rcu: Shorten expedited_workdone* to exp_workdone*
[linux-2.6-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba 33#ifdef CONFIG_RCU_BOOST
61cfd097 34
abaa93d9 35#include "../locking/rtmutex_common.h"
21871d7e 36
61cfd097
PM
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
727b705b
PM
46#else /* #ifdef CONFIG_RCU_BOOST */
47
48/*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 57
3fbfbf7a
PM
58#ifdef CONFIG_RCU_NOCB_CPU
59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 61static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
26845c28
PM
64/*
65 * Check the RCU kernel configuration parameters and print informative
699d4035 66 * messages about anything out of the ordinary.
26845c28
PM
67 */
68static void __init rcu_bootup_announce_oddness(void)
69{
ab6f5bd6
PM
70 if (IS_ENABLED(CONFIG_RCU_TRACE))
71 pr_info("\tRCU debugfs-based tracing is enabled.\n");
05c5df31
PM
72 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
73 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
ab6f5bd6 74 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
05c5df31 75 RCU_FANOUT);
7fa27001 76 if (rcu_fanout_exact)
ab6f5bd6
PM
77 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
78 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
79 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
80 if (IS_ENABLED(CONFIG_PROVE_RCU))
81 pr_info("\tRCU lockdep checking is enabled.\n");
82 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
83 pr_info("\tRCU torture testing starts during boot.\n");
42621697
AG
84 if (RCU_NUM_LVLS >= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 86 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
88 RCU_FANOUT_LEAF);
89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
9a5739d7 90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 91 if (nr_cpu_ids != NR_CPUS)
efc151c3 92 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
ab6f5bd6
PM
93 if (IS_ENABLED(CONFIG_RCU_BOOST))
94 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
26845c28
PM
95}
96
28f6569a 97#ifdef CONFIG_PREEMPT_RCU
f41d911f 98
a41bfeb2 99RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
b28a7c01 100static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
2927a689 101static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
f41d911f 102
d19fb8d1
PM
103static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
104 bool wake);
d9a3da06 105
f41d911f
PM
106/*
107 * Tell them what RCU they are running.
108 */
0e0fc1c2 109static void __init rcu_bootup_announce(void)
f41d911f 110{
efc151c3 111 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 112 rcu_bootup_announce_oddness();
f41d911f
PM
113}
114
8203d6d0
PM
115/* Flags for rcu_preempt_ctxt_queue() decision table. */
116#define RCU_GP_TASKS 0x8
117#define RCU_EXP_TASKS 0x4
118#define RCU_GP_BLKD 0x2
119#define RCU_EXP_BLKD 0x1
120
121/*
122 * Queues a task preempted within an RCU-preempt read-side critical
123 * section into the appropriate location within the ->blkd_tasks list,
124 * depending on the states of any ongoing normal and expedited grace
125 * periods. The ->gp_tasks pointer indicates which element the normal
126 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
127 * indicates which element the expedited grace period is waiting on (again,
128 * NULL if none). If a grace period is waiting on a given element in the
129 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
130 * adding a task to the tail of the list blocks any grace period that is
131 * already waiting on one of the elements. In contrast, adding a task
132 * to the head of the list won't block any grace period that is already
133 * waiting on one of the elements.
134 *
135 * This queuing is imprecise, and can sometimes make an ongoing grace
136 * period wait for a task that is not strictly speaking blocking it.
137 * Given the choice, we needlessly block a normal grace period rather than
138 * blocking an expedited grace period.
139 *
140 * Note that an endless sequence of expedited grace periods still cannot
141 * indefinitely postpone a normal grace period. Eventually, all of the
142 * fixed number of preempted tasks blocking the normal grace period that are
143 * not also blocking the expedited grace period will resume and complete
144 * their RCU read-side critical sections. At that point, the ->gp_tasks
145 * pointer will equal the ->exp_tasks pointer, at which point the end of
146 * the corresponding expedited grace period will also be the end of the
147 * normal grace period.
148 */
46a5d164
PM
149static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
150 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
151{
152 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
153 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
154 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
155 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
156 struct task_struct *t = current;
157
158 /*
159 * Decide where to queue the newly blocked task. In theory,
160 * this could be an if-statement. In practice, when I tried
161 * that, it was quite messy.
162 */
163 switch (blkd_state) {
164 case 0:
165 case RCU_EXP_TASKS:
166 case RCU_EXP_TASKS + RCU_GP_BLKD:
167 case RCU_GP_TASKS:
168 case RCU_GP_TASKS + RCU_EXP_TASKS:
169
170 /*
171 * Blocking neither GP, or first task blocking the normal
172 * GP but not blocking the already-waiting expedited GP.
173 * Queue at the head of the list to avoid unnecessarily
174 * blocking the already-waiting GPs.
175 */
176 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
177 break;
178
179 case RCU_EXP_BLKD:
180 case RCU_GP_BLKD:
181 case RCU_GP_BLKD + RCU_EXP_BLKD:
182 case RCU_GP_TASKS + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185
186 /*
187 * First task arriving that blocks either GP, or first task
188 * arriving that blocks the expedited GP (with the normal
189 * GP already waiting), or a task arriving that blocks
190 * both GPs with both GPs already waiting. Queue at the
191 * tail of the list to avoid any GP waiting on any of the
192 * already queued tasks that are not blocking it.
193 */
194 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
195 break;
196
197 case RCU_EXP_TASKS + RCU_EXP_BLKD:
198 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the expedited GP.
203 * The task either does not block the normal GP, or is the
204 * first task blocking the normal GP. Queue just after
205 * the first task blocking the expedited GP.
206 */
207 list_add(&t->rcu_node_entry, rnp->exp_tasks);
208 break;
209
210 case RCU_GP_TASKS + RCU_GP_BLKD:
211 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
212
213 /*
214 * Second or subsequent task blocking the normal GP.
215 * The task does not block the expedited GP. Queue just
216 * after the first task blocking the normal GP.
217 */
218 list_add(&t->rcu_node_entry, rnp->gp_tasks);
219 break;
220
221 default:
222
223 /* Yet another exercise in excessive paranoia. */
224 WARN_ON_ONCE(1);
225 break;
226 }
227
228 /*
229 * We have now queued the task. If it was the first one to
230 * block either grace period, update the ->gp_tasks and/or
231 * ->exp_tasks pointers, respectively, to reference the newly
232 * blocked tasks.
233 */
234 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
235 rnp->gp_tasks = &t->rcu_node_entry;
236 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
237 rnp->exp_tasks = &t->rcu_node_entry;
67c583a7 238 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
239
240 /*
241 * Report the quiescent state for the expedited GP. This expedited
242 * GP should not be able to end until we report, so there should be
243 * no need to check for a subsequent expedited GP. (Though we are
244 * still in a quiescent state in any case.)
245 */
246 if (blkd_state & RCU_EXP_BLKD &&
247 t->rcu_read_unlock_special.b.exp_need_qs) {
248 t->rcu_read_unlock_special.b.exp_need_qs = false;
249 rcu_report_exp_rdp(rdp->rsp, rdp, true);
250 } else {
251 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
252 }
8203d6d0
PM
253}
254
f41d911f 255/*
6cc68793 256 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
257 * that this just means that the task currently running on the CPU is
258 * not in a quiescent state. There might be any number of tasks blocked
259 * while in an RCU read-side critical section.
25502a6c 260 *
1d082fd0
PM
261 * As with the other rcu_*_qs() functions, callers to this function
262 * must disable preemption.
f41d911f 263 */
284a8c93 264static void rcu_preempt_qs(void)
f41d911f 265{
5b74c458 266 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
284a8c93 267 trace_rcu_grace_period(TPS("rcu_preempt"),
2927a689 268 __this_cpu_read(rcu_data_p->gpnum),
284a8c93 269 TPS("cpuqs"));
5b74c458 270 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
284a8c93
PM
271 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
272 current->rcu_read_unlock_special.b.need_qs = false;
273 }
f41d911f
PM
274}
275
276/*
c3422bea
PM
277 * We have entered the scheduler, and the current task might soon be
278 * context-switched away from. If this task is in an RCU read-side
279 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
280 * record that fact, so we enqueue the task on the blkd_tasks list.
281 * The task will dequeue itself when it exits the outermost enclosing
282 * RCU read-side critical section. Therefore, the current grace period
283 * cannot be permitted to complete until the blkd_tasks list entries
284 * predating the current grace period drain, in other words, until
285 * rnp->gp_tasks becomes NULL.
c3422bea 286 *
46a5d164 287 * Caller must disable interrupts.
f41d911f 288 */
38200cf2 289static void rcu_preempt_note_context_switch(void)
f41d911f
PM
290{
291 struct task_struct *t = current;
f41d911f
PM
292 struct rcu_data *rdp;
293 struct rcu_node *rnp;
294
10f39bb1 295 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 296 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
297
298 /* Possibly blocking in an RCU read-side critical section. */
e63c887c 299 rdp = this_cpu_ptr(rcu_state_p->rda);
f41d911f 300 rnp = rdp->mynode;
46a5d164 301 raw_spin_lock_rcu_node(rnp);
1d082fd0 302 t->rcu_read_unlock_special.b.blocked = true;
86848966 303 t->rcu_blocked_node = rnp;
f41d911f
PM
304
305 /*
8203d6d0
PM
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
f41d911f 309 */
0aa04b05 310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
d4c08f2a
PM
312 trace_rcu_preempt_task(rdp->rsp->name,
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
315 ? rnp->gpnum
316 : rnp->gpnum + 1);
46a5d164 317 rcu_preempt_ctxt_queue(rnp, rdp);
10f39bb1 318 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 319 t->rcu_read_unlock_special.s) {
10f39bb1
PM
320
321 /*
322 * Complete exit from RCU read-side critical section on
323 * behalf of preempted instance of __rcu_read_unlock().
324 */
325 rcu_read_unlock_special(t);
f41d911f
PM
326 }
327
328 /*
329 * Either we were not in an RCU read-side critical section to
330 * begin with, or we have now recorded that critical section
331 * globally. Either way, we can now note a quiescent state
332 * for this CPU. Again, if we were in an RCU read-side critical
333 * section, and if that critical section was blocking the current
334 * grace period, then the fact that the task has been enqueued
335 * means that we continue to block the current grace period.
336 */
284a8c93 337 rcu_preempt_qs();
f41d911f
PM
338}
339
fc2219d4
PM
340/*
341 * Check for preempted RCU readers blocking the current grace period
342 * for the specified rcu_node structure. If the caller needs a reliable
343 * answer, it must hold the rcu_node's ->lock.
344 */
27f4d280 345static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 346{
12f5f524 347 return rnp->gp_tasks != NULL;
fc2219d4
PM
348}
349
12f5f524
PM
350/*
351 * Advance a ->blkd_tasks-list pointer to the next entry, instead
352 * returning NULL if at the end of the list.
353 */
354static struct list_head *rcu_next_node_entry(struct task_struct *t,
355 struct rcu_node *rnp)
356{
357 struct list_head *np;
358
359 np = t->rcu_node_entry.next;
360 if (np == &rnp->blkd_tasks)
361 np = NULL;
362 return np;
363}
364
8af3a5e7
PM
365/*
366 * Return true if the specified rcu_node structure has tasks that were
367 * preempted within an RCU read-side critical section.
368 */
369static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
370{
371 return !list_empty(&rnp->blkd_tasks);
372}
373
b668c9cf
PM
374/*
375 * Handle special cases during rcu_read_unlock(), such as needing to
376 * notify RCU core processing or task having blocked during the RCU
377 * read-side critical section.
