rcu: Use IS_ENABLED() to simplify rcu_bootup_announce_oddness()
[linux-2.6-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba 33#ifdef CONFIG_RCU_BOOST
61cfd097 34
abaa93d9 35#include "../locking/rtmutex_common.h"
21871d7e 36
61cfd097
PM
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
21871d7e 46#endif /* #ifdef CONFIG_RCU_BOOST */
5b61b0ba 47
3fbfbf7a
PM
48#ifdef CONFIG_RCU_NOCB_CPU
49static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 51static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
52#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
26845c28
PM
54/*
55 * Check the RCU kernel configuration parameters and print informative
56 * messages about anything out of the ordinary. If you like #ifdef, you
57 * will love this function.
58 */
59static void __init rcu_bootup_announce_oddness(void)
60{
ab6f5bd6
PM
61 if (IS_ENABLED(CONFIG_RCU_TRACE))
62 pr_info("\tRCU debugfs-based tracing is enabled.\n");
63 if ((IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) ||
64 (!IS_ENABLED(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32))
65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
66 CONFIG_RCU_FANOUT);
67 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT))
68 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
69 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
70 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
71 if (IS_ENABLED(CONFIG_PROVE_RCU))
72 pr_info("\tRCU lockdep checking is enabled.\n");
73 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
74 pr_info("\tRCU torture testing starts during boot.\n");
75 if (IS_ENABLED(CONFIG_RCU_CPU_STALL_INFO))
76 pr_info("\tAdditional per-CPU info printed with stalls.\n");
77 if (NUM_RCU_LVL_4 != 0)
78 pr_info("\tFour-level hierarchy is enabled.\n");
f885b7f2 79 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 80 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 81 if (nr_cpu_ids != NR_CPUS)
efc151c3 82 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
ab6f5bd6
PM
83 if (IS_ENABLED(CONFIG_RCU_BOOST))
84 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
26845c28
PM
85}
86
28f6569a 87#ifdef CONFIG_PREEMPT_RCU
f41d911f 88
a41bfeb2 89RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 90static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 91
d9a3da06 92static int rcu_preempted_readers_exp(struct rcu_node *rnp);
d19fb8d1
PM
93static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
94 bool wake);
d9a3da06 95
f41d911f
PM
96/*
97 * Tell them what RCU they are running.
98 */
0e0fc1c2 99static void __init rcu_bootup_announce(void)
f41d911f 100{
efc151c3 101 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 102 rcu_bootup_announce_oddness();
f41d911f
PM
103}
104
f41d911f 105/*
6cc68793 106 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
107 * that this just means that the task currently running on the CPU is
108 * not in a quiescent state. There might be any number of tasks blocked
109 * while in an RCU read-side critical section.
25502a6c 110 *
1d082fd0
PM
111 * As with the other rcu_*_qs() functions, callers to this function
112 * must disable preemption.
f41d911f 113 */
284a8c93 114static void rcu_preempt_qs(void)
f41d911f 115{
284a8c93
PM
116 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
117 trace_rcu_grace_period(TPS("rcu_preempt"),
118 __this_cpu_read(rcu_preempt_data.gpnum),
119 TPS("cpuqs"));
120 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
121 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
122 current->rcu_read_unlock_special.b.need_qs = false;
123 }
f41d911f
PM
124}
125
126/*
c3422bea
PM
127 * We have entered the scheduler, and the current task might soon be
128 * context-switched away from. If this task is in an RCU read-side
129 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
130 * record that fact, so we enqueue the task on the blkd_tasks list.
131 * The task will dequeue itself when it exits the outermost enclosing
132 * RCU read-side critical section. Therefore, the current grace period
133 * cannot be permitted to complete until the blkd_tasks list entries
134 * predating the current grace period drain, in other words, until
135 * rnp->gp_tasks becomes NULL.
c3422bea
PM
136 *
137 * Caller must disable preemption.
f41d911f 138 */
38200cf2 139static void rcu_preempt_note_context_switch(void)
f41d911f
PM
140{
141 struct task_struct *t = current;
c3422bea 142 unsigned long flags;
f41d911f
PM
143 struct rcu_data *rdp;
144 struct rcu_node *rnp;
145
10f39bb1 146 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 147 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
148
149 /* Possibly blocking in an RCU read-side critical section. */
38200cf2 150 rdp = this_cpu_ptr(rcu_preempt_state.rda);
f41d911f 151 rnp = rdp->mynode;
1304afb2 152 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 153 smp_mb__after_unlock_lock();
1d082fd0 154 t->rcu_read_unlock_special.b.blocked = true;
86848966 155 t->rcu_blocked_node = rnp;
f41d911f
PM
156
157 /*
158 * If this CPU has already checked in, then this task
159 * will hold up the next grace period rather than the
160 * current grace period. Queue the task accordingly.
161 * If the task is queued for the current grace period
162 * (i.e., this CPU has not yet passed through a quiescent
163 * state for the current grace period), then as long
164 * as that task remains queued, the current grace period
12f5f524
PM
165 * cannot end. Note that there is some uncertainty as
166 * to exactly when the current grace period started.
167 * We take a conservative approach, which can result
168 * in unnecessarily waiting on tasks that started very
169 * slightly after the current grace period began. C'est
170 * la vie!!!
b0e165c0
PM
171 *
172 * But first, note that the current CPU must still be
173 * on line!
f41d911f 174 */
b0e165c0 175 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 176 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
177 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
178 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
179 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
180#ifdef CONFIG_RCU_BOOST
181 if (rnp->boost_tasks != NULL)
182 rnp->boost_tasks = rnp->gp_tasks;
183#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
184 } else {
185 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
186 if (rnp->qsmask & rdp->grpmask)
187 rnp->gp_tasks = &t->rcu_node_entry;
188 }
d4c08f2a
PM
189 trace_rcu_preempt_task(rdp->rsp->name,
190 t->pid,
191 (rnp->qsmask & rdp->grpmask)
192 ? rnp->gpnum
193 : rnp->gpnum + 1);
1304afb2 194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 195 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 196 t->rcu_read_unlock_special.s) {
10f39bb1
PM
197
198 /*
199 * Complete exit from RCU read-side critical section on
200 * behalf of preempted instance of __rcu_read_unlock().
201 */
202 rcu_read_unlock_special(t);
f41d911f
PM
203 }
204
205 /*
206 * Either we were not in an RCU read-side critical section to
207 * begin with, or we have now recorded that critical section
208 * globally. Either way, we can now note a quiescent state
209 * for this CPU. Again, if we were in an RCU read-side critical
210 * section, and if that critical section was blocking the current
211 * grace period, then the fact that the task has been enqueued
212 * means that we continue to block the current grace period.
213 */
284a8c93 214 rcu_preempt_qs();
f41d911f
PM
215}
216
fc2219d4
PM
217/*
218 * Check for preempted RCU readers blocking the current grace period
219 * for the specified rcu_node structure. If the caller needs a reliable
220 * answer, it must hold the rcu_node's ->lock.
221 */
27f4d280 222static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 223{
12f5f524 224 return rnp->gp_tasks != NULL;
fc2219d4
PM
225}
226
b668c9cf
PM
227/*
228 * Record a quiescent state for all tasks that were previously queued
229 * on the specified rcu_node structure and that were blocking the current
230 * RCU grace period. The caller must hold the specified rnp->lock with
231 * irqs disabled, and this lock is released upon return, but irqs remain
232 * disabled.
233 */
d3f6bad3 234static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
235 __releases(rnp->lock)
236{
237 unsigned long mask;
238 struct rcu_node *rnp_p;
239
27f4d280 240 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 241 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
242 return; /* Still need more quiescent states! */
243 }
244
245 rnp_p = rnp->parent;
246 if (rnp_p == NULL) {
247 /*
248 * Either there is only one rcu_node in the tree,
249 * or tasks were kicked up to root rcu_node due to
250 * CPUs going offline.
251 */
d3f6bad3 252 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
253 return;
254 }
255
256 /* Report up the rest of the hierarchy. */
257 mask = rnp->grpmask;
1304afb2
PM
258 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
259 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 260 smp_mb__after_unlock_lock();
d3f6bad3 261 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
262}
263
12f5f524
PM
264/*
265 * Advance a ->blkd_tasks-list pointer to the next entry, instead
266 * returning NULL if at the end of the list.
267 */
268static struct list_head *rcu_next_node_entry(struct task_struct *t,
269 struct rcu_node *rnp)
270{
271 struct list_head *np;
272
273 np = t->rcu_node_entry.next;
274 if (np == &rnp->blkd_tasks)
275 np = NULL;
276 return np;
277}
278
8af3a5e7
PM
279/*
280 * Return true if the specified rcu_node structure has tasks that were
281 * preempted within an RCU read-side critical section.
282 */
283static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
284{
285 return !list_empty(&rnp->blkd_tasks);
286}
287
b668c9cf
PM
288/*
289 * Handle special cases during rcu_read_unlock(), such as needing to
290 * notify RCU core processing or task having blocked during the RCU
291 * read-side critical section.
292 */
2a3fa843 293void rcu_read_unlock_special(struct task_struct *t)
f41d911f 294{
b6a932d1
PM
295 bool empty;
296 bool empty_exp;
297 bool empty_norm;
298 bool empty_exp_now;
f41d911f 299 unsigned long flags;
12f5f524 300 struct list_head *np;
82e78d80 301#ifdef CONFIG_RCU_BOOST
abaa93d9 302 bool drop_boost_mutex = false;
82e78d80 303#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 304 struct rcu_node *rnp;
1d082fd0 305 union rcu_special special;
f41d911f
PM
306
307 /* NMI handlers cannot block and cannot safely manipulate state. */
308 if (in_nmi())
309 return;
310
311 local_irq_save(flags);
312
313 /*
314 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
315 * let it know that we have done so. Because irqs are disabled,
316 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
317 */
318 special = t->rcu_read_unlock_special;
1d082fd0 319 if (special.b.need_qs) {
284a8c93 320 rcu_preempt_qs();
c0135d07 321 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 322 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
323 local_irq_restore(flags);
324 return;
325 }
f41d911f
PM
326 }
327
79a62f95 328 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
329 if (in_irq() || in_serving_softirq()) {
330 lockdep_rcu_suspicious(__FILE__, __LINE__,
331 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
332 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
333 t->rcu_read_unlock_special.s,
334 t->rcu_read_unlock_special.b.blocked,
335 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
336 local_irq_restore(flags);
337 return;
338 }
339
340 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
341 if (special.b.blocked) {
342 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 343
dd5d19ba
PM
344 /*
345 * Remove this task from the list it blocked on. The
346 * task can migrate while we acquire the lock, but at
347 * most one time. So at most two passes through loop.
348 */
349 for (;;) {
86848966 350 rnp = t->rcu_blocked_node;
1304afb2 351 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 352 smp_mb__after_unlock_lock();
86848966 353 if (rnp == t->rcu_blocked_node)
dd5d19ba 354 break;
1304afb2 355 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 356 }
b6a932d1 357 empty = !rcu_preempt_has_tasks(rnp);
74e871ac 358 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
359 empty_exp = !rcu_preempted_readers_exp(rnp);
360 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 361 np = rcu_next_node_entry(t, rnp);
f41d911f 362 list_del_init(&t->rcu_node_entry);
82e78d80 363 t->rcu_blocked_node = NULL;
f7f7bac9 364 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 365 rnp->gpnum, t->pid);
12f5f524
PM
366 if (&t->rcu_node_entry == rnp->gp_tasks)
367 rnp->gp_tasks = np;
368 if (&t->rcu_node_entry == rnp->exp_tasks)
369 rnp->exp_tasks = np;
27f4d280
PM
370#ifdef CONFIG_RCU_BOOST
371 if (&t->rcu_node_entry == rnp->boost_tasks)
372 rnp->boost_tasks = np;
abaa93d9
PM
373 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
374 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
27f4d280 375#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 376
b6a932d1
PM
377 /*
378 * If this was the last task on the list, go see if we
379 * need to propagate ->qsmaskinit bit clearing up the
380 * rcu_node tree.
