rcu: Remove local_irq_disable() in rcu_preempt_note_context_switch()
[linux-2.6-block.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
abaa93d9 36#include "../locking/rtmutex_common.h"
5b61b0ba
MG
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
3fbfbf7a
PM
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 45static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
26845c28
PM
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary. If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
efc151c3 57 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 60 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
61 CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 64 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 67 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
68#endif
69#ifdef CONFIG_PROVE_RCU
efc151c3 70 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 73 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 74#endif
81a294c4 75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 76 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 79 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
80#endif
81#if NUM_RCU_LVL_4 != 0
efc151c3 82 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 83#endif
f885b7f2 84 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 85 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 86 if (nr_cpu_ids != NR_CPUS)
efc151c3 87 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
3fbfbf7a 88#ifdef CONFIG_RCU_NOCB_CPU
911af505
PM
89#ifndef CONFIG_RCU_NOCB_CPU_NONE
90 if (!have_rcu_nocb_mask) {
615ee544 91 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
911af505
PM
92 have_rcu_nocb_mask = true;
93 }
94#ifdef CONFIG_RCU_NOCB_CPU_ZERO
9a5739d7 95 pr_info("\tOffload RCU callbacks from CPU 0\n");
911af505
PM
96 cpumask_set_cpu(0, rcu_nocb_mask);
97#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98#ifdef CONFIG_RCU_NOCB_CPU_ALL
9a5739d7 99 pr_info("\tOffload RCU callbacks from all CPUs\n");
5d5a0800 100 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
911af505
PM
101#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
3fbfbf7a 103 if (have_rcu_nocb_mask) {
5d5a0800
KT
104 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107 rcu_nocb_mask);
108 }
3fbfbf7a 109 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
9a5739d7 110 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
3fbfbf7a 111 if (rcu_nocb_poll)
9a5739d7 112 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
3fbfbf7a
PM
113 }
114#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
26845c28
PM
115}
116
f41d911f
PM
117#ifdef CONFIG_TREE_PREEMPT_RCU
118
a41bfeb2 119RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 120static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 121
d9a3da06
PM
122static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123
f41d911f
PM
124/*
125 * Tell them what RCU they are running.
126 */
0e0fc1c2 127static void __init rcu_bootup_announce(void)
f41d911f 128{
efc151c3 129 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 130 rcu_bootup_announce_oddness();
f41d911f
PM
131}
132
133/*
134 * Return the number of RCU-preempt batches processed thus far
135 * for debug and statistics.
136 */
137long rcu_batches_completed_preempt(void)
138{
139 return rcu_preempt_state.completed;
140}
141EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142
143/*
144 * Return the number of RCU batches processed thus far for debug & stats.
145 */
146long rcu_batches_completed(void)
147{
148 return rcu_batches_completed_preempt();
149}
150EXPORT_SYMBOL_GPL(rcu_batches_completed);
151
152/*
6cc68793 153 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
154 * that this just means that the task currently running on the CPU is
155 * not in a quiescent state. There might be any number of tasks blocked
156 * while in an RCU read-side critical section.
25502a6c 157 *
1d082fd0
PM
158 * As with the other rcu_*_qs() functions, callers to this function
159 * must disable preemption.
f41d911f 160 */
c3422bea 161static void rcu_preempt_qs(int cpu)
f41d911f
PM
162{
163 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 164
e4cc1f22 165 if (rdp->passed_quiesce == 0)
f7f7bac9 166 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 167 rdp->passed_quiesce = 1;
1d082fd0 168 current->rcu_read_unlock_special.b.need_qs = false;
f41d911f
PM
169}
170
171/*
c3422bea
PM
172 * We have entered the scheduler, and the current task might soon be
173 * context-switched away from. If this task is in an RCU read-side
174 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
175 * record that fact, so we enqueue the task on the blkd_tasks list.