378 */
2a3fa843 379void rcu_read_unlock_special(struct task_struct *t)
f41d911f 380{
b6a932d1
PM
381 bool empty_exp;
382 bool empty_norm;
383 bool empty_exp_now;
f41d911f 384 unsigned long flags;
12f5f524 385 struct list_head *np;
abaa93d9 386 bool drop_boost_mutex = false;
8203d6d0 387 struct rcu_data *rdp;
f41d911f 388 struct rcu_node *rnp;
1d082fd0 389 union rcu_special special;
f41d911f
PM
390
391 /* NMI handlers cannot block and cannot safely manipulate state. */
392 if (in_nmi())
393 return;
394
395 local_irq_save(flags);
396
397 /*
8203d6d0
PM
398 * If RCU core is waiting for this CPU to exit its critical section,
399 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 400 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
401 */
402 special = t->rcu_read_unlock_special;
1d082fd0 403 if (special.b.need_qs) {
284a8c93 404 rcu_preempt_qs();
c0135d07 405 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 406 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
407 local_irq_restore(flags);
408 return;
409 }
f41d911f
PM
410 }
411
8203d6d0
PM
412 /*
413 * Respond to a request for an expedited grace period, but only if
414 * we were not preempted, meaning that we were running on the same
415 * CPU throughout. If we were preempted, the exp_need_qs flag
416 * would have been cleared at the time of the first preemption,
417 * and the quiescent state would be reported when we were dequeued.
418 */
419 if (special.b.exp_need_qs) {
420 WARN_ON_ONCE(special.b.blocked);
421 t->rcu_read_unlock_special.b.exp_need_qs = false;
422 rdp = this_cpu_ptr(rcu_state_p->rda);
423 rcu_report_exp_rdp(rcu_state_p, rdp, true);
424 if (!t->rcu_read_unlock_special.s) {
425 local_irq_restore(flags);
426 return;
427 }
428 }
429
79a62f95 430 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
431 if (in_irq() || in_serving_softirq()) {
432 lockdep_rcu_suspicious(__FILE__, __LINE__,
433 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
8203d6d0 434 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
d24209bb
PM
435 t->rcu_read_unlock_special.s,
436 t->rcu_read_unlock_special.b.blocked,
8203d6d0 437 t->rcu_read_unlock_special.b.exp_need_qs,
d24209bb 438 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
439 local_irq_restore(flags);
440 return;
441 }
442
443 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
444 if (special.b.blocked) {
445 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 446
dd5d19ba 447 /*
0a0ba1c9 448 * Remove this task from the list it blocked on. The task
8ba9153b
PM
449 * now remains queued on the rcu_node corresponding to the
450 * CPU it first blocked on, so there is no longer any need
451 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 452 */
8ba9153b
PM
453 rnp = t->rcu_blocked_node;
454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
455 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
74e871ac 456 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
8203d6d0 457 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 458 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 459 np = rcu_next_node_entry(t, rnp);
f41d911f 460 list_del_init(&t->rcu_node_entry);
82e78d80 461 t->rcu_blocked_node = NULL;
f7f7bac9 462 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 463 rnp->gpnum, t->pid);
12f5f524
PM
464 if (&t->rcu_node_entry == rnp->gp_tasks)
465 rnp->gp_tasks = np;
466 if (&t->rcu_node_entry == rnp->exp_tasks)
467 rnp->exp_tasks = np;
727b705b
PM
468 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
469 if (&t->rcu_node_entry == rnp->boost_tasks)
470 rnp->boost_tasks = np;
471 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
472 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
473 }
f41d911f
PM
474
475 /*
476 * If this was the last task on the current list, and if
477 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
478 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
479 * so we must take a snapshot of the expedited state.
f41d911f 480 */
8203d6d0 481 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 482 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 483 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
484 rnp->gpnum,
485 0, rnp->qsmask,
486 rnp->level,
487 rnp->grplo,
488 rnp->grphi,
489 !!rnp->gp_tasks);
e63c887c 490 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
c701d5d9 491 } else {
67c583a7 492 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 493 }
d9a3da06 494
27f4d280 495 /* Unboost if we were boosted. */
727b705b 496 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
abaa93d9 497 rt_mutex_unlock(&rnp->boost_mtx);
27f4d280 498
d9a3da06
PM
499 /*
500 * If this was the last task on the expedited lists,
501 * then we need to report up the rcu_node hierarchy.
502 */
389abd48 503 if (!empty_exp && empty_exp_now)
e63c887c 504 rcu_report_exp_rnp(rcu_state_p, rnp, true);
b668c9cf
PM
505 } else {
506 local_irq_restore(flags);
f41d911f 507 }
f41d911f
PM
508}
509
1ed509a2
PM
510/*
511 * Dump detailed information for all tasks blocking the current RCU
512 * grace period on the specified rcu_node structure.
513 */
514static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
515{
516 unsigned long flags;
1ed509a2
PM
517 struct task_struct *t;
518
6cf10081 519 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5fd4dc06 520 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5fd4dc06
PM
522 return;
523 }
82efed06 524 t = list_entry(rnp->gp_tasks->prev,
12f5f524
PM
525 struct task_struct, rcu_node_entry);
526 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
527 sched_show_task(t);
67c583a7 528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1ed509a2
PM
529}
530
531/*
532 * Dump detailed information for all tasks blocking the current RCU
533 * grace period.
534 */
535static void rcu_print_detail_task_stall(struct rcu_state *rsp)
536{
537 struct rcu_node *rnp = rcu_get_root(rsp);
538
539 rcu_print_detail_task_stall_rnp(rnp);
540 rcu_for_each_leaf_node(rsp, rnp)
541 rcu_print_detail_task_stall_rnp(rnp);
542}
543
a858af28
PM
544static void rcu_print_task_stall_begin(struct rcu_node *rnp)
545{
efc151c3 546 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
547 rnp->level, rnp->grplo, rnp->grphi);
548}
549
550static void rcu_print_task_stall_end(void)
551{
efc151c3 552 pr_cont("\n");
a858af28
PM
553}
554
f41d911f
PM
555/*
556 * Scan the current list of tasks blocked within RCU read-side critical
557 * sections, printing out the tid of each.
558 */
9bc8b558 559static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 560{
f41d911f 561 struct task_struct *t;
9bc8b558 562 int ndetected = 0;
f41d911f 563
27f4d280 564 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 565 return 0;
a858af28 566 rcu_print_task_stall_begin(rnp);
82efed06 567 t = list_entry(rnp->gp_tasks->prev,
12f5f524 568 struct task_struct, rcu_node_entry);
9bc8b558 569 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 570 pr_cont(" P%d", t->pid);
9bc8b558
PM
571 ndetected++;
572 }
a858af28 573 rcu_print_task_stall_end();
9bc8b558 574 return ndetected;
f41d911f
PM
575}
576
74611ecb
PM
577/*
578 * Scan the current list of tasks blocked within RCU read-side critical
579 * sections, printing out the tid of each that is blocking the current
580 * expedited grace period.
581 */
582static int rcu_print_task_exp_stall(struct rcu_node *rnp)
583{
584 struct task_struct *t;
585 int ndetected = 0;
586
587 if (!rnp->exp_tasks)
588 return 0;
589 t = list_entry(rnp->exp_tasks->prev,
590 struct task_struct, rcu_node_entry);
591 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
592 pr_cont(" P%d", t->pid);
593 ndetected++;
594 }
595 return ndetected;
596}
597
b0e165c0
PM
598/*
599 * Check that the list of blocked tasks for the newly completed grace
600 * period is in fact empty. It is a serious bug to complete a grace
601 * period that still has RCU readers blocked! This function must be
602 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
603 * must be held by the caller.
12f5f524
PM
604 *
605 * Also, if there are blocked tasks on the list, they automatically
606 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
607 */
608static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
609{
27f4d280 610 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
96e92021 611 if (rcu_preempt_has_tasks(rnp))
12f5f524 612 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 613 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
614}
615
f41d911f
PM
616/*
617 * Check for a quiescent state from the current CPU. When a task blocks,
618 * the task is recorded in the corresponding CPU's rcu_node structure,
619 * which is checked elsewhere.
620 *
621 * Caller must disable hard irqs.
622 */
86aea0e6 623static void rcu_preempt_check_callbacks(void)
f41d911f
PM
624{
625 struct task_struct *t = current;
626
627 if (t->rcu_read_lock_nesting == 0) {
284a8c93 628 rcu_preempt_qs();
f41d911f
PM
629 return;
630 }
10f39bb1 631 if (t->rcu_read_lock_nesting > 0 &&
97c668b8 632 __this_cpu_read(rcu_data_p->core_needs_qs) &&
5b74c458 633 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
1d082fd0 634 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
635}
636
a46e0899
PM
637#ifdef CONFIG_RCU_BOOST
638
09223371
SL
639static void rcu_preempt_do_callbacks(void)
640{
2927a689 641 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
09223371
SL
642}
643
a46e0899
PM
644#endif /* #ifdef CONFIG_RCU_BOOST */
645
f41d911f 646/*
6cc68793 647 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f 648 */
b6a4ae76 649void call_rcu(struct rcu_head *head, rcu_callback_t func)
f41d911f 650{
e63c887c 651 __call_rcu(head, func, rcu_state_p, -1, 0);
f41d911f
PM
652}
653EXPORT_SYMBOL_GPL(call_rcu);
654
6ebb237b
PM
655/**
656 * synchronize_rcu - wait until a grace period has elapsed.
657 *
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
660 * read-side critical sections have completed. Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting. RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
665 *
666 * See the description of synchronize_sched() for more detailed information
667 * on memory ordering guarantees.
6ebb237b
PM
668 */
669void synchronize_rcu(void)
670{
f78f5b90
PM
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
672 lock_is_held(&rcu_lock_map) ||
673 lock_is_held(&rcu_sched_lock_map),
674 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
675 if (!rcu_scheduler_active)
676 return;
5afff48b 677 if (rcu_gp_is_expedited())
3705b88d
AM
678 synchronize_rcu_expedited();
679 else
680 wait_rcu_gp(call_rcu);
6ebb237b
PM
681}
682EXPORT_SYMBOL_GPL(synchronize_rcu);
683
d9a3da06 684/*
8203d6d0
PM
685 * Remote handler for smp_call_function_single(). If there is an
686 * RCU read-side critical section in effect, request that the
687 * next rcu_read_unlock() record the quiescent state up the
688 * ->expmask fields in the rcu_node tree. Otherwise, immediately
689 * report the quiescent state.
d9a3da06 690 */
8203d6d0 691static void sync_rcu_exp_handler(void *info)
d9a3da06 692{
8203d6d0
PM
693 struct rcu_data *rdp;
694 struct rcu_state *rsp = info;
695 struct task_struct *t = current;
8eb74b2b
PM
696
697 /*
8203d6d0
PM
698 * Within an RCU read-side critical section, request that the next
699 * rcu_read_unlock() report. Unless this RCU read-side critical
700 * section has already blocked, in which case it is already set
701 * up for the expedited grace period to wait on it.
8eb74b2b 702 */
8203d6d0
PM
703 if (t->rcu_read_lock_nesting > 0 &&
704 !t->rcu_read_unlock_special.b.blocked) {
705 t->rcu_read_unlock_special.b.exp_need_qs = true;
8eb74b2b 706 return;
12f5f524 707 }
8eb74b2b 708
8203d6d0
PM
709 /*
710 * We are either exiting an RCU read-side critical section (negative
711 * values of t->rcu_read_lock_nesting) or are not in one at all
712 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
713 * read-side critical section that blocked before this expedited
714 * grace period started. Either way, we can immediately report
715 * the quiescent state.
716 */
717 rdp = this_cpu_ptr(rsp->rda);
718 rcu_report_exp_rdp(rsp, rdp, true);
d9a3da06
PM
719}
720
236fefaf
PM
721/**
722 * synchronize_rcu_expedited - Brute-force RCU grace period
723 *
724 * Wait for an RCU-preempt grace period, but expedite it. The basic
26ece8ef
PM
725 * idea is to IPI all non-idle non-nohz online CPUs. The IPI handler
726 * checks whether the CPU is in an RCU-preempt critical section, and
727 * if so, it sets a flag that causes the outermost rcu_read_unlock()
728 * to report the quiescent state. On the other hand, if the CPU is
729 * not in an RCU read-side critical section, the IPI handler reports
730 * the quiescent state immediately.
731 *
732 * Although this is a greate improvement over previous expedited
733 * implementations, it is still unfriendly to real-time workloads, so is
734 * thus not recommended for any sort of common-case code. In fact, if
735 * you are using synchronize_rcu_expedited() in a loop, please restructure
736 * your code to batch your updates, and then Use a single synchronize_rcu()
737 * instead.
