rcupreempt: fix hibernate/resume in presence of PREEMPT_RCU and hotplug
[linux-2.6-block.git] / kernel / rcupreempt.c
CommitLineData
e260be67
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2006
19 *
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
25 *
2232c2d8
SR
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
29 *
e260be67
PM
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
31 *
32 * Design Document: http://lwn.net/Articles/253651/
33 *
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
36 *
37 */
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/init.h>
41#include <linux/spinlock.h>
42#include <linux/smp.h>
43#include <linux/rcupdate.h>
44#include <linux/interrupt.h>
45#include <linux/sched.h>
46#include <asm/atomic.h>
47#include <linux/bitops.h>
48#include <linux/module.h>
49#include <linux/completion.h>
50#include <linux/moduleparam.h>
51#include <linux/percpu.h>
52#include <linux/notifier.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/random.h>
56#include <linux/delay.h>
57#include <linux/byteorder/swabb.h>
58#include <linux/cpumask.h>
59#include <linux/rcupreempt_trace.h>
60
61/*
62 * Macro that prevents the compiler from reordering accesses, but does
63 * absolutely -nothing- to prevent CPUs from reordering. This is used
64 * only to mediate communication between mainline code and hardware
65 * interrupt and NMI handlers.
66 */
67#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
68
69/*
70 * PREEMPT_RCU data structures.
71 */
72
73/*
74 * GP_STAGES specifies the number of times the state machine has
75 * to go through the all the rcu_try_flip_states (see below)
76 * in a single Grace Period.
77 *
78 * GP in GP_STAGES stands for Grace Period ;)
79 */
80#define GP_STAGES 2
81struct rcu_data {
82 spinlock_t lock; /* Protect rcu_data fields. */
83 long completed; /* Number of last completed batch. */
84 int waitlistcount;
85 struct tasklet_struct rcu_tasklet;
86 struct rcu_head *nextlist;
87 struct rcu_head **nexttail;
88 struct rcu_head *waitlist[GP_STAGES];
89 struct rcu_head **waittail[GP_STAGES];
90 struct rcu_head *donelist;
91 struct rcu_head **donetail;
92 long rcu_flipctr[2];
93#ifdef CONFIG_RCU_TRACE
94 struct rcupreempt_trace trace;
95#endif /* #ifdef CONFIG_RCU_TRACE */
96};
97
98/*
99 * States for rcu_try_flip() and friends.
100 */
101
102enum rcu_try_flip_states {
103
104 /*
105 * Stay here if nothing is happening. Flip the counter if somthing
106 * starts happening. Denoted by "I"
107 */
108 rcu_try_flip_idle_state,
109
110 /*
111 * Wait here for all CPUs to notice that the counter has flipped. This
112 * prevents the old set of counters from ever being incremented once
113 * we leave this state, which in turn is necessary because we cannot
114 * test any individual counter for zero -- we can only check the sum.
115 * Denoted by "A".
116 */
117 rcu_try_flip_waitack_state,
118
119 /*
120 * Wait here for the sum of the old per-CPU counters to reach zero.
121 * Denoted by "Z".
122 */
123 rcu_try_flip_waitzero_state,
124
125 /*
126 * Wait here for each of the other CPUs to execute a memory barrier.
127 * This is necessary to ensure that these other CPUs really have
128 * completed executing their RCU read-side critical sections, despite
129 * their CPUs wildly reordering memory. Denoted by "M".
130 */
131 rcu_try_flip_waitmb_state,
132};
133
134struct rcu_ctrlblk {
135 spinlock_t fliplock; /* Protect state-machine transitions. */
136 long completed; /* Number of last completed batch. */
137 enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
138 the rcu state machine */
139};
140
141static DEFINE_PER_CPU(struct rcu_data, rcu_data);
142static struct rcu_ctrlblk rcu_ctrlblk = {
143 .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
144 .completed = 0,
145 .rcu_try_flip_state = rcu_try_flip_idle_state,
146};
147
148
149#ifdef CONFIG_RCU_TRACE
150static char *rcu_try_flip_state_names[] =
151 { "idle", "waitack", "waitzero", "waitmb" };
152#endif /* #ifdef CONFIG_RCU_TRACE */
153
eaf649e9
PM
154static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE;
155
e260be67
PM
156/*
157 * Enum and per-CPU flag to determine when each CPU has seen
158 * the most recent counter flip.