381 */
382 if (!empty && !rcu_preempt_has_tasks(rnp))
383 rcu_cleanup_dead_rnp(rnp);
384
f41d911f
PM
385 /*
386 * If this was the last task on the current list, and if
387 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
388 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
389 * so we must take a snapshot of the expedited state.
f41d911f 390 */
389abd48 391 empty_exp_now = !rcu_preempted_readers_exp(rnp);
74e871ac 392 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 393 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
394 rnp->gpnum,
395 0, rnp->qsmask,
396 rnp->level,
397 rnp->grplo,
398 rnp->grphi,
399 !!rnp->gp_tasks);
d3f6bad3 400 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 401 } else {
d4c08f2a 402 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 403 }
d9a3da06 404
27f4d280
PM
405#ifdef CONFIG_RCU_BOOST
406 /* Unboost if we were boosted. */
abaf3f9d 407 if (drop_boost_mutex)
abaa93d9 408 rt_mutex_unlock(&rnp->boost_mtx);
27f4d280
PM
409#endif /* #ifdef CONFIG_RCU_BOOST */
410
d9a3da06
PM
411 /*
412 * If this was the last task on the expedited lists,
413 * then we need to report up the rcu_node hierarchy.
414 */
389abd48 415 if (!empty_exp && empty_exp_now)
b40d293e 416 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
417 } else {
418 local_irq_restore(flags);
f41d911f 419 }
f41d911f
PM
420}
421
1ed509a2
PM
422/*
423 * Dump detailed information for all tasks blocking the current RCU
424 * grace period on the specified rcu_node structure.
425 */
426static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
427{
428 unsigned long flags;
1ed509a2
PM
429 struct task_struct *t;
430
12f5f524 431 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
432 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
433 raw_spin_unlock_irqrestore(&rnp->lock, flags);
434 return;
435 }
12f5f524
PM
436 t = list_entry(rnp->gp_tasks,
437 struct task_struct, rcu_node_entry);
438 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
439 sched_show_task(t);
440 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
441}
442
443/*
444 * Dump detailed information for all tasks blocking the current RCU
445 * grace period.
446 */
447static void rcu_print_detail_task_stall(struct rcu_state *rsp)
448{
449 struct rcu_node *rnp = rcu_get_root(rsp);
450
451 rcu_print_detail_task_stall_rnp(rnp);
452 rcu_for_each_leaf_node(rsp, rnp)
453 rcu_print_detail_task_stall_rnp(rnp);
454}
455
a858af28
PM
456#ifdef CONFIG_RCU_CPU_STALL_INFO
457
458static void rcu_print_task_stall_begin(struct rcu_node *rnp)
459{
efc151c3 460 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
461 rnp->level, rnp->grplo, rnp->grphi);
462}
463
464static void rcu_print_task_stall_end(void)
465{
efc151c3 466 pr_cont("\n");
a858af28
PM
467}
468
469#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
470
471static void rcu_print_task_stall_begin(struct rcu_node *rnp)
472{
473}
474
475static void rcu_print_task_stall_end(void)
476{
477}
478
479#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
480
f41d911f
PM
481/*
482 * Scan the current list of tasks blocked within RCU read-side critical
483 * sections, printing out the tid of each.
484 */
9bc8b558 485static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 486{
f41d911f 487 struct task_struct *t;
9bc8b558 488 int ndetected = 0;
f41d911f 489
27f4d280 490 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 491 return 0;
a858af28 492 rcu_print_task_stall_begin(rnp);
12f5f524
PM
493 t = list_entry(rnp->gp_tasks,
494 struct task_struct, rcu_node_entry);
9bc8b558 495 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 496 pr_cont(" P%d", t->pid);
9bc8b558
PM
497 ndetected++;
498 }
a858af28 499 rcu_print_task_stall_end();
9bc8b558 500 return ndetected;
f41d911f
PM
501}
502
b0e165c0
PM
503/*
504 * Check that the list of blocked tasks for the newly completed grace
505 * period is in fact empty. It is a serious bug to complete a grace
506 * period that still has RCU readers blocked! This function must be
507 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
508 * must be held by the caller.
12f5f524
PM
509 *
510 * Also, if there are blocked tasks on the list, they automatically
511 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
512 */
513static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
514{
27f4d280 515 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
96e92021 516 if (rcu_preempt_has_tasks(rnp))
12f5f524 517 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 518 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
519}
520
33f76148
PM
521#ifdef CONFIG_HOTPLUG_CPU
522
e5601400
PM
523#endif /* #ifdef CONFIG_HOTPLUG_CPU */
524
f41d911f
PM
525/*
526 * Check for a quiescent state from the current CPU. When a task blocks,
527 * the task is recorded in the corresponding CPU's rcu_node structure,
528 * which is checked elsewhere.
529 *
530 * Caller must disable hard irqs.
531 */
86aea0e6 532static void rcu_preempt_check_callbacks(void)
f41d911f
PM
533{
534 struct task_struct *t = current;
535
536 if (t->rcu_read_lock_nesting == 0) {
284a8c93 537 rcu_preempt_qs();
f41d911f
PM
538 return;
539 }
10f39bb1 540 if (t->rcu_read_lock_nesting > 0 &&
86aea0e6
PM
541 __this_cpu_read(rcu_preempt_data.qs_pending) &&
542 !__this_cpu_read(rcu_preempt_data.passed_quiesce))
1d082fd0 543 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
544}
545
a46e0899
PM
546#ifdef CONFIG_RCU_BOOST
547
09223371
SL
548static void rcu_preempt_do_callbacks(void)
549{
c9d4b0af 550 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
551}
552
a46e0899
PM
553#endif /* #ifdef CONFIG_RCU_BOOST */
554
f41d911f 555/*
6cc68793 556 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
557 */
558void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
559{
3fbfbf7a 560 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
561}
562EXPORT_SYMBOL_GPL(call_rcu);
563
6ebb237b
PM
564/**
565 * synchronize_rcu - wait until a grace period has elapsed.
566 *
567 * Control will return to the caller some time after a full grace
568 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
569 * read-side critical sections have completed. Note, however, that
570 * upon return from synchronize_rcu(), the caller might well be executing
571 * concurrently with new RCU read-side critical sections that began while
572 * synchronize_rcu() was waiting. RCU read-side critical sections are
573 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
574 *
575 * See the description of synchronize_sched() for more detailed information
576 * on memory ordering guarantees.
6ebb237b
PM
577 */
578void synchronize_rcu(void)
579{
fe15d706
PM
580 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
581 !lock_is_held(&rcu_lock_map) &&
582 !lock_is_held(&rcu_sched_lock_map),
583 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
584 if (!rcu_scheduler_active)
585 return;
3705b88d
AM
586 if (rcu_expedited)
587 synchronize_rcu_expedited();
588 else
589 wait_rcu_gp(call_rcu);
6ebb237b
PM
590}
591EXPORT_SYMBOL_GPL(synchronize_rcu);
592
d9a3da06 593static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 594static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
595static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
596
597/*
598 * Return non-zero if there are any tasks in RCU read-side critical
599 * sections blocking the current preemptible-RCU expedited grace period.
600 * If there is no preemptible-RCU expedited grace period currently in
601 * progress, returns zero unconditionally.
602 */
603static int rcu_preempted_readers_exp(struct rcu_node *rnp)
604{
12f5f524 605 return rnp->exp_tasks != NULL;
d9a3da06
PM
606}
607
608/*
609 * return non-zero if there is no RCU expedited grace period in progress
610 * for the specified rcu_node structure, in other words, if all CPUs and
611 * tasks covered by the specified rcu_node structure have done their bit
612 * for the current expedited grace period. Works only for preemptible
613 * RCU -- other RCU implementation use other means.
614 *
615 * Caller must hold sync_rcu_preempt_exp_mutex.
616 */
617static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
618{
619 return !rcu_preempted_readers_exp(rnp) &&
620 ACCESS_ONCE(rnp->expmask) == 0;
621}
622
623/*
624 * Report the exit from RCU read-side critical section for the last task
625 * that queued itself during or before the current expedited preemptible-RCU
626 * grace period. This event is reported either to the rcu_node structure on
627 * which the task was queued or to one of that rcu_node structure's ancestors,
628 * recursively up the tree. (Calm down, calm down, we do the recursion
629 * iteratively!)
630 *
b40d293e
TG
631 * Most callers will set the "wake" flag, but the task initiating the
632 * expedited grace period need not wake itself.
633 *
d9a3da06
PM
634 * Caller must hold sync_rcu_preempt_exp_mutex.
635 */
b40d293e
TG
636static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
637 bool wake)
d9a3da06
PM
638{
639 unsigned long flags;
640 unsigned long mask;
641
1304afb2 642 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 643 smp_mb__after_unlock_lock();
d9a3da06 644 for (;;) {
131906b0
PM
645 if (!sync_rcu_preempt_exp_done(rnp)) {
646 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 647 break;
131906b0 648 }
d9a3da06 649 if (rnp->parent == NULL) {
131906b0 650 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
651 if (wake) {
652 smp_mb(); /* EGP done before wake_up(). */
b40d293e 653 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 654 }
d9a3da06
PM
655 break;
656 }
657 mask = rnp->grpmask;
1304afb2 658 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 659 rnp = rnp->parent;
1304afb2 660 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 661 smp_mb__after_unlock_lock();
d9a3da06
PM
662 rnp->expmask &= ~mask;
663 }
d9a3da06
PM
664}
665
666/*
667 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
668 * grace period for the specified rcu_node structure. If there are no such
669 * tasks, report it up the rcu_node hierarchy.
670 *
7b2e6011
PM
671 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
672 * CPU hotplug operations.
d9a3da06
PM
673 */
674static void
675sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
676{
1217ed1b 677 unsigned long flags;
12f5f524 678 int must_wait = 0;
d9a3da06 679
1217ed1b 680 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 681 smp_mb__after_unlock_lock();
96e92021 682 if (!rcu_preempt_has_tasks(rnp)) {
1217ed1b 683 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 684 } else {
12f5f524 685 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 686 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
687 must_wait = 1;
688 }
d9a3da06 689 if (!must_wait)
b40d293e 690 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
691}
692
236fefaf
PM
693/**
694 * synchronize_rcu_expedited - Brute-force RCU grace period
695 *
696 * Wait for an RCU-preempt grace period, but expedite it. The basic
697 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
698 * the ->blkd_tasks lists and wait for this list to drain. This consumes
699 * significant time on all CPUs and is unfriendly to real-time workloads,
700 * so is thus not recommended for any sort of common-case code.
701 * In fact, if you are using synchronize_rcu_expedited() in a loop,
702 * please restructure your code to batch your updates, and then Use a
703 * single synchronize_rcu() instead.
019129d5
PM
704 */
705void synchronize_rcu_expedited(void)
706{
d9a3da06
PM
707 unsigned long flags;
708 struct rcu_node *rnp;
709 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 710 unsigned long snap;
d9a3da06
PM
711 int trycount = 0;
712
713 smp_mb(); /* Caller's modifications seen first by other CPUs. */
714 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
715 smp_mb(); /* Above access cannot bleed into critical section. */
716
1943c89d
PM
717 /*
718 * Block CPU-hotplug operations. This means that any CPU-hotplug
719 * operation that finds an rcu_node structure with tasks in the
720 * process of being boosted will know that all tasks blocking
721 * this expedited grace period will already be in the process of
722 * being boosted. This simplifies the process of moving tasks
723 * from leaf to root rcu_node structures.
724 */
dd56af42
PM
725 if (!try_get_online_cpus()) {
726 /* CPU-hotplug operation in flight, fall back to normal GP. */
727 wait_rcu_gp(call_rcu);
728 return;
729 }
1943c89d 730
d9a3da06
PM
731 /*
732 * Acquire lock, falling back to synchronize_rcu() if too many
733 * lock-acquisition failures. Of course, if someone does the
734 * expedited grace period for us, just leave.
