rcu: Add more diagnostics to expedited stall warning messages.
[linux-2.6-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba 33#ifdef CONFIG_RCU_BOOST
61cfd097 34
abaa93d9 35#include "../locking/rtmutex_common.h"
21871d7e 36
61cfd097
PM
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
727b705b
PM
46#else /* #ifdef CONFIG_RCU_BOOST */
47
48/*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 57
3fbfbf7a
PM
58#ifdef CONFIG_RCU_NOCB_CPU
59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 61static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
26845c28
PM
64/*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary. If you like #ifdef, you
67 * will love this function.
68 */
69static void __init rcu_bootup_announce_oddness(void)
70{
ab6f5bd6
PM
71 if (IS_ENABLED(CONFIG_RCU_TRACE))
72 pr_info("\tRCU debugfs-based tracing is enabled.\n");
05c5df31
PM
73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
ab6f5bd6 75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
05c5df31 76 RCU_FANOUT);
7fa27001 77 if (rcu_fanout_exact)
ab6f5bd6
PM
78 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 if (IS_ENABLED(CONFIG_PROVE_RCU))
82 pr_info("\tRCU lockdep checking is enabled.\n");
83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 pr_info("\tRCU torture testing starts during boot.\n");
42621697
AG
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 87 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
9a5739d7 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 92 if (nr_cpu_ids != NR_CPUS)
efc151c3 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
ab6f5bd6
PM
94 if (IS_ENABLED(CONFIG_RCU_BOOST))
95 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
26845c28
PM
96}
97
28f6569a 98#ifdef CONFIG_PREEMPT_RCU
f41d911f 99
a41bfeb2 100RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
b28a7c01 101static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
2927a689 102static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
f41d911f 103
d19fb8d1
PM
104static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
105 bool wake);
d9a3da06 106
f41d911f
PM
107/*
108 * Tell them what RCU they are running.
109 */
0e0fc1c2 110static void __init rcu_bootup_announce(void)
f41d911f 111{
efc151c3 112 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 113 rcu_bootup_announce_oddness();
f41d911f
PM
114}
115
8203d6d0
PM
116/* Flags for rcu_preempt_ctxt_queue() decision table. */
117#define RCU_GP_TASKS 0x8
118#define RCU_EXP_TASKS 0x4
119#define RCU_GP_BLKD 0x2
120#define RCU_EXP_BLKD 0x1
121
122/*
123 * Queues a task preempted within an RCU-preempt read-side critical
124 * section into the appropriate location within the ->blkd_tasks list,
125 * depending on the states of any ongoing normal and expedited grace
126 * periods. The ->gp_tasks pointer indicates which element the normal
127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128 * indicates which element the expedited grace period is waiting on (again,
129 * NULL if none). If a grace period is waiting on a given element in the
130 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
131 * adding a task to the tail of the list blocks any grace period that is
132 * already waiting on one of the elements. In contrast, adding a task
133 * to the head of the list won't block any grace period that is already
134 * waiting on one of the elements.
135 *
136 * This queuing is imprecise, and can sometimes make an ongoing grace
137 * period wait for a task that is not strictly speaking blocking it.
138 * Given the choice, we needlessly block a normal grace period rather than
139 * blocking an expedited grace period.
140 *
141 * Note that an endless sequence of expedited grace periods still cannot
142 * indefinitely postpone a normal grace period. Eventually, all of the
143 * fixed number of preempted tasks blocking the normal grace period that are
144 * not also blocking the expedited grace period will resume and complete
145 * their RCU read-side critical sections. At that point, the ->gp_tasks
146 * pointer will equal the ->exp_tasks pointer, at which point the end of
147 * the corresponding expedited grace period will also be the end of the
148 * normal grace period.
149 */
150static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
151 unsigned long flags) __releases(rnp->lock)
152{
153 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157 struct task_struct *t = current;
158
159 /*
160 * Decide where to queue the newly blocked task. In theory,
161 * this could be an if-statement. In practice, when I tried
162 * that, it was quite messy.
163 */
164 switch (blkd_state) {
165 case 0:
166 case RCU_EXP_TASKS:
167 case RCU_EXP_TASKS + RCU_GP_BLKD:
168 case RCU_GP_TASKS:
169 case RCU_GP_TASKS + RCU_EXP_TASKS:
170
171 /*
172 * Blocking neither GP, or first task blocking the normal
173 * GP but not blocking the already-waiting expedited GP.
174 * Queue at the head of the list to avoid unnecessarily
175 * blocking the already-waiting GPs.
176 */
177 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
178 break;
179
180 case RCU_EXP_BLKD:
181 case RCU_GP_BLKD:
182 case RCU_GP_BLKD + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
186
187 /*
188 * First task arriving that blocks either GP, or first task
189 * arriving that blocks the expedited GP (with the normal
190 * GP already waiting), or a task arriving that blocks
191 * both GPs with both GPs already waiting. Queue at the
192 * tail of the list to avoid any GP waiting on any of the
193 * already queued tasks that are not blocking it.
194 */
195 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
196 break;
197
198 case RCU_EXP_TASKS + RCU_EXP_BLKD:
199 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
200 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
201
202 /*
203 * Second or subsequent task blocking the expedited GP.
204 * The task either does not block the normal GP, or is the
205 * first task blocking the normal GP. Queue just after
206 * the first task blocking the expedited GP.
207 */
208 list_add(&t->rcu_node_entry, rnp->exp_tasks);
209 break;
210
211 case RCU_GP_TASKS + RCU_GP_BLKD:
212 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
213
214 /*
215 * Second or subsequent task blocking the normal GP.
216 * The task does not block the expedited GP. Queue just
217 * after the first task blocking the normal GP.
218 */
219 list_add(&t->rcu_node_entry, rnp->gp_tasks);
220 break;
221
222 default:
223
224 /* Yet another exercise in excessive paranoia. */
225 WARN_ON_ONCE(1);
226 break;
227 }
228
229 /*
230 * We have now queued the task. If it was the first one to
231 * block either grace period, update the ->gp_tasks and/or
232 * ->exp_tasks pointers, respectively, to reference the newly
233 * blocked tasks.
234 */
235 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
236 rnp->gp_tasks = &t->rcu_node_entry;
237 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
238 rnp->exp_tasks = &t->rcu_node_entry;
239 raw_spin_unlock(&rnp->lock);
240
241 /*
242 * Report the quiescent state for the expedited GP. This expedited
243 * GP should not be able to end until we report, so there should be
244 * no need to check for a subsequent expedited GP. (Though we are
245 * still in a quiescent state in any case.)
246 */
247 if (blkd_state & RCU_EXP_BLKD &&
248 t->rcu_read_unlock_special.b.exp_need_qs) {
249 t->rcu_read_unlock_special.b.exp_need_qs = false;
250 rcu_report_exp_rdp(rdp->rsp, rdp, true);
251 } else {
252 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
253 }
254 local_irq_restore(flags);
255}
256
f41d911f 257/*
6cc68793 258 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
259 * that this just means that the task currently running on the CPU is
260 * not in a quiescent state. There might be any number of tasks blocked
261 * while in an RCU read-side critical section.
25502a6c 262 *
1d082fd0
PM
263 * As with the other rcu_*_qs() functions, callers to this function
264 * must disable preemption.
f41d911f 265 */
284a8c93 266static void rcu_preempt_qs(void)
f41d911f 267{
5b74c458 268 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
284a8c93 269 trace_rcu_grace_period(TPS("rcu_preempt"),
2927a689 270 __this_cpu_read(rcu_data_p->gpnum),
284a8c93 271 TPS("cpuqs"));
5b74c458 272 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
284a8c93
PM
273 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
274 current->rcu_read_unlock_special.b.need_qs = false;
275 }
f41d911f
PM
276}
277
278/*
c3422bea
PM
279 * We have entered the scheduler, and the current task might soon be
280 * context-switched away from. If this task is in an RCU read-side
281 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
282 * record that fact, so we enqueue the task on the blkd_tasks list.
283 * The task will dequeue itself when it exits the outermost enclosing
284 * RCU read-side critical section. Therefore, the current grace period
285 * cannot be permitted to complete until the blkd_tasks list entries
286 * predating the current grace period drain, in other words, until
287 * rnp->gp_tasks becomes NULL.
c3422bea
PM
288 *
289 * Caller must disable preemption.
f41d911f 290 */
38200cf2 291static void rcu_preempt_note_context_switch(void)
f41d911f
PM
292{
293 struct task_struct *t = current;
c3422bea 294 unsigned long flags;
f41d911f
PM
295 struct rcu_data *rdp;
296 struct rcu_node *rnp;
297
10f39bb1 298 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 299 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
300
301 /* Possibly blocking in an RCU read-side critical section. */
e63c887c 302 rdp = this_cpu_ptr(rcu_state_p->rda);
f41d911f 303 rnp = rdp->mynode;
2a67e741 304 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1d082fd0 305 t->rcu_read_unlock_special.b.blocked = true;
86848966 306 t->rcu_blocked_node = rnp;
f41d911f
PM
307
308 /*
8203d6d0
PM
309 * Verify the CPU's sanity, trace the preemption, and
310 * then queue the task as required based on the states
311 * of any ongoing and expedited grace periods.
f41d911f 312 */
0aa04b05 313 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 314 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
d4c08f2a
PM
315 trace_rcu_preempt_task(rdp->rsp->name,
316 t->pid,
317 (rnp->qsmask & rdp->grpmask)
318 ? rnp->gpnum
319 : rnp->gpnum + 1);
8203d6d0 320 rcu_preempt_ctxt_queue(rnp, rdp, flags);
10f39bb1 321 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 322 t->rcu_read_unlock_special.s) {
10f39bb1
PM
323
324 /*
325 * Complete exit from RCU read-side critical section on
326 * behalf of preempted instance of __rcu_read_unlock().
327 */
328 rcu_read_unlock_special(t);
f41d911f
PM
329 }
330
331 /*
332 * Either we were not in an RCU read-side critical section to
333 * begin with, or we have now recorded that critical section
334 * globally. Either way, we can now note a quiescent state
335 * for this CPU. Again, if we were in an RCU read-side critical
336 * section, and if that critical section was blocking the current
337 * grace period, then the fact that the task has been enqueued
338 * means that we continue to block the current grace period.
339 */
284a8c93 340 rcu_preempt_qs();
f41d911f
PM
341}
342
fc2219d4
PM
343/*
344 * Check for preempted RCU readers blocking the current grace period
345 * for the specified rcu_node structure. If the caller needs a reliable
346 * answer, it must hold the rcu_node's ->lock.
347 */
27f4d280 348static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 349{
12f5f524 350 return rnp->gp_tasks != NULL;
fc2219d4
PM
351}
352
12f5f524
PM
353/*
354 * Advance a ->blkd_tasks-list pointer to the next entry, instead
355 * returning NULL if at the end of the list.
356 */
357static struct list_head *rcu_next_node_entry(struct task_struct *t,
358 struct rcu_node *rnp)
359{
360 struct list_head *np;
361
362 np = t->rcu_node_entry.next;
363 if (np == &rnp->blkd_tasks)
364 np = NULL;
365 return np;
366}
367
8af3a5e7
PM
368/*
369 * Return true if the specified rcu_node structure has tasks that were
370 * preempted within an RCU read-side critical section.
371 */
372static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
373{
374 return !list_empty(&rnp->blkd_tasks);
375}
376
b668c9cf
PM
377/*
378 * Handle special cases during rcu_read_unlock(), such as needing to
379 * notify RCU core processing or task having blocked during the RCU
380 * read-side critical section.