159 */
160
161enum rcu_flip_flag_values {
162 rcu_flip_seen, /* Steady/initial state, last flip seen. */
163 /* Only GP detector can update. */
164 rcu_flipped /* Flip just completed, need confirmation. */
165 /* Only corresponding CPU can update. */
166};
167static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
168 = rcu_flip_seen;
169
170/*
171 * Enum and per-CPU flag to determine when each CPU has executed the
172 * needed memory barrier to fence in memory references from its last RCU
173 * read-side critical section in the just-completed grace period.
174 */
175
176enum rcu_mb_flag_values {
177 rcu_mb_done, /* Steady/initial state, no mb()s required. */
178 /* Only GP detector can update. */
179 rcu_mb_needed /* Flip just completed, need an mb(). */
180 /* Only corresponding CPU can update. */
181};
182static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
183 = rcu_mb_done;
184
185/*
186 * RCU_DATA_ME: find the current CPU's rcu_data structure.
187 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
188 */
189#define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
190#define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
191
192/*
193 * Helper macro for tracing when the appropriate rcu_data is not
194 * cached in a local variable, but where the CPU number is so cached.
195 */
196#define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
197
198/*
199 * Helper macro for tracing when the appropriate rcu_data is not
200 * cached in a local variable.
201 */
202#define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
203
204/*
205 * Helper macro for tracing when the appropriate rcu_data is pointed
206 * to by a local variable.
207 */
208#define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
209
210/*
211 * Return the number of RCU batches processed thus far. Useful
212 * for debug and statistics.
213 */
214long rcu_batches_completed(void)
215{
216 return rcu_ctrlblk.completed;
217}
218EXPORT_SYMBOL_GPL(rcu_batches_completed);
219
220EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
221
222void __rcu_read_lock(void)
223{
224 int idx;
225 struct task_struct *t = current;
226 int nesting;
227
228 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
229 if (nesting != 0) {
230
231 /* An earlier rcu_read_lock() covers us, just count it. */
232
233 t->rcu_read_lock_nesting = nesting + 1;
234
235 } else {
236 unsigned long flags;
237
238 /*
239 * We disable interrupts for the following reasons:
240 * - If we get scheduling clock interrupt here, and we
241 * end up acking the counter flip, it's like a promise
242 * that we will never increment the old counter again.
243 * Thus we will break that promise if that
244 * scheduling clock interrupt happens between the time
245 * we pick the .completed field and the time that we
246 * increment our counter.
247 *
248 * - We don't want to be preempted out here.
249 *
250 * NMIs can still occur, of course, and might themselves
251 * contain rcu_read_lock().
252 */
253
254 local_irq_save(flags);
255
256 /*
257 * Outermost nesting of rcu_read_lock(), so increment
258 * the current counter for the current CPU. Use volatile
259 * casts to prevent the compiler from reordering.
260 */
261
262 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
263 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
264
265 /*
266 * Now that the per-CPU counter has been incremented, we
267 * are protected from races with rcu_read_lock() invoked
268 * from NMI handlers on this CPU. We can therefore safely
269 * increment the nesting counter, relieving further NMIs
270 * of the need to increment the per-CPU counter.
271 */
272
273 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
274
275 /*
276 * Now that we have preventing any NMIs from storing
277 * to the ->rcu_flipctr_idx, we can safely use it to
278 * remember which counter to decrement in the matching
279 * rcu_read_unlock().
280 */
281
282 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
283 local_irq_restore(flags);
284 }
285}
286EXPORT_SYMBOL_GPL(__rcu_read_lock);
287
288void __rcu_read_unlock(void)
289{
290 int idx;
291 struct task_struct *t = current;
292 int nesting;
293
294 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
295 if (nesting > 1) {
296
297 /*
298 * We are still protected by the enclosing rcu_read_lock(),
299 * so simply decrement the counter.
300 */
301
302 t->rcu_read_lock_nesting = nesting - 1;
303
304 } else {
305 unsigned long flags;
306
307 /*
308 * Disable local interrupts to prevent the grace-period
309 * detection state machine from seeing us half-done.
310 * NMIs can still occur, of course, and might themselves
311 * contain rcu_read_lock() and rcu_read_unlock().
312 */
313
314 local_irq_save(flags);
315
316 /*
317 * Outermost nesting of rcu_read_unlock(), so we must
318 * decrement the current counter for the current CPU.
319 * This must be done carefully, because NMIs can
320 * occur at any point in this code, and any rcu_read_lock()
321 * and rcu_read_unlock() pairs in the NMI handlers
322 * must interact non-destructively with this code.