019129d5
PM
738 */
739void synchronize_rcu_expedited(void)
740{
d9a3da06 741 struct rcu_node *rnp;
29fd9309 742 struct rcu_node *rnp_unlock;
e63c887c 743 struct rcu_state *rsp = rcu_state_p;
543c6158 744 unsigned long s;
d9a3da06 745
5a9be7c6
PM
746 /* If expedited grace periods are prohibited, fall back to normal. */
747 if (rcu_gp_is_normal()) {
748 wait_rcu_gp(call_rcu);
749 return;
750 }
751
543c6158 752 s = rcu_exp_gp_seq_snap(rsp);
4f415302 753 trace_rcu_exp_grace_period(rsp->name, s, TPS("snap"));
d9a3da06 754
29fd9309
PM
755 rnp_unlock = exp_funnel_lock(rsp, s);
756 if (rnp_unlock == NULL)
757 return; /* Someone else did our work for us. */
1943c89d 758
543c6158 759 rcu_exp_gp_seq_start(rsp);
4f415302 760 trace_rcu_exp_grace_period(rsp->name, s, TPS("start"));
d9a3da06 761
b9585e94 762 /* Initialize the rcu_node tree in preparation for the wait. */
dcdb8807 763 sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
d9a3da06 764
12f5f524 765 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06 766 rnp = rcu_get_root(rsp);
b08517c7 767 synchronize_sched_expedited_wait(rsp);
d9a3da06
PM
768
769 /* Clean up and exit. */
543c6158 770 rcu_exp_gp_seq_end(rsp);
4f415302 771 trace_rcu_exp_grace_period(rsp->name, s, TPS("end"));
29fd9309 772 mutex_unlock(&rnp_unlock->exp_funnel_mutex);
bea2de44
PM
773 trace_rcu_exp_funnel_lock(rsp->name, rnp_unlock->level,
774 rnp_unlock->grplo, rnp_unlock->grphi,
775 TPS("rel"));
019129d5
PM
776}
777EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
778
e74f4c45
PM
779/**
780 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
781 *
782 * Note that this primitive does not necessarily wait for an RCU grace period
783 * to complete. For example, if there are no RCU callbacks queued anywhere
784 * in the system, then rcu_barrier() is within its rights to return
785 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
786 */
787void rcu_barrier(void)
788{
e63c887c 789 _rcu_barrier(rcu_state_p);
e74f4c45
PM
790}
791EXPORT_SYMBOL_GPL(rcu_barrier);
792
1eba8f84 793/*
6cc68793 794 * Initialize preemptible RCU's state structures.
1eba8f84
PM
795 */
796static void __init __rcu_init_preempt(void)
797{
a87f203e 798 rcu_init_one(rcu_state_p);
1eba8f84
PM
799}
800
2439b696
PM
801/*
802 * Check for a task exiting while in a preemptible-RCU read-side
803 * critical section, clean up if so. No need to issue warnings,
804 * as debug_check_no_locks_held() already does this if lockdep
805 * is enabled.
806 */
807void exit_rcu(void)
808{
809 struct task_struct *t = current;
810
811 if (likely(list_empty(&current->rcu_node_entry)))
812 return;
813 t->rcu_read_lock_nesting = 1;
814 barrier();
1d082fd0 815 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
816 __rcu_read_unlock();
817}
818
28f6569a 819#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 820
b28a7c01 821static struct rcu_state *const rcu_state_p = &rcu_sched_state;
27f4d280 822
f41d911f
PM
823/*
824 * Tell them what RCU they are running.
825 */
0e0fc1c2 826static void __init rcu_bootup_announce(void)
f41d911f 827{
efc151c3 828 pr_info("Hierarchical RCU implementation.\n");
26845c28 829 rcu_bootup_announce_oddness();
f41d911f
PM
830}
831
cba6d0d6
PM
832/*
833 * Because preemptible RCU does not exist, we never have to check for
834 * CPUs being in quiescent states.
835 */
38200cf2 836static void rcu_preempt_note_context_switch(void)
cba6d0d6
PM
837{
838}
839
fc2219d4 840/*
6cc68793 841 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
842 * RCU readers.
843 */
27f4d280 844static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
845{
846 return 0;
847}
848
8af3a5e7
PM
849/*
850 * Because there is no preemptible RCU, there can be no readers blocked.
851 */
852static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 853{
8af3a5e7 854 return false;
b668c9cf
PM
855}
856
1ed509a2 857/*
6cc68793 858 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
859 * tasks blocked within RCU read-side critical sections.
860 */
861static void rcu_print_detail_task_stall(struct rcu_state *rsp)
862{
863}
864
f41d911f 865/*
6cc68793 866 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
867 * tasks blocked within RCU read-side critical sections.
868 */
9bc8b558 869static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 870{
9bc8b558 871 return 0;
f41d911f
PM
872}
873
74611ecb
PM
874/*
875 * Because preemptible RCU does not exist, we never have to check for
876 * tasks blocked within RCU read-side critical sections that are
877 * blocking the current expedited grace period.
878 */
879static int rcu_print_task_exp_stall(struct rcu_node *rnp)
880{
881 return 0;
882}
883
b0e165c0 884/*
6cc68793 885 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
886 * so there is no need to check for blocked tasks. So check only for
887 * bogus qsmask values.
b0e165c0
PM
888 */
889static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
890{
49e29126 891 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
892}
893
f41d911f 894/*
6cc68793 895 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
896 * to check.
897 */
86aea0e6 898static void rcu_preempt_check_callbacks(void)
f41d911f
PM
899{
900}
901
019129d5
PM
902/*
903 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 904 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
905 */
906void synchronize_rcu_expedited(void)
907{
908 synchronize_sched_expedited();
909}
910EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
911
e74f4c45 912/*
6cc68793 913 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
914 * another name for rcu_barrier_sched().
915 */
916void rcu_barrier(void)
917{
918 rcu_barrier_sched();
919}
920EXPORT_SYMBOL_GPL(rcu_barrier);
921
1eba8f84 922/*
6cc68793 923 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
924 */
925static void __init __rcu_init_preempt(void)
926{
927}
928
2439b696
PM
929/*
930 * Because preemptible RCU does not exist, tasks cannot possibly exit
931 * while in preemptible RCU read-side critical sections.
932 */
933void exit_rcu(void)
934{
935}
936
28f6569a 937#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 938
27f4d280
PM
939#ifdef CONFIG_RCU_BOOST
940
1696a8be 941#include "../locking/rtmutex_common.h"
27f4d280 942
0ea1f2eb
PM
943#ifdef CONFIG_RCU_TRACE
944
945static void rcu_initiate_boost_trace(struct rcu_node *rnp)
946{
96e92021 947 if (!rcu_preempt_has_tasks(rnp))
0ea1f2eb
PM
948 rnp->n_balk_blkd_tasks++;
949 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
950 rnp->n_balk_exp_gp_tasks++;
951 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
952 rnp->n_balk_boost_tasks++;
953 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
954 rnp->n_balk_notblocked++;
955 else if (rnp->gp_tasks != NULL &&
a9f4793d 956 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
957 rnp->n_balk_notyet++;
958 else
959 rnp->n_balk_nos++;
960}
961
962#else /* #ifdef CONFIG_RCU_TRACE */
963
964static void rcu_initiate_boost_trace(struct rcu_node *rnp)
965{
966}
967
968#endif /* #else #ifdef CONFIG_RCU_TRACE */
969
5d01bbd1
TG
970static void rcu_wake_cond(struct task_struct *t, int status)
971{
972 /*
973 * If the thread is yielding, only wake it when this
974 * is invoked from idle
975 */
976 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
977 wake_up_process(t);
978}
979
27f4d280
PM
980/*
981 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
982 * or ->boost_tasks, advancing the pointer to the next task in the
983 * ->blkd_tasks list.
984 *
985 * Note that irqs must be enabled: boosting the task can block.
986 * Returns 1 if there are more tasks needing to be boosted.
987 */
988static int rcu_boost(struct rcu_node *rnp)
989{
990 unsigned long flags;
27f4d280
PM
991 struct task_struct *t;
992 struct list_head *tb;
993
7d0ae808
PM
994 if (READ_ONCE(rnp->exp_tasks) == NULL &&
995 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
996 return 0; /* Nothing left to boost. */
997
2a67e741 998 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
999
1000 /*
1001 * Recheck under the lock: all tasks in need of boosting
1002 * might exit their RCU read-side critical sections on their own.
1003 */
1004 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 1005 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1006 return 0;
1007 }
1008
1009 /*
1010 * Preferentially boost tasks blocking expedited grace periods.
1011 * This cannot starve the normal grace periods because a second
1012 * expedited grace period must boost all blocked tasks, including
1013 * those blocking the pre-existing normal grace period.
1014 */
0ea1f2eb 1015 if (rnp->exp_tasks != NULL) {
27f4d280 1016 tb = rnp->exp_tasks;
0ea1f2eb
PM
1017 rnp->n_exp_boosts++;
1018 } else {
27f4d280 1019 tb = rnp->boost_tasks;
0ea1f2eb
PM
1020 rnp->n_normal_boosts++;
1021 }
1022 rnp->n_tasks_boosted++;
27f4d280
PM
1023
1024 /*
1025 * We boost task t by manufacturing an rt_mutex that appears to
1026 * be held by task t. We leave a pointer to that rt_mutex where
1027 * task t can find it, and task t will release the mutex when it
1028 * exits its outermost RCU read-side critical section. Then
1029 * simply acquiring this artificial rt_mutex will boost task
1030 * t's priority. (Thanks to tglx for suggesting this approach!)
1031 *
1032 * Note that task t must acquire rnp->lock to remove itself from
1033 * the ->blkd_tasks list, which it will do from exit() if from
1034 * nowhere else. We therefore are guaranteed that task t will
1035 * stay around at least until we drop rnp->lock. Note that
1036 * rnp->lock also resolves races between our priority boosting
1037 * and task t's exiting its outermost RCU read-side critical
1038 * section.
1039 */
1040 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1041 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1042 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1043 /* Lock only for side effect: boosts task t's priority. */
1044 rt_mutex_lock(&rnp->boost_mtx);
1045 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1046
7d0ae808
PM
1047 return READ_ONCE(rnp->exp_tasks) != NULL ||
1048 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1049}
1050
27f4d280 1051/*
bc17ea10 1052 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1053 */
1054static int rcu_boost_kthread(void *arg)
1055{
1056 struct rcu_node *rnp = (struct rcu_node *)arg;
1057 int spincnt = 0;
1058 int more2boost;
1059
f7f7bac9 1060 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1061 for (;;) {
d71df90e 1062 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1063 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1064 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1065 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1066 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1067 more2boost = rcu_boost(rnp);
1068 if (more2boost)
1069 spincnt++;
1070 else
1071 spincnt = 0;
1072 if (spincnt > 10) {
5d01bbd1 1073 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1074 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1075 schedule_timeout_interruptible(2);
f7f7bac9 1076 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1077 spincnt = 0;
1078 }
1079 }
1217ed1b 1080 /* NOTREACHED */
f7f7bac9 1081 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1082 return 0;
1083}
1084
1085/*
1086 * Check to see if it is time to start boosting RCU readers that are
1087 * blocking the current grace period, and, if so, tell the per-rcu_node
1088 * kthread to start boosting them. If there is an expedited grace
1089 * period in progress, it is always time to boost.
1090 *
b065a853
PM
1091 * The caller must hold rnp->lock, which this function releases.
1092 * The ->boost_kthread_task is immortal, so we don't need to worry
1093 * about it going away.
27f4d280 1094 */
1217ed1b 1095static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1096 __releases(rnp->lock)
27f4d280
PM
1097{
1098 struct task_struct *t;
1099
0ea1f2eb
PM
1100 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1101 rnp->n_balk_exp_gp_tasks++;
67c583a7 1102 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1103 return;
0ea1f2eb 1104 }
27f4d280
PM
1105 if (rnp->exp_tasks != NULL ||
1106 (rnp->gp_tasks != NULL &&
1107 rnp->boost_tasks == NULL &&
1108 rnp->qsmask == 0 &&
1109 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1110 if (rnp->exp_tasks == NULL)
1111 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1112 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1113 t = rnp->boost_kthread_task;
5d01bbd1
TG
1114 if (t)
1115 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1116 } else {
0ea1f2eb 1117 rcu_initiate_boost_trace(rnp);
67c583a7 1118 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1119 }
27f4d280
PM
1120}
1121
a46e0899
PM
1122/*
1123 * Wake up the per-CPU kthread to invoke RCU callbacks.
