840 2212 }
64db4cff
PM
2213
2214 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2215 if (cpu_needs_another_gp(rsp, rdp)) {
2216 rdp->n_rp_cpu_needs_gp++;
64db4cff 2217 return 1;
7ba5c840 2218 }
64db4cff
PM
2219
2220 /* Has another RCU grace period completed? */
2f51f988 2221 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2222 rdp->n_rp_gp_completed++;
64db4cff 2223 return 1;
7ba5c840 2224 }
64db4cff
PM
2225
2226 /* Has a new RCU grace period started? */
2f51f988 2227 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2228 rdp->n_rp_gp_started++;
64db4cff 2229 return 1;
7ba5c840 2230 }
64db4cff
PM
2231
2232 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2233 if (rcu_gp_in_progress(rsp) &&
20133cfc 2234 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2235 rdp->n_rp_need_fqs++;
64db4cff 2236 return 1;
7ba5c840 2237 }
64db4cff
PM
2238
2239 /* nothing to do */
7ba5c840 2240 rdp->n_rp_need_nothing++;
64db4cff
PM
2241 return 0;
2242}
2243
2244/*
2245 * Check to see if there is any immediate RCU-related work to be done
2246 * by the current CPU, returning 1 if so. This function is part of the
2247 * RCU implementation; it is -not- an exported member of the RCU API.
2248 */
a157229c 2249static int rcu_pending(int cpu)
64db4cff 2250{
d6714c22 2251 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2252 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2253 rcu_preempt_pending(cpu);
64db4cff
PM
2254}
2255
2256/*
2257 * Check to see if any future RCU-related work will need to be done
2258 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2259 * 1 if so.
64db4cff 2260 */
aea1b35e 2261static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2262{
2263 /* RCU callbacks either ready or pending? */
d6714c22 2264 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2265 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2266 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2267}
2268
b1420f1c
PM
2269/*
2270 * RCU callback function for _rcu_barrier(). If we are last, wake
2271 * up the task executing _rcu_barrier().
2272 */
d0ec774c
PM
2273static void rcu_barrier_callback(struct rcu_head *notused)
2274{
2275 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2276 complete(&rcu_barrier_completion);
2277}
2278
2279/*
2280 * Called with preemption disabled, and from cross-cpu IRQ context.
2281 */
2282static void rcu_barrier_func(void *type)
2283{
037b64ed 2284 struct rcu_state *rsp = type;
06668efa 2285 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c
PM
2286
2287 atomic_inc(&rcu_barrier_cpu_count);
06668efa 2288 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2289}
2290
d0ec774c
PM
2291/*
2292 * Orchestrate the specified type of RCU barrier, waiting for all
2293 * RCU callbacks of the specified type to complete.
2294 */
037b64ed 2295static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2296{
b1420f1c
PM
2297 int cpu;
2298 unsigned long flags;
2299 struct rcu_data *rdp;
2300 struct rcu_head rh;
2301
2302 init_rcu_head_on_stack(&rh);
2303
e74f4c45 2304 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c 2305 mutex_lock(&rcu_barrier_mutex);
b1420f1c
PM
2306
2307 smp_mb(); /* Prevent any prior operations from leaking in. */
2308
d0ec774c 2309 /*
b1420f1c
PM
2310 * Initialize the count to one rather than to zero in order to
2311 * avoid a too-soon return to zero in case of a short grace period
2312 * (or preemption of this task). Also flag this task as doing
2313 * an rcu_barrier(). This will prevent anyone else from adopting
2314 * orphaned callbacks, which could cause otherwise failure if a
2315 * CPU went offline and quickly came back online. To see this,
2316 * consider the following sequence of events:
2317 *
2318 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2319 * 2. CPU 1 goes offline, orphaning its callbacks.
2320 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2321 * 4. CPU 1 comes back online.
2322 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2323 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2324 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2325 */
b1420f1c 2326 init_completion(&rcu_barrier_completion);
d0ec774c 2327 atomic_set(&rcu_barrier_cpu_count, 1);
b1420f1c
PM
2328 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2329 rsp->rcu_barrier_in_progress = current;
2330 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2331
2332 /*
2333 * Force every CPU with callbacks to register a new callback
2334 * that will tell us when all the preceding callbacks have
2335 * been invoked. If an offline CPU has callbacks, wait for
2336 * it to either come back online or to finish orphaning those
2337 * callbacks.