323 * Lots of volatile casts, and -very- careful ordering.
324 *
325 * Changes to this code, including this one, must be
326 * inspected, validated, and tested extremely carefully!!!
327 */
328
329 /*
330 * First, pick up the index.
331 */
332
333 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
334
335 /*
336 * Now that we have fetched the counter index, it is
337 * safe to decrement the per-task RCU nesting counter.
338 * After this, any interrupts or NMIs will increment and
339 * decrement the per-CPU counters.
340 */
341 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
342
343 /*
344 * It is now safe to decrement this task's nesting count.
345 * NMIs that occur after this statement will route their
346 * rcu_read_lock() calls through this "else" clause, and
347 * will thus start incrementing the per-CPU counter on
348 * their own. They will also clobber ->rcu_flipctr_idx,
349 * but that is OK, since we have already fetched it.
350 */
351
352 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
353 local_irq_restore(flags);
354 }
355}
356EXPORT_SYMBOL_GPL(__rcu_read_unlock);
357
358/*
359 * If a global counter flip has occurred since the last time that we
360 * advanced callbacks, advance them. Hardware interrupts must be
361 * disabled when calling this function.
362 */
363static void __rcu_advance_callbacks(struct rcu_data *rdp)
364{
365 int cpu;
366 int i;
367 int wlc = 0;
368
369 if (rdp->completed != rcu_ctrlblk.completed) {
370 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
371 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
372 rdp->donetail = rdp->waittail[GP_STAGES - 1];
373 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
374 }
375 for (i = GP_STAGES - 2; i >= 0; i--) {
376 if (rdp->waitlist[i] != NULL) {
377 rdp->waitlist[i + 1] = rdp->waitlist[i];
378 rdp->waittail[i + 1] = rdp->waittail[i];
379 wlc++;
380 } else {
381 rdp->waitlist[i + 1] = NULL;
382 rdp->waittail[i + 1] =
383 &rdp->waitlist[i + 1];
384 }
385 }
386 if (rdp->nextlist != NULL) {
387 rdp->waitlist[0] = rdp->nextlist;
388 rdp->waittail[0] = rdp->nexttail;
389 wlc++;
390 rdp->nextlist = NULL;
391 rdp->nexttail = &rdp->nextlist;
392 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
393 } else {
394 rdp->waitlist[0] = NULL;
395 rdp->waittail[0] = &rdp->waitlist[0];
396 }
397 rdp->waitlistcount = wlc;
398 rdp->completed = rcu_ctrlblk.completed;
399 }
400
401 /*
402 * Check to see if this CPU needs to report that it has seen
403 * the most recent counter flip, thereby declaring that all
404 * subsequent rcu_read_lock() invocations will respect this flip.
405 */
406
407 cpu = raw_smp_processor_id();
408 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
409 smp_mb(); /* Subsequent counter accesses must see new value */
410 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
411 smp_mb(); /* Subsequent RCU read-side critical sections */
412 /* seen -after- acknowledgement. */
413 }
414}
415
2232c2d8
SR
416#ifdef CONFIG_NO_HZ
417
418DEFINE_PER_CPU(long, dynticks_progress_counter) = 1;
419static DEFINE_PER_CPU(long, rcu_dyntick_snapshot);
420static DEFINE_PER_CPU(int, rcu_update_flag);
421
422/**
423 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
424 *
425 * If the CPU was idle with dynamic ticks active, this updates the
426 * dynticks_progress_counter to let the RCU handling know that the
427 * CPU is active.
428 */
429void rcu_irq_enter(void)
430{
431 int cpu = smp_processor_id();
432
433 if (per_cpu(rcu_update_flag, cpu))
434 per_cpu(rcu_update_flag, cpu)++;
435
436 /*
437 * Only update if we are coming from a stopped ticks mode
438 * (dynticks_progress_counter is even).
439 */
440 if (!in_interrupt() &&
441 (per_cpu(dynticks_progress_counter, cpu) & 0x1) == 0) {
442 /*
443 * The following might seem like we could have a race
444 * with NMI/SMIs. But this really isn't a problem.
445 * Here we do a read/modify/write, and the race happens
446 * when an NMI/SMI comes in after the read and before
447 * the write. But NMI/SMIs will increment this counter
448 * twice before returning, so the zero bit will not
449 * be corrupted by the NMI/SMI which is the most important
450 * part.