381 */
2a3fa843 382void rcu_read_unlock_special(struct task_struct *t)
f41d911f 383{
b6a932d1
PM
384 bool empty_exp;
385 bool empty_norm;
386 bool empty_exp_now;
f41d911f 387 unsigned long flags;
12f5f524 388 struct list_head *np;
abaa93d9 389 bool drop_boost_mutex = false;
8203d6d0 390 struct rcu_data *rdp;
f41d911f 391 struct rcu_node *rnp;
1d082fd0 392 union rcu_special special;
f41d911f
PM
393
394 /* NMI handlers cannot block and cannot safely manipulate state. */
395 if (in_nmi())
396 return;
397
398 local_irq_save(flags);
399
400 /*
8203d6d0
PM
401 * If RCU core is waiting for this CPU to exit its critical section,
402 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 403 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
404 */
405 special = t->rcu_read_unlock_special;
1d082fd0 406 if (special.b.need_qs) {
284a8c93 407 rcu_preempt_qs();
c0135d07 408 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 409 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
410 local_irq_restore(flags);
411 return;
412 }
f41d911f
PM
413 }
414
8203d6d0
PM
415 /*
416 * Respond to a request for an expedited grace period, but only if
417 * we were not preempted, meaning that we were running on the same
418 * CPU throughout. If we were preempted, the exp_need_qs flag
419 * would have been cleared at the time of the first preemption,
420 * and the quiescent state would be reported when we were dequeued.
421 */
422 if (special.b.exp_need_qs) {
423 WARN_ON_ONCE(special.b.blocked);
424 t->rcu_read_unlock_special.b.exp_need_qs = false;
425 rdp = this_cpu_ptr(rcu_state_p->rda);
426 rcu_report_exp_rdp(rcu_state_p, rdp, true);
427 if (!t->rcu_read_unlock_special.s) {
428 local_irq_restore(flags);
429 return;
430 }
431 }
432
79a62f95 433 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
434 if (in_irq() || in_serving_softirq()) {
435 lockdep_rcu_suspicious(__FILE__, __LINE__,
436 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
8203d6d0 437 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
d24209bb
PM
438 t->rcu_read_unlock_special.s,
439 t->rcu_read_unlock_special.b.blocked,
8203d6d0 440 t->rcu_read_unlock_special.b.exp_need_qs,
d24209bb 441 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
442 local_irq_restore(flags);
443 return;
444 }
445
446 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
447 if (special.b.blocked) {
448 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 449
dd5d19ba 450 /*
0a0ba1c9
PM
451 * Remove this task from the list it blocked on. The task
452 * now remains queued on the rcu_node corresponding to
453 * the CPU it first blocked on, so the first attempt to
454 * acquire the task's rcu_node's ->lock will succeed.
455 * Keep the loop and add a WARN_ON() out of sheer paranoia.
dd5d19ba
PM
456 */
457 for (;;) {
86848966 458 rnp = t->rcu_blocked_node;
2a67e741 459 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
86848966 460 if (rnp == t->rcu_blocked_node)
dd5d19ba 461 break;
0a0ba1c9 462 WARN_ON_ONCE(1);
1304afb2 463 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 464 }
74e871ac 465 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
8203d6d0 466 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 467 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 468 np = rcu_next_node_entry(t, rnp);
f41d911f 469 list_del_init(&t->rcu_node_entry);
82e78d80 470 t->rcu_blocked_node = NULL;
f7f7bac9 471 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 472 rnp->gpnum, t->pid);
12f5f524
PM
473 if (&t->rcu_node_entry == rnp->gp_tasks)
474 rnp->gp_tasks = np;
475 if (&t->rcu_node_entry == rnp->exp_tasks)
476 rnp->exp_tasks = np;
727b705b
PM
477 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
478 if (&t->rcu_node_entry == rnp->boost_tasks)
479 rnp->boost_tasks = np;
480 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
481 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
482 }
f41d911f
PM
483
484 /*
485 * If this was the last task on the current list, and if
486 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
487 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
488 * so we must take a snapshot of the expedited state.
f41d911f 489 */
8203d6d0 490 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 491 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 492 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
493 rnp->gpnum,
494 0, rnp->qsmask,
495 rnp->level,
496 rnp->grplo,
497 rnp->grphi,
498 !!rnp->gp_tasks);
e63c887c 499 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
c701d5d9 500 } else {
d4c08f2a 501 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 502 }
d9a3da06 503
27f4d280 504 /* Unboost if we were boosted. */
727b705b 505 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
abaa93d9 506 rt_mutex_unlock(&rnp->boost_mtx);
27f4d280 507
d9a3da06
PM
508 /*
509 * If this was the last task on the expedited lists,
510 * then we need to report up the rcu_node hierarchy.
511 */
389abd48 512 if (!empty_exp && empty_exp_now)
e63c887c 513 rcu_report_exp_rnp(rcu_state_p, rnp, true);
b668c9cf
PM
514 } else {
515 local_irq_restore(flags);
f41d911f 516 }
f41d911f
PM
517}
518
1ed509a2
PM
519/*
520 * Dump detailed information for all tasks blocking the current RCU
521 * grace period on the specified rcu_node structure.
522 */
523static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
524{
525 unsigned long flags;
1ed509a2
PM
526 struct task_struct *t;
527
6cf10081 528 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5fd4dc06
PM
529 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
531 return;
532 }
82efed06 533 t = list_entry(rnp->gp_tasks->prev,
12f5f524
PM
534 struct task_struct, rcu_node_entry);
535 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
536 sched_show_task(t);
537 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
538}
539
540/*
541 * Dump detailed information for all tasks blocking the current RCU
542 * grace period.
543 */
544static void rcu_print_detail_task_stall(struct rcu_state *rsp)
545{
546 struct rcu_node *rnp = rcu_get_root(rsp);
547
548 rcu_print_detail_task_stall_rnp(rnp);
549 rcu_for_each_leaf_node(rsp, rnp)
550 rcu_print_detail_task_stall_rnp(rnp);
551}
552
a858af28
PM
553static void rcu_print_task_stall_begin(struct rcu_node *rnp)
554{
efc151c3 555 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
556 rnp->level, rnp->grplo, rnp->grphi);
557}
558
559static void rcu_print_task_stall_end(void)
560{
efc151c3 561 pr_cont("\n");
a858af28
PM
562}
563
f41d911f
PM
564/*
565 * Scan the current list of tasks blocked within RCU read-side critical
566 * sections, printing out the tid of each.
567 */
9bc8b558 568static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 569{
f41d911f 570 struct task_struct *t;
9bc8b558 571 int ndetected = 0;
f41d911f 572
27f4d280 573 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 574 return 0;
a858af28 575 rcu_print_task_stall_begin(rnp);
82efed06 576 t = list_entry(rnp->gp_tasks->prev,
12f5f524 577 struct task_struct, rcu_node_entry);
9bc8b558 578 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 579 pr_cont(" P%d", t->pid);
9bc8b558
PM
580 ndetected++;
581 }
a858af28 582 rcu_print_task_stall_end();
9bc8b558 583 return ndetected;
f41d911f
PM
584}
585
74611ecb
PM
586/*
587 * Scan the current list of tasks blocked within RCU read-side critical
588 * sections, printing out the tid of each that is blocking the current
589 * expedited grace period.
590 */
591static int rcu_print_task_exp_stall(struct rcu_node *rnp)
592{
593 struct task_struct *t;
594 int ndetected = 0;
595
596 if (!rnp->exp_tasks)
597 return 0;
598 t = list_entry(rnp->exp_tasks->prev,
599 struct task_struct, rcu_node_entry);
600 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
601 pr_cont(" P%d", t->pid);
602 ndetected++;
603 }
604 return ndetected;
605}
606
b0e165c0
PM
607/*
608 * Check that the list of blocked tasks for the newly completed grace
609 * period is in fact empty. It is a serious bug to complete a grace
610 * period that still has RCU readers blocked! This function must be
611 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
612 * must be held by the caller.
12f5f524
PM
613 *
614 * Also, if there are blocked tasks on the list, they automatically
615 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
616 */
617static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
618{
27f4d280 619 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
96e92021 620 if (rcu_preempt_has_tasks(rnp))
12f5f524 621 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 622 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
623}
624
f41d911f
PM
625/*
626 * Check for a quiescent state from the current CPU. When a task blocks,
627 * the task is recorded in the corresponding CPU's rcu_node structure,
628 * which is checked elsewhere.
629 *
630 * Caller must disable hard irqs.
631 */
86aea0e6 632static void rcu_preempt_check_callbacks(void)
f41d911f
PM
633{
634 struct task_struct *t = current;
635
636 if (t->rcu_read_lock_nesting == 0) {
284a8c93 637 rcu_preempt_qs();
f41d911f
PM
638 return;
639 }
10f39bb1 640 if (t->rcu_read_lock_nesting > 0 &&
97c668b8 641 __this_cpu_read(rcu_data_p->core_needs_qs) &&
5b74c458 642 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
1d082fd0 643 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
644}
645
a46e0899
PM
646#ifdef CONFIG_RCU_BOOST
647
09223371
SL
648static void rcu_preempt_do_callbacks(void)
649{
2927a689 650 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
09223371
SL
651}
652
a46e0899
PM
653#endif /* #ifdef CONFIG_RCU_BOOST */
654
f41d911f 655/*
6cc68793 656 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f 657 */
b6a4ae76 658void call_rcu(struct rcu_head *head, rcu_callback_t func)
f41d911f 659{
e63c887c 660 __call_rcu(head, func, rcu_state_p, -1, 0);
f41d911f
PM
661}
662EXPORT_SYMBOL_GPL(call_rcu);
663
6ebb237b
PM
664/**
665 * synchronize_rcu - wait until a grace period has elapsed.
666 *
667 * Control will return to the caller some time after a full grace
668 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
669 * read-side critical sections have completed. Note, however, that
670 * upon return from synchronize_rcu(), the caller might well be executing
671 * concurrently with new RCU read-side critical sections that began while
672 * synchronize_rcu() was waiting. RCU read-side critical sections are
673 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
674 *
675 * See the description of synchronize_sched() for more detailed information
676 * on memory ordering guarantees.
6ebb237b
PM
677 */
678void synchronize_rcu(void)
679{
f78f5b90
PM
680 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
681 lock_is_held(&rcu_lock_map) ||
682 lock_is_held(&rcu_sched_lock_map),
683 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
684 if (!rcu_scheduler_active)
685 return;
5afff48b 686 if (rcu_gp_is_expedited())
3705b88d
AM
687 synchronize_rcu_expedited();
688 else
689 wait_rcu_gp(call_rcu);
6ebb237b
PM
690}
691EXPORT_SYMBOL_GPL(synchronize_rcu);
692
d9a3da06 693/*
8203d6d0
PM
694 * Remote handler for smp_call_function_single(). If there is an
695 * RCU read-side critical section in effect, request that the
696 * next rcu_read_unlock() record the quiescent state up the
697 * ->expmask fields in the rcu_node tree. Otherwise, immediately
698 * report the quiescent state.
d9a3da06 699 */
8203d6d0 700static void sync_rcu_exp_handler(void *info)
d9a3da06 701{
8203d6d0
PM
702 struct rcu_data *rdp;
703 struct rcu_state *rsp = info;
704 struct task_struct *t = current;
8eb74b2b
PM
705
706 /*
8203d6d0
PM
707 * Within an RCU read-side critical section, request that the next
708 * rcu_read_unlock() report. Unless this RCU read-side critical
709 * section has already blocked, in which case it is already set
710 * up for the expedited grace period to wait on it.
8eb74b2b 711 */
8203d6d0
PM
712 if (t->rcu_read_lock_nesting > 0 &&
713 !t->rcu_read_unlock_special.b.blocked) {
714 t->rcu_read_unlock_special.b.exp_need_qs = true;
8eb74b2b 715 return;
12f5f524 716 }
8eb74b2b 717
8203d6d0
PM
718 /*
719 * We are either exiting an RCU read-side critical section (negative
720 * values of t->rcu_read_lock_nesting) or are not in one at all
721 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
722 * read-side critical section that blocked before this expedited
723 * grace period started. Either way, we can immediately report
724 * the quiescent state.
725 */
726 rdp = this_cpu_ptr(rsp->rda);
727 rcu_report_exp_rdp(rsp, rdp, true);
d9a3da06
PM
728}
729
236fefaf
PM
730/**
731 * synchronize_rcu_expedited - Brute-force RCU grace period
732 *
733 * Wait for an RCU-preempt grace period, but expedite it. The basic
734 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
735 * the ->blkd_tasks lists and wait for this list to drain. This consumes
736 * significant time on all CPUs and is unfriendly to real-time workloads,
737 * so is thus not recommended for any sort of common-case code.