735 */
736 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
737 if (ULONG_CMP_LT(snap,
738 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
739 put_online_cpus();
740 goto mb_ret; /* Others did our work for us. */
741 }
c701d5d9 742 if (trycount++ < 10) {
d9a3da06 743 udelay(trycount * num_online_cpus());
c701d5d9 744 } else {
1943c89d 745 put_online_cpus();
3705b88d 746 wait_rcu_gp(call_rcu);
d9a3da06
PM
747 return;
748 }
d9a3da06 749 }
1943c89d
PM
750 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
751 put_online_cpus();
d9a3da06 752 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 753 }
d9a3da06 754
12f5f524 755 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
756 synchronize_sched_expedited();
757
d9a3da06
PM
758 /* Initialize ->expmask for all non-leaf rcu_node structures. */
759 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 760 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 761 smp_mb__after_unlock_lock();
d9a3da06 762 rnp->expmask = rnp->qsmaskinit;
1943c89d 763 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
764 }
765
12f5f524 766 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
767 rcu_for_each_leaf_node(rsp, rnp)
768 sync_rcu_preempt_exp_init(rsp, rnp);
769 if (NUM_RCU_NODES > 1)
770 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
771
1943c89d 772 put_online_cpus();
d9a3da06 773
12f5f524 774 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
775 rnp = rcu_get_root(rsp);
776 wait_event(sync_rcu_preempt_exp_wq,
777 sync_rcu_preempt_exp_done(rnp));
778
779 /* Clean up and exit. */
780 smp_mb(); /* ensure expedited GP seen before counter increment. */
4de376a1
PK
781 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
782 sync_rcu_preempt_exp_count + 1;
d9a3da06
PM
783unlock_mb_ret:
784 mutex_unlock(&sync_rcu_preempt_exp_mutex);
785mb_ret:
786 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
787}
788EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
789
e74f4c45
PM
790/**
791 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
792 *
793 * Note that this primitive does not necessarily wait for an RCU grace period
794 * to complete. For example, if there are no RCU callbacks queued anywhere
795 * in the system, then rcu_barrier() is within its rights to return
796 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
797 */
798void rcu_barrier(void)
799{
037b64ed 800 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
801}
802EXPORT_SYMBOL_GPL(rcu_barrier);
803
1eba8f84 804/*
6cc68793 805 * Initialize preemptible RCU's state structures.
1eba8f84
PM
806 */
807static void __init __rcu_init_preempt(void)
808{
394f99a9 809 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
810}
811
2439b696
PM
812/*
813 * Check for a task exiting while in a preemptible-RCU read-side
814 * critical section, clean up if so. No need to issue warnings,
815 * as debug_check_no_locks_held() already does this if lockdep
816 * is enabled.
817 */
818void exit_rcu(void)
819{
820 struct task_struct *t = current;
821
822 if (likely(list_empty(&current->rcu_node_entry)))
823 return;
824 t->rcu_read_lock_nesting = 1;
825 barrier();
1d082fd0 826 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
827 __rcu_read_unlock();
828}
829
28f6569a 830#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 831
e534165b 832static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 833
f41d911f
PM
834/*
835 * Tell them what RCU they are running.
836 */
0e0fc1c2 837static void __init rcu_bootup_announce(void)
f41d911f 838{
efc151c3 839 pr_info("Hierarchical RCU implementation.\n");
26845c28 840 rcu_bootup_announce_oddness();
f41d911f
PM
841}
842
cba6d0d6
PM
843/*
844 * Because preemptible RCU does not exist, we never have to check for
845 * CPUs being in quiescent states.
846 */
38200cf2 847static void rcu_preempt_note_context_switch(void)
cba6d0d6
PM
848{
849}
850
fc2219d4 851/*
6cc68793 852 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
853 * RCU readers.
854 */
27f4d280 855static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
856{
857 return 0;
858}
859
b668c9cf
PM
860#ifdef CONFIG_HOTPLUG_CPU
861
8af3a5e7
PM
862/*
863 * Because there is no preemptible RCU, there can be no readers blocked.
864 */
865static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 866{
8af3a5e7 867 return false;
b668c9cf
PM
868}
869
870#endif /* #ifdef CONFIG_HOTPLUG_CPU */
871
1ed509a2 872/*
6cc68793 873 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
874 * tasks blocked within RCU read-side critical sections.
875 */
876static void rcu_print_detail_task_stall(struct rcu_state *rsp)
877{
878}
879
f41d911f 880/*
6cc68793 881 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
882 * tasks blocked within RCU read-side critical sections.
883 */
9bc8b558 884static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 885{
9bc8b558 886 return 0;
f41d911f
PM
887}
888
b0e165c0 889/*
6cc68793 890 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
891 * so there is no need to check for blocked tasks. So check only for
892 * bogus qsmask values.
b0e165c0
PM
893 */
894static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
895{
49e29126 896 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
897}
898
f41d911f 899/*
6cc68793 900 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
901 * to check.
902 */
86aea0e6 903static void rcu_preempt_check_callbacks(void)
f41d911f
PM
904{
905}
906
019129d5
PM
907/*
908 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 909 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
910 */
911void synchronize_rcu_expedited(void)
912{
913 synchronize_sched_expedited();
914}
915EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
916
e74f4c45 917/*
6cc68793 918 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
919 * another name for rcu_barrier_sched().
920 */
921void rcu_barrier(void)
922{
923 rcu_barrier_sched();
924}
925EXPORT_SYMBOL_GPL(rcu_barrier);
926
1eba8f84 927/*
6cc68793 928 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
929 */
930static void __init __rcu_init_preempt(void)
931{
932}
933
2439b696
PM
934/*
935 * Because preemptible RCU does not exist, tasks cannot possibly exit
936 * while in preemptible RCU read-side critical sections.
937 */
938void exit_rcu(void)
939{
940}
941
28f6569a 942#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 943
27f4d280
PM
944#ifdef CONFIG_RCU_BOOST
945
1696a8be 946#include "../locking/rtmutex_common.h"
27f4d280 947
0ea1f2eb
PM
948#ifdef CONFIG_RCU_TRACE
949
950static void rcu_initiate_boost_trace(struct rcu_node *rnp)
951{
96e92021 952 if (!rcu_preempt_has_tasks(rnp))
0ea1f2eb
PM
953 rnp->n_balk_blkd_tasks++;
954 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
955 rnp->n_balk_exp_gp_tasks++;
956 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
957 rnp->n_balk_boost_tasks++;
958 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
959 rnp->n_balk_notblocked++;
960 else if (rnp->gp_tasks != NULL &&
a9f4793d 961 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
962 rnp->n_balk_notyet++;
963 else
964 rnp->n_balk_nos++;
965}
966
967#else /* #ifdef CONFIG_RCU_TRACE */
968
969static void rcu_initiate_boost_trace(struct rcu_node *rnp)
970{
971}
972
973#endif /* #else #ifdef CONFIG_RCU_TRACE */
974
5d01bbd1
TG
975static void rcu_wake_cond(struct task_struct *t, int status)
976{
977 /*
978 * If the thread is yielding, only wake it when this
979 * is invoked from idle
980 */
981 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
982 wake_up_process(t);
983}
984
27f4d280
PM
985/*
986 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
987 * or ->boost_tasks, advancing the pointer to the next task in the
988 * ->blkd_tasks list.
989 *
990 * Note that irqs must be enabled: boosting the task can block.
991 * Returns 1 if there are more tasks needing to be boosted.
992 */
993static int rcu_boost(struct rcu_node *rnp)
994{
995 unsigned long flags;
27f4d280
PM
996 struct task_struct *t;
997 struct list_head *tb;
998
b08ea27d
PM
999 if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
1000 ACCESS_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
1001 return 0; /* Nothing left to boost. */
1002
1003 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1004 smp_mb__after_unlock_lock();
27f4d280
PM
1005
1006 /*
1007 * Recheck under the lock: all tasks in need of boosting
1008 * might exit their RCU read-side critical sections on their own.
1009 */
1010 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1011 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1012 return 0;
1013 }
1014
1015 /*
1016 * Preferentially boost tasks blocking expedited grace periods.
1017 * This cannot starve the normal grace periods because a second
1018 * expedited grace period must boost all blocked tasks, including
1019 * those blocking the pre-existing normal grace period.
1020 */
0ea1f2eb 1021 if (rnp->exp_tasks != NULL) {
27f4d280 1022 tb = rnp->exp_tasks;
0ea1f2eb
PM
1023 rnp->n_exp_boosts++;
1024 } else {
27f4d280 1025 tb = rnp->boost_tasks;
0ea1f2eb
PM
1026 rnp->n_normal_boosts++;
1027 }
1028 rnp->n_tasks_boosted++;
27f4d280
PM
1029
1030 /*
1031 * We boost task t by manufacturing an rt_mutex that appears to
1032 * be held by task t. We leave a pointer to that rt_mutex where
1033 * task t can find it, and task t will release the mutex when it
1034 * exits its outermost RCU read-side critical section. Then
1035 * simply acquiring this artificial rt_mutex will boost task
1036 * t's priority. (Thanks to tglx for suggesting this approach!)
1037 *
1038 * Note that task t must acquire rnp->lock to remove itself from
1039 * the ->blkd_tasks list, which it will do from exit() if from
1040 * nowhere else. We therefore are guaranteed that task t will
1041 * stay around at least until we drop rnp->lock. Note that
1042 * rnp->lock also resolves races between our priority boosting
1043 * and task t's exiting its outermost RCU read-side critical
1044 * section.
1045 */
1046 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1047 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
27f4d280 1048 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1049 /* Lock only for side effect: boosts task t's priority. */
1050 rt_mutex_lock(&rnp->boost_mtx);
1051 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1052
4f89b336
PM
1053 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1054 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1055}
1056
27f4d280
PM
1057/*
1058 * Priority-boosting kthread. One per leaf rcu_node and one for the
1059 * root rcu_node.
1060 */
1061static int rcu_boost_kthread(void *arg)
1062{
1063 struct rcu_node *rnp = (struct rcu_node *)arg;
1064 int spincnt = 0;
1065 int more2boost;
1066
f7f7bac9 1067 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1068 for (;;) {
d71df90e 1069 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1070 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1071 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1072 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1073 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1074 more2boost = rcu_boost(rnp);
1075 if (more2boost)
1076 spincnt++;
1077 else
1078 spincnt = 0;
1079 if (spincnt > 10) {
5d01bbd1 1080 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1081 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1082 schedule_timeout_interruptible(2);
f7f7bac9 1083 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1084 spincnt = 0;
1085 }
1086 }
1217ed1b 1087 /* NOTREACHED */
f7f7bac9 1088 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1089 return 0;
1090}
1091
1092/*
1093 * Check to see if it is time to start boosting RCU readers that are
1094 * blocking the current grace period, and, if so, tell the per-rcu_node
1095 * kthread to start boosting them. If there is an expedited grace
1096 * period in progress, it is always time to boost.
1097 *
b065a853
PM
1098 * The caller must hold rnp->lock, which this function releases.
1099 * The ->boost_kthread_task is immortal, so we don't need to worry
1100 * about it going away.
27f4d280 1101 */
1217ed1b 1102static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1103 __releases(rnp->lock)
27f4d280
PM
1104{
1105 struct task_struct *t;
1106
0ea1f2eb
PM
1107 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1108 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1109 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1110 return;
0ea1f2eb 1111 }
27f4d280
PM
1112 if (rnp->exp_tasks != NULL ||
1113 (rnp->gp_tasks != NULL &&
1114 rnp->boost_tasks == NULL &&
1115 rnp->qsmask == 0 &&
1116 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1117 if (rnp->exp_tasks == NULL)
1118 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1119 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1120 t = rnp->boost_kthread_task;
5d01bbd1
TG
1121 if (t)
1122 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1123 } else {
0ea1f2eb 1124 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1125 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1126 }
27f4d280
PM
1127}
1128
a46e0899
PM
1129/*
1130 * Wake up the per-CPU kthread to invoke RCU callbacks.
1131 */
1132static void invoke_rcu_callbacks_kthread(void)
1133{
1134 unsigned long flags;
1135
1136 local_irq_save(flags);
1137 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1138 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1139 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1140 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1141 __this_cpu_read(rcu_cpu_kthread_status));
1142 }
a46e0899
PM
1143 local_irq_restore(flags);
1144}
1145
dff1672d
PM
1146/*
1147 * Is the current CPU running the RCU-callbacks kthread?