451 *
452 * The only thing is that we would bring back the counter
453 * to a postion that it was in during the NMI/SMI.
454 * But the zero bit would be set, so the rest of the
455 * counter would again be ignored.
456 *
457 * On return from the IRQ, the counter may have the zero
458 * bit be 0 and the counter the same as the return from
459 * the NMI/SMI. If the state machine was so unlucky to
460 * see that, it still doesn't matter, since all
461 * RCU read-side critical sections on this CPU would
462 * have already completed.
463 */
464 per_cpu(dynticks_progress_counter, cpu)++;
465 /*
466 * The following memory barrier ensures that any
467 * rcu_read_lock() primitives in the irq handler
468 * are seen by other CPUs to follow the above
469 * increment to dynticks_progress_counter. This is
470 * required in order for other CPUs to correctly
471 * determine when it is safe to advance the RCU
472 * grace-period state machine.
473 */
474 smp_mb(); /* see above block comment. */
475 /*
476 * Since we can't determine the dynamic tick mode from
477 * the dynticks_progress_counter after this routine,
478 * we use a second flag to acknowledge that we came
479 * from an idle state with ticks stopped.
480 */
481 per_cpu(rcu_update_flag, cpu)++;
482 /*
483 * If we take an NMI/SMI now, they will also increment
484 * the rcu_update_flag, and will not update the
485 * dynticks_progress_counter on exit. That is for
486 * this IRQ to do.
487 */
488 }
489}
490
491/**
492 * rcu_irq_exit - Called from exiting Hard irq context.
493 *
494 * If the CPU was idle with dynamic ticks active, update the
495 * dynticks_progress_counter to put let the RCU handling be
496 * aware that the CPU is going back to idle with no ticks.
497 */
498void rcu_irq_exit(void)
499{
500 int cpu = smp_processor_id();
501
502 /*
503 * rcu_update_flag is set if we interrupted the CPU
504 * when it was idle with ticks stopped.
505 * Once this occurs, we keep track of interrupt nesting
506 * because a NMI/SMI could also come in, and we still
507 * only want the IRQ that started the increment of the
508 * dynticks_progress_counter to be the one that modifies
509 * it on exit.
510 */
511 if (per_cpu(rcu_update_flag, cpu)) {
512 if (--per_cpu(rcu_update_flag, cpu))
513 return;
514
515 /* This must match the interrupt nesting */
516 WARN_ON(in_interrupt());
517
518 /*
519 * If an NMI/SMI happens now we are still
520 * protected by the dynticks_progress_counter being odd.
521 */
522
523 /*
524 * The following memory barrier ensures that any
525 * rcu_read_unlock() primitives in the irq handler
526 * are seen by other CPUs to preceed the following
527 * increment to dynticks_progress_counter. This
528 * is required in order for other CPUs to determine
529 * when it is safe to advance the RCU grace-period
530 * state machine.
531 */
532 smp_mb(); /* see above block comment. */
533 per_cpu(dynticks_progress_counter, cpu)++;
534 WARN_ON(per_cpu(dynticks_progress_counter, cpu) & 0x1);
535 }
536}
537
538static void dyntick_save_progress_counter(int cpu)
539{
540 per_cpu(rcu_dyntick_snapshot, cpu) =
541 per_cpu(dynticks_progress_counter, cpu);
542}
543
544static inline int
545rcu_try_flip_waitack_needed(int cpu)
546{
547 long curr;
548 long snap;
549
550 curr = per_cpu(dynticks_progress_counter, cpu);
551 snap = per_cpu(rcu_dyntick_snapshot, cpu);
552 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
553
554 /*
555 * If the CPU remained in dynticks mode for the entire time
556 * and didn't take any interrupts, NMIs, SMIs, or whatever,
557 * then it cannot be in the middle of an rcu_read_lock(), so
558 * the next rcu_read_lock() it executes must use the new value
559 * of the counter. So we can safely pretend that this CPU
560 * already acknowledged the counter.
561 */
562
563 if ((curr == snap) && ((curr & 0x1) == 0))
564 return 0;
565
566 /*
567 * If the CPU passed through or entered a dynticks idle phase with
568 * no active irq handlers, then, as above, we can safely pretend
569 * that this CPU already acknowledged the counter.