2338 */
2339 for_each_possible_cpu(cpu) {
2340 preempt_disable();
2341 rdp = per_cpu_ptr(rsp->rda, cpu);
2342 if (cpu_is_offline(cpu)) {
2343 preempt_enable();
2344 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2345 schedule_timeout_interruptible(1);
2346 } else if (ACCESS_ONCE(rdp->qlen)) {
037b64ed 2347 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2348 preempt_enable();
2349 } else {
2350 preempt_enable();
2351 }
2352 }
2353
2354 /*
2355 * Now that all online CPUs have rcu_barrier_callback() callbacks
2356 * posted, we can adopt all of the orphaned callbacks and place
2357 * an rcu_barrier_callback() callback after them. When that is done,
2358 * we are guaranteed to have an rcu_barrier_callback() callback
2359 * following every callback that could possibly have been
2360 * registered before _rcu_barrier() was called.
2361 */
2362 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2363 rcu_adopt_orphan_cbs(rsp);
2364 rsp->rcu_barrier_in_progress = NULL;
2365 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2366 atomic_inc(&rcu_barrier_cpu_count);
2367 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
037b64ed 2368 rsp->call(&rh, rcu_barrier_callback);
b1420f1c
PM
2369
2370 /*
2371 * Now that we have an rcu_barrier_callback() callback on each
2372 * CPU, and thus each counted, remove the initial count.
2373 */
d0ec774c
PM
2374 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2375 complete(&rcu_barrier_completion);
b1420f1c
PM
2376
2377 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
d0ec774c 2378 wait_for_completion(&rcu_barrier_completion);
b1420f1c
PM
2379
2380 /* Other rcu_barrier() invocations can now safely proceed. */
d0ec774c 2381 mutex_unlock(&rcu_barrier_mutex);
b1420f1c
PM
2382
2383 destroy_rcu_head_on_stack(&rh);
d0ec774c 2384}
d0ec774c
PM
2385
2386/**
2387 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2388 */
2389void rcu_barrier_bh(void)
2390{
037b64ed 2391 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2392}
2393EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2394
2395/**
2396 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2397 */
2398void rcu_barrier_sched(void)
2399{
037b64ed 2400 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2401}
2402EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2403
64db4cff 2404/*
27569620 2405 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2406 */
27569620
PM
2407static void __init
2408rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2409{
2410 unsigned long flags;
2411 int i;
394f99a9 2412 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2413 struct rcu_node *rnp = rcu_get_root(rsp);
2414
2415 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2416 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2417 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2418 rdp->nxtlist = NULL;
2419 for (i = 0; i < RCU_NEXT_SIZE; i++)
2420 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2421 rdp->qlen_lazy = 0;
27569620 2422 rdp->qlen = 0;
27569620 2423 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2424 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2425 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2426 rdp->cpu = cpu;
d4c08f2a 2427 rdp->rsp = rsp;
1304afb2 2428 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2429}
2430
2431/*
2432 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2433 * offline event can be happening at a given time. Note also that we
2434 * can accept some slop in the rsp->completed access due to the fact
2435 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2436 */
e4fa4c97 2437static void __cpuinit
6cc68793 2438rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2439{
2440 unsigned long flags;
64db4cff 2441 unsigned long mask;
394f99a9 2442 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2443 struct rcu_node *rnp = rcu_get_root(rsp);
2444
2445 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2446 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2447 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2448 rdp->preemptible = preemptible;
37c72e56
PM
2449 rdp->qlen_last_fqs_check = 0;
2450 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2451 rdp->blimit = blimit;
29e37d81 2452 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2453 atomic_set(&rdp->dynticks->dynticks,
2454 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2455 rcu_prepare_for_idle_init(cpu);
1304afb2 2456 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2457
2458 /*
2459 * A new grace period might start here. If so, we won't be part
2460 * of it, but that is OK, as we are currently in a quiescent state.
2461 */
2462
2463 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2464 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2465
2466 /* Add CPU to rcu_node bitmasks. */
2467 rnp = rdp->mynode;
2468 mask = rdp->grpmask;
2469 do {
2470 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2471 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2472 rnp->qsmaskinit |= mask;
2473 mask = rnp->grpmask;
d09b62df 2474 if (rnp == rdp->mynode) {
06ae115a
PM
2475 /*
2476 * If there is a grace period in progress, we will
2477 * set up to wait for it next time we run the
2478 * RCU core code.