1148 * Caller must have preemption disabled.
1149 */
1150static bool rcu_is_callbacks_kthread(void)
1151{
c9d4b0af 1152 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1153}
1154
27f4d280
PM
1155#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1156
1157/*
1158 * Do priority-boost accounting for the start of a new grace period.
1159 */
1160static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1161{
1162 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1163}
1164
27f4d280
PM
1165/*
1166 * Create an RCU-boost kthread for the specified node if one does not
1167 * already exist. We only create this kthread for preemptible RCU.
1168 * Returns zero if all is well, a negated errno otherwise.
1169 */
49fb4c62 1170static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1171 struct rcu_node *rnp)
27f4d280 1172{
5d01bbd1 1173 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1174 unsigned long flags;
1175 struct sched_param sp;
1176 struct task_struct *t;
1177
1178 if (&rcu_preempt_state != rsp)
1179 return 0;
5d01bbd1
TG
1180
1181 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1182 return 0;
1183
a46e0899 1184 rsp->boost = 1;
27f4d280
PM
1185 if (rnp->boost_kthread_task != NULL)
1186 return 0;
1187 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1188 "rcub/%d", rnp_index);
27f4d280
PM
1189 if (IS_ERR(t))
1190 return PTR_ERR(t);
1191 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1192 smp_mb__after_unlock_lock();
27f4d280
PM
1193 rnp->boost_kthread_task = t;
1194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
21871d7e 1195 sp.sched_priority = kthread_prio;
27f4d280 1196 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1197 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1198 return 0;
1199}
1200
f8b7fc6b
PM
1201static void rcu_kthread_do_work(void)
1202{
c9d4b0af
CL
1203 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1204 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1205 rcu_preempt_do_callbacks();
1206}
1207
62ab7072 1208static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1209{
f8b7fc6b 1210 struct sched_param sp;
f8b7fc6b 1211
21871d7e 1212 sp.sched_priority = kthread_prio;
62ab7072 1213 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1214}
1215
62ab7072 1216static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1217{
62ab7072 1218 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1219}
1220
62ab7072 1221static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1222{
c9d4b0af 1223 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1224}
1225
1226/*
1227 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1228 * RCU softirq used in flavors and configurations of RCU that do not
1229 * support RCU priority boosting.
f8b7fc6b 1230 */
62ab7072 1231static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1232{
c9d4b0af
CL
1233 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1234 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1235 int spincnt;
f8b7fc6b 1236
62ab7072 1237 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1238 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1239 local_bh_disable();
f8b7fc6b 1240 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1241 this_cpu_inc(rcu_cpu_kthread_loops);
1242 local_irq_disable();
f8b7fc6b
PM
1243 work = *workp;
1244 *workp = 0;
62ab7072 1245 local_irq_enable();
f8b7fc6b
PM
1246 if (work)
1247 rcu_kthread_do_work();
1248 local_bh_enable();
62ab7072 1249 if (*workp == 0) {
f7f7bac9 1250 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1251 *statusp = RCU_KTHREAD_WAITING;
1252 return;
f8b7fc6b
PM
1253 }
1254 }
62ab7072 1255 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1256 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1257 schedule_timeout_interruptible(2);
f7f7bac9 1258 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1259 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1260}
1261
1262/*
1263 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1264 * served by the rcu_node in question. The CPU hotplug lock is still
1265 * held, so the value of rnp->qsmaskinit will be stable.
1266 *
1267 * We don't include outgoingcpu in the affinity set, use -1 if there is
1268 * no outgoing CPU. If there are no CPUs left in the affinity set,
1269 * this function allows the kthread to execute on any CPU.
1270 */
5d01bbd1 1271static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1272{
5d01bbd1
TG
1273 struct task_struct *t = rnp->boost_kthread_task;
1274 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1275 cpumask_var_t cm;
1276 int cpu;
f8b7fc6b 1277
5d01bbd1 1278 if (!t)
f8b7fc6b 1279 return;
5d01bbd1 1280 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1281 return;
f8b7fc6b
PM
1282 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1283 if ((mask & 0x1) && cpu != outgoingcpu)
1284 cpumask_set_cpu(cpu, cm);
5d0b0249 1285 if (cpumask_weight(cm) == 0)
f8b7fc6b 1286 cpumask_setall(cm);
5d01bbd1 1287 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1288 free_cpumask_var(cm);
1289}
1290
62ab7072
PM
1291static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1292 .store = &rcu_cpu_kthread_task,
1293 .thread_should_run = rcu_cpu_kthread_should_run,
1294 .thread_fn = rcu_cpu_kthread,
1295 .thread_comm = "rcuc/%u",
1296 .setup = rcu_cpu_kthread_setup,
1297 .park = rcu_cpu_kthread_park,
1298};
f8b7fc6b
PM
1299
1300/*
9386c0b7 1301 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1302 */
9386c0b7 1303static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1304{
f8b7fc6b 1305 struct rcu_node *rnp;
5d01bbd1 1306 int cpu;
f8b7fc6b 1307
62ab7072 1308 for_each_possible_cpu(cpu)
f8b7fc6b 1309 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1310 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1311 rcu_for_each_leaf_node(rcu_state_p, rnp)
1312 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1313}
f8b7fc6b 1314
49fb4c62 1315static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1316{
e534165b 1317 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1318 struct rcu_node *rnp = rdp->mynode;
1319
1320 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1321 if (rcu_scheduler_fully_active)
e534165b 1322 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1323}
1324
27f4d280
PM
1325#else /* #ifdef CONFIG_RCU_BOOST */
1326
1217ed1b 1327static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1328 __releases(rnp->lock)
27f4d280 1329{
1217ed1b 1330 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1331}
1332
a46e0899 1333static void invoke_rcu_callbacks_kthread(void)
27f4d280 1334{
a46e0899 1335 WARN_ON_ONCE(1);
27f4d280
PM
1336}
1337
dff1672d
PM
1338static bool rcu_is_callbacks_kthread(void)
1339{
1340 return false;
1341}
1342
27f4d280
PM
1343static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1344{
1345}
1346
5d01bbd1 1347static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1348{
1349}
1350
9386c0b7 1351static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1352{
b0d30417 1353}
b0d30417 1354
49fb4c62 1355static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1356{
1357}
1358
27f4d280
PM
1359#endif /* #else #ifdef CONFIG_RCU_BOOST */
1360
8bd93a2c
PM
1361#if !defined(CONFIG_RCU_FAST_NO_HZ)
1362
1363/*
1364 * Check to see if any future RCU-related work will need to be done
1365 * by the current CPU, even if none need be done immediately, returning
1366 * 1 if so. This function is part of the RCU implementation; it is -not-
1367 * an exported member of the RCU API.
1368 *
7cb92499
PM
1369 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1370 * any flavor of RCU.
8bd93a2c 1371 */
ffa83fb5 1372#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa6da514 1373int rcu_needs_cpu(unsigned long *delta_jiffies)
8bd93a2c 1374{
aa9b1630 1375 *delta_jiffies = ULONG_MAX;
aa6da514 1376 return rcu_cpu_has_callbacks(NULL);
7cb92499 1377}
ffa83fb5 1378#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1379
1380/*
1381 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1382 * after it.
1383 */
8fa7845d 1384static void rcu_cleanup_after_idle(void)
7cb92499
PM
1385{
1386}
1387
aea1b35e 1388/*
a858af28 1389 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1390 * is nothing.
1391 */
198bbf81 1392static void rcu_prepare_for_idle(void)
aea1b35e
PM
1393{
1394}
1395
c57afe80
PM
1396/*
1397 * Don't bother keeping a running count of the number of RCU callbacks
1398 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1399 */
1400static void rcu_idle_count_callbacks_posted(void)
1401{
1402}
1403
8bd93a2c
PM
1404#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1405
f23f7fa1
PM
1406/*
1407 * This code is invoked when a CPU goes idle, at which point we want
1408 * to have the CPU do everything required for RCU so that it can enter
1409 * the energy-efficient dyntick-idle mode. This is handled by a
1410 * state machine implemented by rcu_prepare_for_idle() below.
1411 *
1412 * The following three proprocessor symbols control this state machine:
1413 *
f23f7fa1
PM
1414 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1415 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1416 * is sized to be roughly one RCU grace period. Those energy-efficiency
1417 * benchmarkers who might otherwise be tempted to set this to a large
1418 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1419 * system. And if you are -that- concerned about energy efficiency,
1420 * just power the system down and be done with it!
778d250a
PM
1421 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1422 * permitted to sleep in dyntick-idle mode with only lazy RCU
1423 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1424 *
1425 * The values below work well in practice. If future workloads require
1426 * adjustment, they can be converted into kernel config parameters, though
1427 * making the state machine smarter might be a better option.
1428 */
e84c48ae 1429#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1430#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1431
5e44ce35
PM
1432static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1433module_param(rcu_idle_gp_delay, int, 0644);
1434static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1435module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1436
d689fe22 1437extern int tick_nohz_active;
486e2593
PM
1438
1439/*
c229828c
PM
1440 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1441 * only if it has been awhile since the last time we did so. Afterwards,
1442 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1443 */
f1f399d1 1444static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1445{
c0f4dfd4
PM
1446 bool cbs_ready = false;
1447 struct rcu_data *rdp;
c229828c 1448 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1449 struct rcu_node *rnp;
1450 struct rcu_state *rsp;
486e2593 1451
c229828c
PM
1452 /* Exit early if we advanced recently. */
1453 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1454 return false;
c229828c
PM
1455 rdtp->last_advance_all = jiffies;
1456
c0f4dfd4
PM
1457 for_each_rcu_flavor(rsp) {
1458 rdp = this_cpu_ptr(rsp->rda);
1459 rnp = rdp->mynode;
486e2593 1460
c0f4dfd4
PM
1461 /*
1462 * Don't bother checking unless a grace period has
1463 * completed since we last checked and there are
1464 * callbacks not yet ready to invoke.
1465 */
e3663b10
PM
1466 if ((rdp->completed != rnp->completed ||
1467 unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
c0f4dfd4 1468 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1469 note_gp_changes(rsp, rdp);
486e2593 1470
c0f4dfd4
PM
1471 if (cpu_has_callbacks_ready_to_invoke(rdp))
1472 cbs_ready = true;
1473 }
1474 return cbs_ready;
486e2593
PM
1475}
1476
aa9b1630 1477/*
c0f4dfd4
PM
1478 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1479 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1480 * caller to set the timeout based on whether or not there are non-lazy
1481 * callbacks.
aa9b1630 1482 *
c0f4dfd4 1483 * The caller must have disabled interrupts.
aa9b1630 1484 */
ffa83fb5 1485#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa6da514 1486int rcu_needs_cpu(unsigned long *dj)
aa9b1630 1487{
aa6da514 1488 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
aa9b1630 1489
c0f4dfd4
PM
1490 /* Snapshot to detect later posting of non-lazy callback. */
1491 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1492
aa9b1630 1493 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1494 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c0f4dfd4 1495 *dj = ULONG_MAX;
aa9b1630
PM
1496 return 0;
1497 }
c0f4dfd4
PM
1498
1499 /* Attempt to advance callbacks. */
1500 if (rcu_try_advance_all_cbs()) {
1501 /* Some ready to invoke, so initiate later invocation. */
1502 invoke_rcu_core();
aa9b1630
PM
1503 return 1;
1504 }
c0f4dfd4
PM
1505 rdtp->last_accelerate = jiffies;
1506
1507 /* Request timer delay depending on laziness, and round. */
6faf7283 1508 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1509 *dj = round_up(rcu_idle_gp_delay + jiffies,
1510 rcu_idle_gp_delay) - jiffies;
e84c48ae 1511 } else {
c0f4dfd4 1512 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1513 }
aa9b1630
PM
1514 return 0;
1515}
ffa83fb5 1516#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1517
21e52e15 1518/*
c0f4dfd4
PM
1519 * Prepare a CPU for idle from an RCU perspective. The first major task
1520 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1521 * The second major task is to check to see if a non-lazy callback has
1522 * arrived at a CPU that previously had only lazy callbacks. The third
1523 * major task is to accelerate (that is, assign grace-period numbers to)
1524 * any recently arrived callbacks.
aea1b35e
PM
1525 *
1526 * The caller must have disabled interrupts.