738 * In fact, if you are using synchronize_rcu_expedited() in a loop,
739 * please restructure your code to batch your updates, and then Use a
740 * single synchronize_rcu() instead.
019129d5
PM
741 */
742void synchronize_rcu_expedited(void)
743{
d9a3da06 744 struct rcu_node *rnp;
29fd9309 745 struct rcu_node *rnp_unlock;
e63c887c 746 struct rcu_state *rsp = rcu_state_p;
543c6158 747 unsigned long s;
d9a3da06 748
543c6158 749 s = rcu_exp_gp_seq_snap(rsp);
d9a3da06 750
29fd9309
PM
751 rnp_unlock = exp_funnel_lock(rsp, s);
752 if (rnp_unlock == NULL)
753 return; /* Someone else did our work for us. */
1943c89d 754
543c6158 755 rcu_exp_gp_seq_start(rsp);
d9a3da06 756
b9585e94 757 /* Initialize the rcu_node tree in preparation for the wait. */
dcdb8807 758 sync_rcu_exp_select_cpus(rsp, sync_rcu_exp_handler);
d9a3da06 759
12f5f524 760 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06 761 rnp = rcu_get_root(rsp);
b08517c7 762 synchronize_sched_expedited_wait(rsp);
d9a3da06
PM
763
764 /* Clean up and exit. */
543c6158 765 rcu_exp_gp_seq_end(rsp);
29fd9309 766 mutex_unlock(&rnp_unlock->exp_funnel_mutex);
019129d5
PM
767}
768EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
769
e74f4c45
PM
770/**
771 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
772 *
773 * Note that this primitive does not necessarily wait for an RCU grace period
774 * to complete. For example, if there are no RCU callbacks queued anywhere
775 * in the system, then rcu_barrier() is within its rights to return
776 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
777 */
778void rcu_barrier(void)
779{
e63c887c 780 _rcu_barrier(rcu_state_p);
e74f4c45
PM
781}
782EXPORT_SYMBOL_GPL(rcu_barrier);
783
1eba8f84 784/*
6cc68793 785 * Initialize preemptible RCU's state structures.
1eba8f84
PM
786 */
787static void __init __rcu_init_preempt(void)
788{
2927a689 789 rcu_init_one(rcu_state_p, rcu_data_p);
1eba8f84
PM
790}
791
2439b696
PM
792/*
793 * Check for a task exiting while in a preemptible-RCU read-side
794 * critical section, clean up if so. No need to issue warnings,
795 * as debug_check_no_locks_held() already does this if lockdep
796 * is enabled.
797 */
798void exit_rcu(void)
799{
800 struct task_struct *t = current;
801
802 if (likely(list_empty(&current->rcu_node_entry)))
803 return;
804 t->rcu_read_lock_nesting = 1;
805 barrier();
1d082fd0 806 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
807 __rcu_read_unlock();
808}
809
28f6569a 810#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 811
b28a7c01 812static struct rcu_state *const rcu_state_p = &rcu_sched_state;
2927a689 813static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
27f4d280 814
f41d911f
PM
815/*
816 * Tell them what RCU they are running.
817 */
0e0fc1c2 818static void __init rcu_bootup_announce(void)
f41d911f 819{
efc151c3 820 pr_info("Hierarchical RCU implementation.\n");
26845c28 821 rcu_bootup_announce_oddness();
f41d911f
PM
822}
823
cba6d0d6
PM
824/*
825 * Because preemptible RCU does not exist, we never have to check for
826 * CPUs being in quiescent states.
827 */
38200cf2 828static void rcu_preempt_note_context_switch(void)
cba6d0d6
PM
829{
830}
831
fc2219d4 832/*
6cc68793 833 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
834 * RCU readers.
835 */
27f4d280 836static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
837{
838 return 0;
839}
840
8af3a5e7
PM
841/*
842 * Because there is no preemptible RCU, there can be no readers blocked.
843 */
844static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 845{
8af3a5e7 846 return false;
b668c9cf
PM
847}
848
1ed509a2 849/*
6cc68793 850 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
851 * tasks blocked within RCU read-side critical sections.
852 */
853static void rcu_print_detail_task_stall(struct rcu_state *rsp)
854{
855}
856
f41d911f 857/*
6cc68793 858 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
859 * tasks blocked within RCU read-side critical sections.
860 */
9bc8b558 861static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 862{
9bc8b558 863 return 0;
f41d911f
PM
864}
865
74611ecb
PM
866/*
867 * Because preemptible RCU does not exist, we never have to check for
868 * tasks blocked within RCU read-side critical sections that are
869 * blocking the current expedited grace period.
870 */
871static int rcu_print_task_exp_stall(struct rcu_node *rnp)
872{
873 return 0;
874}
875
b0e165c0 876/*
6cc68793 877 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
878 * so there is no need to check for blocked tasks. So check only for
879 * bogus qsmask values.
b0e165c0
PM
880 */
881static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
882{
49e29126 883 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
884}
885
f41d911f 886/*
6cc68793 887 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
888 * to check.
889 */
86aea0e6 890static void rcu_preempt_check_callbacks(void)
f41d911f
PM
891{
892}
893
019129d5
PM
894/*
895 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 896 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
897 */
898void synchronize_rcu_expedited(void)
899{
900 synchronize_sched_expedited();
901}
902EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
903
e74f4c45 904/*
6cc68793 905 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
906 * another name for rcu_barrier_sched().
907 */
908void rcu_barrier(void)
909{
910 rcu_barrier_sched();
911}
912EXPORT_SYMBOL_GPL(rcu_barrier);
913
1eba8f84 914/*
6cc68793 915 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
916 */
917static void __init __rcu_init_preempt(void)
918{
919}
920
2439b696
PM
921/*
922 * Because preemptible RCU does not exist, tasks cannot possibly exit
923 * while in preemptible RCU read-side critical sections.
924 */
925void exit_rcu(void)
926{
927}
928
28f6569a 929#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 930
27f4d280
PM
931#ifdef CONFIG_RCU_BOOST
932
1696a8be 933#include "../locking/rtmutex_common.h"
27f4d280 934
0ea1f2eb
PM
935#ifdef CONFIG_RCU_TRACE
936
937static void rcu_initiate_boost_trace(struct rcu_node *rnp)
938{
96e92021 939 if (!rcu_preempt_has_tasks(rnp))
0ea1f2eb
PM
940 rnp->n_balk_blkd_tasks++;
941 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
942 rnp->n_balk_exp_gp_tasks++;
943 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
944 rnp->n_balk_boost_tasks++;
945 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
946 rnp->n_balk_notblocked++;
947 else if (rnp->gp_tasks != NULL &&
a9f4793d 948 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
949 rnp->n_balk_notyet++;
950 else
951 rnp->n_balk_nos++;
952}
953
954#else /* #ifdef CONFIG_RCU_TRACE */
955
956static void rcu_initiate_boost_trace(struct rcu_node *rnp)
957{
958}
959
960#endif /* #else #ifdef CONFIG_RCU_TRACE */
961
5d01bbd1
TG
962static void rcu_wake_cond(struct task_struct *t, int status)
963{
964 /*
965 * If the thread is yielding, only wake it when this
966 * is invoked from idle
967 */
968 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
969 wake_up_process(t);
970}
971
27f4d280
PM
972/*
973 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
974 * or ->boost_tasks, advancing the pointer to the next task in the
975 * ->blkd_tasks list.
976 *
977 * Note that irqs must be enabled: boosting the task can block.
978 * Returns 1 if there are more tasks needing to be boosted.
979 */
980static int rcu_boost(struct rcu_node *rnp)
981{
982 unsigned long flags;
27f4d280
PM
983 struct task_struct *t;
984 struct list_head *tb;
985
7d0ae808
PM
986 if (READ_ONCE(rnp->exp_tasks) == NULL &&
987 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
988 return 0; /* Nothing left to boost. */
989
2a67e741 990 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
991
992 /*
993 * Recheck under the lock: all tasks in need of boosting
994 * might exit their RCU read-side critical sections on their own.
995 */
996 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
997 raw_spin_unlock_irqrestore(&rnp->lock, flags);
998 return 0;
999 }
1000
1001 /*
1002 * Preferentially boost tasks blocking expedited grace periods.
1003 * This cannot starve the normal grace periods because a second
1004 * expedited grace period must boost all blocked tasks, including
1005 * those blocking the pre-existing normal grace period.
1006 */
0ea1f2eb 1007 if (rnp->exp_tasks != NULL) {
27f4d280 1008 tb = rnp->exp_tasks;
0ea1f2eb
PM
1009 rnp->n_exp_boosts++;
1010 } else {
27f4d280 1011 tb = rnp->boost_tasks;
0ea1f2eb
PM
1012 rnp->n_normal_boosts++;
1013 }
1014 rnp->n_tasks_boosted++;
27f4d280
PM
1015
1016 /*
1017 * We boost task t by manufacturing an rt_mutex that appears to
1018 * be held by task t. We leave a pointer to that rt_mutex where
1019 * task t can find it, and task t will release the mutex when it
1020 * exits its outermost RCU read-side critical section. Then
1021 * simply acquiring this artificial rt_mutex will boost task
1022 * t's priority. (Thanks to tglx for suggesting this approach!)
1023 *
1024 * Note that task t must acquire rnp->lock to remove itself from
1025 * the ->blkd_tasks list, which it will do from exit() if from
1026 * nowhere else. We therefore are guaranteed that task t will
1027 * stay around at least until we drop rnp->lock. Note that
1028 * rnp->lock also resolves races between our priority boosting
1029 * and task t's exiting its outermost RCU read-side critical
1030 * section.
1031 */
1032 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1033 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
27f4d280 1034 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1035 /* Lock only for side effect: boosts task t's priority. */
1036 rt_mutex_lock(&rnp->boost_mtx);
1037 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1038
7d0ae808
PM
1039 return READ_ONCE(rnp->exp_tasks) != NULL ||
1040 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1041}
1042
27f4d280 1043/*
bc17ea10 1044 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1045 */
1046static int rcu_boost_kthread(void *arg)
1047{
1048 struct rcu_node *rnp = (struct rcu_node *)arg;
1049 int spincnt = 0;
1050 int more2boost;
1051
f7f7bac9 1052 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1053 for (;;) {
d71df90e 1054 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1055 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1056 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1057 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1058 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1059 more2boost = rcu_boost(rnp);
1060 if (more2boost)
1061 spincnt++;
1062 else
1063 spincnt = 0;
1064 if (spincnt > 10) {
5d01bbd1 1065 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1066 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1067 schedule_timeout_interruptible(2);
f7f7bac9 1068 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1069 spincnt = 0;
1070 }
1071 }
1217ed1b 1072 /* NOTREACHED */
f7f7bac9 1073 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1074 return 0;
1075}
1076
1077/*
1078 * Check to see if it is time to start boosting RCU readers that are
1079 * blocking the current grace period, and, if so, tell the per-rcu_node
1080 * kthread to start boosting them. If there is an expedited grace
1081 * period in progress, it is always time to boost.
1082 *
b065a853
PM
1083 * The caller must hold rnp->lock, which this function releases.
1084 * The ->boost_kthread_task is immortal, so we don't need to worry
1085 * about it going away.
27f4d280 1086 */
1217ed1b 1087static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1088 __releases(rnp->lock)
27f4d280
PM
1089{
1090 struct task_struct *t;
1091
0ea1f2eb
PM
1092 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1093 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1094 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1095 return;
0ea1f2eb 1096 }
27f4d280
PM
1097 if (rnp->exp_tasks != NULL ||
1098 (rnp->gp_tasks != NULL &&
1099 rnp->boost_tasks == NULL &&
1100 rnp->qsmask == 0 &&
1101 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1102 if (rnp->exp_tasks == NULL)
1103 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1104 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1105 t = rnp->boost_kthread_task;
5d01bbd1
TG
1106 if (t)
1107 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1108 } else {
0ea1f2eb 1109 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1110 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1111 }
27f4d280
PM
1112}
1113
a46e0899
PM
1114/*
1115 * Wake up the per-CPU kthread to invoke RCU callbacks.