1124 */
1125static void invoke_rcu_callbacks_kthread(void)
1126{
1127 unsigned long flags;
1128
1129 local_irq_save(flags);
1130 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1131 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1132 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1133 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1134 __this_cpu_read(rcu_cpu_kthread_status));
1135 }
a46e0899
PM
1136 local_irq_restore(flags);
1137}
1138
dff1672d
PM
1139/*
1140 * Is the current CPU running the RCU-callbacks kthread?
1141 * Caller must have preemption disabled.
1142 */
1143static bool rcu_is_callbacks_kthread(void)
1144{
c9d4b0af 1145 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1146}
1147
27f4d280
PM
1148#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1149
1150/*
1151 * Do priority-boost accounting for the start of a new grace period.
1152 */
1153static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1154{
1155 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1156}
1157
27f4d280
PM
1158/*
1159 * Create an RCU-boost kthread for the specified node if one does not
1160 * already exist. We only create this kthread for preemptible RCU.
1161 * Returns zero if all is well, a negated errno otherwise.
1162 */
49fb4c62 1163static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
0aa04b05 1164 struct rcu_node *rnp)
27f4d280 1165{
5d01bbd1 1166 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1167 unsigned long flags;
1168 struct sched_param sp;
1169 struct task_struct *t;
1170
e63c887c 1171 if (rcu_state_p != rsp)
27f4d280 1172 return 0;
5d01bbd1 1173
0aa04b05 1174 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1175 return 0;
1176
a46e0899 1177 rsp->boost = 1;
27f4d280
PM
1178 if (rnp->boost_kthread_task != NULL)
1179 return 0;
1180 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1181 "rcub/%d", rnp_index);
27f4d280
PM
1182 if (IS_ERR(t))
1183 return PTR_ERR(t);
2a67e741 1184 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1185 rnp->boost_kthread_task = t;
67c583a7 1186 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1187 sp.sched_priority = kthread_prio;
27f4d280 1188 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1189 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1190 return 0;
1191}
1192
f8b7fc6b
PM
1193static void rcu_kthread_do_work(void)
1194{
c9d4b0af
CL
1195 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1196 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1197 rcu_preempt_do_callbacks();
1198}
1199
62ab7072 1200static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1201{
f8b7fc6b 1202 struct sched_param sp;
f8b7fc6b 1203
21871d7e 1204 sp.sched_priority = kthread_prio;
62ab7072 1205 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1206}
1207
62ab7072 1208static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1209{
62ab7072 1210 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1211}
1212
62ab7072 1213static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1214{
c9d4b0af 1215 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1216}
1217
1218/*
1219 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1220 * RCU softirq used in flavors and configurations of RCU that do not
1221 * support RCU priority boosting.
f8b7fc6b 1222 */
62ab7072 1223static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1224{
c9d4b0af
CL
1225 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1226 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1227 int spincnt;
f8b7fc6b 1228
62ab7072 1229 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1230 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1231 local_bh_disable();
f8b7fc6b 1232 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1233 this_cpu_inc(rcu_cpu_kthread_loops);
1234 local_irq_disable();
f8b7fc6b
PM
1235 work = *workp;
1236 *workp = 0;
62ab7072 1237 local_irq_enable();
f8b7fc6b
PM
1238 if (work)
1239 rcu_kthread_do_work();
1240 local_bh_enable();
62ab7072 1241 if (*workp == 0) {
f7f7bac9 1242 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1243 *statusp = RCU_KTHREAD_WAITING;
1244 return;
f8b7fc6b
PM
1245 }
1246 }
62ab7072 1247 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1248 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1249 schedule_timeout_interruptible(2);
f7f7bac9 1250 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1251 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1252}
1253
1254/*
1255 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1256 * served by the rcu_node in question. The CPU hotplug lock is still
1257 * held, so the value of rnp->qsmaskinit will be stable.
1258 *
1259 * We don't include outgoingcpu in the affinity set, use -1 if there is
1260 * no outgoing CPU. If there are no CPUs left in the affinity set,
1261 * this function allows the kthread to execute on any CPU.
1262 */
5d01bbd1 1263static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1264{
5d01bbd1 1265 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1266 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1267 cpumask_var_t cm;
1268 int cpu;
f8b7fc6b 1269
5d01bbd1 1270 if (!t)
f8b7fc6b 1271 return;
5d01bbd1 1272 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1273 return;
f8b7fc6b
PM
1274 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1275 if ((mask & 0x1) && cpu != outgoingcpu)
1276 cpumask_set_cpu(cpu, cm);
5d0b0249 1277 if (cpumask_weight(cm) == 0)
f8b7fc6b 1278 cpumask_setall(cm);
5d01bbd1 1279 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1280 free_cpumask_var(cm);
1281}
1282
62ab7072
PM
1283static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1284 .store = &rcu_cpu_kthread_task,
1285 .thread_should_run = rcu_cpu_kthread_should_run,
1286 .thread_fn = rcu_cpu_kthread,
1287 .thread_comm = "rcuc/%u",
1288 .setup = rcu_cpu_kthread_setup,
1289 .park = rcu_cpu_kthread_park,
1290};
f8b7fc6b
PM
1291
1292/*
9386c0b7 1293 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1294 */
9386c0b7 1295static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1296{
f8b7fc6b 1297 struct rcu_node *rnp;
5d01bbd1 1298 int cpu;
f8b7fc6b 1299
62ab7072 1300 for_each_possible_cpu(cpu)
f8b7fc6b 1301 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1302 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1303 rcu_for_each_leaf_node(rcu_state_p, rnp)
1304 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1305}
f8b7fc6b 1306
49fb4c62 1307static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1308{
e534165b 1309 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1310 struct rcu_node *rnp = rdp->mynode;
1311
1312 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1313 if (rcu_scheduler_fully_active)
e534165b 1314 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1315}
1316
27f4d280
PM
1317#else /* #ifdef CONFIG_RCU_BOOST */
1318
1217ed1b 1319static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1320 __releases(rnp->lock)
27f4d280 1321{
67c583a7 1322 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1323}
1324
a46e0899 1325static void invoke_rcu_callbacks_kthread(void)
27f4d280 1326{
a46e0899 1327 WARN_ON_ONCE(1);
27f4d280
PM
1328}
1329
dff1672d
PM
1330static bool rcu_is_callbacks_kthread(void)
1331{
1332 return false;
1333}
1334
27f4d280
PM
1335static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1336{
1337}
1338
5d01bbd1 1339static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1340{
1341}
1342
9386c0b7 1343static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1344{
b0d30417 1345}
b0d30417 1346
49fb4c62 1347static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1348{
1349}
1350
27f4d280
PM
1351#endif /* #else #ifdef CONFIG_RCU_BOOST */
1352
8bd93a2c
PM
1353#if !defined(CONFIG_RCU_FAST_NO_HZ)
1354
1355/*
1356 * Check to see if any future RCU-related work will need to be done
1357 * by the current CPU, even if none need be done immediately, returning
1358 * 1 if so. This function is part of the RCU implementation; it is -not-
1359 * an exported member of the RCU API.
1360 *
7cb92499
PM
1361 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1362 * any flavor of RCU.
8bd93a2c 1363 */
c1ad348b 1364int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1365{
c1ad348b 1366 *nextevt = KTIME_MAX;
3382adbc
PM
1367 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1368 ? 0 : rcu_cpu_has_callbacks(NULL);
7cb92499
PM
1369}
1370
1371/*
1372 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1373 * after it.
1374 */
8fa7845d 1375static void rcu_cleanup_after_idle(void)
7cb92499
PM
1376{
1377}
1378
aea1b35e 1379/*
a858af28 1380 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1381 * is nothing.
1382 */
198bbf81 1383static void rcu_prepare_for_idle(void)
aea1b35e
PM
1384{
1385}
1386
c57afe80
PM
1387/*
1388 * Don't bother keeping a running count of the number of RCU callbacks
1389 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1390 */
1391static void rcu_idle_count_callbacks_posted(void)
1392{
1393}
1394
8bd93a2c
PM
1395#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1396
f23f7fa1
PM
1397/*
1398 * This code is invoked when a CPU goes idle, at which point we want
1399 * to have the CPU do everything required for RCU so that it can enter
1400 * the energy-efficient dyntick-idle mode. This is handled by a
1401 * state machine implemented by rcu_prepare_for_idle() below.
1402 *
1403 * The following three proprocessor symbols control this state machine:
1404 *
f23f7fa1
PM
1405 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1406 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1407 * is sized to be roughly one RCU grace period. Those energy-efficiency
1408 * benchmarkers who might otherwise be tempted to set this to a large
1409 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1410 * system. And if you are -that- concerned about energy efficiency,
1411 * just power the system down and be done with it!
778d250a
PM
1412 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1413 * permitted to sleep in dyntick-idle mode with only lazy RCU
1414 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1415 *
1416 * The values below work well in practice. If future workloads require
1417 * adjustment, they can be converted into kernel config parameters, though
1418 * making the state machine smarter might be a better option.
1419 */
e84c48ae 1420#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1421#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1422
5e44ce35
PM
1423static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1424module_param(rcu_idle_gp_delay, int, 0644);
1425static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1426module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1427
486e2593 1428/*
c229828c
PM
1429 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1430 * only if it has been awhile since the last time we did so. Afterwards,
1431 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1432 */
f1f399d1 1433static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1434{
c0f4dfd4
PM
1435 bool cbs_ready = false;
1436 struct rcu_data *rdp;
c229828c 1437 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1438 struct rcu_node *rnp;
1439 struct rcu_state *rsp;
486e2593 1440
c229828c
PM
1441 /* Exit early if we advanced recently. */
1442 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1443 return false;
c229828c
PM
1444 rdtp->last_advance_all = jiffies;
1445
c0f4dfd4
PM
1446 for_each_rcu_flavor(rsp) {
1447 rdp = this_cpu_ptr(rsp->rda);
1448 rnp = rdp->mynode;
486e2593 1449
c0f4dfd4
PM
1450 /*
1451 * Don't bother checking unless a grace period has
1452 * completed since we last checked and there are
1453 * callbacks not yet ready to invoke.
1454 */
e3663b10 1455 if ((rdp->completed != rnp->completed ||
7d0ae808 1456 unlikely(READ_ONCE(rdp->gpwrap))) &&
c0f4dfd4 1457 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1458 note_gp_changes(rsp, rdp);
486e2593 1459
c0f4dfd4
PM
1460 if (cpu_has_callbacks_ready_to_invoke(rdp))
1461 cbs_ready = true;
1462 }
1463 return cbs_ready;
486e2593
PM
1464}
1465
aa9b1630 1466/*
c0f4dfd4
PM
1467 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1468 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1469 * caller to set the timeout based on whether or not there are non-lazy
1470 * callbacks.
aa9b1630 1471 *
c0f4dfd4 1472 * The caller must have disabled interrupts.
aa9b1630 1473 */
c1ad348b 1474int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1475{
aa6da514 1476 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c1ad348b 1477 unsigned long dj;
aa9b1630 1478
3382adbc 1479 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
43224b96 1480 *nextevt = KTIME_MAX;
3382adbc
PM
1481 return 0;
1482 }
1483
c0f4dfd4
PM
1484 /* Snapshot to detect later posting of non-lazy callback. */
1485 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1486
aa9b1630 1487 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1488 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c1ad348b 1489 *nextevt = KTIME_MAX;
aa9b1630
PM
1490 return 0;
1491 }
c0f4dfd4
PM
1492
1493 /* Attempt to advance callbacks. */
1494 if (rcu_try_advance_all_cbs()) {
1495 /* Some ready to invoke, so initiate later invocation. */
1496 invoke_rcu_core();
aa9b1630
PM
1497 return 1;
1498 }
c0f4dfd4
PM
1499 rdtp->last_accelerate = jiffies;
1500
1501 /* Request timer delay depending on laziness, and round. */
6faf7283 1502 if (!rdtp->all_lazy) {
c1ad348b 1503 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1504 rcu_idle_gp_delay) - jiffies;
e84c48ae 1505 } else {
c1ad348b 1506 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1507 }
c1ad348b 1508 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1509 return 0;
1510}
1511
21e52e15 1512/*
c0f4dfd4
PM
1513 * Prepare a CPU for idle from an RCU perspective. The first major task
1514 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1515 * The second major task is to check to see if a non-lazy callback has
1516 * arrived at a CPU that previously had only lazy callbacks. The third
1517 * major task is to accelerate (that is, assign grace-period numbers to)
1518 * any recently arrived callbacks.
aea1b35e
PM
1519 *
1520 * The caller must have disabled interrupts.