8bd93a2c 1527 */
198bbf81 1528static void rcu_prepare_for_idle(void)
8bd93a2c 1529{
f1f399d1 1530#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1531 bool needwake;
c0f4dfd4 1532 struct rcu_data *rdp;
198bbf81 1533 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1534 struct rcu_node *rnp;
1535 struct rcu_state *rsp;
9d2ad243
PM
1536 int tne;
1537
1538 /* Handle nohz enablement switches conservatively. */
d689fe22 1539 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1540 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1541 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1542 invoke_rcu_core(); /* force nohz to see update. */
1543 rdtp->tick_nohz_enabled_snap = tne;
1544 return;
1545 }
1546 if (!tne)
1547 return;
f511fc62 1548
c0f4dfd4 1549 /* If this is a no-CBs CPU, no callbacks, just return. */
198bbf81 1550 if (rcu_is_nocb_cpu(smp_processor_id()))
9a0c6fef 1551 return;
9a0c6fef 1552
c57afe80 1553 /*
c0f4dfd4
PM
1554 * If a non-lazy callback arrived at a CPU having only lazy
1555 * callbacks, invoke RCU core for the side-effect of recalculating
1556 * idle duration on re-entry to idle.
c57afe80 1557 */
c0f4dfd4
PM
1558 if (rdtp->all_lazy &&
1559 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1560 rdtp->all_lazy = false;
1561 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1562 invoke_rcu_core();
c57afe80
PM
1563 return;
1564 }
c57afe80 1565
3084f2f8 1566 /*
c0f4dfd4
PM
1567 * If we have not yet accelerated this jiffy, accelerate all
1568 * callbacks on this CPU.
3084f2f8 1569 */
c0f4dfd4 1570 if (rdtp->last_accelerate == jiffies)
aea1b35e 1571 return;
c0f4dfd4
PM
1572 rdtp->last_accelerate = jiffies;
1573 for_each_rcu_flavor(rsp) {
198bbf81 1574 rdp = this_cpu_ptr(rsp->rda);
c0f4dfd4
PM
1575 if (!*rdp->nxttail[RCU_DONE_TAIL])
1576 continue;
1577 rnp = rdp->mynode;
1578 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1579 smp_mb__after_unlock_lock();
48a7639c 1580 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1581 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1582 if (needwake)
1583 rcu_gp_kthread_wake(rsp);
77e38ed3 1584 }
f1f399d1 1585#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1586}
3084f2f8 1587
c0f4dfd4
PM
1588/*
1589 * Clean up for exit from idle. Attempt to advance callbacks based on
1590 * any grace periods that elapsed while the CPU was idle, and if any
1591 * callbacks are now ready to invoke, initiate invocation.
1592 */
8fa7845d 1593static void rcu_cleanup_after_idle(void)
c0f4dfd4 1594{
f1f399d1 1595#ifndef CONFIG_RCU_NOCB_CPU_ALL
8fa7845d 1596 if (rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1597 return;
7a497c96
PM
1598 if (rcu_try_advance_all_cbs())
1599 invoke_rcu_core();
f1f399d1 1600#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1601}
1602
c57afe80 1603/*
98248a0e
PM
1604 * Keep a running count of the number of non-lazy callbacks posted
1605 * on this CPU. This running counter (which is never decremented) allows
1606 * rcu_prepare_for_idle() to detect when something out of the idle loop
1607 * posts a callback, even if an equal number of callbacks are invoked.
1608 * Of course, callbacks should only be posted from within a trace event
1609 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1610 */
1611static void rcu_idle_count_callbacks_posted(void)
1612{
5955f7ee 1613 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1614}
1615
b626c1b6
PM
1616/*
1617 * Data for flushing lazy RCU callbacks at OOM time.
1618 */
1619static atomic_t oom_callback_count;
1620static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1621
1622/*
1623 * RCU OOM callback -- decrement the outstanding count and deliver the
1624 * wake-up if we are the last one.
1625 */
1626static void rcu_oom_callback(struct rcu_head *rhp)
1627{
1628 if (atomic_dec_and_test(&oom_callback_count))
1629 wake_up(&oom_callback_wq);
1630}
1631
1632/*
1633 * Post an rcu_oom_notify callback on the current CPU if it has at
1634 * least one lazy callback. This will unnecessarily post callbacks
1635 * to CPUs that already have a non-lazy callback at the end of their
1636 * callback list, but this is an infrequent operation, so accept some
1637 * extra overhead to keep things simple.
1638 */
1639static void rcu_oom_notify_cpu(void *unused)
1640{
1641 struct rcu_state *rsp;
1642 struct rcu_data *rdp;
1643
1644 for_each_rcu_flavor(rsp) {
fa07a58f 1645 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1646 if (rdp->qlen_lazy != 0) {
1647 atomic_inc(&oom_callback_count);
1648 rsp->call(&rdp->oom_head, rcu_oom_callback);
1649 }
1650 }
1651}
1652
1653/*
1654 * If low on memory, ensure that each CPU has a non-lazy callback.
1655 * This will wake up CPUs that have only lazy callbacks, in turn
1656 * ensuring that they free up the corresponding memory in a timely manner.
1657 * Because an uncertain amount of memory will be freed in some uncertain
1658 * timeframe, we do not claim to have freed anything.
1659 */
1660static int rcu_oom_notify(struct notifier_block *self,
1661 unsigned long notused, void *nfreed)
1662{
1663 int cpu;
1664
1665 /* Wait for callbacks from earlier instance to complete. */
1666 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1667 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1668
1669 /*
1670 * Prevent premature wakeup: ensure that all increments happen
1671 * before there is a chance of the counter reaching zero.
1672 */
1673 atomic_set(&oom_callback_count, 1);
1674
1675 get_online_cpus();
1676 for_each_online_cpu(cpu) {
1677 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1678 cond_resched_rcu_qs();
b626c1b6
PM
1679 }
1680 put_online_cpus();
1681
1682 /* Unconditionally decrement: no need to wake ourselves up. */
1683 atomic_dec(&oom_callback_count);
1684
1685 return NOTIFY_OK;
1686}
1687
1688static struct notifier_block rcu_oom_nb = {
1689 .notifier_call = rcu_oom_notify
1690};
1691
1692static int __init rcu_register_oom_notifier(void)
1693{
1694 register_oom_notifier(&rcu_oom_nb);
1695 return 0;
1696}
1697early_initcall(rcu_register_oom_notifier);
1698
8bd93a2c 1699#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1700
1701#ifdef CONFIG_RCU_CPU_STALL_INFO
1702
1703#ifdef CONFIG_RCU_FAST_NO_HZ
1704
1705static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1706{
5955f7ee 1707 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1708 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1709
c0f4dfd4
PM
1710 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1711 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1712 ulong2long(nlpd),
1713 rdtp->all_lazy ? 'L' : '.',
1714 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1715}
1716
1717#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1718
1719static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1720{
1c17e4d4 1721 *cp = '\0';
a858af28
PM
1722}
1723
1724#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1725
1726/* Initiate the stall-info list. */
1727static void print_cpu_stall_info_begin(void)
1728{
efc151c3 1729 pr_cont("\n");
a858af28
PM
1730}
1731
1732/*
1733 * Print out diagnostic information for the specified stalled CPU.
1734 *
1735 * If the specified CPU is aware of the current RCU grace period
1736 * (flavor specified by rsp), then print the number of scheduling
1737 * clock interrupts the CPU has taken during the time that it has
1738 * been aware. Otherwise, print the number of RCU grace periods
1739 * that this CPU is ignorant of, for example, "1" if the CPU was
1740 * aware of the previous grace period.
1741 *
1742 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1743 */
1744static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1745{
1746 char fast_no_hz[72];
1747 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1748 struct rcu_dynticks *rdtp = rdp->dynticks;
1749 char *ticks_title;
1750 unsigned long ticks_value;
1751
1752 if (rsp->gpnum == rdp->gpnum) {
1753 ticks_title = "ticks this GP";
1754 ticks_value = rdp->ticks_this_gp;
1755 } else {
1756 ticks_title = "GPs behind";
1757 ticks_value = rsp->gpnum - rdp->gpnum;
1758 }
1759 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
fc908ed3 1760 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
a858af28
PM
1761 cpu, ticks_value, ticks_title,
1762 atomic_read(&rdtp->dynticks) & 0xfff,
1763 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1764 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
fc908ed3 1765 ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1766 fast_no_hz);
1767}
1768
1769/* Terminate the stall-info list. */
1770static void print_cpu_stall_info_end(void)
1771{
efc151c3 1772 pr_err("\t");
a858af28
PM
1773}
1774
1775/* Zero ->ticks_this_gp for all flavors of RCU. */
1776static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1777{
1778 rdp->ticks_this_gp = 0;
6231069b 1779 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1780}
1781
1782/* Increment ->ticks_this_gp for all flavors of RCU. */
1783static void increment_cpu_stall_ticks(void)
1784{
115f7a7c
PM
1785 struct rcu_state *rsp;
1786
1787 for_each_rcu_flavor(rsp)
fa07a58f 1788 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1789}
1790
1791#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1792
1793static void print_cpu_stall_info_begin(void)
1794{
efc151c3 1795 pr_cont(" {");
a858af28
PM
1796}
1797
1798static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1799{
efc151c3 1800 pr_cont(" %d", cpu);
a858af28
PM
1801}
1802
1803static void print_cpu_stall_info_end(void)
1804{
efc151c3 1805 pr_cont("} ");
a858af28
PM
1806}
1807
1808static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1809{
1810}
1811
1812static void increment_cpu_stall_ticks(void)
1813{
1814}
1815
1816#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1817
1818#ifdef CONFIG_RCU_NOCB_CPU
1819
1820/*
1821 * Offload callback processing from the boot-time-specified set of CPUs
1822 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1823 * kthread created that pulls the callbacks from the corresponding CPU,
1824 * waits for a grace period to elapse, and invokes the callbacks.
1825 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1826 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1827 * has been specified, in which case each kthread actively polls its
1828 * CPU. (Which isn't so great for energy efficiency, but which does
1829 * reduce RCU's overhead on that CPU.)
1830 *
1831 * This is intended to be used in conjunction with Frederic Weisbecker's
1832 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1833 * running CPU-bound user-mode computations.
1834 *
1835 * Offloading of callback processing could also in theory be used as
1836 * an energy-efficiency measure because CPUs with no RCU callbacks
1837 * queued are more aggressive about entering dyntick-idle mode.
1838 */
1839
1840
1841/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1842static int __init rcu_nocb_setup(char *str)
1843{
1844 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1845 have_rcu_nocb_mask = true;
1846 cpulist_parse(str, rcu_nocb_mask);
1847 return 1;
1848}
1849__setup("rcu_nocbs=", rcu_nocb_setup);
1850
1b0048a4
PG
1851static int __init parse_rcu_nocb_poll(char *arg)
1852{
1853 rcu_nocb_poll = 1;
1854 return 0;
1855}
1856early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1857
dae6e64d 1858/*
0446be48
PM
1859 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1860 * grace period.
dae6e64d 1861 */
0446be48 1862static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 1863{
0446be48 1864 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
1865}
1866
1867/*
8b425aa8 1868 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1869 * based on the sum of those of all rcu_node structures. This does
1870 * double-count the root rcu_node structure's requests, but this
1871 * is necessary to handle the possibility of a rcu_nocb_kthread()
1872 * having awakened during the time that the rcu_node structures
1873 * were being updated for the end of the previous grace period.
34ed6246 1874 */
dae6e64d
PM
1875static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1876{
8b425aa8 1877 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1878}
1879
1880static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1881{
dae6e64d
PM
1882 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1883 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1884}
1885
2f33b512 1886#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 1887/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1888bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1889{
1890 if (have_rcu_nocb_mask)
1891 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1892 return false;
1893}
2f33b512 1894#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 1895
fbce7497
PM
1896/*
1897 * Kick the leader kthread for this NOCB group.