1116 */
1117static void invoke_rcu_callbacks_kthread(void)
1118{
1119 unsigned long flags;
1120
1121 local_irq_save(flags);
1122 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1123 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1124 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1125 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1126 __this_cpu_read(rcu_cpu_kthread_status));
1127 }
a46e0899
PM
1128 local_irq_restore(flags);
1129}
1130
dff1672d
PM
1131/*
1132 * Is the current CPU running the RCU-callbacks kthread?
1133 * Caller must have preemption disabled.
1134 */
1135static bool rcu_is_callbacks_kthread(void)
1136{
c9d4b0af 1137 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1138}
1139
27f4d280
PM
1140#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1141
1142/*
1143 * Do priority-boost accounting for the start of a new grace period.
1144 */
1145static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1146{
1147 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1148}
1149
27f4d280
PM
1150/*
1151 * Create an RCU-boost kthread for the specified node if one does not
1152 * already exist. We only create this kthread for preemptible RCU.
1153 * Returns zero if all is well, a negated errno otherwise.
1154 */
49fb4c62 1155static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
0aa04b05 1156 struct rcu_node *rnp)
27f4d280 1157{
5d01bbd1 1158 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1159 unsigned long flags;
1160 struct sched_param sp;
1161 struct task_struct *t;
1162
e63c887c 1163 if (rcu_state_p != rsp)
27f4d280 1164 return 0;
5d01bbd1 1165
0aa04b05 1166 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1167 return 0;
1168
a46e0899 1169 rsp->boost = 1;
27f4d280
PM
1170 if (rnp->boost_kthread_task != NULL)
1171 return 0;
1172 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1173 "rcub/%d", rnp_index);
27f4d280
PM
1174 if (IS_ERR(t))
1175 return PTR_ERR(t);
2a67e741 1176 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
1177 rnp->boost_kthread_task = t;
1178 raw_spin_unlock_irqrestore(&rnp->lock, flags);
21871d7e 1179 sp.sched_priority = kthread_prio;
27f4d280 1180 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1181 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1182 return 0;
1183}
1184
f8b7fc6b
PM
1185static void rcu_kthread_do_work(void)
1186{
c9d4b0af
CL
1187 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1188 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1189 rcu_preempt_do_callbacks();
1190}
1191
62ab7072 1192static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1193{
f8b7fc6b 1194 struct sched_param sp;
f8b7fc6b 1195
21871d7e 1196 sp.sched_priority = kthread_prio;
62ab7072 1197 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1198}
1199
62ab7072 1200static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1201{
62ab7072 1202 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1203}
1204
62ab7072 1205static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1206{
c9d4b0af 1207 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1208}
1209
1210/*
1211 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1212 * RCU softirq used in flavors and configurations of RCU that do not
1213 * support RCU priority boosting.
f8b7fc6b 1214 */
62ab7072 1215static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1216{
c9d4b0af
CL
1217 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1218 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1219 int spincnt;
f8b7fc6b 1220
62ab7072 1221 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1222 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1223 local_bh_disable();
f8b7fc6b 1224 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1225 this_cpu_inc(rcu_cpu_kthread_loops);
1226 local_irq_disable();
f8b7fc6b
PM
1227 work = *workp;
1228 *workp = 0;
62ab7072 1229 local_irq_enable();
f8b7fc6b
PM
1230 if (work)
1231 rcu_kthread_do_work();
1232 local_bh_enable();
62ab7072 1233 if (*workp == 0) {
f7f7bac9 1234 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1235 *statusp = RCU_KTHREAD_WAITING;
1236 return;
f8b7fc6b
PM
1237 }
1238 }
62ab7072 1239 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1240 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1241 schedule_timeout_interruptible(2);
f7f7bac9 1242 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1243 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1244}
1245
1246/*
1247 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1248 * served by the rcu_node in question. The CPU hotplug lock is still
1249 * held, so the value of rnp->qsmaskinit will be stable.
1250 *
1251 * We don't include outgoingcpu in the affinity set, use -1 if there is
1252 * no outgoing CPU. If there are no CPUs left in the affinity set,
1253 * this function allows the kthread to execute on any CPU.
1254 */
5d01bbd1 1255static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1256{
5d01bbd1 1257 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1258 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1259 cpumask_var_t cm;
1260 int cpu;
f8b7fc6b 1261
5d01bbd1 1262 if (!t)
f8b7fc6b 1263 return;
5d01bbd1 1264 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1265 return;
f8b7fc6b
PM
1266 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1267 if ((mask & 0x1) && cpu != outgoingcpu)
1268 cpumask_set_cpu(cpu, cm);
5d0b0249 1269 if (cpumask_weight(cm) == 0)
f8b7fc6b 1270 cpumask_setall(cm);
5d01bbd1 1271 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1272 free_cpumask_var(cm);
1273}
1274
62ab7072
PM
1275static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1276 .store = &rcu_cpu_kthread_task,
1277 .thread_should_run = rcu_cpu_kthread_should_run,
1278 .thread_fn = rcu_cpu_kthread,
1279 .thread_comm = "rcuc/%u",
1280 .setup = rcu_cpu_kthread_setup,
1281 .park = rcu_cpu_kthread_park,
1282};
f8b7fc6b
PM
1283
1284/*
9386c0b7 1285 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1286 */
9386c0b7 1287static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1288{
f8b7fc6b 1289 struct rcu_node *rnp;
5d01bbd1 1290 int cpu;
f8b7fc6b 1291
62ab7072 1292 for_each_possible_cpu(cpu)
f8b7fc6b 1293 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1294 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1295 rcu_for_each_leaf_node(rcu_state_p, rnp)
1296 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1297}
f8b7fc6b 1298
49fb4c62 1299static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1300{
e534165b 1301 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1302 struct rcu_node *rnp = rdp->mynode;
1303
1304 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1305 if (rcu_scheduler_fully_active)
e534165b 1306 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1307}
1308
27f4d280
PM
1309#else /* #ifdef CONFIG_RCU_BOOST */
1310
1217ed1b 1311static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1312 __releases(rnp->lock)
27f4d280 1313{
1217ed1b 1314 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1315}
1316
a46e0899 1317static void invoke_rcu_callbacks_kthread(void)
27f4d280 1318{
a46e0899 1319 WARN_ON_ONCE(1);
27f4d280
PM
1320}
1321
dff1672d
PM
1322static bool rcu_is_callbacks_kthread(void)
1323{
1324 return false;
1325}
1326
27f4d280
PM
1327static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1328{
1329}
1330
5d01bbd1 1331static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1332{
1333}
1334
9386c0b7 1335static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1336{
b0d30417 1337}
b0d30417 1338
49fb4c62 1339static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1340{
1341}
1342
27f4d280
PM
1343#endif /* #else #ifdef CONFIG_RCU_BOOST */
1344
8bd93a2c
PM
1345#if !defined(CONFIG_RCU_FAST_NO_HZ)
1346
1347/*
1348 * Check to see if any future RCU-related work will need to be done
1349 * by the current CPU, even if none need be done immediately, returning
1350 * 1 if so. This function is part of the RCU implementation; it is -not-
1351 * an exported member of the RCU API.
1352 *
7cb92499
PM
1353 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1354 * any flavor of RCU.
8bd93a2c 1355 */
c1ad348b 1356int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1357{
c1ad348b 1358 *nextevt = KTIME_MAX;
3382adbc
PM
1359 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1360 ? 0 : rcu_cpu_has_callbacks(NULL);
7cb92499
PM
1361}
1362
1363/*
1364 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1365 * after it.
1366 */
8fa7845d 1367static void rcu_cleanup_after_idle(void)
7cb92499
PM
1368{
1369}
1370
aea1b35e 1371/*
a858af28 1372 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1373 * is nothing.
1374 */
198bbf81 1375static void rcu_prepare_for_idle(void)
aea1b35e
PM
1376{
1377}
1378
c57afe80
PM
1379/*
1380 * Don't bother keeping a running count of the number of RCU callbacks
1381 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1382 */
1383static void rcu_idle_count_callbacks_posted(void)
1384{
1385}
1386
8bd93a2c
PM
1387#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1388
f23f7fa1
PM
1389/*
1390 * This code is invoked when a CPU goes idle, at which point we want
1391 * to have the CPU do everything required for RCU so that it can enter
1392 * the energy-efficient dyntick-idle mode. This is handled by a
1393 * state machine implemented by rcu_prepare_for_idle() below.
1394 *
1395 * The following three proprocessor symbols control this state machine:
1396 *
f23f7fa1
PM
1397 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1398 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1399 * is sized to be roughly one RCU grace period. Those energy-efficiency
1400 * benchmarkers who might otherwise be tempted to set this to a large
1401 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1402 * system. And if you are -that- concerned about energy efficiency,
1403 * just power the system down and be done with it!
778d250a
PM
1404 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1405 * permitted to sleep in dyntick-idle mode with only lazy RCU
1406 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1407 *
1408 * The values below work well in practice. If future workloads require
1409 * adjustment, they can be converted into kernel config parameters, though
1410 * making the state machine smarter might be a better option.
1411 */
e84c48ae 1412#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1413#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1414
5e44ce35
PM
1415static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1416module_param(rcu_idle_gp_delay, int, 0644);
1417static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1418module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1419
486e2593 1420/*
c229828c
PM
1421 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1422 * only if it has been awhile since the last time we did so. Afterwards,
1423 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1424 */
f1f399d1 1425static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1426{
c0f4dfd4
PM
1427 bool cbs_ready = false;
1428 struct rcu_data *rdp;
c229828c 1429 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1430 struct rcu_node *rnp;
1431 struct rcu_state *rsp;
486e2593 1432
c229828c
PM
1433 /* Exit early if we advanced recently. */
1434 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1435 return false;
c229828c
PM
1436 rdtp->last_advance_all = jiffies;
1437
c0f4dfd4
PM
1438 for_each_rcu_flavor(rsp) {
1439 rdp = this_cpu_ptr(rsp->rda);
1440 rnp = rdp->mynode;
486e2593 1441
c0f4dfd4
PM
1442 /*
1443 * Don't bother checking unless a grace period has
1444 * completed since we last checked and there are
1445 * callbacks not yet ready to invoke.
1446 */
e3663b10 1447 if ((rdp->completed != rnp->completed ||
7d0ae808 1448 unlikely(READ_ONCE(rdp->gpwrap))) &&
c0f4dfd4 1449 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1450 note_gp_changes(rsp, rdp);
486e2593 1451
c0f4dfd4
PM
1452 if (cpu_has_callbacks_ready_to_invoke(rdp))
1453 cbs_ready = true;
1454 }
1455 return cbs_ready;
486e2593
PM
1456}
1457
aa9b1630 1458/*
c0f4dfd4
PM
1459 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1460 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1461 * caller to set the timeout based on whether or not there are non-lazy
1462 * callbacks.
aa9b1630 1463 *
c0f4dfd4 1464 * The caller must have disabled interrupts.
aa9b1630 1465 */
c1ad348b 1466int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1467{
aa6da514 1468 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c1ad348b 1469 unsigned long dj;
aa9b1630 1470
3382adbc 1471 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
43224b96 1472 *nextevt = KTIME_MAX;
3382adbc
PM
1473 return 0;
1474 }
1475
c0f4dfd4
PM
1476 /* Snapshot to detect later posting of non-lazy callback. */
1477 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1478
aa9b1630 1479 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1480 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c1ad348b 1481 *nextevt = KTIME_MAX;
aa9b1630
PM
1482 return 0;
1483 }
c0f4dfd4
PM
1484
1485 /* Attempt to advance callbacks. */
1486 if (rcu_try_advance_all_cbs()) {
1487 /* Some ready to invoke, so initiate later invocation. */
1488 invoke_rcu_core();
aa9b1630
PM
1489 return 1;
1490 }
c0f4dfd4
PM
1491 rdtp->last_accelerate = jiffies;
1492
1493 /* Request timer delay depending on laziness, and round. */
6faf7283 1494 if (!rdtp->all_lazy) {
c1ad348b 1495 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1496 rcu_idle_gp_delay) - jiffies;
e84c48ae 1497 } else {
c1ad348b 1498 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1499 }
c1ad348b 1500 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1501 return 0;
1502}
1503
21e52e15 1504/*
c0f4dfd4
PM
1505 * Prepare a CPU for idle from an RCU perspective. The first major task
1506 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1507 * The second major task is to check to see if a non-lazy callback has
1508 * arrived at a CPU that previously had only lazy callbacks. The third
1509 * major task is to accelerate (that is, assign grace-period numbers to)
1510 * any recently arrived callbacks.
aea1b35e
PM
1511 *
1512 * The caller must have disabled interrupts.