8bd93a2c 1521 */
198bbf81 1522static void rcu_prepare_for_idle(void)
8bd93a2c 1523{
48a7639c 1524 bool needwake;
c0f4dfd4 1525 struct rcu_data *rdp;
198bbf81 1526 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1527 struct rcu_node *rnp;
1528 struct rcu_state *rsp;
9d2ad243
PM
1529 int tne;
1530
f0f2e7d3
PM
1531 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1532 rcu_is_nocb_cpu(smp_processor_id()))
3382adbc
PM
1533 return;
1534
9d2ad243 1535 /* Handle nohz enablement switches conservatively. */
7d0ae808 1536 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1537 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1538 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1539 invoke_rcu_core(); /* force nohz to see update. */
1540 rdtp->tick_nohz_enabled_snap = tne;
1541 return;
1542 }
1543 if (!tne)
1544 return;
f511fc62 1545
c57afe80 1546 /*
c0f4dfd4
PM
1547 * If a non-lazy callback arrived at a CPU having only lazy
1548 * callbacks, invoke RCU core for the side-effect of recalculating
1549 * idle duration on re-entry to idle.
c57afe80 1550 */
c0f4dfd4
PM
1551 if (rdtp->all_lazy &&
1552 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1553 rdtp->all_lazy = false;
1554 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1555 invoke_rcu_core();
c57afe80
PM
1556 return;
1557 }
c57afe80 1558
3084f2f8 1559 /*
c0f4dfd4
PM
1560 * If we have not yet accelerated this jiffy, accelerate all
1561 * callbacks on this CPU.
3084f2f8 1562 */
c0f4dfd4 1563 if (rdtp->last_accelerate == jiffies)
aea1b35e 1564 return;
c0f4dfd4
PM
1565 rdtp->last_accelerate = jiffies;
1566 for_each_rcu_flavor(rsp) {
198bbf81 1567 rdp = this_cpu_ptr(rsp->rda);
c0f4dfd4
PM
1568 if (!*rdp->nxttail[RCU_DONE_TAIL])
1569 continue;
1570 rnp = rdp->mynode;
2a67e741 1571 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
48a7639c 1572 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
67c583a7 1573 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c
PM
1574 if (needwake)
1575 rcu_gp_kthread_wake(rsp);
77e38ed3 1576 }
c0f4dfd4 1577}
3084f2f8 1578
c0f4dfd4
PM
1579/*
1580 * Clean up for exit from idle. Attempt to advance callbacks based on
1581 * any grace periods that elapsed while the CPU was idle, and if any
1582 * callbacks are now ready to invoke, initiate invocation.
1583 */
8fa7845d 1584static void rcu_cleanup_after_idle(void)
c0f4dfd4 1585{
3382adbc
PM
1586 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1587 rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1588 return;
7a497c96
PM
1589 if (rcu_try_advance_all_cbs())
1590 invoke_rcu_core();
8bd93a2c
PM
1591}
1592
c57afe80 1593/*
98248a0e
PM
1594 * Keep a running count of the number of non-lazy callbacks posted
1595 * on this CPU. This running counter (which is never decremented) allows
1596 * rcu_prepare_for_idle() to detect when something out of the idle loop
1597 * posts a callback, even if an equal number of callbacks are invoked.
1598 * Of course, callbacks should only be posted from within a trace event
1599 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1600 */
1601static void rcu_idle_count_callbacks_posted(void)
1602{
5955f7ee 1603 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1604}
1605
b626c1b6
PM
1606/*
1607 * Data for flushing lazy RCU callbacks at OOM time.
1608 */
1609static atomic_t oom_callback_count;
1610static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1611
1612/*
1613 * RCU OOM callback -- decrement the outstanding count and deliver the
1614 * wake-up if we are the last one.
1615 */
1616static void rcu_oom_callback(struct rcu_head *rhp)
1617{
1618 if (atomic_dec_and_test(&oom_callback_count))
1619 wake_up(&oom_callback_wq);
1620}
1621
1622/*
1623 * Post an rcu_oom_notify callback on the current CPU if it has at
1624 * least one lazy callback. This will unnecessarily post callbacks
1625 * to CPUs that already have a non-lazy callback at the end of their
1626 * callback list, but this is an infrequent operation, so accept some
1627 * extra overhead to keep things simple.
1628 */
1629static void rcu_oom_notify_cpu(void *unused)
1630{
1631 struct rcu_state *rsp;
1632 struct rcu_data *rdp;
1633
1634 for_each_rcu_flavor(rsp) {
fa07a58f 1635 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1636 if (rdp->qlen_lazy != 0) {
1637 atomic_inc(&oom_callback_count);
1638 rsp->call(&rdp->oom_head, rcu_oom_callback);
1639 }
1640 }
1641}
1642
1643/*
1644 * If low on memory, ensure that each CPU has a non-lazy callback.
1645 * This will wake up CPUs that have only lazy callbacks, in turn
1646 * ensuring that they free up the corresponding memory in a timely manner.
1647 * Because an uncertain amount of memory will be freed in some uncertain
1648 * timeframe, we do not claim to have freed anything.
1649 */
1650static int rcu_oom_notify(struct notifier_block *self,
1651 unsigned long notused, void *nfreed)
1652{
1653 int cpu;
1654
1655 /* Wait for callbacks from earlier instance to complete. */
1656 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1657 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1658
1659 /*
1660 * Prevent premature wakeup: ensure that all increments happen
1661 * before there is a chance of the counter reaching zero.
1662 */
1663 atomic_set(&oom_callback_count, 1);
1664
b626c1b6
PM
1665 for_each_online_cpu(cpu) {
1666 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1667 cond_resched_rcu_qs();
b626c1b6 1668 }
b626c1b6
PM
1669
1670 /* Unconditionally decrement: no need to wake ourselves up. */
1671 atomic_dec(&oom_callback_count);
1672
1673 return NOTIFY_OK;
1674}
1675
1676static struct notifier_block rcu_oom_nb = {
1677 .notifier_call = rcu_oom_notify
1678};
1679
1680static int __init rcu_register_oom_notifier(void)
1681{
1682 register_oom_notifier(&rcu_oom_nb);
1683 return 0;
1684}
1685early_initcall(rcu_register_oom_notifier);
1686
8bd93a2c 1687#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1688
a858af28
PM
1689#ifdef CONFIG_RCU_FAST_NO_HZ
1690
1691static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1692{
5955f7ee 1693 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1694 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1695
c0f4dfd4
PM
1696 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1697 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1698 ulong2long(nlpd),
1699 rdtp->all_lazy ? 'L' : '.',
1700 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1701}
1702
1703#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1704
1705static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1706{
1c17e4d4 1707 *cp = '\0';
a858af28
PM
1708}
1709
1710#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1711
1712/* Initiate the stall-info list. */
1713static void print_cpu_stall_info_begin(void)
1714{
efc151c3 1715 pr_cont("\n");
a858af28
PM
1716}
1717
1718/*
1719 * Print out diagnostic information for the specified stalled CPU.
1720 *
1721 * If the specified CPU is aware of the current RCU grace period
1722 * (flavor specified by rsp), then print the number of scheduling
1723 * clock interrupts the CPU has taken during the time that it has
1724 * been aware. Otherwise, print the number of RCU grace periods
1725 * that this CPU is ignorant of, for example, "1" if the CPU was
1726 * aware of the previous grace period.
1727 *
1728 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1729 */
1730static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1731{
1732 char fast_no_hz[72];
1733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1734 struct rcu_dynticks *rdtp = rdp->dynticks;
1735 char *ticks_title;
1736 unsigned long ticks_value;
1737
1738 if (rsp->gpnum == rdp->gpnum) {
1739 ticks_title = "ticks this GP";
1740 ticks_value = rdp->ticks_this_gp;
1741 } else {
1742 ticks_title = "GPs behind";
1743 ticks_value = rsp->gpnum - rdp->gpnum;
1744 }
1745 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
7f21aeef
PM
1746 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1747 cpu,
1748 "O."[!!cpu_online(cpu)],
1749 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1750 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1751 ticks_value, ticks_title,
a858af28
PM
1752 atomic_read(&rdtp->dynticks) & 0xfff,
1753 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1754 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
7d0ae808 1755 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1756 fast_no_hz);
1757}
1758
1759/* Terminate the stall-info list. */
1760static void print_cpu_stall_info_end(void)
1761{
efc151c3 1762 pr_err("\t");
a858af28
PM
1763}
1764
1765/* Zero ->ticks_this_gp for all flavors of RCU. */
1766static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1767{
1768 rdp->ticks_this_gp = 0;
6231069b 1769 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1770}
1771
1772/* Increment ->ticks_this_gp for all flavors of RCU. */
1773static void increment_cpu_stall_ticks(void)
1774{
115f7a7c
PM
1775 struct rcu_state *rsp;
1776
1777 for_each_rcu_flavor(rsp)
fa07a58f 1778 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1779}
1780
3fbfbf7a
PM
1781#ifdef CONFIG_RCU_NOCB_CPU
1782
1783/*
1784 * Offload callback processing from the boot-time-specified set of CPUs
1785 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1786 * kthread created that pulls the callbacks from the corresponding CPU,
1787 * waits for a grace period to elapse, and invokes the callbacks.
1788 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1789 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1790 * has been specified, in which case each kthread actively polls its
1791 * CPU. (Which isn't so great for energy efficiency, but which does
1792 * reduce RCU's overhead on that CPU.)
1793 *
1794 * This is intended to be used in conjunction with Frederic Weisbecker's
1795 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1796 * running CPU-bound user-mode computations.
1797 *
1798 * Offloading of callback processing could also in theory be used as
1799 * an energy-efficiency measure because CPUs with no RCU callbacks
1800 * queued are more aggressive about entering dyntick-idle mode.
1801 */
1802
1803
1804/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1805static int __init rcu_nocb_setup(char *str)
1806{
1807 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1808 have_rcu_nocb_mask = true;
1809 cpulist_parse(str, rcu_nocb_mask);
1810 return 1;
1811}
1812__setup("rcu_nocbs=", rcu_nocb_setup);
1813
1b0048a4
PG
1814static int __init parse_rcu_nocb_poll(char *arg)
1815{
1816 rcu_nocb_poll = 1;
1817 return 0;
1818}
1819early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1820
dae6e64d 1821/*
0446be48
PM
1822 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1823 * grace period.
dae6e64d 1824 */
abedf8e2 1825static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1826{
abedf8e2 1827 swake_up_all(sq);
dae6e64d
PM
1828}
1829
1830/*
8b425aa8 1831 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1832 * based on the sum of those of all rcu_node structures. This does
1833 * double-count the root rcu_node structure's requests, but this
1834 * is necessary to handle the possibility of a rcu_nocb_kthread()
1835 * having awakened during the time that the rcu_node structures
1836 * were being updated for the end of the previous grace period.
34ed6246 1837 */
dae6e64d
PM
1838static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1839{
8b425aa8 1840 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1841}
1842
abedf8e2 1843static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
1844{
1845 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1846}
1847
dae6e64d 1848static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1849{
abedf8e2
PG
1850 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1851 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1852}
1853
2f33b512 1854#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 1855/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1856bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1857{
1858 if (have_rcu_nocb_mask)
1859 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1860 return false;
1861}
2f33b512 1862#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 1863
fbce7497
PM
1864/*
1865 * Kick the leader kthread for this NOCB group.
1866 */
1867static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1868{
1869 struct rcu_data *rdp_leader = rdp->nocb_leader;
1870
7d0ae808 1871 if (!READ_ONCE(rdp_leader->nocb_kthread))
fbce7497 1872 return;
7d0ae808 1873 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 1874 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1875 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
abedf8e2 1876 swake_up(&rdp_leader->nocb_wq);
fbce7497
PM
1877 }
1878}
1879
d7e29933
PM
1880/*
1881 * Does the specified CPU need an RCU callback for the specified flavor
1882 * of rcu_barrier()?