1898 */
1899static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1900{
1901 struct rcu_data *rdp_leader = rdp->nocb_leader;
1902
1903 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1904 return;
11ed7f93 1905 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 1906 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
11ed7f93 1907 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
fbce7497
PM
1908 wake_up(&rdp_leader->nocb_wq);
1909 }
1910}
1911
d7e29933
PM
1912/*
1913 * Does the specified CPU need an RCU callback for the specified flavor
1914 * of rcu_barrier()?
1915 */
1916static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1917{
1918 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1919 unsigned long ret;
1920#ifdef CONFIG_PROVE_RCU
d7e29933 1921 struct rcu_head *rhp;
41050a00 1922#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1923
41050a00
PM
1924 /*
1925 * Check count of all no-CBs callbacks awaiting invocation.
1926 * There needs to be a barrier before this function is called,
1927 * but associated with a prior determination that no more
1928 * callbacks would be posted. In the worst case, the first
1929 * barrier in _rcu_barrier() suffices (but the caller cannot
1930 * necessarily rely on this, not a substitute for the caller
1931 * getting the concurrency design right!). There must also be
1932 * a barrier between the following load an posting of a callback
1933 * (if a callback is in fact needed). This is associated with an
1934 * atomic_inc() in the caller.
1935 */
1936 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1937
41050a00 1938#ifdef CONFIG_PROVE_RCU
d7e29933
PM
1939 rhp = ACCESS_ONCE(rdp->nocb_head);
1940 if (!rhp)
1941 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1942 if (!rhp)
1943 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1944
1945 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1946 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1947 /* RCU callback enqueued before CPU first came online??? */
1948 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1949 cpu, rhp->func);
1950 WARN_ON_ONCE(1);
1951 }
41050a00 1952#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1953
41050a00 1954 return !!ret;
d7e29933
PM
1955}
1956
3fbfbf7a
PM
1957/*
1958 * Enqueue the specified string of rcu_head structures onto the specified
1959 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1960 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1961 * counts are supplied by rhcount and rhcount_lazy.
1962 *
1963 * If warranted, also wake up the kthread servicing this CPUs queues.
1964 */
1965static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1966 struct rcu_head *rhp,
1967 struct rcu_head **rhtp,
96d3fd0d
PM
1968 int rhcount, int rhcount_lazy,
1969 unsigned long flags)
3fbfbf7a
PM
1970{
1971 int len;
1972 struct rcu_head **old_rhpp;
1973 struct task_struct *t;
1974
1975 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1976 atomic_long_add(rhcount, &rdp->nocb_q_count);
1977 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a
PM
1978 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1979 ACCESS_ONCE(*old_rhpp) = rhp;
3fbfbf7a 1980 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1981 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1982
1983 /* If we are not being polled and there is a kthread, awaken it ... */
1984 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 1985 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1986 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1987 TPS("WakeNotPoll"));
3fbfbf7a 1988 return;
9261dd0d 1989 }
3fbfbf7a
PM
1990 len = atomic_long_read(&rdp->nocb_q_count);
1991 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 1992 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
1993 /* ... if queue was empty ... */
1994 wake_nocb_leader(rdp, false);
96d3fd0d
PM
1995 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1996 TPS("WakeEmpty"));
1997 } else {
9fdd3bc9 1998 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
1999 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2000 TPS("WakeEmptyIsDeferred"));
2001 }
3fbfbf7a
PM
2002 rdp->qlen_last_fqs_check = 0;
2003 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 2004 /* ... or if many callbacks queued. */
9fdd3bc9
PM
2005 if (!irqs_disabled_flags(flags)) {
2006 wake_nocb_leader(rdp, true);
2007 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2008 TPS("WakeOvf"));
2009 } else {
2010 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2011 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2012 TPS("WakeOvfIsDeferred"));
2013 }
3fbfbf7a 2014 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2015 } else {
2016 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2017 }
2018 return;
2019}
2020
2021/*
2022 * This is a helper for __call_rcu(), which invokes this when the normal
2023 * callback queue is inoperable. If this is not a no-CBs CPU, this
2024 * function returns failure back to __call_rcu(), which can complain
2025 * appropriately.
2026 *
2027 * Otherwise, this function queues the callback where the corresponding
2028 * "rcuo" kthread can find it.
2029 */
2030static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2031 bool lazy, unsigned long flags)
3fbfbf7a
PM
2032{
2033
d1e43fa5 2034 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2035 return false;
96d3fd0d 2036 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2037 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2038 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2039 (unsigned long)rhp->func,
756cbf6b
PM
2040 -atomic_long_read(&rdp->nocb_q_count_lazy),
2041 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2042 else
2043 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2044 -atomic_long_read(&rdp->nocb_q_count_lazy),
2045 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2046
2047 /*
2048 * If called from an extended quiescent state with interrupts
2049 * disabled, invoke the RCU core in order to allow the idle-entry
2050 * deferred-wakeup check to function.
2051 */
2052 if (irqs_disabled_flags(flags) &&
2053 !rcu_is_watching() &&
2054 cpu_online(smp_processor_id()))
2055 invoke_rcu_core();
2056
c271d3a9 2057 return true;
3fbfbf7a
PM
2058}
2059
2060/*
2061 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2062 * not a no-CBs CPU.
2063 */
2064static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2065 struct rcu_data *rdp,
2066 unsigned long flags)
3fbfbf7a
PM
2067{
2068 long ql = rsp->qlen;
2069 long qll = rsp->qlen_lazy;
2070
2071 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2072 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2073 return false;
3fbfbf7a
PM
2074 rsp->qlen = 0;
2075 rsp->qlen_lazy = 0;
2076
2077 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2078 if (rsp->orphan_donelist != NULL) {
2079 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2080 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2081 ql = qll = 0;
2082 rsp->orphan_donelist = NULL;
2083 rsp->orphan_donetail = &rsp->orphan_donelist;
2084 }
2085 if (rsp->orphan_nxtlist != NULL) {
2086 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2087 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2088 ql = qll = 0;
2089 rsp->orphan_nxtlist = NULL;
2090 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2091 }
0a9e1e11 2092 return true;
3fbfbf7a
PM
2093}
2094
2095/*
34ed6246
PM
2096 * If necessary, kick off a new grace period, and either way wait
2097 * for a subsequent grace period to complete.
3fbfbf7a 2098 */
34ed6246 2099static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2100{
34ed6246 2101 unsigned long c;
dae6e64d 2102 bool d;
34ed6246 2103 unsigned long flags;
48a7639c 2104 bool needwake;
34ed6246
PM
2105 struct rcu_node *rnp = rdp->mynode;
2106
2107 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2108 smp_mb__after_unlock_lock();
48a7639c 2109 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2110 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2111 if (needwake)
2112 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2113
2114 /*
34ed6246
PM
2115 * Wait for the grace period. Do so interruptibly to avoid messing
2116 * up the load average.
3fbfbf7a 2117 */
f7f7bac9 2118 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2119 for (;;) {
dae6e64d
PM
2120 wait_event_interruptible(
2121 rnp->nocb_gp_wq[c & 0x1],
2122 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2123 if (likely(d))
34ed6246 2124 break;
73a860cd 2125 WARN_ON(signal_pending(current));
f7f7bac9 2126 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2127 }
f7f7bac9 2128 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2129 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2130}
2131
fbce7497
PM
2132/*
2133 * Leaders come here to wait for additional callbacks to show up.
2134 * This function does not return until callbacks appear.
2135 */
2136static void nocb_leader_wait(struct rcu_data *my_rdp)
2137{
2138 bool firsttime = true;
2139 bool gotcbs;
2140 struct rcu_data *rdp;
2141 struct rcu_head **tail;
2142
2143wait_again:
2144
2145 /* Wait for callbacks to appear. */
2146 if (!rcu_nocb_poll) {
2147 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2148 wait_event_interruptible(my_rdp->nocb_wq,
11ed7f93 2149 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2150 /* Memory barrier handled by smp_mb() calls below and repoll. */
2151 } else if (firsttime) {
2152 firsttime = false; /* Don't drown trace log with "Poll"! */
2153 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2154 }
2155
2156 /*
2157 * Each pass through the following loop checks a follower for CBs.
2158 * We are our own first follower. Any CBs found are moved to
2159 * nocb_gp_head, where they await a grace period.
2160 */
2161 gotcbs = false;
2162 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2163 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2164 if (!rdp->nocb_gp_head)
2165 continue; /* No CBs here, try next follower. */
2166
2167 /* Move callbacks to wait-for-GP list, which is empty. */
2168 ACCESS_ONCE(rdp->nocb_head) = NULL;
2169 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2170 gotcbs = true;
2171 }
2172
2173 /*
2174 * If there were no callbacks, sleep a bit, rescan after a
2175 * memory barrier, and go retry.
2176 */
2177 if (unlikely(!gotcbs)) {
2178 if (!rcu_nocb_poll)
2179 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2180 "WokeEmpty");
73a860cd 2181 WARN_ON(signal_pending(current));
fbce7497
PM
2182 schedule_timeout_interruptible(1);
2183
2184 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2185 my_rdp->nocb_leader_sleep = true;
2186 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497
PM
2187 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2188 if (ACCESS_ONCE(rdp->nocb_head)) {
2189 /* Found CB, so short-circuit next wait. */
11ed7f93 2190 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2191 break;
2192 }
2193 goto wait_again;
2194 }
2195
2196 /* Wait for one grace period. */
2197 rcu_nocb_wait_gp(my_rdp);
2198
2199 /*
11ed7f93
PK
2200 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2201 * We set it now, but recheck for new callbacks while
fbce7497
PM
2202 * traversing our follower list.
2203 */
11ed7f93
PK
2204 my_rdp->nocb_leader_sleep = true;
2205 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2206
2207 /* Each pass through the following loop wakes a follower, if needed. */
2208 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2209 if (ACCESS_ONCE(rdp->nocb_head))
11ed7f93 2210 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2211 if (!rdp->nocb_gp_head)
2212 continue; /* No CBs, so no need to wake follower. */
2213
2214 /* Append callbacks to follower's "done" list. */
2215 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2216 *tail = rdp->nocb_gp_head;
c847f142 2217 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2218 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2219 /*
2220 * List was empty, wake up the follower.
2221 * Memory barriers supplied by atomic_long_add().
2222 */
2223 wake_up(&rdp->nocb_wq);
2224 }
2225 }
2226
2227 /* If we (the leader) don't have CBs, go wait some more. */
2228 if (!my_rdp->nocb_follower_head)
2229 goto wait_again;
2230}
2231
2232/*
2233 * Followers come here to wait for additional callbacks to show up.
2234 * This function does not return until callbacks appear.