8bd93a2c 1513 */
198bbf81 1514static void rcu_prepare_for_idle(void)
8bd93a2c 1515{
48a7639c 1516 bool needwake;
c0f4dfd4 1517 struct rcu_data *rdp;
198bbf81 1518 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1519 struct rcu_node *rnp;
1520 struct rcu_state *rsp;
9d2ad243
PM
1521 int tne;
1522
3382adbc
PM
1523 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1524 return;
1525
9d2ad243 1526 /* Handle nohz enablement switches conservatively. */
7d0ae808 1527 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1528 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1529 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1530 invoke_rcu_core(); /* force nohz to see update. */
1531 rdtp->tick_nohz_enabled_snap = tne;
1532 return;
1533 }
1534 if (!tne)
1535 return;
f511fc62 1536
c0f4dfd4 1537 /* If this is a no-CBs CPU, no callbacks, just return. */
198bbf81 1538 if (rcu_is_nocb_cpu(smp_processor_id()))
9a0c6fef 1539 return;
9a0c6fef 1540
c57afe80 1541 /*
c0f4dfd4
PM
1542 * If a non-lazy callback arrived at a CPU having only lazy
1543 * callbacks, invoke RCU core for the side-effect of recalculating
1544 * idle duration on re-entry to idle.
c57afe80 1545 */
c0f4dfd4
PM
1546 if (rdtp->all_lazy &&
1547 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1548 rdtp->all_lazy = false;
1549 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1550 invoke_rcu_core();
c57afe80
PM
1551 return;
1552 }
c57afe80 1553
3084f2f8 1554 /*
c0f4dfd4
PM
1555 * If we have not yet accelerated this jiffy, accelerate all
1556 * callbacks on this CPU.
3084f2f8 1557 */
c0f4dfd4 1558 if (rdtp->last_accelerate == jiffies)
aea1b35e 1559 return;
c0f4dfd4
PM
1560 rdtp->last_accelerate = jiffies;
1561 for_each_rcu_flavor(rsp) {
198bbf81 1562 rdp = this_cpu_ptr(rsp->rda);
c0f4dfd4
PM
1563 if (!*rdp->nxttail[RCU_DONE_TAIL])
1564 continue;
1565 rnp = rdp->mynode;
2a67e741 1566 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
48a7639c 1567 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1568 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1569 if (needwake)
1570 rcu_gp_kthread_wake(rsp);
77e38ed3 1571 }
c0f4dfd4 1572}
3084f2f8 1573
c0f4dfd4
PM
1574/*
1575 * Clean up for exit from idle. Attempt to advance callbacks based on
1576 * any grace periods that elapsed while the CPU was idle, and if any
1577 * callbacks are now ready to invoke, initiate invocation.
1578 */
8fa7845d 1579static void rcu_cleanup_after_idle(void)
c0f4dfd4 1580{
3382adbc
PM
1581 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1582 rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1583 return;
7a497c96
PM
1584 if (rcu_try_advance_all_cbs())
1585 invoke_rcu_core();
8bd93a2c
PM
1586}
1587
c57afe80 1588/*
98248a0e
PM
1589 * Keep a running count of the number of non-lazy callbacks posted
1590 * on this CPU. This running counter (which is never decremented) allows
1591 * rcu_prepare_for_idle() to detect when something out of the idle loop
1592 * posts a callback, even if an equal number of callbacks are invoked.
1593 * Of course, callbacks should only be posted from within a trace event
1594 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1595 */
1596static void rcu_idle_count_callbacks_posted(void)
1597{
5955f7ee 1598 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1599}
1600
b626c1b6
PM
1601/*
1602 * Data for flushing lazy RCU callbacks at OOM time.
1603 */
1604static atomic_t oom_callback_count;
1605static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1606
1607/*
1608 * RCU OOM callback -- decrement the outstanding count and deliver the
1609 * wake-up if we are the last one.
1610 */
1611static void rcu_oom_callback(struct rcu_head *rhp)
1612{
1613 if (atomic_dec_and_test(&oom_callback_count))
1614 wake_up(&oom_callback_wq);
1615}
1616
1617/*
1618 * Post an rcu_oom_notify callback on the current CPU if it has at
1619 * least one lazy callback. This will unnecessarily post callbacks
1620 * to CPUs that already have a non-lazy callback at the end of their
1621 * callback list, but this is an infrequent operation, so accept some
1622 * extra overhead to keep things simple.
1623 */
1624static void rcu_oom_notify_cpu(void *unused)
1625{
1626 struct rcu_state *rsp;
1627 struct rcu_data *rdp;
1628
1629 for_each_rcu_flavor(rsp) {
fa07a58f 1630 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1631 if (rdp->qlen_lazy != 0) {
1632 atomic_inc(&oom_callback_count);
1633 rsp->call(&rdp->oom_head, rcu_oom_callback);
1634 }
1635 }
1636}
1637
1638/*
1639 * If low on memory, ensure that each CPU has a non-lazy callback.
1640 * This will wake up CPUs that have only lazy callbacks, in turn
1641 * ensuring that they free up the corresponding memory in a timely manner.
1642 * Because an uncertain amount of memory will be freed in some uncertain
1643 * timeframe, we do not claim to have freed anything.
1644 */
1645static int rcu_oom_notify(struct notifier_block *self,
1646 unsigned long notused, void *nfreed)
1647{
1648 int cpu;
1649
1650 /* Wait for callbacks from earlier instance to complete. */
1651 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1652 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1653
1654 /*
1655 * Prevent premature wakeup: ensure that all increments happen
1656 * before there is a chance of the counter reaching zero.
1657 */
1658 atomic_set(&oom_callback_count, 1);
1659
b626c1b6
PM
1660 for_each_online_cpu(cpu) {
1661 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1662 cond_resched_rcu_qs();
b626c1b6 1663 }
b626c1b6
PM
1664
1665 /* Unconditionally decrement: no need to wake ourselves up. */
1666 atomic_dec(&oom_callback_count);
1667
1668 return NOTIFY_OK;
1669}
1670
1671static struct notifier_block rcu_oom_nb = {
1672 .notifier_call = rcu_oom_notify
1673};
1674
1675static int __init rcu_register_oom_notifier(void)
1676{
1677 register_oom_notifier(&rcu_oom_nb);
1678 return 0;
1679}
1680early_initcall(rcu_register_oom_notifier);
1681
8bd93a2c 1682#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1683
a858af28
PM
1684#ifdef CONFIG_RCU_FAST_NO_HZ
1685
1686static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1687{
5955f7ee 1688 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1689 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1690
c0f4dfd4
PM
1691 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1692 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1693 ulong2long(nlpd),
1694 rdtp->all_lazy ? 'L' : '.',
1695 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1696}
1697
1698#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1699
1700static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1701{
1c17e4d4 1702 *cp = '\0';
a858af28
PM
1703}
1704
1705#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1706
1707/* Initiate the stall-info list. */
1708static void print_cpu_stall_info_begin(void)
1709{
efc151c3 1710 pr_cont("\n");
a858af28
PM
1711}
1712
1713/*
1714 * Print out diagnostic information for the specified stalled CPU.
1715 *
1716 * If the specified CPU is aware of the current RCU grace period
1717 * (flavor specified by rsp), then print the number of scheduling
1718 * clock interrupts the CPU has taken during the time that it has
1719 * been aware. Otherwise, print the number of RCU grace periods
1720 * that this CPU is ignorant of, for example, "1" if the CPU was
1721 * aware of the previous grace period.
1722 *
1723 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1724 */
1725static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1726{
1727 char fast_no_hz[72];
1728 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1729 struct rcu_dynticks *rdtp = rdp->dynticks;
1730 char *ticks_title;
1731 unsigned long ticks_value;
1732
1733 if (rsp->gpnum == rdp->gpnum) {
1734 ticks_title = "ticks this GP";
1735 ticks_value = rdp->ticks_this_gp;
1736 } else {
1737 ticks_title = "GPs behind";
1738 ticks_value = rsp->gpnum - rdp->gpnum;
1739 }
1740 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
7f21aeef
PM
1741 pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1742 cpu,
1743 "O."[!!cpu_online(cpu)],
1744 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1745 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1746 ticks_value, ticks_title,
a858af28
PM
1747 atomic_read(&rdtp->dynticks) & 0xfff,
1748 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1749 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
7d0ae808 1750 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1751 fast_no_hz);
1752}
1753
1754/* Terminate the stall-info list. */
1755static void print_cpu_stall_info_end(void)
1756{
efc151c3 1757 pr_err("\t");
a858af28
PM
1758}
1759
1760/* Zero ->ticks_this_gp for all flavors of RCU. */
1761static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1762{
1763 rdp->ticks_this_gp = 0;
6231069b 1764 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1765}
1766
1767/* Increment ->ticks_this_gp for all flavors of RCU. */
1768static void increment_cpu_stall_ticks(void)
1769{
115f7a7c
PM
1770 struct rcu_state *rsp;
1771
1772 for_each_rcu_flavor(rsp)
fa07a58f 1773 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1774}
1775
3fbfbf7a
PM
1776#ifdef CONFIG_RCU_NOCB_CPU
1777
1778/*
1779 * Offload callback processing from the boot-time-specified set of CPUs
1780 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1781 * kthread created that pulls the callbacks from the corresponding CPU,
1782 * waits for a grace period to elapse, and invokes the callbacks.
1783 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1784 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1785 * has been specified, in which case each kthread actively polls its
1786 * CPU. (Which isn't so great for energy efficiency, but which does
1787 * reduce RCU's overhead on that CPU.)
1788 *
1789 * This is intended to be used in conjunction with Frederic Weisbecker's
1790 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1791 * running CPU-bound user-mode computations.
1792 *
1793 * Offloading of callback processing could also in theory be used as
1794 * an energy-efficiency measure because CPUs with no RCU callbacks
1795 * queued are more aggressive about entering dyntick-idle mode.
1796 */
1797
1798
1799/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1800static int __init rcu_nocb_setup(char *str)
1801{
1802 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1803 have_rcu_nocb_mask = true;
1804 cpulist_parse(str, rcu_nocb_mask);
1805 return 1;
1806}
1807__setup("rcu_nocbs=", rcu_nocb_setup);
1808
1b0048a4
PG
1809static int __init parse_rcu_nocb_poll(char *arg)
1810{
1811 rcu_nocb_poll = 1;
1812 return 0;
1813}
1814early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1815
dae6e64d 1816/*
0446be48
PM
1817 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1818 * grace period.
dae6e64d 1819 */
0446be48 1820static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 1821{
0446be48 1822 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
1823}
1824
1825/*
8b425aa8 1826 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1827 * based on the sum of those of all rcu_node structures. This does
1828 * double-count the root rcu_node structure's requests, but this
1829 * is necessary to handle the possibility of a rcu_nocb_kthread()
1830 * having awakened during the time that the rcu_node structures
1831 * were being updated for the end of the previous grace period.
34ed6246 1832 */
dae6e64d
PM
1833static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1834{
8b425aa8 1835 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1836}
1837
1838static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1839{
dae6e64d
PM
1840 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1841 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1842}
1843
2f33b512 1844#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 1845/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1846bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1847{
1848 if (have_rcu_nocb_mask)
1849 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1850 return false;
1851}
2f33b512 1852#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 1853
fbce7497
PM
1854/*
1855 * Kick the leader kthread for this NOCB group.