570 */
571
572 if ((curr - snap) > 2 || (snap & 0x1) == 0)
573 return 0;
574
575 /* We need this CPU to explicitly acknowledge the counter flip. */
576
577 return 1;
578}
579
580static inline int
581rcu_try_flip_waitmb_needed(int cpu)
582{
583 long curr;
584 long snap;
585
586 curr = per_cpu(dynticks_progress_counter, cpu);
587 snap = per_cpu(rcu_dyntick_snapshot, cpu);
588 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
589
590 /*
591 * If the CPU remained in dynticks mode for the entire time
592 * and didn't take any interrupts, NMIs, SMIs, or whatever,
593 * then it cannot have executed an RCU read-side critical section
594 * during that time, so there is no need for it to execute a
595 * memory barrier.
596 */
597
598 if ((curr == snap) && ((curr & 0x1) == 0))
599 return 0;
600
601 /*
602 * If the CPU either entered or exited an outermost interrupt,
603 * SMI, NMI, or whatever handler, then we know that it executed
604 * a memory barrier when doing so. So we don't need another one.
605 */
606 if (curr != snap)
607 return 0;
608
609 /* We need the CPU to execute a memory barrier. */
610
611 return 1;
612}
613
614#else /* !CONFIG_NO_HZ */
615
616# define dyntick_save_progress_counter(cpu) do { } while (0)
617# define rcu_try_flip_waitack_needed(cpu) (1)
618# define rcu_try_flip_waitmb_needed(cpu) (1)
619
620#endif /* CONFIG_NO_HZ */
621
e260be67
PM
622/*
623 * Get here when RCU is idle. Decide whether we need to
624 * move out of idle state, and return non-zero if so.
625 * "Straightforward" approach for the moment, might later
626 * use callback-list lengths, grace-period duration, or
627 * some such to determine when to exit idle state.
628 * Might also need a pre-idle test that does not acquire
629 * the lock, but let's get the simple case working first...
630 */
631
632static int
633rcu_try_flip_idle(void)
634{
635 int cpu;
636
637 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
638 if (!rcu_pending(smp_processor_id())) {
639 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
640 return 0;
641 }
642
643 /*
644 * Do the flip.
645 */
646
647 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
648 rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
649
650 /*
651 * Need a memory barrier so that other CPUs see the new
652 * counter value before they see the subsequent change of all
653 * the rcu_flip_flag instances to rcu_flipped.
654 */
655
656 smp_mb(); /* see above block comment. */
657
658 /* Now ask each CPU for acknowledgement of the flip. */
659
2232c2d8 660 for_each_cpu_mask(cpu, rcu_cpu_online_map) {
e260be67 661 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
2232c2d8
SR
662 dyntick_save_progress_counter(cpu);
663 }
e260be67
PM
664
665 return 1;
666}
667
668/*
669 * Wait for CPUs to acknowledge the flip.
670 */
671
672static int
673rcu_try_flip_waitack(void)
674{
675 int cpu;
676
677 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
eaf649e9 678 for_each_cpu_mask(cpu, rcu_cpu_online_map)
2232c2d8
SR
679 if (rcu_try_flip_waitack_needed(cpu) &&
680 per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
e260be67
PM
681 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
682 return 0;
683 }
684
685 /*
686 * Make sure our checks above don't bleed into subsequent
687 * waiting for the sum of the counters to reach zero.
688 */
689
690 smp_mb(); /* see above block comment. */
691 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
692 return 1;
693}
694
695/*
696 * Wait for collective ``last'' counter to reach zero,
697 * then tell all CPUs to do an end-of-grace-period memory barrier.
698 */
699
700static int
701rcu_try_flip_waitzero(void)
702{
703 int cpu;
704 int lastidx = !(rcu_ctrlblk.completed & 0x1);
705 int sum = 0;
706
707 /* Check to see if the sum of the "last" counters is zero. */
708
709 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
eaf649e9 710 for_each_cpu_mask(cpu, rcu_cpu_online_map)
e260be67
PM
711 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
712 if (sum != 0) {
713 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
714 return 0;
715 }
716
717 /*
718 * This ensures that the other CPUs see the call for
719 * memory barriers -after- the sum to zero has been
720 * detected here
721 */
722 smp_mb(); /* ^^^^^^^^^^^^ */
723
724 /* Call for a memory barrier from each CPU. */
2232c2d8 725 for_each_cpu_mask(cpu, rcu_cpu_online_map) {
e260be67 726 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
2232c2d8
SR
727 dyntick_save_progress_counter(cpu);
728 }
e260be67
PM
729
730 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
731 return 1;
732}
733
734/*
735 * Wait for all CPUs to do their end-of-grace-period memory barrier.