176 * The task will dequeue itself when it exits the outermost enclosing
177 * RCU read-side critical section. Therefore, the current grace period
178 * cannot be permitted to complete until the blkd_tasks list entries
179 * predating the current grace period drain, in other words, until
180 * rnp->gp_tasks becomes NULL.
c3422bea
PM
181 *
182 * Caller must disable preemption.
f41d911f 183 */
cba6d0d6 184static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
185{
186 struct task_struct *t = current;
c3422bea 187 unsigned long flags;
f41d911f
PM
188 struct rcu_data *rdp;
189 struct rcu_node *rnp;
190
10f39bb1 191 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 192 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
193
194 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 195 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 196 rnp = rdp->mynode;
1304afb2 197 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 198 smp_mb__after_unlock_lock();
1d082fd0 199 t->rcu_read_unlock_special.b.blocked = true;
86848966 200 t->rcu_blocked_node = rnp;
f41d911f
PM
201
202 /*
203 * If this CPU has already checked in, then this task
204 * will hold up the next grace period rather than the
205 * current grace period. Queue the task accordingly.
206 * If the task is queued for the current grace period
207 * (i.e., this CPU has not yet passed through a quiescent
208 * state for the current grace period), then as long
209 * as that task remains queued, the current grace period
12f5f524
PM
210 * cannot end. Note that there is some uncertainty as
211 * to exactly when the current grace period started.
212 * We take a conservative approach, which can result
213 * in unnecessarily waiting on tasks that started very
214 * slightly after the current grace period began. C'est
215 * la vie!!!
b0e165c0
PM
216 *
217 * But first, note that the current CPU must still be
218 * on line!
f41d911f 219 */
b0e165c0 220 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 221 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
222 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
223 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
224 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
225#ifdef CONFIG_RCU_BOOST
226 if (rnp->boost_tasks != NULL)
227 rnp->boost_tasks = rnp->gp_tasks;
228#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
229 } else {
230 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
231 if (rnp->qsmask & rdp->grpmask)
232 rnp->gp_tasks = &t->rcu_node_entry;
233 }
d4c08f2a
PM
234 trace_rcu_preempt_task(rdp->rsp->name,
235 t->pid,
236 (rnp->qsmask & rdp->grpmask)
237 ? rnp->gpnum
238 : rnp->gpnum + 1);
1304afb2 239 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 240 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 241 t->rcu_read_unlock_special.s) {
10f39bb1
PM
242
243 /*
244 * Complete exit from RCU read-side critical section on
245 * behalf of preempted instance of __rcu_read_unlock().
246 */
247 rcu_read_unlock_special(t);
f41d911f
PM
248 }
249
250 /*
251 * Either we were not in an RCU read-side critical section to
252 * begin with, or we have now recorded that critical section
253 * globally. Either way, we can now note a quiescent state
254 * for this CPU. Again, if we were in an RCU read-side critical
255 * section, and if that critical section was blocking the current
256 * grace period, then the fact that the task has been enqueued
257 * means that we continue to block the current grace period.
258 */
cba6d0d6 259 rcu_preempt_qs(cpu);
f41d911f
PM
260}
261
fc2219d4
PM
262/*
263 * Check for preempted RCU readers blocking the current grace period
264 * for the specified rcu_node structure. If the caller needs a reliable
265 * answer, it must hold the rcu_node's ->lock.
266 */
27f4d280 267static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 268{
12f5f524 269 return rnp->gp_tasks != NULL;
fc2219d4
PM
270}
271
b668c9cf
PM
272/*
273 * Record a quiescent state for all tasks that were previously queued
274 * on the specified rcu_node structure and that were blocking the current
275 * RCU grace period. The caller must hold the specified rnp->lock with
276 * irqs disabled, and this lock is released upon return, but irqs remain
277 * disabled.
278 */
d3f6bad3 279static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
280 __releases(rnp->lock)
281{
282 unsigned long mask;
283 struct rcu_node *rnp_p;
284
27f4d280 285 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 286 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
287 return; /* Still need more quiescent states! */
288 }
289
290 rnp_p = rnp->parent;
291 if (rnp_p == NULL) {
292 /*
293 * Either there is only one rcu_node in the tree,
294 * or tasks were kicked up to root rcu_node due to
295 * CPUs going offline.