2479 */
2480 rdp->gpnum = rnp->completed;
d09b62df 2481 rdp->completed = rnp->completed;
06ae115a
PM
2482 rdp->passed_quiesce = 0;
2483 rdp->qs_pending = 0;
e4cc1f22 2484 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2485 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2486 }
1304afb2 2487 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2488 rnp = rnp->parent;
2489 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2490
1304afb2 2491 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2492}
2493
d72bce0e 2494static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2495{
f41d911f
PM
2496 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2497 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2498 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2499}
2500
2501/*
f41d911f 2502 * Handle CPU online/offline notification events.
64db4cff 2503 */
9f680ab4
PM
2504static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2505 unsigned long action, void *hcpu)
64db4cff
PM
2506{
2507 long cpu = (long)hcpu;
27f4d280 2508 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2509 struct rcu_node *rnp = rdp->mynode;
64db4cff 2510
300df91c 2511 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2512 switch (action) {
2513 case CPU_UP_PREPARE:
2514 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2515 rcu_prepare_cpu(cpu);
2516 rcu_prepare_kthreads(cpu);
a26ac245
PM
2517 break;
2518 case CPU_ONLINE:
0f962a5e
PM
2519 case CPU_DOWN_FAILED:
2520 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2521 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2522 break;
2523 case CPU_DOWN_PREPARE:
2524 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2525 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2526 break;
d0ec774c
PM
2527 case CPU_DYING:
2528 case CPU_DYING_FROZEN:
2529 /*
2d999e03
PM
2530 * The whole machine is "stopped" except this CPU, so we can
2531 * touch any data without introducing corruption. We send the
2532 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2533 */
e5601400
PM
2534 rcu_cleanup_dying_cpu(&rcu_bh_state);
2535 rcu_cleanup_dying_cpu(&rcu_sched_state);
2536 rcu_preempt_cleanup_dying_cpu();
7cb92499 2537 rcu_cleanup_after_idle(cpu);
d0ec774c 2538 break;
64db4cff
PM
2539 case CPU_DEAD:
2540 case CPU_DEAD_FROZEN:
2541 case CPU_UP_CANCELED:
2542 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2543 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2544 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2545 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2546 break;
2547 default:
2548 break;
2549 }
300df91c 2550 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2551 return NOTIFY_OK;
2552}
2553
bbad9379
PM
2554/*
2555 * This function is invoked towards the end of the scheduler's initialization
2556 * process. Before this is called, the idle task might contain
2557 * RCU read-side critical sections (during which time, this idle
2558 * task is booting the system). After this function is called, the
2559 * idle tasks are prohibited from containing RCU read-side critical
2560 * sections. This function also enables RCU lockdep checking.
2561 */
2562void rcu_scheduler_starting(void)
2563{
2564 WARN_ON(num_online_cpus() != 1);
2565 WARN_ON(nr_context_switches() > 0);
2566 rcu_scheduler_active = 1;
2567}
2568
64db4cff
PM
2569/*
2570 * Compute the per-level fanout, either using the exact fanout specified
2571 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2572 */
2573#ifdef CONFIG_RCU_FANOUT_EXACT
2574static void __init rcu_init_levelspread(struct rcu_state *rsp)
2575{
2576 int i;
2577
f885b7f2 2578 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2579 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2580 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2581}
2582#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2583static void __init rcu_init_levelspread(struct rcu_state *rsp)
2584{
2585 int ccur;
2586 int cprv;
2587 int i;
2588
2589 cprv = NR_CPUS;
f885b7f2 2590 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2591 ccur = rsp->levelcnt[i];
2592 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2593 cprv = ccur;
2594 }
2595}
2596#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2597
2598/*
2599 * Helper function for rcu_init() that initializes one rcu_state structure.