736 * Return 0 once all CPUs have done so.
737 */
738
739static int
740rcu_try_flip_waitmb(void)
741{
742 int cpu;
743
744 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
eaf649e9 745 for_each_cpu_mask(cpu, rcu_cpu_online_map)
2232c2d8
SR
746 if (rcu_try_flip_waitmb_needed(cpu) &&
747 per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
e260be67
PM
748 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
749 return 0;
750 }
751
752 smp_mb(); /* Ensure that the above checks precede any following flip. */
753 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
754 return 1;
755}
756
757/*
758 * Attempt a single flip of the counters. Remember, a single flip does
759 * -not- constitute a grace period. Instead, the interval between
760 * at least GP_STAGES consecutive flips is a grace period.
761 *
762 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
763 * on a large SMP, they might want to use a hierarchical organization of
764 * the per-CPU-counter pairs.
765 */
766static void rcu_try_flip(void)
767{
768 unsigned long flags;
769
770 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
771 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
772 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
773 return;
774 }
775
776 /*
777 * Take the next transition(s) through the RCU grace-period
778 * flip-counter state machine.
779 */
780
781 switch (rcu_ctrlblk.rcu_try_flip_state) {
782 case rcu_try_flip_idle_state:
783 if (rcu_try_flip_idle())
784 rcu_ctrlblk.rcu_try_flip_state =
785 rcu_try_flip_waitack_state;
786 break;
787 case rcu_try_flip_waitack_state:
788 if (rcu_try_flip_waitack())
789 rcu_ctrlblk.rcu_try_flip_state =
790 rcu_try_flip_waitzero_state;
791 break;
792 case rcu_try_flip_waitzero_state:
793 if (rcu_try_flip_waitzero())
794 rcu_ctrlblk.rcu_try_flip_state =
795 rcu_try_flip_waitmb_state;
796 break;
797 case rcu_try_flip_waitmb_state:
798 if (rcu_try_flip_waitmb())
799 rcu_ctrlblk.rcu_try_flip_state =
800 rcu_try_flip_idle_state;
801 }
802 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
803}
804
805/*
806 * Check to see if this CPU needs to do a memory barrier in order to
807 * ensure that any prior RCU read-side critical sections have committed
808 * their counter manipulations and critical-section memory references
809 * before declaring the grace period to be completed.
810 */
811static void rcu_check_mb(int cpu)
812{
813 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
814 smp_mb(); /* Ensure RCU read-side accesses are visible. */
815 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
816 }
817}
818
819void rcu_check_callbacks(int cpu, int user)
820{
821 unsigned long flags;
822 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
823
824 rcu_check_mb(cpu);
825 if (rcu_ctrlblk.completed == rdp->completed)
826 rcu_try_flip();
827 spin_lock_irqsave(&rdp->lock, flags);
828 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
829 __rcu_advance_callbacks(rdp);
830 if (rdp->donelist == NULL) {
831 spin_unlock_irqrestore(&rdp->lock, flags);
832 } else {
833 spin_unlock_irqrestore(&rdp->lock, flags);
834 raise_softirq(RCU_SOFTIRQ);
835 }
836}
837
838/*
839 * Needed by dynticks, to make sure all RCU processing has finished
840 * when we go idle:
841 */
842void rcu_advance_callbacks(int cpu, int user)
843{
844 unsigned long flags;
845 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
846
847 if (rcu_ctrlblk.completed == rdp->completed) {
848 rcu_try_flip();
849 if (rcu_ctrlblk.completed == rdp->completed)
850 return;
851 }
852 spin_lock_irqsave(&rdp->lock, flags);
853 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
854 __rcu_advance_callbacks(rdp);
855 spin_unlock_irqrestore(&rdp->lock, flags);
856}
857
eaf649e9
PM
858#ifdef CONFIG_HOTPLUG_CPU
859#define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
860 *dsttail = srclist; \
861 if (srclist != NULL) { \
862 dsttail = srctail; \
863 srclist = NULL; \
864 srctail = &srclist;\
865 } \
866 } while (0)
867
868void rcu_offline_cpu(int cpu)
869{
870 int i;
871 struct rcu_head *list = NULL;
872 unsigned long flags;
873 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
874 struct rcu_head **tail = &list;
875
876 /*
877 * Remove all callbacks from the newly dead CPU, retaining order.