296 */
d3f6bad3 297 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
298 return;
299 }
300
301 /* Report up the rest of the hierarchy. */
302 mask = rnp->grpmask;
1304afb2
PM
303 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
304 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 305 smp_mb__after_unlock_lock();
d3f6bad3 306 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
307}
308
12f5f524
PM
309/*
310 * Advance a ->blkd_tasks-list pointer to the next entry, instead
311 * returning NULL if at the end of the list.
312 */
313static struct list_head *rcu_next_node_entry(struct task_struct *t,
314 struct rcu_node *rnp)
315{
316 struct list_head *np;
317
318 np = t->rcu_node_entry.next;
319 if (np == &rnp->blkd_tasks)
320 np = NULL;
321 return np;
322}
323
b668c9cf
PM
324/*
325 * Handle special cases during rcu_read_unlock(), such as needing to
326 * notify RCU core processing or task having blocked during the RCU
327 * read-side critical section.
328 */
2a3fa843 329void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
330{
331 int empty;
d9a3da06 332 int empty_exp;
389abd48 333 int empty_exp_now;
f41d911f 334 unsigned long flags;
12f5f524 335 struct list_head *np;
82e78d80 336#ifdef CONFIG_RCU_BOOST
abaa93d9 337 bool drop_boost_mutex = false;
82e78d80 338#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 339 struct rcu_node *rnp;
1d082fd0 340 union rcu_special special;
f41d911f
PM
341
342 /* NMI handlers cannot block and cannot safely manipulate state. */
343 if (in_nmi())
344 return;
345
346 local_irq_save(flags);
347
348 /*
349 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
350 * let it know that we have done so. Because irqs are disabled,
351 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
352 */
353 special = t->rcu_read_unlock_special;
1d082fd0 354 if (special.b.need_qs) {
c3422bea 355 rcu_preempt_qs(smp_processor_id());
1d082fd0 356 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
357 local_irq_restore(flags);
358 return;
359 }
f41d911f
PM
360 }
361
79a62f95
LJ
362 /* Hardware IRQ handlers cannot block, complain if they get here. */
363 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
f41d911f
PM
364 local_irq_restore(flags);
365 return;
366 }
367
368 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
369 if (special.b.blocked) {
370 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 371
dd5d19ba
PM
372 /*
373 * Remove this task from the list it blocked on. The
374 * task can migrate while we acquire the lock, but at
375 * most one time. So at most two passes through loop.
376 */
377 for (;;) {
86848966 378 rnp = t->rcu_blocked_node;
1304afb2 379 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 380 smp_mb__after_unlock_lock();
86848966 381 if (rnp == t->rcu_blocked_node)
dd5d19ba 382 break;
1304afb2 383 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 384 }
27f4d280 385 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
386 empty_exp = !rcu_preempted_readers_exp(rnp);
387 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 388 np = rcu_next_node_entry(t, rnp);
f41d911f 389 list_del_init(&t->rcu_node_entry);
82e78d80 390 t->rcu_blocked_node = NULL;
f7f7bac9 391 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 392 rnp->gpnum, t->pid);
12f5f524
PM
393 if (&t->rcu_node_entry == rnp->gp_tasks)
394 rnp->gp_tasks = np;
395 if (&t->rcu_node_entry == rnp->exp_tasks)
396 rnp->exp_tasks = np;
27f4d280
PM
397#ifdef CONFIG_RCU_BOOST
398 if (&t->rcu_node_entry == rnp->boost_tasks)
399 rnp->boost_tasks = np;
abaa93d9
PM
400 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
401 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
27f4d280 402#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
403
404 /*
405 * If this was the last task on the current list, and if
406 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
407 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
408 * so we must take a snapshot of the expedited state.
f41d911f 409 */
389abd48 410 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 411 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 412 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
413 rnp->gpnum,
414 0, rnp->qsmask,
415 rnp->level,
416 rnp->grplo,
417 rnp->grphi,
418 !!rnp->gp_tasks);
d3f6bad3 419 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 420 } else {
d4c08f2a 421 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 422 }
d9a3da06 423
27f4d280
PM
424#ifdef CONFIG_RCU_BOOST
425 /* Unboost if we were boosted. */
abaa93d9
PM
426 if (drop_boost_mutex) {
427 rt_mutex_unlock(&rnp->boost_mtx);
dfeb9765
PM
428 complete(&rnp->boost_completion);
429 }
27f4d280
PM
430#endif /* #ifdef CONFIG_RCU_BOOST */
431
d9a3da06
PM
432 /*
433 * If this was the last task on the expedited lists,
434 * then we need to report up the rcu_node hierarchy.