1856 */
1857static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1858{
1859 struct rcu_data *rdp_leader = rdp->nocb_leader;
1860
7d0ae808 1861 if (!READ_ONCE(rdp_leader->nocb_kthread))
fbce7497 1862 return;
7d0ae808 1863 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 1864 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1865 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
fbce7497
PM
1866 wake_up(&rdp_leader->nocb_wq);
1867 }
1868}
1869
d7e29933
PM
1870/*
1871 * Does the specified CPU need an RCU callback for the specified flavor
1872 * of rcu_barrier()?
1873 */
1874static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1875{
1876 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1877 unsigned long ret;
1878#ifdef CONFIG_PROVE_RCU
d7e29933 1879 struct rcu_head *rhp;
41050a00 1880#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1881
41050a00
PM
1882 /*
1883 * Check count of all no-CBs callbacks awaiting invocation.
1884 * There needs to be a barrier before this function is called,
1885 * but associated with a prior determination that no more
1886 * callbacks would be posted. In the worst case, the first
1887 * barrier in _rcu_barrier() suffices (but the caller cannot
1888 * necessarily rely on this, not a substitute for the caller
1889 * getting the concurrency design right!). There must also be
1890 * a barrier between the following load an posting of a callback
1891 * (if a callback is in fact needed). This is associated with an
1892 * atomic_inc() in the caller.
1893 */
1894 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1895
41050a00 1896#ifdef CONFIG_PROVE_RCU
7d0ae808 1897 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1898 if (!rhp)
7d0ae808 1899 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1900 if (!rhp)
7d0ae808 1901 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1902
1903 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1904 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1905 rcu_scheduler_fully_active) {
d7e29933
PM
1906 /* RCU callback enqueued before CPU first came online??? */
1907 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1908 cpu, rhp->func);
1909 WARN_ON_ONCE(1);
1910 }
41050a00 1911#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1912
41050a00 1913 return !!ret;
d7e29933
PM
1914}
1915
3fbfbf7a
PM
1916/*
1917 * Enqueue the specified string of rcu_head structures onto the specified
1918 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1919 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1920 * counts are supplied by rhcount and rhcount_lazy.
1921 *
1922 * If warranted, also wake up the kthread servicing this CPUs queues.
1923 */
1924static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1925 struct rcu_head *rhp,
1926 struct rcu_head **rhtp,
96d3fd0d
PM
1927 int rhcount, int rhcount_lazy,
1928 unsigned long flags)
3fbfbf7a
PM
1929{
1930 int len;
1931 struct rcu_head **old_rhpp;
1932 struct task_struct *t;
1933
1934 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1935 atomic_long_add(rhcount, &rdp->nocb_q_count);
1936 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 1937 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 1938 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 1939 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1940 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1941
1942 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 1943 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 1944 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1945 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1946 TPS("WakeNotPoll"));
3fbfbf7a 1947 return;
9261dd0d 1948 }
3fbfbf7a
PM
1949 len = atomic_long_read(&rdp->nocb_q_count);
1950 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 1951 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
1952 /* ... if queue was empty ... */
1953 wake_nocb_leader(rdp, false);
96d3fd0d
PM
1954 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1955 TPS("WakeEmpty"));
1956 } else {
9fdd3bc9 1957 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
1958 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1959 TPS("WakeEmptyIsDeferred"));
1960 }
3fbfbf7a
PM
1961 rdp->qlen_last_fqs_check = 0;
1962 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1963 /* ... or if many callbacks queued. */
9fdd3bc9
PM
1964 if (!irqs_disabled_flags(flags)) {
1965 wake_nocb_leader(rdp, true);
1966 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1967 TPS("WakeOvf"));
1968 } else {
1969 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1970 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1971 TPS("WakeOvfIsDeferred"));
1972 }
3fbfbf7a 1973 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
1974 } else {
1975 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
1976 }
1977 return;
1978}
1979
1980/*
1981 * This is a helper for __call_rcu(), which invokes this when the normal
1982 * callback queue is inoperable. If this is not a no-CBs CPU, this
1983 * function returns failure back to __call_rcu(), which can complain
1984 * appropriately.
1985 *
1986 * Otherwise, this function queues the callback where the corresponding
1987 * "rcuo" kthread can find it.
1988 */
1989static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 1990 bool lazy, unsigned long flags)
3fbfbf7a
PM
1991{
1992
d1e43fa5 1993 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 1994 return false;
96d3fd0d 1995 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
1996 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1997 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1998 (unsigned long)rhp->func,
756cbf6b
PM
1999 -atomic_long_read(&rdp->nocb_q_count_lazy),
2000 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2001 else
2002 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2003 -atomic_long_read(&rdp->nocb_q_count_lazy),
2004 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2005
2006 /*
2007 * If called from an extended quiescent state with interrupts
2008 * disabled, invoke the RCU core in order to allow the idle-entry
2009 * deferred-wakeup check to function.
2010 */
2011 if (irqs_disabled_flags(flags) &&
2012 !rcu_is_watching() &&
2013 cpu_online(smp_processor_id()))
2014 invoke_rcu_core();
2015
c271d3a9 2016 return true;
3fbfbf7a
PM
2017}
2018
2019/*
2020 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2021 * not a no-CBs CPU.
2022 */
2023static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2024 struct rcu_data *rdp,
2025 unsigned long flags)
3fbfbf7a
PM
2026{
2027 long ql = rsp->qlen;
2028 long qll = rsp->qlen_lazy;
2029
2030 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2031 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2032 return false;
3fbfbf7a
PM
2033 rsp->qlen = 0;
2034 rsp->qlen_lazy = 0;
2035
2036 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2037 if (rsp->orphan_donelist != NULL) {
2038 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2039 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2040 ql = qll = 0;
2041 rsp->orphan_donelist = NULL;
2042 rsp->orphan_donetail = &rsp->orphan_donelist;
2043 }
2044 if (rsp->orphan_nxtlist != NULL) {
2045 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2046 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2047 ql = qll = 0;
2048 rsp->orphan_nxtlist = NULL;
2049 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2050 }
0a9e1e11 2051 return true;
3fbfbf7a
PM
2052}
2053
2054/*
34ed6246
PM
2055 * If necessary, kick off a new grace period, and either way wait
2056 * for a subsequent grace period to complete.
3fbfbf7a 2057 */
34ed6246 2058static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2059{
34ed6246 2060 unsigned long c;
dae6e64d 2061 bool d;
34ed6246 2062 unsigned long flags;
48a7639c 2063 bool needwake;
34ed6246
PM
2064 struct rcu_node *rnp = rdp->mynode;
2065
2a67e741 2066 raw_spin_lock_irqsave_rcu_node(rnp, flags);
48a7639c 2067 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2068 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2069 if (needwake)
2070 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2071
2072 /*
34ed6246
PM
2073 * Wait for the grace period. Do so interruptibly to avoid messing
2074 * up the load average.
3fbfbf7a 2075 */
f7f7bac9 2076 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2077 for (;;) {
dae6e64d
PM
2078 wait_event_interruptible(
2079 rnp->nocb_gp_wq[c & 0x1],
7d0ae808 2080 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
dae6e64d 2081 if (likely(d))
34ed6246 2082 break;
73a860cd 2083 WARN_ON(signal_pending(current));
f7f7bac9 2084 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2085 }
f7f7bac9 2086 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2087 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2088}
2089
fbce7497
PM
2090/*
2091 * Leaders come here to wait for additional callbacks to show up.
2092 * This function does not return until callbacks appear.
2093 */
2094static void nocb_leader_wait(struct rcu_data *my_rdp)
2095{
2096 bool firsttime = true;
2097 bool gotcbs;
2098 struct rcu_data *rdp;
2099 struct rcu_head **tail;
2100
2101wait_again:
2102
2103 /* Wait for callbacks to appear. */
2104 if (!rcu_nocb_poll) {
2105 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2106 wait_event_interruptible(my_rdp->nocb_wq,
7d0ae808 2107 !READ_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2108 /* Memory barrier handled by smp_mb() calls below and repoll. */
2109 } else if (firsttime) {
2110 firsttime = false; /* Don't drown trace log with "Poll"! */
2111 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2112 }
2113
2114 /*
2115 * Each pass through the following loop checks a follower for CBs.
2116 * We are our own first follower. Any CBs found are moved to
2117 * nocb_gp_head, where they await a grace period.
2118 */
2119 gotcbs = false;
2120 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2121 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2122 if (!rdp->nocb_gp_head)
2123 continue; /* No CBs here, try next follower. */
2124
2125 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2126 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2127 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2128 gotcbs = true;
2129 }
2130
2131 /*
2132 * If there were no callbacks, sleep a bit, rescan after a
2133 * memory barrier, and go retry.
2134 */
2135 if (unlikely(!gotcbs)) {
2136 if (!rcu_nocb_poll)
2137 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2138 "WokeEmpty");
73a860cd 2139 WARN_ON(signal_pending(current));
fbce7497
PM
2140 schedule_timeout_interruptible(1);
2141
2142 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2143 my_rdp->nocb_leader_sleep = true;
2144 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497 2145 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
7d0ae808 2146 if (READ_ONCE(rdp->nocb_head)) {
fbce7497 2147 /* Found CB, so short-circuit next wait. */
11ed7f93 2148 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2149 break;
2150 }
2151 goto wait_again;
2152 }
2153
2154 /* Wait for one grace period. */
2155 rcu_nocb_wait_gp(my_rdp);
2156
2157 /*
11ed7f93
PK
2158 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2159 * We set it now, but recheck for new callbacks while
fbce7497
PM
2160 * traversing our follower list.
2161 */
11ed7f93
PK
2162 my_rdp->nocb_leader_sleep = true;
2163 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2164
2165 /* Each pass through the following loop wakes a follower, if needed. */
2166 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2167 if (READ_ONCE(rdp->nocb_head))
11ed7f93 2168 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2169 if (!rdp->nocb_gp_head)
2170 continue; /* No CBs, so no need to wake follower. */
2171
2172 /* Append callbacks to follower's "done" list. */
2173 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2174 *tail = rdp->nocb_gp_head;
c847f142 2175 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2176 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2177 /*
2178 * List was empty, wake up the follower.
2179 * Memory barriers supplied by atomic_long_add().
2180 */
2181 wake_up(&rdp->nocb_wq);
2182 }
2183 }
2184
2185 /* If we (the leader) don't have CBs, go wait some more. */
2186 if (!my_rdp->nocb_follower_head)
2187 goto wait_again;
2188}
2189
2190/*
2191 * Followers come here to wait for additional callbacks to show up.
2192 * This function does not return until callbacks appear.