878 * Otherwise rcu_barrier() will fail
879 */
880
881 spin_lock_irqsave(&rdp->lock, flags);
882 rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
883 for (i = GP_STAGES - 1; i >= 0; i--)
884 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
885 list, tail);
886 rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
887 spin_unlock_irqrestore(&rdp->lock, flags);
888 rdp->waitlistcount = 0;
889
890 /* Disengage the newly dead CPU from the grace-period computation. */
891
892 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
893 rcu_check_mb(cpu);
894 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
895 smp_mb(); /* Subsequent counter accesses must see new value */
896 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
897 smp_mb(); /* Subsequent RCU read-side critical sections */
898 /* seen -after- acknowledgement. */
899 }
900
901 RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
902 RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
903
904 RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
905 RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
906
907 cpu_clear(cpu, rcu_cpu_online_map);
908
909 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
910
911 /*
912 * Place the removed callbacks on the current CPU's queue.
913 * Make them all start a new grace period: simple approach,
914 * in theory could starve a given set of callbacks, but
915 * you would need to be doing some serious CPU hotplugging
916 * to make this happen. If this becomes a problem, adding
917 * a synchronize_rcu() to the hotplug path would be a simple
918 * fix.
919 */
920
ae778869 921 local_irq_save(flags);
eaf649e9 922 rdp = RCU_DATA_ME();
ae778869 923 spin_lock(&rdp->lock);
eaf649e9
PM
924 *rdp->nexttail = list;
925 if (list)
926 rdp->nexttail = tail;
927 spin_unlock_irqrestore(&rdp->lock, flags);
928}
929
930void __devinit rcu_online_cpu(int cpu)
931{
932 unsigned long flags;
933
934 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
935 cpu_set(cpu, rcu_cpu_online_map);
936 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
937}
938
939#else /* #ifdef CONFIG_HOTPLUG_CPU */
940
941void rcu_offline_cpu(int cpu)
942{
943}
944
945void __devinit rcu_online_cpu(int cpu)
946{
947}
948
949#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
950
e260be67
PM
951static void rcu_process_callbacks(struct softirq_action *unused)
952{
953 unsigned long flags;
954 struct rcu_head *next, *list;
955 struct rcu_data *rdp = RCU_DATA_ME();
956
957 spin_lock_irqsave(&rdp->lock, flags);
958 list = rdp->donelist;
959 if (list == NULL) {
960 spin_unlock_irqrestore(&rdp->lock, flags);
961 return;
962 }
963 rdp->donelist = NULL;
964 rdp->donetail = &rdp->donelist;
965 RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
966 spin_unlock_irqrestore(&rdp->lock, flags);
967 while (list) {
968 next = list->next;
969 list->func(list);
970 list = next;
971 RCU_TRACE_ME(rcupreempt_trace_invoke);
972 }
973}
974
975void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
976{
977 unsigned long flags;
978 struct rcu_data *rdp;
979
980 head->func = func;
981 head->next = NULL;
982 local_irq_save(flags);
983 rdp = RCU_DATA_ME();
984 spin_lock(&rdp->lock);
985 __rcu_advance_callbacks(rdp);
986 *rdp->nexttail = head;
987 rdp->nexttail = &head->next;
988 RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
989 spin_unlock(&rdp->lock);
990 local_irq_restore(flags);
991}
992EXPORT_SYMBOL_GPL(call_rcu);
993
994/*
995 * Wait until all currently running preempt_disable() code segments
996 * (including hardware-irq-disable segments) complete. Note that
997 * in -rt this does -not- necessarily result in all currently executing
998 * interrupt -handlers- having completed.
999 */
1000void __synchronize_sched(void)
1001{
1002 cpumask_t oldmask;
1003 int cpu;
1004
1005 if (sched_getaffinity(0, &oldmask) < 0)
1006 oldmask = cpu_possible_map;
1007 for_each_online_cpu(cpu) {
1008 sched_setaffinity(0, cpumask_of_cpu(cpu));
1009 schedule();
1010 }
1011 sched_setaffinity(0, oldmask);
1012}
1013EXPORT_SYMBOL_GPL(__synchronize_sched);
1014
1015/*
1016 * Check to see if any future RCU-related work will need to be done
1017 * by the current CPU, even if none need be done immediately, returning
1018 * 1 if so. Assumes that notifiers would take care of handling any
1019 * outstanding requests from the RCU core.
1020 *
1021 * This function is part of the RCU implementation; it is -not-
1022 * an exported member of the RCU API.