435 */
389abd48 436 if (!empty_exp && empty_exp_now)
b40d293e 437 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
438 } else {
439 local_irq_restore(flags);
f41d911f 440 }
f41d911f
PM
441}
442
1ed509a2
PM
443#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
444
445/*
446 * Dump detailed information for all tasks blocking the current RCU
447 * grace period on the specified rcu_node structure.
448 */
449static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
450{
451 unsigned long flags;
1ed509a2
PM
452 struct task_struct *t;
453
12f5f524 454 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
455 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
456 raw_spin_unlock_irqrestore(&rnp->lock, flags);
457 return;
458 }
12f5f524
PM
459 t = list_entry(rnp->gp_tasks,
460 struct task_struct, rcu_node_entry);
461 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
462 sched_show_task(t);
463 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
464}
465
466/*
467 * Dump detailed information for all tasks blocking the current RCU
468 * grace period.
469 */
470static void rcu_print_detail_task_stall(struct rcu_state *rsp)
471{
472 struct rcu_node *rnp = rcu_get_root(rsp);
473
474 rcu_print_detail_task_stall_rnp(rnp);
475 rcu_for_each_leaf_node(rsp, rnp)
476 rcu_print_detail_task_stall_rnp(rnp);
477}
478
479#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
480
481static void rcu_print_detail_task_stall(struct rcu_state *rsp)
482{
483}
484
485#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
486
a858af28
PM
487#ifdef CONFIG_RCU_CPU_STALL_INFO
488
489static void rcu_print_task_stall_begin(struct rcu_node *rnp)
490{
efc151c3 491 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
492 rnp->level, rnp->grplo, rnp->grphi);
493}
494
495static void rcu_print_task_stall_end(void)
496{
efc151c3 497 pr_cont("\n");
a858af28
PM
498}
499
500#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
501
502static void rcu_print_task_stall_begin(struct rcu_node *rnp)
503{
504}
505
506static void rcu_print_task_stall_end(void)
507{
508}
509
510#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
511
f41d911f
PM
512/*
513 * Scan the current list of tasks blocked within RCU read-side critical
514 * sections, printing out the tid of each.
515 */
9bc8b558 516static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 517{
f41d911f 518 struct task_struct *t;
9bc8b558 519 int ndetected = 0;
f41d911f 520
27f4d280 521 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 522 return 0;
a858af28 523 rcu_print_task_stall_begin(rnp);
12f5f524
PM
524 t = list_entry(rnp->gp_tasks,
525 struct task_struct, rcu_node_entry);
9bc8b558 526 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 527 pr_cont(" P%d", t->pid);
9bc8b558
PM
528 ndetected++;
529 }
a858af28 530 rcu_print_task_stall_end();
9bc8b558 531 return ndetected;
f41d911f
PM
532}
533
b0e165c0
PM
534/*
535 * Check that the list of blocked tasks for the newly completed grace
536 * period is in fact empty. It is a serious bug to complete a grace
537 * period that still has RCU readers blocked! This function must be
538 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
539 * must be held by the caller.
12f5f524
PM
540 *
541 * Also, if there are blocked tasks on the list, they automatically
542 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
543 */
544static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
545{
27f4d280 546 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
547 if (!list_empty(&rnp->blkd_tasks))
548 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 549 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
550}
551
33f76148
PM
552#ifdef CONFIG_HOTPLUG_CPU
553
dd5d19ba
PM
554/*
555 * Handle tasklist migration for case in which all CPUs covered by the
556 * specified rcu_node have gone offline. Move them up to the root
557 * rcu_node. The reason for not just moving them to the immediate
558 * parent is to remove the need for rcu_read_unlock_special() to
559 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
560 * Returns true if there were tasks blocking the current RCU grace
561 * period.
dd5d19ba 562 *
237c80c5
PM
563 * Returns 1 if there was previously a task blocking the current grace
564 * period on the specified rcu_node structure.