1883 */
1884static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1885{
1886 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1887 unsigned long ret;
1888#ifdef CONFIG_PROVE_RCU
d7e29933 1889 struct rcu_head *rhp;
41050a00 1890#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1891
41050a00
PM
1892 /*
1893 * Check count of all no-CBs callbacks awaiting invocation.
1894 * There needs to be a barrier before this function is called,
1895 * but associated with a prior determination that no more
1896 * callbacks would be posted. In the worst case, the first
1897 * barrier in _rcu_barrier() suffices (but the caller cannot
1898 * necessarily rely on this, not a substitute for the caller
1899 * getting the concurrency design right!). There must also be
1900 * a barrier between the following load an posting of a callback
1901 * (if a callback is in fact needed). This is associated with an
1902 * atomic_inc() in the caller.
1903 */
1904 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1905
41050a00 1906#ifdef CONFIG_PROVE_RCU
7d0ae808 1907 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1908 if (!rhp)
7d0ae808 1909 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1910 if (!rhp)
7d0ae808 1911 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1912
1913 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1914 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1915 rcu_scheduler_fully_active) {
d7e29933
PM
1916 /* RCU callback enqueued before CPU first came online??? */
1917 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1918 cpu, rhp->func);
1919 WARN_ON_ONCE(1);
1920 }
41050a00 1921#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1922
41050a00 1923 return !!ret;
d7e29933
PM
1924}
1925
3fbfbf7a
PM
1926/*
1927 * Enqueue the specified string of rcu_head structures onto the specified
1928 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1929 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1930 * counts are supplied by rhcount and rhcount_lazy.
1931 *
1932 * If warranted, also wake up the kthread servicing this CPUs queues.
1933 */
1934static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1935 struct rcu_head *rhp,
1936 struct rcu_head **rhtp,
96d3fd0d
PM
1937 int rhcount, int rhcount_lazy,
1938 unsigned long flags)
3fbfbf7a
PM
1939{
1940 int len;
1941 struct rcu_head **old_rhpp;
1942 struct task_struct *t;
1943
1944 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1945 atomic_long_add(rhcount, &rdp->nocb_q_count);
1946 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 1947 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 1948 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 1949 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1950 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1951
1952 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 1953 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 1954 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1955 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1956 TPS("WakeNotPoll"));
3fbfbf7a 1957 return;
9261dd0d 1958 }
3fbfbf7a
PM
1959 len = atomic_long_read(&rdp->nocb_q_count);
1960 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 1961 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
1962 /* ... if queue was empty ... */
1963 wake_nocb_leader(rdp, false);
96d3fd0d
PM
1964 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1965 TPS("WakeEmpty"));
1966 } else {
9fdd3bc9 1967 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
1968 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1969 TPS("WakeEmptyIsDeferred"));
1970 }
3fbfbf7a
PM
1971 rdp->qlen_last_fqs_check = 0;
1972 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1973 /* ... or if many callbacks queued. */
9fdd3bc9
PM
1974 if (!irqs_disabled_flags(flags)) {
1975 wake_nocb_leader(rdp, true);
1976 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1977 TPS("WakeOvf"));
1978 } else {
1979 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1980 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1981 TPS("WakeOvfIsDeferred"));
1982 }
3fbfbf7a 1983 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
1984 } else {
1985 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
1986 }
1987 return;
1988}
1989
1990/*
1991 * This is a helper for __call_rcu(), which invokes this when the normal
1992 * callback queue is inoperable. If this is not a no-CBs CPU, this
1993 * function returns failure back to __call_rcu(), which can complain
1994 * appropriately.
1995 *
1996 * Otherwise, this function queues the callback where the corresponding
1997 * "rcuo" kthread can find it.
1998 */
1999static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2000 bool lazy, unsigned long flags)
3fbfbf7a
PM
2001{
2002
d1e43fa5 2003 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2004 return false;
96d3fd0d 2005 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2006 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2007 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2008 (unsigned long)rhp->func,
756cbf6b
PM
2009 -atomic_long_read(&rdp->nocb_q_count_lazy),
2010 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2011 else
2012 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2013 -atomic_long_read(&rdp->nocb_q_count_lazy),
2014 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2015
2016 /*
2017 * If called from an extended quiescent state with interrupts
2018 * disabled, invoke the RCU core in order to allow the idle-entry
2019 * deferred-wakeup check to function.
2020 */
2021 if (irqs_disabled_flags(flags) &&
2022 !rcu_is_watching() &&
2023 cpu_online(smp_processor_id()))
2024 invoke_rcu_core();
2025
c271d3a9 2026 return true;
3fbfbf7a
PM
2027}
2028
2029/*
2030 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2031 * not a no-CBs CPU.
2032 */
2033static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2034 struct rcu_data *rdp,
2035 unsigned long flags)
3fbfbf7a
PM
2036{
2037 long ql = rsp->qlen;
2038 long qll = rsp->qlen_lazy;
2039
2040 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2041 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2042 return false;
3fbfbf7a
PM
2043 rsp->qlen = 0;
2044 rsp->qlen_lazy = 0;
2045
2046 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2047 if (rsp->orphan_donelist != NULL) {
2048 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2049 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2050 ql = qll = 0;
2051 rsp->orphan_donelist = NULL;
2052 rsp->orphan_donetail = &rsp->orphan_donelist;
2053 }
2054 if (rsp->orphan_nxtlist != NULL) {
2055 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2056 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2057 ql = qll = 0;
2058 rsp->orphan_nxtlist = NULL;
2059 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2060 }
0a9e1e11 2061 return true;
3fbfbf7a
PM
2062}
2063
2064/*
34ed6246
PM
2065 * If necessary, kick off a new grace period, and either way wait
2066 * for a subsequent grace period to complete.
3fbfbf7a 2067 */
34ed6246 2068static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2069{
34ed6246 2070 unsigned long c;
dae6e64d 2071 bool d;
34ed6246 2072 unsigned long flags;
48a7639c 2073 bool needwake;
34ed6246
PM
2074 struct rcu_node *rnp = rdp->mynode;
2075
2a67e741 2076 raw_spin_lock_irqsave_rcu_node(rnp, flags);
48a7639c 2077 needwake = rcu_start_future_gp(rnp, rdp, &c);
67c583a7 2078 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
2079 if (needwake)
2080 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2081
2082 /*
34ed6246
PM
2083 * Wait for the grace period. Do so interruptibly to avoid messing
2084 * up the load average.
3fbfbf7a 2085 */
f7f7bac9 2086 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2087 for (;;) {
abedf8e2 2088 swait_event_interruptible(
dae6e64d 2089 rnp->nocb_gp_wq[c & 0x1],
7d0ae808 2090 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
dae6e64d 2091 if (likely(d))
34ed6246 2092 break;
73a860cd 2093 WARN_ON(signal_pending(current));
f7f7bac9 2094 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2095 }
f7f7bac9 2096 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2097 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2098}
2099
fbce7497
PM
2100/*
2101 * Leaders come here to wait for additional callbacks to show up.
2102 * This function does not return until callbacks appear.
2103 */
2104static void nocb_leader_wait(struct rcu_data *my_rdp)
2105{
2106 bool firsttime = true;
2107 bool gotcbs;
2108 struct rcu_data *rdp;
2109 struct rcu_head **tail;
2110
2111wait_again:
2112
2113 /* Wait for callbacks to appear. */
2114 if (!rcu_nocb_poll) {
2115 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
abedf8e2 2116 swait_event_interruptible(my_rdp->nocb_wq,
7d0ae808 2117 !READ_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2118 /* Memory barrier handled by smp_mb() calls below and repoll. */
2119 } else if (firsttime) {
2120 firsttime = false; /* Don't drown trace log with "Poll"! */
2121 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2122 }
2123
2124 /*
2125 * Each pass through the following loop checks a follower for CBs.
2126 * We are our own first follower. Any CBs found are moved to
2127 * nocb_gp_head, where they await a grace period.
2128 */
2129 gotcbs = false;
2130 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2131 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2132 if (!rdp->nocb_gp_head)
2133 continue; /* No CBs here, try next follower. */
2134
2135 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2136 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2137 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2138 gotcbs = true;
2139 }
2140
2141 /*
2142 * If there were no callbacks, sleep a bit, rescan after a
2143 * memory barrier, and go retry.
2144 */
2145 if (unlikely(!gotcbs)) {
2146 if (!rcu_nocb_poll)
2147 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2148 "WokeEmpty");
73a860cd 2149 WARN_ON(signal_pending(current));
fbce7497
PM
2150 schedule_timeout_interruptible(1);
2151
2152 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2153 my_rdp->nocb_leader_sleep = true;
2154 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497 2155 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
7d0ae808 2156 if (READ_ONCE(rdp->nocb_head)) {
fbce7497 2157 /* Found CB, so short-circuit next wait. */
11ed7f93 2158 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2159 break;
2160 }
2161 goto wait_again;
2162 }
2163
2164 /* Wait for one grace period. */
2165 rcu_nocb_wait_gp(my_rdp);
2166
2167 /*
11ed7f93
PK
2168 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2169 * We set it now, but recheck for new callbacks while
fbce7497
PM
2170 * traversing our follower list.
2171 */
11ed7f93
PK
2172 my_rdp->nocb_leader_sleep = true;
2173 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2174
2175 /* Each pass through the following loop wakes a follower, if needed. */
2176 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2177 if (READ_ONCE(rdp->nocb_head))
11ed7f93 2178 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2179 if (!rdp->nocb_gp_head)
2180 continue; /* No CBs, so no need to wake follower. */
2181
2182 /* Append callbacks to follower's "done" list. */
2183 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2184 *tail = rdp->nocb_gp_head;
c847f142 2185 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2186 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2187 /*
2188 * List was empty, wake up the follower.
2189 * Memory barriers supplied by atomic_long_add().
2190 */
abedf8e2 2191 swake_up(&rdp->nocb_wq);
fbce7497
PM
2192 }
2193 }
2194
2195 /* If we (the leader) don't have CBs, go wait some more. */
2196 if (!my_rdp->nocb_follower_head)
2197 goto wait_again;
2198}
2199
2200/*
2201 * Followers come here to wait for additional callbacks to show up.
2202 * This function does not return until callbacks appear.