1023 */
1024int rcu_needs_cpu(int cpu)
1025{
1026 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1027
1028 return (rdp->donelist != NULL ||
1029 !!rdp->waitlistcount ||
1030 rdp->nextlist != NULL);
1031}
1032
1033int rcu_pending(int cpu)
1034{
1035 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1036
1037 /* The CPU has at least one callback queued somewhere. */
1038
1039 if (rdp->donelist != NULL ||
1040 !!rdp->waitlistcount ||
1041 rdp->nextlist != NULL)
1042 return 1;
1043
1044 /* The RCU core needs an acknowledgement from this CPU. */
1045
1046 if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
1047 (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
1048 return 1;
1049
1050 /* This CPU has fallen behind the global grace-period number. */
1051
1052 if (rdp->completed != rcu_ctrlblk.completed)
1053 return 1;
1054
1055 /* Nothing needed from this CPU. */
1056
1057 return 0;
1058}
1059
eaf649e9
PM
1060static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1061 unsigned long action, void *hcpu)
1062{
1063 long cpu = (long)hcpu;
1064
1065 switch (action) {
1066 case CPU_UP_PREPARE:
1067 case CPU_UP_PREPARE_FROZEN:
1068 rcu_online_cpu(cpu);
1069 break;
1070 case CPU_UP_CANCELED:
1071 case CPU_UP_CANCELED_FROZEN:
1072 case CPU_DEAD:
1073 case CPU_DEAD_FROZEN:
1074 rcu_offline_cpu(cpu);
1075 break;
1076 default:
1077 break;
1078 }
1079 return NOTIFY_OK;
1080}
1081
1082static struct notifier_block __cpuinitdata rcu_nb = {
1083 .notifier_call = rcu_cpu_notify,
1084};
1085
e260be67
PM
1086void __init __rcu_init(void)
1087{
1088 int cpu;
1089 int i;
1090 struct rcu_data *rdp;
1091
1092 printk(KERN_NOTICE "Preemptible RCU implementation.\n");
1093 for_each_possible_cpu(cpu) {
1094 rdp = RCU_DATA_CPU(cpu);
1095 spin_lock_init(&rdp->lock);
1096 rdp->completed = 0;
1097 rdp->waitlistcount = 0;
1098 rdp->nextlist = NULL;
1099 rdp->nexttail = &rdp->nextlist;
1100 for (i = 0; i < GP_STAGES; i++) {
1101 rdp->waitlist[i] = NULL;
1102 rdp->waittail[i] = &rdp->waitlist[i];
1103 }
1104 rdp->donelist = NULL;
1105 rdp->donetail = &rdp->donelist;
1106 rdp->rcu_flipctr[0] = 0;
1107 rdp->rcu_flipctr[1] = 0;
1108 }
eaf649e9
PM
1109 register_cpu_notifier(&rcu_nb);
1110
1111 /*
1112 * We don't need protection against CPU-Hotplug here
1113 * since
1114 * a) If a CPU comes online while we are iterating over the
1115 * cpu_online_map below, we would only end up making a
1116 * duplicate call to rcu_online_cpu() which sets the corresponding
1117 * CPU's mask in the rcu_cpu_online_map.
1118 *
1119 * b) A CPU cannot go offline at this point in time since the user
1120 * does not have access to the sysfs interface, nor do we
1121 * suspend the system.
1122 */
1123 for_each_online_cpu(cpu)
1124 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
1125
e260be67
PM
1126 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
1127}
1128
1129/*
1130 * Deprecated, use synchronize_rcu() or synchronize_sched() instead.
1131 */
1132void synchronize_kernel(void)
1133{
1134 synchronize_rcu();
1135}
1136
1137#ifdef CONFIG_RCU_TRACE
1138long *rcupreempt_flipctr(int cpu)
1139{
1140 return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1141}
1142EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
1143
1144int rcupreempt_flip_flag(int cpu)
1145{
1146 return per_cpu(rcu_flip_flag, cpu);
1147}
1148EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
1149
1150int rcupreempt_mb_flag(int cpu)
1151{
1152 return per_cpu(rcu_mb_flag, cpu);
1153}
1154EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
1155
1156char *rcupreempt_try_flip_state_name(void)
1157{
1158 return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
1159}
1160EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
1161
1162struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
1163{
1164 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1165
1166 return &rdp->trace;
1167}
1168EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
1169
1170#endif /* #ifdef RCU_TRACE */