565 *
dd5d19ba
PM
566 * The caller must hold rnp->lock with irqs disabled.
567 */
237c80c5
PM
568static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
569 struct rcu_node *rnp,
570 struct rcu_data *rdp)
dd5d19ba 571{
dd5d19ba
PM
572 struct list_head *lp;
573 struct list_head *lp_root;
d9a3da06 574 int retval = 0;
dd5d19ba 575 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 576 struct task_struct *t;
dd5d19ba 577
86848966
PM
578 if (rnp == rnp_root) {
579 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 580 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 581 }
12f5f524
PM
582
583 /* If we are on an internal node, complain bitterly. */
584 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
585
586 /*
12f5f524
PM
587 * Move tasks up to root rcu_node. Don't try to get fancy for
588 * this corner-case operation -- just put this node's tasks
589 * at the head of the root node's list, and update the root node's
590 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
591 * if non-NULL. This might result in waiting for more tasks than
592 * absolutely necessary, but this is a good performance/complexity
593 * tradeoff.
dd5d19ba 594 */
2036d94a 595 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
596 retval |= RCU_OFL_TASKS_NORM_GP;
597 if (rcu_preempted_readers_exp(rnp))
598 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
599 lp = &rnp->blkd_tasks;
600 lp_root = &rnp_root->blkd_tasks;
601 while (!list_empty(lp)) {
602 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
603 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 604 smp_mb__after_unlock_lock();
12f5f524
PM
605 list_del(&t->rcu_node_entry);
606 t->rcu_blocked_node = rnp_root;
607 list_add(&t->rcu_node_entry, lp_root);
608 if (&t->rcu_node_entry == rnp->gp_tasks)
609 rnp_root->gp_tasks = rnp->gp_tasks;
610 if (&t->rcu_node_entry == rnp->exp_tasks)
611 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
612#ifdef CONFIG_RCU_BOOST
613 if (&t->rcu_node_entry == rnp->boost_tasks)
614 rnp_root->boost_tasks = rnp->boost_tasks;
615#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 616 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 617 }
27f4d280 618
1e3fd2b3
PM
619 rnp->gp_tasks = NULL;
620 rnp->exp_tasks = NULL;
27f4d280 621#ifdef CONFIG_RCU_BOOST
1e3fd2b3 622 rnp->boost_tasks = NULL;
5cc900cf
PM
623 /*
624 * In case root is being boosted and leaf was not. Make sure
625 * that we boost the tasks blocking the current grace period
626 * in this case.
627 */
27f4d280 628 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 629 smp_mb__after_unlock_lock();
27f4d280 630 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
631 rnp_root->boost_tasks != rnp_root->gp_tasks &&
632 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
633 rnp_root->boost_tasks = rnp_root->gp_tasks;
634 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
635#endif /* #ifdef CONFIG_RCU_BOOST */
636
237c80c5 637 return retval;
dd5d19ba
PM
638}
639
e5601400
PM
640#endif /* #ifdef CONFIG_HOTPLUG_CPU */
641
f41d911f
PM
642/*
643 * Check for a quiescent state from the current CPU. When a task blocks,
644 * the task is recorded in the corresponding CPU's rcu_node structure,
645 * which is checked elsewhere.
646 *
647 * Caller must disable hard irqs.
648 */
649static void rcu_preempt_check_callbacks(int cpu)
650{
651 struct task_struct *t = current;
652
653 if (t->rcu_read_lock_nesting == 0) {
c3422bea 654 rcu_preempt_qs(cpu);
f41d911f
PM
655 return;
656 }
10f39bb1
PM
657 if (t->rcu_read_lock_nesting > 0 &&
658 per_cpu(rcu_preempt_data, cpu).qs_pending)
1d082fd0 659 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
660}
661
a46e0899
PM
662#ifdef CONFIG_RCU_BOOST
663
09223371
SL
664static void rcu_preempt_do_callbacks(void)
665{
c9d4b0af 666 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
667}
668
a46e0899
PM
669#endif /* #ifdef CONFIG_RCU_BOOST */
670
f41d911f 671/*
6cc68793 672 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
673 */
674void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
675{
3fbfbf7a 676 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
677}
678EXPORT_SYMBOL_GPL(call_rcu);
679
6ebb237b
PM
680/**
681 * synchronize_rcu - wait until a grace period has elapsed.