2203 */
2204static void nocb_follower_wait(struct rcu_data *rdp)
2205{
2206 bool firsttime = true;
2207
2208 for (;;) {
2209 if (!rcu_nocb_poll) {
2210 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2211 "FollowerSleep");
abedf8e2 2212 swait_event_interruptible(rdp->nocb_wq,
7d0ae808 2213 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2214 } else if (firsttime) {
2215 /* Don't drown trace log with "Poll"! */
2216 firsttime = false;
2217 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2218 }
2219 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2220 /* ^^^ Ensure CB invocation follows _head test. */
2221 return;
2222 }
2223 if (!rcu_nocb_poll)
2224 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2225 "WokeEmpty");
73a860cd 2226 WARN_ON(signal_pending(current));
fbce7497
PM
2227 schedule_timeout_interruptible(1);
2228 }
2229}
2230
3fbfbf7a
PM
2231/*
2232 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2233 * callbacks queued by the corresponding no-CBs CPU, however, there is
2234 * an optional leader-follower relationship so that the grace-period
2235 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2236 */
2237static int rcu_nocb_kthread(void *arg)
2238{
2239 int c, cl;
2240 struct rcu_head *list;
2241 struct rcu_head *next;
2242 struct rcu_head **tail;
2243 struct rcu_data *rdp = arg;
2244
2245 /* Each pass through this loop invokes one batch of callbacks */
2246 for (;;) {
fbce7497
PM
2247 /* Wait for callbacks. */
2248 if (rdp->nocb_leader == rdp)
2249 nocb_leader_wait(rdp);
2250 else
2251 nocb_follower_wait(rdp);
2252
2253 /* Pull the ready-to-invoke callbacks onto local list. */
7d0ae808 2254 list = READ_ONCE(rdp->nocb_follower_head);
fbce7497
PM
2255 BUG_ON(!list);
2256 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
7d0ae808 2257 WRITE_ONCE(rdp->nocb_follower_head, NULL);
fbce7497 2258 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
3fbfbf7a
PM
2259
2260 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2261 trace_rcu_batch_start(rdp->rsp->name,
2262 atomic_long_read(&rdp->nocb_q_count_lazy),
2263 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2264 c = cl = 0;
2265 while (list) {
2266 next = list->next;
2267 /* Wait for enqueuing to complete, if needed. */
2268 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2269 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2270 TPS("WaitQueue"));
3fbfbf7a 2271 schedule_timeout_interruptible(1);
69a79bb1
PM
2272 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2273 TPS("WokeQueue"));
3fbfbf7a
PM
2274 next = list->next;
2275 }
2276 debug_rcu_head_unqueue(list);
2277 local_bh_disable();
2278 if (__rcu_reclaim(rdp->rsp->name, list))
2279 cl++;
2280 c++;
2281 local_bh_enable();
2282 list = next;
2283 }
2284 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2285 smp_mb__before_atomic(); /* _add after CB invocation. */
2286 atomic_long_add(-c, &rdp->nocb_q_count);
2287 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2288 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2289 }
2290 return 0;
2291}
2292
96d3fd0d 2293/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2294static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2295{
7d0ae808 2296 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2297}
2298
2299/* Do a deferred wakeup of rcu_nocb_kthread(). */
2300static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2301{
9fdd3bc9
PM
2302 int ndw;
2303
96d3fd0d
PM
2304 if (!rcu_nocb_need_deferred_wakeup(rdp))
2305 return;
7d0ae808
PM
2306 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2307 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
9fdd3bc9
PM
2308 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2309 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2310}
2311
f4579fc5
PM
2312void __init rcu_init_nohz(void)
2313{
2314 int cpu;
2315 bool need_rcu_nocb_mask = true;
2316 struct rcu_state *rsp;
2317
2318#ifdef CONFIG_RCU_NOCB_CPU_NONE
2319 need_rcu_nocb_mask = false;
2320#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2321
2322#if defined(CONFIG_NO_HZ_FULL)
2323 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2324 need_rcu_nocb_mask = true;
2325#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2326
2327 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2328 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2329 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2330 return;
2331 }
f4579fc5
PM
2332 have_rcu_nocb_mask = true;
2333 }
2334 if (!have_rcu_nocb_mask)
2335 return;
2336
2337#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2338 pr_info("\tOffload RCU callbacks from CPU 0\n");
2339 cpumask_set_cpu(0, rcu_nocb_mask);
2340#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2341#ifdef CONFIG_RCU_NOCB_CPU_ALL
2342 pr_info("\tOffload RCU callbacks from all CPUs\n");
2343 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2344#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2345#if defined(CONFIG_NO_HZ_FULL)
2346 if (tick_nohz_full_running)
2347 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2348#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2349
2350 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2351 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2352 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2353 rcu_nocb_mask);
2354 }
ad853b48
TH
2355 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2356 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2357 if (rcu_nocb_poll)
2358 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2359
2360 for_each_rcu_flavor(rsp) {
34404ca8
PM
2361 for_each_cpu(cpu, rcu_nocb_mask)
2362 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
35ce7f29 2363 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2364 }
96d3fd0d
PM
2365}
2366
3fbfbf7a
PM
2367/* Initialize per-rcu_data variables for no-CBs CPUs. */
2368static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2369{
2370 rdp->nocb_tail = &rdp->nocb_head;
abedf8e2 2371 init_swait_queue_head(&rdp->nocb_wq);
fbce7497 2372 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2373}
2374
35ce7f29
PM
2375/*
2376 * If the specified CPU is a no-CBs CPU that does not already have its
2377 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2378 * brought online out of order, this can require re-organizing the
2379 * leader-follower relationships.
2380 */
2381static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2382{
2383 struct rcu_data *rdp;
2384 struct rcu_data *rdp_last;
2385 struct rcu_data *rdp_old_leader;
2386 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2387 struct task_struct *t;
2388
2389 /*
2390 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2391 * then nothing to do.
2392 */
2393 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2394 return;
2395
2396 /* If we didn't spawn the leader first, reorganize! */
2397 rdp_old_leader = rdp_spawn->nocb_leader;
2398 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2399 rdp_last = NULL;
2400 rdp = rdp_old_leader;
2401 do {
2402 rdp->nocb_leader = rdp_spawn;
2403 if (rdp_last && rdp != rdp_spawn)
2404 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2405 if (rdp == rdp_spawn) {
2406 rdp = rdp->nocb_next_follower;
2407 } else {
2408 rdp_last = rdp;
2409 rdp = rdp->nocb_next_follower;
2410 rdp_last->nocb_next_follower = NULL;
2411 }
35ce7f29
PM
2412 } while (rdp);
2413 rdp_spawn->nocb_next_follower = rdp_old_leader;
2414 }
2415
2416 /* Spawn the kthread for this CPU and RCU flavor. */
2417 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2418 "rcuo%c/%d", rsp->abbr, cpu);
2419 BUG_ON(IS_ERR(t));
7d0ae808 2420 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2421}
2422
2423/*
2424 * If the specified CPU is a no-CBs CPU that does not already have its
2425 * rcuo kthreads, spawn them.
2426 */
2427static void rcu_spawn_all_nocb_kthreads(int cpu)
2428{
2429 struct rcu_state *rsp;
2430
2431 if (rcu_scheduler_fully_active)
2432 for_each_rcu_flavor(rsp)
2433 rcu_spawn_one_nocb_kthread(rsp, cpu);
2434}
2435
2436/*
2437 * Once the scheduler is running, spawn rcuo kthreads for all online
2438 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2439 * non-boot CPUs come online -- if this changes, we will need to add
2440 * some mutual exclusion.
2441 */
2442static void __init rcu_spawn_nocb_kthreads(void)
2443{
2444 int cpu;
2445
2446 for_each_online_cpu(cpu)
2447 rcu_spawn_all_nocb_kthreads(cpu);
2448}
2449
fbce7497
PM
2450/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2451static int rcu_nocb_leader_stride = -1;
2452module_param(rcu_nocb_leader_stride, int, 0444);
2453
2454/*
35ce7f29 2455 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2456 */
35ce7f29 2457static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2458{
2459 int cpu;
fbce7497
PM
2460 int ls = rcu_nocb_leader_stride;
2461 int nl = 0; /* Next leader. */
3fbfbf7a 2462 struct rcu_data *rdp;
fbce7497
PM
2463 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2464 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2465
22c2f669 2466 if (!have_rcu_nocb_mask)
3fbfbf7a 2467 return;
fbce7497
PM
2468 if (ls == -1) {
2469 ls = int_sqrt(nr_cpu_ids);
2470 rcu_nocb_leader_stride = ls;
2471 }
2472
2473 /*
2474 * Each pass through this loop sets up one rcu_data structure and
2475 * spawns one rcu_nocb_kthread().
2476 */
3fbfbf7a
PM
2477 for_each_cpu(cpu, rcu_nocb_mask) {
2478 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2479 if (rdp->cpu >= nl) {
2480 /* New leader, set up for followers & next leader. */
2481 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2482 rdp->nocb_leader = rdp;
2483 rdp_leader = rdp;
2484 } else {
2485 /* Another follower, link to previous leader. */
2486 rdp->nocb_leader = rdp_leader;
2487 rdp_prev->nocb_next_follower = rdp;
2488 }
2489 rdp_prev = rdp;
3fbfbf7a
PM
2490 }
2491}
2492
2493/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2494static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2495{
22c2f669 2496 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2497 return false;
22c2f669 2498
34404ca8
PM
2499 /* If there are early-boot callbacks, move them to nocb lists. */
2500 if (rdp->nxtlist) {
2501 rdp->nocb_head = rdp->nxtlist;
2502 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2503 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2504 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2505 rdp->nxtlist = NULL;
2506 rdp->qlen = 0;
2507 rdp->qlen_lazy = 0;
2508 }
3fbfbf7a 2509 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2510 return true;
3fbfbf7a
PM
2511}
2512
34ed6246
PM
2513#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2514
d7e29933
PM
2515static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2516{
2517 WARN_ON_ONCE(1); /* Should be dead code. */
2518 return false;
2519}
2520
abedf8e2 2521static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2522{
3fbfbf7a
PM
2523}
2524
dae6e64d
PM
2525static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2526{
2527}
2528
abedf8e2 2529static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2530{
2531 return NULL;
2532}
2533
dae6e64d
PM
2534static void rcu_init_one_nocb(struct rcu_node *rnp)
2535{
2536}
3fbfbf7a 2537
3fbfbf7a 2538static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2539 bool lazy, unsigned long flags)
3fbfbf7a 2540{
4afc7e26 2541 return false;
3fbfbf7a
PM
2542}
2543
2544static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2545 struct rcu_data *rdp,
2546 unsigned long flags)
3fbfbf7a 2547{
f4aa84ba 2548 return false;
3fbfbf7a
PM
2549}
2550
3fbfbf7a
PM
2551static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2552{
2553}
2554
9fdd3bc9 2555static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2556{
2557 return false;
2558}
2559
2560static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2561{
2562}
2563
35ce7f29
PM
2564static void rcu_spawn_all_nocb_kthreads(int cpu)
2565{
2566}
2567
2568static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2569{
2570}
2571
34ed6246 2572static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2573{
34ed6246 2574 return false;
3fbfbf7a
PM
2575}
2576
2577#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2578
2579/*
2580 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2581 * arbitrarily long period of time with the scheduling-clock tick turned
2582 * off. RCU will be paying attention to this CPU because it is in the
2583 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2584 * machine because the scheduling-clock tick has been disabled. Therefore,
2585 * if an adaptive-ticks CPU is failing to respond to the current grace
2586 * period and has not be idle from an RCU perspective, kick it.
2587 */
4a81e832 2588static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2589{
2590#ifdef CONFIG_NO_HZ_FULL
2591 if (tick_nohz_full_cpu(cpu))
2592 smp_send_reschedule(cpu);
2593#endif /* #ifdef CONFIG_NO_HZ_FULL */
2594}
2333210b
PM
2595
2596
2597#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2598
0edd1b17 2599static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2600#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2601#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2602#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2603#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2604#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2605
eb348b89
PM
2606/*
2607 * Invoked to note exit from irq or task transition to idle. Note that
2608 * usermode execution does -not- count as idle here! After all, we want
2609 * to detect full-system idle states, not RCU quiescent states and grace
2610 * periods. The caller must have disabled interrupts.
2611 */
28ced795 2612static void rcu_sysidle_enter(int irq)
eb348b89
PM
2613{
2614 unsigned long j;
28ced795 2615 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
eb348b89 2616
663e1310
PM
2617 /* If there are no nohz_full= CPUs, no need to track this. */
2618 if (!tick_nohz_full_enabled())
2619 return;
2620
eb348b89
PM
2621 /* Adjust nesting, check for fully idle. */
2622 if (irq) {
2623 rdtp->dynticks_idle_nesting--;
2624 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2625 if (rdtp->dynticks_idle_nesting != 0)
2626 return; /* Still not fully idle. */
2627 } else {
2628 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2629 DYNTICK_TASK_NEST_VALUE) {
2630 rdtp->dynticks_idle_nesting = 0;
2631 } else {
2632 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2633 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2634 return; /* Still not fully idle. */
2635 }
2636 }
2637
2638 /* Record start of fully idle period. */
2639 j = jiffies;
7d0ae808 2640 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
4e857c58 2641 smp_mb__before_atomic();
eb348b89 2642 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2643 smp_mb__after_atomic();
eb348b89
PM
2644 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2645}
2646
0edd1b17
PM
2647/*
2648 * Unconditionally force exit from full system-idle state. This is
2649 * invoked when a normal CPU exits idle, but must be called separately
2650 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2651 * is that the timekeeping CPU is permitted to take scheduling-clock
2652 * interrupts while the system is in system-idle state, and of course
2653 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2654 * interrupt from any other type of interrupt.
2655 */
2656void rcu_sysidle_force_exit(void)
2657{
7d0ae808 2658 int oldstate = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2659 int newoldstate;
2660
2661 /*
2662 * Each pass through the following loop attempts to exit full
2663 * system-idle state. If contention proves to be a problem,
2664 * a trylock-based contention tree could be used here.