2600 */
394f99a9
LJ
2601static void __init rcu_init_one(struct rcu_state *rsp,
2602 struct rcu_data __percpu *rda)
64db4cff 2603{
b6407e86
PM
2604 static char *buf[] = { "rcu_node_level_0",
2605 "rcu_node_level_1",
2606 "rcu_node_level_2",
2607 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2608 int cpustride = 1;
2609 int i;
2610 int j;
2611 struct rcu_node *rnp;
2612
b6407e86
PM
2613 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2614
64db4cff
PM
2615 /* Initialize the level-tracking arrays. */
2616
f885b7f2
PM
2617 for (i = 0; i < rcu_num_lvls; i++)
2618 rsp->levelcnt[i] = num_rcu_lvl[i];
2619 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2620 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2621 rcu_init_levelspread(rsp);
2622
2623 /* Initialize the elements themselves, starting from the leaves. */
2624
f885b7f2 2625 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2626 cpustride *= rsp->levelspread[i];
2627 rnp = rsp->level[i];
2628 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2629 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2630 lockdep_set_class_and_name(&rnp->lock,
2631 &rcu_node_class[i], buf[i]);
f41d911f 2632 rnp->gpnum = 0;
64db4cff
PM
2633 rnp->qsmask = 0;
2634 rnp->qsmaskinit = 0;
2635 rnp->grplo = j * cpustride;
2636 rnp->grphi = (j + 1) * cpustride - 1;
2637 if (rnp->grphi >= NR_CPUS)
2638 rnp->grphi = NR_CPUS - 1;
2639 if (i == 0) {
2640 rnp->grpnum = 0;
2641 rnp->grpmask = 0;
2642 rnp->parent = NULL;
2643 } else {
2644 rnp->grpnum = j % rsp->levelspread[i - 1];
2645 rnp->grpmask = 1UL << rnp->grpnum;
2646 rnp->parent = rsp->level[i - 1] +
2647 j / rsp->levelspread[i - 1];
2648 }
2649 rnp->level = i;
12f5f524 2650 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2651 }
2652 }
0c34029a 2653
394f99a9 2654 rsp->rda = rda;
f885b7f2 2655 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2656 for_each_possible_cpu(i) {
4a90a068 2657 while (i > rnp->grphi)
0c34029a 2658 rnp++;
394f99a9 2659 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2660 rcu_boot_init_percpu_data(i, rsp);
2661 }
64db4cff
PM
2662}
2663
f885b7f2
PM
2664/*
2665 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2666 * replace the definitions in rcutree.h because those are needed to size
2667 * the ->node array in the rcu_state structure.
2668 */
2669static void __init rcu_init_geometry(void)
2670{
2671 int i;
2672 int j;
cca6f393 2673 int n = nr_cpu_ids;
f885b7f2
PM
2674 int rcu_capacity[MAX_RCU_LVLS + 1];
2675
2676 /* If the compile-time values are accurate, just leave. */
2677 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2678 return;
2679
2680 /*
2681 * Compute number of nodes that can be handled an rcu_node tree
2682 * with the given number of levels. Setting rcu_capacity[0] makes
2683 * some of the arithmetic easier.
2684 */
2685 rcu_capacity[0] = 1;
2686 rcu_capacity[1] = rcu_fanout_leaf;
2687 for (i = 2; i <= MAX_RCU_LVLS; i++)
2688 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2689
2690 /*
2691 * The boot-time rcu_fanout_leaf parameter is only permitted
2692 * to increase the leaf-level fanout, not decrease it. Of course,
2693 * the leaf-level fanout cannot exceed the number of bits in
2694 * the rcu_node masks. Finally, the tree must be able to accommodate
2695 * the configured number of CPUs. Complain and fall back to the
2696 * compile-time values if these limits are exceeded.
2697 */
2698 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2699 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2700 n > rcu_capacity[MAX_RCU_LVLS]) {
2701 WARN_ON(1);
2702 return;
2703 }
2704
2705 /* Calculate the number of rcu_nodes at each level of the tree. */
2706 for (i = 1; i <= MAX_RCU_LVLS; i++)
2707 if (n <= rcu_capacity[i]) {
2708 for (j = 0; j <= i; j++)
2709 num_rcu_lvl[j] =
2710 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2711 rcu_num_lvls = i;
2712 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2713 num_rcu_lvl[j] = 0;
2714 break;
2715 }
2716
2717 /* Calculate the total number of rcu_node structures. */
2718 rcu_num_nodes = 0;
2719 for (i = 0; i <= MAX_RCU_LVLS; i++)
2720 rcu_num_nodes += num_rcu_lvl[i];
2721 rcu_num_nodes -= n;
2722}
2723
9f680ab4 2724void __init rcu_init(void)
64db4cff 2725{
017c4261 2726 int cpu;
9f680ab4 2727
f41d911f 2728 rcu_bootup_announce();
f885b7f2 2729 rcu_init_geometry();
394f99a9
LJ
2730 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2731 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2732 __rcu_init_preempt();
09223371 2733 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2734
2735 /*
2736 * We don't need protection against CPU-hotplug here because
2737 * this is called early in boot, before either interrupts
2738 * or the scheduler are operational.
2739 */
2740 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2741 for_each_online_cpu(cpu)
2742 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2743 check_cpu_stall_init();
64db4cff
PM
2744}
2745
1eba8f84 2746#include "rcutree_plugin.h"