2235 */
2236static void nocb_follower_wait(struct rcu_data *rdp)
2237{
2238 bool firsttime = true;
2239
2240 for (;;) {
2241 if (!rcu_nocb_poll) {
2242 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2243 "FollowerSleep");
2244 wait_event_interruptible(rdp->nocb_wq,
2245 ACCESS_ONCE(rdp->nocb_follower_head));
2246 } else if (firsttime) {
2247 /* Don't drown trace log with "Poll"! */
2248 firsttime = false;
2249 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2250 }
2251 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2252 /* ^^^ Ensure CB invocation follows _head test. */
2253 return;
2254 }
2255 if (!rcu_nocb_poll)
2256 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2257 "WokeEmpty");
73a860cd 2258 WARN_ON(signal_pending(current));
fbce7497
PM
2259 schedule_timeout_interruptible(1);
2260 }
2261}
2262
3fbfbf7a
PM
2263/*
2264 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2265 * callbacks queued by the corresponding no-CBs CPU, however, there is
2266 * an optional leader-follower relationship so that the grace-period
2267 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2268 */
2269static int rcu_nocb_kthread(void *arg)
2270{
2271 int c, cl;
2272 struct rcu_head *list;
2273 struct rcu_head *next;
2274 struct rcu_head **tail;
2275 struct rcu_data *rdp = arg;
2276
2277 /* Each pass through this loop invokes one batch of callbacks */
2278 for (;;) {
fbce7497
PM
2279 /* Wait for callbacks. */
2280 if (rdp->nocb_leader == rdp)
2281 nocb_leader_wait(rdp);
2282 else
2283 nocb_follower_wait(rdp);
2284
2285 /* Pull the ready-to-invoke callbacks onto local list. */
2286 list = ACCESS_ONCE(rdp->nocb_follower_head);
2287 BUG_ON(!list);
2288 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2289 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2290 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
3fbfbf7a
PM
2291
2292 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2293 trace_rcu_batch_start(rdp->rsp->name,
2294 atomic_long_read(&rdp->nocb_q_count_lazy),
2295 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2296 c = cl = 0;
2297 while (list) {
2298 next = list->next;
2299 /* Wait for enqueuing to complete, if needed. */
2300 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2301 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2302 TPS("WaitQueue"));
3fbfbf7a 2303 schedule_timeout_interruptible(1);
69a79bb1
PM
2304 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2305 TPS("WokeQueue"));
3fbfbf7a
PM
2306 next = list->next;
2307 }
2308 debug_rcu_head_unqueue(list);
2309 local_bh_disable();
2310 if (__rcu_reclaim(rdp->rsp->name, list))
2311 cl++;
2312 c++;
2313 local_bh_enable();
2314 list = next;
2315 }
2316 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2317 smp_mb__before_atomic(); /* _add after CB invocation. */
2318 atomic_long_add(-c, &rdp->nocb_q_count);
2319 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2320 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2321 }
2322 return 0;
2323}
2324
96d3fd0d 2325/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2326static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2327{
2328 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2329}
2330
2331/* Do a deferred wakeup of rcu_nocb_kthread(). */
2332static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2333{
9fdd3bc9
PM
2334 int ndw;
2335
96d3fd0d
PM
2336 if (!rcu_nocb_need_deferred_wakeup(rdp))
2337 return;
9fdd3bc9
PM
2338 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2339 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2340 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2341 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2342}
2343
f4579fc5
PM
2344void __init rcu_init_nohz(void)
2345{
2346 int cpu;
2347 bool need_rcu_nocb_mask = true;
2348 struct rcu_state *rsp;
2349
2350#ifdef CONFIG_RCU_NOCB_CPU_NONE
2351 need_rcu_nocb_mask = false;
2352#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2353
2354#if defined(CONFIG_NO_HZ_FULL)
2355 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2356 need_rcu_nocb_mask = true;
2357#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2358
2359 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2360 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2361 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2362 return;
2363 }
f4579fc5
PM
2364 have_rcu_nocb_mask = true;
2365 }
2366 if (!have_rcu_nocb_mask)
2367 return;
2368
2369#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2370 pr_info("\tOffload RCU callbacks from CPU 0\n");
2371 cpumask_set_cpu(0, rcu_nocb_mask);
2372#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2373#ifdef CONFIG_RCU_NOCB_CPU_ALL
2374 pr_info("\tOffload RCU callbacks from all CPUs\n");
2375 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2376#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2377#if defined(CONFIG_NO_HZ_FULL)
2378 if (tick_nohz_full_running)
2379 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2380#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2381
2382 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2383 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2384 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2385 rcu_nocb_mask);
2386 }
ad853b48
TH
2387 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2388 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2389 if (rcu_nocb_poll)
2390 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2391
2392 for_each_rcu_flavor(rsp) {
2393 for_each_cpu(cpu, rcu_nocb_mask) {
2394 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2395
2396 /*
2397 * If there are early callbacks, they will need
2398 * to be moved to the nocb lists.
2399 */
2400 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2401 &rdp->nxtlist &&
2402 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2403 init_nocb_callback_list(rdp);
2404 }
35ce7f29 2405 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2406 }
96d3fd0d
PM
2407}
2408
3fbfbf7a
PM
2409/* Initialize per-rcu_data variables for no-CBs CPUs. */
2410static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2411{
2412 rdp->nocb_tail = &rdp->nocb_head;
2413 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2414 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2415}
2416
35ce7f29
PM
2417/*
2418 * If the specified CPU is a no-CBs CPU that does not already have its
2419 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2420 * brought online out of order, this can require re-organizing the
2421 * leader-follower relationships.
2422 */
2423static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2424{
2425 struct rcu_data *rdp;
2426 struct rcu_data *rdp_last;
2427 struct rcu_data *rdp_old_leader;
2428 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2429 struct task_struct *t;
2430
2431 /*
2432 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2433 * then nothing to do.
2434 */
2435 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2436 return;
2437
2438 /* If we didn't spawn the leader first, reorganize! */
2439 rdp_old_leader = rdp_spawn->nocb_leader;
2440 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2441 rdp_last = NULL;
2442 rdp = rdp_old_leader;
2443 do {
2444 rdp->nocb_leader = rdp_spawn;
2445 if (rdp_last && rdp != rdp_spawn)
2446 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2447 if (rdp == rdp_spawn) {
2448 rdp = rdp->nocb_next_follower;
2449 } else {
2450 rdp_last = rdp;
2451 rdp = rdp->nocb_next_follower;
2452 rdp_last->nocb_next_follower = NULL;
2453 }
35ce7f29
PM
2454 } while (rdp);
2455 rdp_spawn->nocb_next_follower = rdp_old_leader;
2456 }
2457
2458 /* Spawn the kthread for this CPU and RCU flavor. */
2459 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2460 "rcuo%c/%d", rsp->abbr, cpu);
2461 BUG_ON(IS_ERR(t));
2462 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2463}
2464
2465/*
2466 * If the specified CPU is a no-CBs CPU that does not already have its
2467 * rcuo kthreads, spawn them.
2468 */
2469static void rcu_spawn_all_nocb_kthreads(int cpu)
2470{
2471 struct rcu_state *rsp;
2472
2473 if (rcu_scheduler_fully_active)
2474 for_each_rcu_flavor(rsp)
2475 rcu_spawn_one_nocb_kthread(rsp, cpu);
2476}
2477
2478/*
2479 * Once the scheduler is running, spawn rcuo kthreads for all online
2480 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2481 * non-boot CPUs come online -- if this changes, we will need to add
2482 * some mutual exclusion.
2483 */
2484static void __init rcu_spawn_nocb_kthreads(void)
2485{
2486 int cpu;
2487
2488 for_each_online_cpu(cpu)
2489 rcu_spawn_all_nocb_kthreads(cpu);
2490}
2491
fbce7497
PM
2492/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2493static int rcu_nocb_leader_stride = -1;
2494module_param(rcu_nocb_leader_stride, int, 0444);
2495
2496/*
35ce7f29 2497 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2498 */
35ce7f29 2499static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2500{
2501 int cpu;
fbce7497
PM
2502 int ls = rcu_nocb_leader_stride;
2503 int nl = 0; /* Next leader. */
3fbfbf7a 2504 struct rcu_data *rdp;
fbce7497
PM
2505 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2506 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2507
22c2f669 2508 if (!have_rcu_nocb_mask)
3fbfbf7a 2509 return;
fbce7497
PM
2510 if (ls == -1) {
2511 ls = int_sqrt(nr_cpu_ids);
2512 rcu_nocb_leader_stride = ls;
2513 }
2514
2515 /*
2516 * Each pass through this loop sets up one rcu_data structure and
2517 * spawns one rcu_nocb_kthread().
2518 */
3fbfbf7a
PM
2519 for_each_cpu(cpu, rcu_nocb_mask) {
2520 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2521 if (rdp->cpu >= nl) {
2522 /* New leader, set up for followers & next leader. */
2523 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2524 rdp->nocb_leader = rdp;
2525 rdp_leader = rdp;
2526 } else {
2527 /* Another follower, link to previous leader. */
2528 rdp->nocb_leader = rdp_leader;
2529 rdp_prev->nocb_next_follower = rdp;
2530 }
2531 rdp_prev = rdp;
3fbfbf7a
PM
2532 }
2533}
2534
2535/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2536static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2537{
22c2f669 2538 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2539 return false;
22c2f669 2540
3fbfbf7a 2541 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2542 return true;
3fbfbf7a
PM
2543}
2544
34ed6246
PM
2545#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2546
d7e29933
PM
2547static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2548{
2549 WARN_ON_ONCE(1); /* Should be dead code. */
2550 return false;
2551}
2552
0446be48 2553static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2554{
3fbfbf7a
PM
2555}
2556
dae6e64d
PM
2557static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2558{
2559}
2560
2561static void rcu_init_one_nocb(struct rcu_node *rnp)
2562{
2563}
3fbfbf7a 2564
3fbfbf7a 2565static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2566 bool lazy, unsigned long flags)
3fbfbf7a 2567{
4afc7e26 2568 return false;
3fbfbf7a
PM
2569}
2570
2571static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2572 struct rcu_data *rdp,
2573 unsigned long flags)
3fbfbf7a 2574{
f4aa84ba 2575 return false;
3fbfbf7a
PM
2576}
2577
3fbfbf7a
PM
2578static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2579{
2580}
2581
9fdd3bc9 2582static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2583{
2584 return false;
2585}
2586
2587static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2588{
2589}
2590
35ce7f29
PM
2591static void rcu_spawn_all_nocb_kthreads(int cpu)
2592{
2593}
2594
2595static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2596{
2597}
2598
34ed6246 2599static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2600{
34ed6246 2601 return false;
3fbfbf7a
PM
2602}
2603
2604#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2605
2606/*
2607 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2608 * arbitrarily long period of time with the scheduling-clock tick turned
2609 * off. RCU will be paying attention to this CPU because it is in the
2610 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2611 * machine because the scheduling-clock tick has been disabled. Therefore,
2612 * if an adaptive-ticks CPU is failing to respond to the current grace
2613 * period and has not be idle from an RCU perspective, kick it.
2614 */
4a81e832 2615static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2616{
2617#ifdef CONFIG_NO_HZ_FULL
2618 if (tick_nohz_full_cpu(cpu))
2619 smp_send_reschedule(cpu);
2620#endif /* #ifdef CONFIG_NO_HZ_FULL */
2621}
2333210b
PM
2622
2623
2624#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2625
0edd1b17 2626static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2627#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2628#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2629#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2630#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2631#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2632
eb348b89
PM
2633/*
2634 * Invoked to note exit from irq or task transition to idle. Note that
2635 * usermode execution does -not- count as idle here! After all, we want
2636 * to detect full-system idle states, not RCU quiescent states and grace
2637 * periods. The caller must have disabled interrupts.
2638 */
28ced795 2639static void rcu_sysidle_enter(int irq)
eb348b89
PM
2640{
2641 unsigned long j;
28ced795 2642 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
eb348b89 2643
663e1310
PM
2644 /* If there are no nohz_full= CPUs, no need to track this. */
2645 if (!tick_nohz_full_enabled())
2646 return;
2647
eb348b89
PM
2648 /* Adjust nesting, check for fully idle. */
2649 if (irq) {
2650 rdtp->dynticks_idle_nesting--;
2651 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2652 if (rdtp->dynticks_idle_nesting != 0)
2653 return; /* Still not fully idle. */
2654 } else {
2655 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2656 DYNTICK_TASK_NEST_VALUE) {
2657 rdtp->dynticks_idle_nesting = 0;
2658 } else {
2659 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2660 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2661 return; /* Still not fully idle. */
2662 }
2663 }
2664
2665 /* Record start of fully idle period. */
2666 j = jiffies;
2667 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2668 smp_mb__before_atomic();
eb348b89 2669 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2670 smp_mb__after_atomic();
eb348b89
PM
2671 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2672}
2673
0edd1b17
PM
2674/*
2675 * Unconditionally force exit from full system-idle state. This is
2676 * invoked when a normal CPU exits idle, but must be called separately
2677 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2678 * is that the timekeeping CPU is permitted to take scheduling-clock
2679 * interrupts while the system is in system-idle state, and of course
2680 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2681 * interrupt from any other type of interrupt.