2193 */
2194static void nocb_follower_wait(struct rcu_data *rdp)
2195{
2196 bool firsttime = true;
2197
2198 for (;;) {
2199 if (!rcu_nocb_poll) {
2200 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2201 "FollowerSleep");
2202 wait_event_interruptible(rdp->nocb_wq,
7d0ae808 2203 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2204 } else if (firsttime) {
2205 /* Don't drown trace log with "Poll"! */
2206 firsttime = false;
2207 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2208 }
2209 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2210 /* ^^^ Ensure CB invocation follows _head test. */
2211 return;
2212 }
2213 if (!rcu_nocb_poll)
2214 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2215 "WokeEmpty");
73a860cd 2216 WARN_ON(signal_pending(current));
fbce7497
PM
2217 schedule_timeout_interruptible(1);
2218 }
2219}
2220
3fbfbf7a
PM
2221/*
2222 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2223 * callbacks queued by the corresponding no-CBs CPU, however, there is
2224 * an optional leader-follower relationship so that the grace-period
2225 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2226 */
2227static int rcu_nocb_kthread(void *arg)
2228{
2229 int c, cl;
2230 struct rcu_head *list;
2231 struct rcu_head *next;
2232 struct rcu_head **tail;
2233 struct rcu_data *rdp = arg;
2234
2235 /* Each pass through this loop invokes one batch of callbacks */
2236 for (;;) {
fbce7497
PM
2237 /* Wait for callbacks. */
2238 if (rdp->nocb_leader == rdp)
2239 nocb_leader_wait(rdp);
2240 else
2241 nocb_follower_wait(rdp);
2242
2243 /* Pull the ready-to-invoke callbacks onto local list. */
7d0ae808 2244 list = READ_ONCE(rdp->nocb_follower_head);
fbce7497
PM
2245 BUG_ON(!list);
2246 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
7d0ae808 2247 WRITE_ONCE(rdp->nocb_follower_head, NULL);
fbce7497 2248 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
3fbfbf7a
PM
2249
2250 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2251 trace_rcu_batch_start(rdp->rsp->name,
2252 atomic_long_read(&rdp->nocb_q_count_lazy),
2253 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2254 c = cl = 0;
2255 while (list) {
2256 next = list->next;
2257 /* Wait for enqueuing to complete, if needed. */
2258 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2259 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2260 TPS("WaitQueue"));
3fbfbf7a 2261 schedule_timeout_interruptible(1);
69a79bb1
PM
2262 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2263 TPS("WokeQueue"));
3fbfbf7a
PM
2264 next = list->next;
2265 }
2266 debug_rcu_head_unqueue(list);
2267 local_bh_disable();
2268 if (__rcu_reclaim(rdp->rsp->name, list))
2269 cl++;
2270 c++;
2271 local_bh_enable();
2272 list = next;
2273 }
2274 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2275 smp_mb__before_atomic(); /* _add after CB invocation. */
2276 atomic_long_add(-c, &rdp->nocb_q_count);
2277 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2278 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2279 }
2280 return 0;
2281}
2282
96d3fd0d 2283/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2284static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2285{
7d0ae808 2286 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2287}
2288
2289/* Do a deferred wakeup of rcu_nocb_kthread(). */
2290static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2291{
9fdd3bc9
PM
2292 int ndw;
2293
96d3fd0d
PM
2294 if (!rcu_nocb_need_deferred_wakeup(rdp))
2295 return;
7d0ae808
PM
2296 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2297 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
9fdd3bc9
PM
2298 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2299 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2300}
2301
f4579fc5
PM
2302void __init rcu_init_nohz(void)
2303{
2304 int cpu;
2305 bool need_rcu_nocb_mask = true;
2306 struct rcu_state *rsp;
2307
2308#ifdef CONFIG_RCU_NOCB_CPU_NONE
2309 need_rcu_nocb_mask = false;
2310#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2311
2312#if defined(CONFIG_NO_HZ_FULL)
2313 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2314 need_rcu_nocb_mask = true;
2315#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2316
2317 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2318 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2319 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2320 return;
2321 }
f4579fc5
PM
2322 have_rcu_nocb_mask = true;
2323 }
2324 if (!have_rcu_nocb_mask)
2325 return;
2326
2327#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2328 pr_info("\tOffload RCU callbacks from CPU 0\n");
2329 cpumask_set_cpu(0, rcu_nocb_mask);
2330#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2331#ifdef CONFIG_RCU_NOCB_CPU_ALL
2332 pr_info("\tOffload RCU callbacks from all CPUs\n");
2333 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2334#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2335#if defined(CONFIG_NO_HZ_FULL)
2336 if (tick_nohz_full_running)
2337 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2338#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2339
2340 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2341 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2342 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2343 rcu_nocb_mask);
2344 }
ad853b48
TH
2345 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2346 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2347 if (rcu_nocb_poll)
2348 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2349
2350 for_each_rcu_flavor(rsp) {
34404ca8
PM
2351 for_each_cpu(cpu, rcu_nocb_mask)
2352 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
35ce7f29 2353 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2354 }
96d3fd0d
PM
2355}
2356
3fbfbf7a
PM
2357/* Initialize per-rcu_data variables for no-CBs CPUs. */
2358static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2359{
2360 rdp->nocb_tail = &rdp->nocb_head;
2361 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2362 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2363}
2364
35ce7f29
PM
2365/*
2366 * If the specified CPU is a no-CBs CPU that does not already have its
2367 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2368 * brought online out of order, this can require re-organizing the
2369 * leader-follower relationships.
2370 */
2371static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2372{
2373 struct rcu_data *rdp;
2374 struct rcu_data *rdp_last;
2375 struct rcu_data *rdp_old_leader;
2376 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2377 struct task_struct *t;
2378
2379 /*
2380 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2381 * then nothing to do.
2382 */
2383 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2384 return;
2385
2386 /* If we didn't spawn the leader first, reorganize! */
2387 rdp_old_leader = rdp_spawn->nocb_leader;
2388 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2389 rdp_last = NULL;
2390 rdp = rdp_old_leader;
2391 do {
2392 rdp->nocb_leader = rdp_spawn;
2393 if (rdp_last && rdp != rdp_spawn)
2394 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2395 if (rdp == rdp_spawn) {
2396 rdp = rdp->nocb_next_follower;
2397 } else {
2398 rdp_last = rdp;
2399 rdp = rdp->nocb_next_follower;
2400 rdp_last->nocb_next_follower = NULL;
2401 }
35ce7f29
PM
2402 } while (rdp);
2403 rdp_spawn->nocb_next_follower = rdp_old_leader;
2404 }
2405
2406 /* Spawn the kthread for this CPU and RCU flavor. */
2407 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2408 "rcuo%c/%d", rsp->abbr, cpu);
2409 BUG_ON(IS_ERR(t));
7d0ae808 2410 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2411}
2412
2413/*
2414 * If the specified CPU is a no-CBs CPU that does not already have its
2415 * rcuo kthreads, spawn them.
2416 */
2417static void rcu_spawn_all_nocb_kthreads(int cpu)
2418{
2419 struct rcu_state *rsp;
2420
2421 if (rcu_scheduler_fully_active)
2422 for_each_rcu_flavor(rsp)
2423 rcu_spawn_one_nocb_kthread(rsp, cpu);
2424}
2425
2426/*
2427 * Once the scheduler is running, spawn rcuo kthreads for all online
2428 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2429 * non-boot CPUs come online -- if this changes, we will need to add
2430 * some mutual exclusion.
2431 */
2432static void __init rcu_spawn_nocb_kthreads(void)
2433{
2434 int cpu;
2435
2436 for_each_online_cpu(cpu)
2437 rcu_spawn_all_nocb_kthreads(cpu);
2438}
2439
fbce7497
PM
2440/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2441static int rcu_nocb_leader_stride = -1;
2442module_param(rcu_nocb_leader_stride, int, 0444);
2443
2444/*
35ce7f29 2445 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2446 */
35ce7f29 2447static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2448{
2449 int cpu;
fbce7497
PM
2450 int ls = rcu_nocb_leader_stride;
2451 int nl = 0; /* Next leader. */
3fbfbf7a 2452 struct rcu_data *rdp;
fbce7497
PM
2453 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2454 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2455
22c2f669 2456 if (!have_rcu_nocb_mask)
3fbfbf7a 2457 return;
fbce7497
PM
2458 if (ls == -1) {
2459 ls = int_sqrt(nr_cpu_ids);
2460 rcu_nocb_leader_stride = ls;
2461 }
2462
2463 /*
2464 * Each pass through this loop sets up one rcu_data structure and
2465 * spawns one rcu_nocb_kthread().
2466 */
3fbfbf7a
PM
2467 for_each_cpu(cpu, rcu_nocb_mask) {
2468 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2469 if (rdp->cpu >= nl) {
2470 /* New leader, set up for followers & next leader. */
2471 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2472 rdp->nocb_leader = rdp;
2473 rdp_leader = rdp;
2474 } else {
2475 /* Another follower, link to previous leader. */
2476 rdp->nocb_leader = rdp_leader;
2477 rdp_prev->nocb_next_follower = rdp;
2478 }
2479 rdp_prev = rdp;
3fbfbf7a
PM
2480 }
2481}
2482
2483/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2484static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2485{
22c2f669 2486 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2487 return false;
22c2f669 2488
34404ca8
PM
2489 /* If there are early-boot callbacks, move them to nocb lists. */
2490 if (rdp->nxtlist) {
2491 rdp->nocb_head = rdp->nxtlist;
2492 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2493 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2494 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2495 rdp->nxtlist = NULL;
2496 rdp->qlen = 0;
2497 rdp->qlen_lazy = 0;
2498 }
3fbfbf7a 2499 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2500 return true;
3fbfbf7a
PM
2501}
2502
34ed6246
PM
2503#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2504
d7e29933
PM
2505static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2506{
2507 WARN_ON_ONCE(1); /* Should be dead code. */
2508 return false;
2509}
2510
0446be48 2511static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2512{
3fbfbf7a
PM
2513}
2514
dae6e64d
PM
2515static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2516{
2517}
2518
2519static void rcu_init_one_nocb(struct rcu_node *rnp)
2520{
2521}
3fbfbf7a 2522
3fbfbf7a 2523static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2524 bool lazy, unsigned long flags)
3fbfbf7a 2525{
4afc7e26 2526 return false;
3fbfbf7a
PM
2527}
2528
2529static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2530 struct rcu_data *rdp,
2531 unsigned long flags)
3fbfbf7a 2532{
f4aa84ba 2533 return false;
3fbfbf7a
PM
2534}
2535
3fbfbf7a
PM
2536static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2537{
2538}
2539
9fdd3bc9 2540static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2541{
2542 return false;
2543}
2544
2545static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2546{
2547}
2548
35ce7f29
PM
2549static void rcu_spawn_all_nocb_kthreads(int cpu)
2550{
2551}
2552
2553static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2554{
2555}
2556
34ed6246 2557static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2558{
34ed6246 2559 return false;
3fbfbf7a
PM
2560}
2561
2562#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2563
2564/*
2565 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2566 * arbitrarily long period of time with the scheduling-clock tick turned
2567 * off. RCU will be paying attention to this CPU because it is in the
2568 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2569 * machine because the scheduling-clock tick has been disabled. Therefore,
2570 * if an adaptive-ticks CPU is failing to respond to the current grace
2571 * period and has not be idle from an RCU perspective, kick it.
2572 */
4a81e832 2573static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2574{
2575#ifdef CONFIG_NO_HZ_FULL
2576 if (tick_nohz_full_cpu(cpu))
2577 smp_send_reschedule(cpu);
2578#endif /* #ifdef CONFIG_NO_HZ_FULL */
2579}
2333210b
PM
2580
2581
2582#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2583
0edd1b17 2584static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2585#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2586#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2587#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2588#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2589#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2590
eb348b89
PM
2591/*
2592 * Invoked to note exit from irq or task transition to idle. Note that
2593 * usermode execution does -not- count as idle here! After all, we want
2594 * to detect full-system idle states, not RCU quiescent states and grace
2595 * periods. The caller must have disabled interrupts.
2596 */
28ced795 2597static void rcu_sysidle_enter(int irq)
eb348b89
PM
2598{
2599 unsigned long j;
28ced795 2600 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
eb348b89 2601
663e1310
PM
2602 /* If there are no nohz_full= CPUs, no need to track this. */
2603 if (!tick_nohz_full_enabled())
2604 return;
2605
eb348b89
PM
2606 /* Adjust nesting, check for fully idle. */
2607 if (irq) {
2608 rdtp->dynticks_idle_nesting--;
2609 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2610 if (rdtp->dynticks_idle_nesting != 0)
2611 return; /* Still not fully idle. */
2612 } else {
2613 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2614 DYNTICK_TASK_NEST_VALUE) {
2615 rdtp->dynticks_idle_nesting = 0;
2616 } else {
2617 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2618 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2619 return; /* Still not fully idle. */
2620 }
2621 }
2622
2623 /* Record start of fully idle period. */
2624 j = jiffies;
7d0ae808 2625 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
4e857c58 2626 smp_mb__before_atomic();
eb348b89 2627 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2628 smp_mb__after_atomic();
eb348b89
PM
2629 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2630}
2631
0edd1b17
PM
2632/*
2633 * Unconditionally force exit from full system-idle state. This is
2634 * invoked when a normal CPU exits idle, but must be called separately
2635 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2636 * is that the timekeeping CPU is permitted to take scheduling-clock
2637 * interrupts while the system is in system-idle state, and of course
2638 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2639 * interrupt from any other type of interrupt.
2640 */
2641void rcu_sysidle_force_exit(void)
2642{
7d0ae808 2643 int oldstate = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2644 int newoldstate;
2645
2646 /*
2647 * Each pass through the following loop attempts to exit full
2648 * system-idle state. If contention proves to be a problem,
2649 * a trylock-based contention tree could be used here.