2665 */
2666 while (oldstate > RCU_SYSIDLE_SHORT) {
2667 newoldstate = cmpxchg(&full_sysidle_state,
2668 oldstate, RCU_SYSIDLE_NOT);
2669 if (oldstate == newoldstate &&
2670 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2671 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2672 return; /* We cleared it, done! */
2673 }
2674 oldstate = newoldstate;
2675 }
2676 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2677}
2678
eb348b89
PM
2679/*
2680 * Invoked to note entry to irq or task transition from idle. Note that
2681 * usermode execution does -not- count as idle here! The caller must
2682 * have disabled interrupts.
2683 */
28ced795 2684static void rcu_sysidle_exit(int irq)
eb348b89 2685{
28ced795
CL
2686 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2687
663e1310
PM
2688 /* If there are no nohz_full= CPUs, no need to track this. */
2689 if (!tick_nohz_full_enabled())
2690 return;
2691
eb348b89
PM
2692 /* Adjust nesting, check for already non-idle. */
2693 if (irq) {
2694 rdtp->dynticks_idle_nesting++;
2695 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2696 if (rdtp->dynticks_idle_nesting != 1)
2697 return; /* Already non-idle. */
2698 } else {
2699 /*
2700 * Allow for irq misnesting. Yes, it really is possible
2701 * to enter an irq handler then never leave it, and maybe
2702 * also vice versa. Handle both possibilities.
2703 */
2704 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2705 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2706 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2707 return; /* Already non-idle. */
2708 } else {
2709 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2710 }
2711 }
2712
2713 /* Record end of idle period. */
4e857c58 2714 smp_mb__before_atomic();
eb348b89 2715 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2716 smp_mb__after_atomic();
eb348b89 2717 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2718
2719 /*
2720 * If we are the timekeeping CPU, we are permitted to be non-idle
2721 * during a system-idle state. This must be the case, because
2722 * the timekeeping CPU has to take scheduling-clock interrupts
2723 * during the time that the system is transitioning to full
2724 * system-idle state. This means that the timekeeping CPU must
2725 * invoke rcu_sysidle_force_exit() directly if it does anything
2726 * more than take a scheduling-clock interrupt.
2727 */
2728 if (smp_processor_id() == tick_do_timer_cpu)
2729 return;
2730
2731 /* Update system-idle state: We are clearly no longer fully idle! */
2732 rcu_sysidle_force_exit();
2733}
2734
2735/*
2736 * Check to see if the current CPU is idle. Note that usermode execution
5871968d
PM
2737 * does not count as idle. The caller must have disabled interrupts,
2738 * and must be running on tick_do_timer_cpu.
0edd1b17
PM
2739 */
2740static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2741 unsigned long *maxj)
2742{
2743 int cur;
2744 unsigned long j;
2745 struct rcu_dynticks *rdtp = rdp->dynticks;
2746
663e1310
PM
2747 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2748 if (!tick_nohz_full_enabled())
2749 return;
2750
0edd1b17
PM
2751 /*
2752 * If some other CPU has already reported non-idle, if this is
2753 * not the flavor of RCU that tracks sysidle state, or if this
2754 * is an offline or the timekeeping CPU, nothing to do.
2755 */
417e8d26 2756 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2757 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2758 return;
5871968d
PM
2759 /* Verify affinity of current kthread. */
2760 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2761
2762 /* Pick up current idle and NMI-nesting counter and check. */
2763 cur = atomic_read(&rdtp->dynticks_idle);
2764 if (cur & 0x1) {
2765 *isidle = false; /* We are not idle! */
2766 return;
2767 }
2768 smp_mb(); /* Read counters before timestamps. */
2769
2770 /* Pick up timestamps. */
7d0ae808 2771 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
0edd1b17
PM
2772 /* If this CPU entered idle more recently, update maxj timestamp. */
2773 if (ULONG_CMP_LT(*maxj, j))
2774 *maxj = j;
2775}
2776
2777/*
2778 * Is this the flavor of RCU that is handling full-system idle?
2779 */
2780static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2781{
417e8d26 2782 return rsp == rcu_state_p;
0edd1b17
PM
2783}
2784
2785/*
2786 * Return a delay in jiffies based on the number of CPUs, rcu_node
2787 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2788 * systems more time to transition to full-idle state in order to
2789 * avoid the cache thrashing that otherwise occur on the state variable.
2790 * Really small systems (less than a couple of tens of CPUs) should
2791 * instead use a single global atomically incremented counter, and later
2792 * versions of this will automatically reconfigure themselves accordingly.
2793 */
2794static unsigned long rcu_sysidle_delay(void)
2795{
2796 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2797 return 0;
2798 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2799}
2800
2801/*
2802 * Advance the full-system-idle state. This is invoked when all of
2803 * the non-timekeeping CPUs are idle.
2804 */
2805static void rcu_sysidle(unsigned long j)
2806{
2807 /* Check the current state. */
7d0ae808 2808 switch (READ_ONCE(full_sysidle_state)) {
0edd1b17
PM
2809 case RCU_SYSIDLE_NOT:
2810
2811 /* First time all are idle, so note a short idle period. */
7d0ae808 2812 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
0edd1b17
PM
2813 break;
2814
2815 case RCU_SYSIDLE_SHORT:
2816
2817 /*
2818 * Idle for a bit, time to advance to next state?
2819 * cmpxchg failure means race with non-idle, let them win.
2820 */
2821 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2822 (void)cmpxchg(&full_sysidle_state,
2823 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2824 break;
2825
2826 case RCU_SYSIDLE_LONG:
2827
2828 /*
2829 * Do an additional check pass before advancing to full.
2830 * cmpxchg failure means race with non-idle, let them win.
2831 */
2832 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2833 (void)cmpxchg(&full_sysidle_state,
2834 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2835 break;
2836
2837 default:
2838 break;
2839 }
2840}
2841
2842/*
2843 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2844 * back to the beginning.
2845 */
2846static void rcu_sysidle_cancel(void)
2847{
2848 smp_mb();
becb41bf 2849 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
7d0ae808 2850 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
0edd1b17
PM
2851}
2852
2853/*
2854 * Update the sysidle state based on the results of a force-quiescent-state
2855 * scan of the CPUs' dyntick-idle state.
2856 */
2857static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2858 unsigned long maxj, bool gpkt)
2859{
417e8d26 2860 if (rsp != rcu_state_p)
0edd1b17
PM
2861 return; /* Wrong flavor, ignore. */
2862 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2863 return; /* Running state machine from timekeeping CPU. */
2864 if (isidle)
2865 rcu_sysidle(maxj); /* More idle! */
2866 else
2867 rcu_sysidle_cancel(); /* Idle is over. */
2868}
2869
2870/*
2871 * Wrapper for rcu_sysidle_report() when called from the grace-period
2872 * kthread's context.
2873 */
2874static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2875 unsigned long maxj)
2876{
663e1310
PM
2877 /* If there are no nohz_full= CPUs, no need to track this. */
2878 if (!tick_nohz_full_enabled())
2879 return;
2880
0edd1b17
PM
2881 rcu_sysidle_report(rsp, isidle, maxj, true);
2882}
2883
2884/* Callback and function for forcing an RCU grace period. */
2885struct rcu_sysidle_head {
2886 struct rcu_head rh;
2887 int inuse;
2888};
2889
2890static void rcu_sysidle_cb(struct rcu_head *rhp)
2891{
2892 struct rcu_sysidle_head *rshp;
2893
2894 /*
2895 * The following memory barrier is needed to replace the
2896 * memory barriers that would normally be in the memory
2897 * allocator.
2898 */
2899 smp_mb(); /* grace period precedes setting inuse. */
2900
2901 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
7d0ae808 2902 WRITE_ONCE(rshp->inuse, 0);
0edd1b17
PM
2903}
2904
2905/*
2906 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
2907 * The caller must have disabled interrupts. This is not intended to be
2908 * called unless tick_nohz_full_enabled().
0edd1b17
PM
2909 */
2910bool rcu_sys_is_idle(void)
2911{
2912 static struct rcu_sysidle_head rsh;
7d0ae808 2913 int rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2914
2915 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2916 return false;
2917
2918 /* Handle small-system case by doing a full scan of CPUs. */
2919 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2920 int oldrss = rss - 1;
2921
2922 /*
2923 * One pass to advance to each state up to _FULL.
2924 * Give up if any pass fails to advance the state.
2925 */
2926 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2927 int cpu;
2928 bool isidle = true;
2929 unsigned long maxj = jiffies - ULONG_MAX / 4;
2930 struct rcu_data *rdp;
2931
2932 /* Scan all the CPUs looking for nonidle CPUs. */
2933 for_each_possible_cpu(cpu) {
417e8d26 2934 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
2935 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2936 if (!isidle)
2937 break;
2938 }
417e8d26 2939 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17 2940 oldrss = rss;
7d0ae808 2941 rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2942 }
2943 }
2944
2945 /* If this is the first observation of an idle period, record it. */
2946 if (rss == RCU_SYSIDLE_FULL) {
2947 rss = cmpxchg(&full_sysidle_state,
2948 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2949 return rss == RCU_SYSIDLE_FULL;
2950 }
2951
2952 smp_mb(); /* ensure rss load happens before later caller actions. */
2953
2954 /* If already fully idle, tell the caller (in case of races). */
2955 if (rss == RCU_SYSIDLE_FULL_NOTED)
2956 return true;
2957
2958 /*
2959 * If we aren't there yet, and a grace period is not in flight,
2960 * initiate a grace period. Either way, tell the caller that
2961 * we are not there yet. We use an xchg() rather than an assignment
2962 * to make up for the memory barriers that would otherwise be
2963 * provided by the memory allocator.
2964 */
2965 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 2966 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
2967 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2968 call_rcu(&rsh.rh, rcu_sysidle_cb);
2969 return false;
eb348b89
PM
2970}
2971
2333210b
PM
2972/*
2973 * Initialize dynticks sysidle state for CPUs coming online.
2974 */
2975static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2976{
2977 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2978}
2979
2980#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2981
28ced795 2982static void rcu_sysidle_enter(int irq)
eb348b89
PM
2983{
2984}
2985
28ced795 2986static void rcu_sysidle_exit(int irq)
eb348b89
PM
2987{
2988}
2989
0edd1b17
PM
2990static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2991 unsigned long *maxj)
2992{
2993}
2994
2995static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2996{
2997 return false;
2998}
2999
3000static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3001 unsigned long maxj)
3002{
3003}
3004
2333210b
PM
3005static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3006{
3007}
3008
3009#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3010
3011/*
3012 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3013 * grace-period kthread will do force_quiescent_state() processing?
3014 * The idea is to avoid waking up RCU core processing on such a
3015 * CPU unless the grace period has extended for too long.
3016 *
3017 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3018 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3019 */
3020static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3021{
3022#ifdef CONFIG_NO_HZ_FULL
3023 if (tick_nohz_full_cpu(smp_processor_id()) &&
3024 (!rcu_gp_in_progress(rsp) ||
7d0ae808 3025 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
5ce035fb 3026 return true;
a096932f 3027#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 3028 return false;
a096932f 3029}
5057f55e
PM
3030
3031/*
3032 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3033 * timekeeping CPU.
3034 */
3035static void rcu_bind_gp_kthread(void)
3036{
c0f489d2 3037 int __maybe_unused cpu;
5057f55e 3038
c0f489d2 3039 if (!tick_nohz_full_enabled())
5057f55e 3040 return;
c0f489d2
PM
3041#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3042 cpu = tick_do_timer_cpu;
5871968d 3043 if (cpu >= 0 && cpu < nr_cpu_ids)
5057f55e 3044 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2 3045#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5871968d 3046 housekeeping_affine(current);
c0f489d2 3047#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3048}
176f8f7a
PM
3049
3050/* Record the current task on dyntick-idle entry. */
3051static void rcu_dynticks_task_enter(void)
3052{
3053#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3054 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
3055#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3056}
3057
3058/* Record no current task on dyntick-idle exit. */
3059static void rcu_dynticks_task_exit(void)
3060{
3061#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3062 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
3063#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3064}