682 *
683 * Control will return to the caller some time after a full grace
684 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
685 * read-side critical sections have completed. Note, however, that
686 * upon return from synchronize_rcu(), the caller might well be executing
687 * concurrently with new RCU read-side critical sections that began while
688 * synchronize_rcu() was waiting. RCU read-side critical sections are
689 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
690 *
691 * See the description of synchronize_sched() for more detailed information
692 * on memory ordering guarantees.
6ebb237b
PM
693 */
694void synchronize_rcu(void)
695{
fe15d706
PM
696 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
697 !lock_is_held(&rcu_lock_map) &&
698 !lock_is_held(&rcu_sched_lock_map),
699 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
700 if (!rcu_scheduler_active)
701 return;
3705b88d
AM
702 if (rcu_expedited)
703 synchronize_rcu_expedited();
704 else
705 wait_rcu_gp(call_rcu);
6ebb237b
PM
706}
707EXPORT_SYMBOL_GPL(synchronize_rcu);
708
d9a3da06 709static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 710static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
711static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
712
713/*
714 * Return non-zero if there are any tasks in RCU read-side critical
715 * sections blocking the current preemptible-RCU expedited grace period.
716 * If there is no preemptible-RCU expedited grace period currently in
717 * progress, returns zero unconditionally.
718 */
719static int rcu_preempted_readers_exp(struct rcu_node *rnp)
720{
12f5f524 721 return rnp->exp_tasks != NULL;
d9a3da06
PM
722}
723
724/*
725 * return non-zero if there is no RCU expedited grace period in progress
726 * for the specified rcu_node structure, in other words, if all CPUs and
727 * tasks covered by the specified rcu_node structure have done their bit
728 * for the current expedited grace period. Works only for preemptible
729 * RCU -- other RCU implementation use other means.
730 *
731 * Caller must hold sync_rcu_preempt_exp_mutex.
732 */
733static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
734{
735 return !rcu_preempted_readers_exp(rnp) &&
736 ACCESS_ONCE(rnp->expmask) == 0;
737}
738
739/*
740 * Report the exit from RCU read-side critical section for the last task
741 * that queued itself during or before the current expedited preemptible-RCU
742 * grace period. This event is reported either to the rcu_node structure on
743 * which the task was queued or to one of that rcu_node structure's ancestors,
744 * recursively up the tree. (Calm down, calm down, we do the recursion
745 * iteratively!)
746 *
b40d293e
TG
747 * Most callers will set the "wake" flag, but the task initiating the
748 * expedited grace period need not wake itself.
749 *
d9a3da06
PM
750 * Caller must hold sync_rcu_preempt_exp_mutex.
751 */
b40d293e
TG
752static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
753 bool wake)
d9a3da06
PM
754{
755 unsigned long flags;
756 unsigned long mask;
757
1304afb2 758 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 759 smp_mb__after_unlock_lock();
d9a3da06 760 for (;;) {
131906b0
PM
761 if (!sync_rcu_preempt_exp_done(rnp)) {
762 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 763 break;
131906b0 764 }
d9a3da06 765 if (rnp->parent == NULL) {
131906b0 766 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
767 if (wake) {
768 smp_mb(); /* EGP done before wake_up(). */
b40d293e 769 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 770 }
d9a3da06
PM
771 break;
772 }
773 mask = rnp->grpmask;
1304afb2 774 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 775 rnp = rnp->parent;
1304afb2 776 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 777 smp_mb__after_unlock_lock();
d9a3da06
PM
778 rnp->expmask &= ~mask;
779 }
d9a3da06
PM
780}
781
782/*
783 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
784 * grace period for the specified rcu_node structure. If there are no such
785 * tasks, report it up the rcu_node hierarchy.