2650 */
2651 while (oldstate > RCU_SYSIDLE_SHORT) {
2652 newoldstate = cmpxchg(&full_sysidle_state,
2653 oldstate, RCU_SYSIDLE_NOT);
2654 if (oldstate == newoldstate &&
2655 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2656 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2657 return; /* We cleared it, done! */
2658 }
2659 oldstate = newoldstate;
2660 }
2661 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2662}
2663
eb348b89
PM
2664/*
2665 * Invoked to note entry to irq or task transition from idle. Note that
2666 * usermode execution does -not- count as idle here! The caller must
2667 * have disabled interrupts.
2668 */
28ced795 2669static void rcu_sysidle_exit(int irq)
eb348b89 2670{
28ced795
CL
2671 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2672
663e1310
PM
2673 /* If there are no nohz_full= CPUs, no need to track this. */
2674 if (!tick_nohz_full_enabled())
2675 return;
2676
eb348b89
PM
2677 /* Adjust nesting, check for already non-idle. */
2678 if (irq) {
2679 rdtp->dynticks_idle_nesting++;
2680 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2681 if (rdtp->dynticks_idle_nesting != 1)
2682 return; /* Already non-idle. */
2683 } else {
2684 /*
2685 * Allow for irq misnesting. Yes, it really is possible
2686 * to enter an irq handler then never leave it, and maybe
2687 * also vice versa. Handle both possibilities.
2688 */
2689 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2690 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2691 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2692 return; /* Already non-idle. */
2693 } else {
2694 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2695 }
2696 }
2697
2698 /* Record end of idle period. */
4e857c58 2699 smp_mb__before_atomic();
eb348b89 2700 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2701 smp_mb__after_atomic();
eb348b89 2702 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2703
2704 /*
2705 * If we are the timekeeping CPU, we are permitted to be non-idle
2706 * during a system-idle state. This must be the case, because
2707 * the timekeeping CPU has to take scheduling-clock interrupts
2708 * during the time that the system is transitioning to full
2709 * system-idle state. This means that the timekeeping CPU must
2710 * invoke rcu_sysidle_force_exit() directly if it does anything
2711 * more than take a scheduling-clock interrupt.
2712 */
2713 if (smp_processor_id() == tick_do_timer_cpu)
2714 return;
2715
2716 /* Update system-idle state: We are clearly no longer fully idle! */
2717 rcu_sysidle_force_exit();
2718}
2719
2720/*
2721 * Check to see if the current CPU is idle. Note that usermode execution
5871968d
PM
2722 * does not count as idle. The caller must have disabled interrupts,
2723 * and must be running on tick_do_timer_cpu.
0edd1b17
PM
2724 */
2725static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2726 unsigned long *maxj)
2727{
2728 int cur;
2729 unsigned long j;
2730 struct rcu_dynticks *rdtp = rdp->dynticks;
2731
663e1310
PM
2732 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2733 if (!tick_nohz_full_enabled())
2734 return;
2735
0edd1b17
PM
2736 /*
2737 * If some other CPU has already reported non-idle, if this is
2738 * not the flavor of RCU that tracks sysidle state, or if this
2739 * is an offline or the timekeeping CPU, nothing to do.
2740 */
417e8d26 2741 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2742 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2743 return;
5871968d
PM
2744 /* Verify affinity of current kthread. */
2745 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2746
2747 /* Pick up current idle and NMI-nesting counter and check. */
2748 cur = atomic_read(&rdtp->dynticks_idle);
2749 if (cur & 0x1) {
2750 *isidle = false; /* We are not idle! */
2751 return;
2752 }
2753 smp_mb(); /* Read counters before timestamps. */
2754
2755 /* Pick up timestamps. */
7d0ae808 2756 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
0edd1b17
PM
2757 /* If this CPU entered idle more recently, update maxj timestamp. */
2758 if (ULONG_CMP_LT(*maxj, j))
2759 *maxj = j;
2760}
2761
2762/*
2763 * Is this the flavor of RCU that is handling full-system idle?
2764 */
2765static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2766{
417e8d26 2767 return rsp == rcu_state_p;
0edd1b17
PM
2768}
2769
2770/*
2771 * Return a delay in jiffies based on the number of CPUs, rcu_node
2772 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2773 * systems more time to transition to full-idle state in order to
2774 * avoid the cache thrashing that otherwise occur on the state variable.
2775 * Really small systems (less than a couple of tens of CPUs) should
2776 * instead use a single global atomically incremented counter, and later
2777 * versions of this will automatically reconfigure themselves accordingly.
2778 */
2779static unsigned long rcu_sysidle_delay(void)
2780{
2781 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2782 return 0;
2783 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2784}
2785
2786/*
2787 * Advance the full-system-idle state. This is invoked when all of
2788 * the non-timekeeping CPUs are idle.
2789 */
2790static void rcu_sysidle(unsigned long j)
2791{
2792 /* Check the current state. */
7d0ae808 2793 switch (READ_ONCE(full_sysidle_state)) {
0edd1b17
PM
2794 case RCU_SYSIDLE_NOT:
2795
2796 /* First time all are idle, so note a short idle period. */
7d0ae808 2797 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
0edd1b17
PM
2798 break;
2799
2800 case RCU_SYSIDLE_SHORT:
2801
2802 /*
2803 * Idle for a bit, time to advance to next state?
2804 * cmpxchg failure means race with non-idle, let them win.
2805 */
2806 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2807 (void)cmpxchg(&full_sysidle_state,
2808 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2809 break;
2810
2811 case RCU_SYSIDLE_LONG:
2812
2813 /*
2814 * Do an additional check pass before advancing to full.
2815 * cmpxchg failure means race with non-idle, let them win.
2816 */
2817 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2818 (void)cmpxchg(&full_sysidle_state,
2819 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2820 break;
2821
2822 default:
2823 break;
2824 }
2825}
2826
2827/*
2828 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2829 * back to the beginning.
2830 */
2831static void rcu_sysidle_cancel(void)
2832{
2833 smp_mb();
becb41bf 2834 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
7d0ae808 2835 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
0edd1b17
PM
2836}
2837
2838/*
2839 * Update the sysidle state based on the results of a force-quiescent-state
2840 * scan of the CPUs' dyntick-idle state.
2841 */
2842static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2843 unsigned long maxj, bool gpkt)
2844{
417e8d26 2845 if (rsp != rcu_state_p)
0edd1b17
PM
2846 return; /* Wrong flavor, ignore. */
2847 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2848 return; /* Running state machine from timekeeping CPU. */
2849 if (isidle)
2850 rcu_sysidle(maxj); /* More idle! */
2851 else
2852 rcu_sysidle_cancel(); /* Idle is over. */
2853}
2854
2855/*
2856 * Wrapper for rcu_sysidle_report() when called from the grace-period
2857 * kthread's context.
2858 */
2859static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2860 unsigned long maxj)
2861{
663e1310
PM
2862 /* If there are no nohz_full= CPUs, no need to track this. */
2863 if (!tick_nohz_full_enabled())
2864 return;
2865
0edd1b17
PM
2866 rcu_sysidle_report(rsp, isidle, maxj, true);
2867}
2868
2869/* Callback and function for forcing an RCU grace period. */
2870struct rcu_sysidle_head {
2871 struct rcu_head rh;
2872 int inuse;
2873};
2874
2875static void rcu_sysidle_cb(struct rcu_head *rhp)
2876{
2877 struct rcu_sysidle_head *rshp;
2878
2879 /*
2880 * The following memory barrier is needed to replace the
2881 * memory barriers that would normally be in the memory
2882 * allocator.
2883 */
2884 smp_mb(); /* grace period precedes setting inuse. */
2885
2886 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
7d0ae808 2887 WRITE_ONCE(rshp->inuse, 0);
0edd1b17
PM
2888}
2889
2890/*
2891 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
2892 * The caller must have disabled interrupts. This is not intended to be
2893 * called unless tick_nohz_full_enabled().
0edd1b17
PM
2894 */
2895bool rcu_sys_is_idle(void)
2896{
2897 static struct rcu_sysidle_head rsh;
7d0ae808 2898 int rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2899
2900 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2901 return false;
2902
2903 /* Handle small-system case by doing a full scan of CPUs. */
2904 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2905 int oldrss = rss - 1;
2906
2907 /*
2908 * One pass to advance to each state up to _FULL.
2909 * Give up if any pass fails to advance the state.
2910 */
2911 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2912 int cpu;
2913 bool isidle = true;
2914 unsigned long maxj = jiffies - ULONG_MAX / 4;
2915 struct rcu_data *rdp;
2916
2917 /* Scan all the CPUs looking for nonidle CPUs. */
2918 for_each_possible_cpu(cpu) {
417e8d26 2919 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
2920 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2921 if (!isidle)
2922 break;
2923 }
417e8d26 2924 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17 2925 oldrss = rss;
7d0ae808 2926 rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2927 }
2928 }
2929
2930 /* If this is the first observation of an idle period, record it. */
2931 if (rss == RCU_SYSIDLE_FULL) {
2932 rss = cmpxchg(&full_sysidle_state,
2933 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2934 return rss == RCU_SYSIDLE_FULL;
2935 }
2936
2937 smp_mb(); /* ensure rss load happens before later caller actions. */
2938
2939 /* If already fully idle, tell the caller (in case of races). */
2940 if (rss == RCU_SYSIDLE_FULL_NOTED)
2941 return true;
2942
2943 /*
2944 * If we aren't there yet, and a grace period is not in flight,
2945 * initiate a grace period. Either way, tell the caller that
2946 * we are not there yet. We use an xchg() rather than an assignment
2947 * to make up for the memory barriers that would otherwise be
2948 * provided by the memory allocator.
2949 */
2950 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 2951 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
2952 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2953 call_rcu(&rsh.rh, rcu_sysidle_cb);
2954 return false;
eb348b89
PM
2955}
2956
2333210b
PM
2957/*
2958 * Initialize dynticks sysidle state for CPUs coming online.
2959 */
2960static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2961{
2962 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2963}
2964
2965#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2966
28ced795 2967static void rcu_sysidle_enter(int irq)
eb348b89
PM
2968{
2969}
2970
28ced795 2971static void rcu_sysidle_exit(int irq)
eb348b89
PM
2972{
2973}
2974
0edd1b17
PM
2975static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2976 unsigned long *maxj)
2977{
2978}
2979
2980static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2981{
2982 return false;
2983}
2984
2985static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2986 unsigned long maxj)
2987{
2988}
2989
2333210b
PM
2990static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2991{
2992}
2993
2994#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
2995
2996/*
2997 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2998 * grace-period kthread will do force_quiescent_state() processing?
2999 * The idea is to avoid waking up RCU core processing on such a
3000 * CPU unless the grace period has extended for too long.
3001 *
3002 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3003 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3004 */
3005static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3006{
3007#ifdef CONFIG_NO_HZ_FULL
3008 if (tick_nohz_full_cpu(smp_processor_id()) &&
3009 (!rcu_gp_in_progress(rsp) ||
7d0ae808 3010 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
5ce035fb 3011 return true;
a096932f 3012#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 3013 return false;
a096932f 3014}
5057f55e
PM
3015
3016/*
3017 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3018 * timekeeping CPU.
3019 */
3020static void rcu_bind_gp_kthread(void)
3021{
c0f489d2 3022 int __maybe_unused cpu;
5057f55e 3023
c0f489d2 3024 if (!tick_nohz_full_enabled())
5057f55e 3025 return;
c0f489d2
PM
3026#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3027 cpu = tick_do_timer_cpu;
5871968d 3028 if (cpu >= 0 && cpu < nr_cpu_ids)
5057f55e 3029 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2 3030#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5871968d 3031 housekeeping_affine(current);
c0f489d2 3032#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3033}
176f8f7a
PM
3034
3035/* Record the current task on dyntick-idle entry. */
3036static void rcu_dynticks_task_enter(void)
3037{
3038#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3039 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
3040#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3041}
3042
3043/* Record no current task on dyntick-idle exit. */
3044static void rcu_dynticks_task_exit(void)
3045{
3046#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3047 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
3048#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3049}