2682 */
2683void rcu_sysidle_force_exit(void)
2684{
2685 int oldstate = ACCESS_ONCE(full_sysidle_state);
2686 int newoldstate;
2687
2688 /*
2689 * Each pass through the following loop attempts to exit full
2690 * system-idle state. If contention proves to be a problem,
2691 * a trylock-based contention tree could be used here.
2692 */
2693 while (oldstate > RCU_SYSIDLE_SHORT) {
2694 newoldstate = cmpxchg(&full_sysidle_state,
2695 oldstate, RCU_SYSIDLE_NOT);
2696 if (oldstate == newoldstate &&
2697 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2698 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2699 return; /* We cleared it, done! */
2700 }
2701 oldstate = newoldstate;
2702 }
2703 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2704}
2705
eb348b89
PM
2706/*
2707 * Invoked to note entry to irq or task transition from idle. Note that
2708 * usermode execution does -not- count as idle here! The caller must
2709 * have disabled interrupts.
2710 */
28ced795 2711static void rcu_sysidle_exit(int irq)
eb348b89 2712{
28ced795
CL
2713 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2714
663e1310
PM
2715 /* If there are no nohz_full= CPUs, no need to track this. */
2716 if (!tick_nohz_full_enabled())
2717 return;
2718
eb348b89
PM
2719 /* Adjust nesting, check for already non-idle. */
2720 if (irq) {
2721 rdtp->dynticks_idle_nesting++;
2722 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2723 if (rdtp->dynticks_idle_nesting != 1)
2724 return; /* Already non-idle. */
2725 } else {
2726 /*
2727 * Allow for irq misnesting. Yes, it really is possible
2728 * to enter an irq handler then never leave it, and maybe
2729 * also vice versa. Handle both possibilities.
2730 */
2731 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2732 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2733 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2734 return; /* Already non-idle. */
2735 } else {
2736 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2737 }
2738 }
2739
2740 /* Record end of idle period. */
4e857c58 2741 smp_mb__before_atomic();
eb348b89 2742 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2743 smp_mb__after_atomic();
eb348b89 2744 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2745
2746 /*
2747 * If we are the timekeeping CPU, we are permitted to be non-idle
2748 * during a system-idle state. This must be the case, because
2749 * the timekeeping CPU has to take scheduling-clock interrupts
2750 * during the time that the system is transitioning to full
2751 * system-idle state. This means that the timekeeping CPU must
2752 * invoke rcu_sysidle_force_exit() directly if it does anything
2753 * more than take a scheduling-clock interrupt.
2754 */
2755 if (smp_processor_id() == tick_do_timer_cpu)
2756 return;
2757
2758 /* Update system-idle state: We are clearly no longer fully idle! */
2759 rcu_sysidle_force_exit();
2760}
2761
2762/*
2763 * Check to see if the current CPU is idle. Note that usermode execution
2764 * does not count as idle. The caller must have disabled interrupts.
2765 */
2766static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2767 unsigned long *maxj)
2768{
2769 int cur;
2770 unsigned long j;
2771 struct rcu_dynticks *rdtp = rdp->dynticks;
2772
663e1310
PM
2773 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2774 if (!tick_nohz_full_enabled())
2775 return;
2776
0edd1b17
PM
2777 /*
2778 * If some other CPU has already reported non-idle, if this is
2779 * not the flavor of RCU that tracks sysidle state, or if this
2780 * is an offline or the timekeeping CPU, nothing to do.
2781 */
417e8d26 2782 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2783 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2784 return;
eb75767b
PM
2785 if (rcu_gp_in_progress(rdp->rsp))
2786 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2787
2788 /* Pick up current idle and NMI-nesting counter and check. */
2789 cur = atomic_read(&rdtp->dynticks_idle);
2790 if (cur & 0x1) {
2791 *isidle = false; /* We are not idle! */
2792 return;
2793 }
2794 smp_mb(); /* Read counters before timestamps. */
2795
2796 /* Pick up timestamps. */
2797 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2798 /* If this CPU entered idle more recently, update maxj timestamp. */
2799 if (ULONG_CMP_LT(*maxj, j))
2800 *maxj = j;
2801}
2802
2803/*
2804 * Is this the flavor of RCU that is handling full-system idle?
2805 */
2806static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2807{
417e8d26 2808 return rsp == rcu_state_p;
0edd1b17
PM
2809}
2810
2811/*
2812 * Return a delay in jiffies based on the number of CPUs, rcu_node
2813 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2814 * systems more time to transition to full-idle state in order to
2815 * avoid the cache thrashing that otherwise occur on the state variable.
2816 * Really small systems (less than a couple of tens of CPUs) should
2817 * instead use a single global atomically incremented counter, and later
2818 * versions of this will automatically reconfigure themselves accordingly.
2819 */
2820static unsigned long rcu_sysidle_delay(void)
2821{
2822 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2823 return 0;
2824 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2825}
2826
2827/*
2828 * Advance the full-system-idle state. This is invoked when all of
2829 * the non-timekeeping CPUs are idle.
2830 */
2831static void rcu_sysidle(unsigned long j)
2832{
2833 /* Check the current state. */
2834 switch (ACCESS_ONCE(full_sysidle_state)) {
2835 case RCU_SYSIDLE_NOT:
2836
2837 /* First time all are idle, so note a short idle period. */
2838 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2839 break;
2840
2841 case RCU_SYSIDLE_SHORT:
2842
2843 /*
2844 * Idle for a bit, time to advance to next state?
2845 * cmpxchg failure means race with non-idle, let them win.
2846 */
2847 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2848 (void)cmpxchg(&full_sysidle_state,
2849 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2850 break;
2851
2852 case RCU_SYSIDLE_LONG:
2853
2854 /*
2855 * Do an additional check pass before advancing to full.
2856 * cmpxchg failure means race with non-idle, let them win.
2857 */
2858 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2859 (void)cmpxchg(&full_sysidle_state,
2860 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2861 break;
2862
2863 default:
2864 break;
2865 }
2866}
2867
2868/*
2869 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2870 * back to the beginning.
2871 */
2872static void rcu_sysidle_cancel(void)
2873{
2874 smp_mb();
becb41bf
PM
2875 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2876 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2877}
2878
2879/*
2880 * Update the sysidle state based on the results of a force-quiescent-state
2881 * scan of the CPUs' dyntick-idle state.
2882 */
2883static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2884 unsigned long maxj, bool gpkt)
2885{
417e8d26 2886 if (rsp != rcu_state_p)
0edd1b17
PM
2887 return; /* Wrong flavor, ignore. */
2888 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2889 return; /* Running state machine from timekeeping CPU. */
2890 if (isidle)
2891 rcu_sysidle(maxj); /* More idle! */
2892 else
2893 rcu_sysidle_cancel(); /* Idle is over. */
2894}
2895
2896/*
2897 * Wrapper for rcu_sysidle_report() when called from the grace-period
2898 * kthread's context.
2899 */
2900static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2901 unsigned long maxj)
2902{
663e1310
PM
2903 /* If there are no nohz_full= CPUs, no need to track this. */
2904 if (!tick_nohz_full_enabled())
2905 return;
2906
0edd1b17
PM
2907 rcu_sysidle_report(rsp, isidle, maxj, true);
2908}
2909
2910/* Callback and function for forcing an RCU grace period. */
2911struct rcu_sysidle_head {
2912 struct rcu_head rh;
2913 int inuse;
2914};
2915
2916static void rcu_sysidle_cb(struct rcu_head *rhp)
2917{
2918 struct rcu_sysidle_head *rshp;
2919
2920 /*
2921 * The following memory barrier is needed to replace the
2922 * memory barriers that would normally be in the memory
2923 * allocator.
2924 */
2925 smp_mb(); /* grace period precedes setting inuse. */
2926
2927 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2928 ACCESS_ONCE(rshp->inuse) = 0;
2929}
2930
2931/*
2932 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
2933 * The caller must have disabled interrupts. This is not intended to be
2934 * called unless tick_nohz_full_enabled().
0edd1b17
PM
2935 */
2936bool rcu_sys_is_idle(void)
2937{
2938 static struct rcu_sysidle_head rsh;
2939 int rss = ACCESS_ONCE(full_sysidle_state);
2940
2941 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2942 return false;
2943
2944 /* Handle small-system case by doing a full scan of CPUs. */
2945 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2946 int oldrss = rss - 1;
2947
2948 /*
2949 * One pass to advance to each state up to _FULL.
2950 * Give up if any pass fails to advance the state.
2951 */
2952 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2953 int cpu;
2954 bool isidle = true;
2955 unsigned long maxj = jiffies - ULONG_MAX / 4;
2956 struct rcu_data *rdp;
2957
2958 /* Scan all the CPUs looking for nonidle CPUs. */
2959 for_each_possible_cpu(cpu) {
417e8d26 2960 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
2961 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2962 if (!isidle)
2963 break;
2964 }
417e8d26 2965 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17
PM
2966 oldrss = rss;
2967 rss = ACCESS_ONCE(full_sysidle_state);
2968 }
2969 }
2970
2971 /* If this is the first observation of an idle period, record it. */
2972 if (rss == RCU_SYSIDLE_FULL) {
2973 rss = cmpxchg(&full_sysidle_state,
2974 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2975 return rss == RCU_SYSIDLE_FULL;
2976 }
2977
2978 smp_mb(); /* ensure rss load happens before later caller actions. */
2979
2980 /* If already fully idle, tell the caller (in case of races). */
2981 if (rss == RCU_SYSIDLE_FULL_NOTED)
2982 return true;
2983
2984 /*
2985 * If we aren't there yet, and a grace period is not in flight,
2986 * initiate a grace period. Either way, tell the caller that
2987 * we are not there yet. We use an xchg() rather than an assignment
2988 * to make up for the memory barriers that would otherwise be
2989 * provided by the memory allocator.
2990 */
2991 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 2992 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
2993 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2994 call_rcu(&rsh.rh, rcu_sysidle_cb);
2995 return false;
eb348b89
PM
2996}
2997
2333210b
PM
2998/*
2999 * Initialize dynticks sysidle state for CPUs coming online.
3000 */
3001static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3002{
3003 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3004}
3005
3006#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3007
28ced795 3008static void rcu_sysidle_enter(int irq)
eb348b89
PM
3009{
3010}
3011
28ced795 3012static void rcu_sysidle_exit(int irq)
eb348b89
PM
3013{
3014}
3015
0edd1b17
PM
3016static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3017 unsigned long *maxj)
3018{
3019}
3020
3021static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3022{
3023 return false;
3024}
3025
3026static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3027 unsigned long maxj)
3028{
3029}
3030
2333210b
PM
3031static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3032{
3033}
3034
3035#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3036
3037/*
3038 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3039 * grace-period kthread will do force_quiescent_state() processing?
3040 * The idea is to avoid waking up RCU core processing on such a
3041 * CPU unless the grace period has extended for too long.
3042 *
3043 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3044 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3045 */
3046static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3047{
3048#ifdef CONFIG_NO_HZ_FULL
3049 if (tick_nohz_full_cpu(smp_processor_id()) &&
3050 (!rcu_gp_in_progress(rsp) ||
3051 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3052 return 1;
3053#endif /* #ifdef CONFIG_NO_HZ_FULL */
3054 return 0;
3055}
5057f55e
PM
3056
3057/*
3058 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3059 * timekeeping CPU.
3060 */
3061static void rcu_bind_gp_kthread(void)
3062{
c0f489d2 3063 int __maybe_unused cpu;
5057f55e 3064
c0f489d2 3065 if (!tick_nohz_full_enabled())
5057f55e 3066 return;
c0f489d2
PM
3067#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3068 cpu = tick_do_timer_cpu;
3069 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
5057f55e 3070 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2
PM
3071#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3072 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3073 housekeeping_affine(current);
3074#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3075}
176f8f7a
PM
3076
3077/* Record the current task on dyntick-idle entry. */
3078static void rcu_dynticks_task_enter(void)
3079{
3080#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3081 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3082#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3083}
3084
3085/* Record no current task on dyntick-idle exit. */
3086static void rcu_dynticks_task_exit(void)
3087{
3088#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3089 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3090#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3091}