786 *
7b2e6011
PM
787 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
788 * CPU hotplug operations.
d9a3da06
PM
789 */
790static void
791sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
792{
1217ed1b 793 unsigned long flags;
12f5f524 794 int must_wait = 0;
d9a3da06 795
1217ed1b 796 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 797 smp_mb__after_unlock_lock();
c701d5d9 798 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 799 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 800 } else {
12f5f524 801 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 802 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
803 must_wait = 1;
804 }
d9a3da06 805 if (!must_wait)
b40d293e 806 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
807}
808
236fefaf
PM
809/**
810 * synchronize_rcu_expedited - Brute-force RCU grace period
811 *
812 * Wait for an RCU-preempt grace period, but expedite it. The basic
813 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
814 * the ->blkd_tasks lists and wait for this list to drain. This consumes
815 * significant time on all CPUs and is unfriendly to real-time workloads,
816 * so is thus not recommended for any sort of common-case code.
817 * In fact, if you are using synchronize_rcu_expedited() in a loop,
818 * please restructure your code to batch your updates, and then Use a
819 * single synchronize_rcu() instead.
820 *
821 * Note that it is illegal to call this function while holding any lock
822 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
823 * to call this function from a CPU-hotplug notifier. Failing to observe
824 * these restriction will result in deadlock.
019129d5
PM
825 */
826void synchronize_rcu_expedited(void)
827{
d9a3da06
PM
828 unsigned long flags;
829 struct rcu_node *rnp;
830 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 831 unsigned long snap;
d9a3da06
PM
832 int trycount = 0;
833
834 smp_mb(); /* Caller's modifications seen first by other CPUs. */
835 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
836 smp_mb(); /* Above access cannot bleed into critical section. */
837
1943c89d
PM
838 /*
839 * Block CPU-hotplug operations. This means that any CPU-hotplug
840 * operation that finds an rcu_node structure with tasks in the
841 * process of being boosted will know that all tasks blocking
842 * this expedited grace period will already be in the process of
843 * being boosted. This simplifies the process of moving tasks
844 * from leaf to root rcu_node structures.
845 */
846 get_online_cpus();
847
d9a3da06
PM
848 /*
849 * Acquire lock, falling back to synchronize_rcu() if too many
850 * lock-acquisition failures. Of course, if someone does the
851 * expedited grace period for us, just leave.
852 */
853 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
854 if (ULONG_CMP_LT(snap,
855 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
856 put_online_cpus();
857 goto mb_ret; /* Others did our work for us. */
858 }
c701d5d9 859 if (trycount++ < 10) {
d9a3da06 860 udelay(trycount * num_online_cpus());
c701d5d9 861 } else {
1943c89d 862 put_online_cpus();
3705b88d 863 wait_rcu_gp(call_rcu);
d9a3da06
PM
864 return;
865 }
d9a3da06 866 }
1943c89d
PM
867 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
868 put_online_cpus();
d9a3da06 869 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 870 }
d9a3da06 871
12f5f524 872 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
873 synchronize_sched_expedited();
874
d9a3da06
PM
875 /* Initialize ->expmask for all non-leaf rcu_node structures. */
876 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 877 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 878 smp_mb__after_unlock_lock();
d9a3da06 879 rnp->expmask = rnp->qsmaskinit;
1943c89d 880 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
881 }
882
12f5f524 883 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
884 rcu_for_each_leaf_node(rsp, rnp)
885 sync_rcu_preempt_exp_init(rsp, rnp);
886 if (NUM_RCU_NODES > 1)
887 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
888
1943c89d 889 put_online_cpus();
d9a3da06 890
12f5f524 891 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
892 rnp = rcu_get_root(rsp);
893 wait_event(sync_rcu_preempt_exp_wq,
894 sync_rcu_preempt_exp_done(rnp));
895
896 /* Clean up and exit. */
897 smp_mb(); /* ensure expedited GP seen before counter increment. */
898 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
899unlock_mb_ret:
900 mutex_unlock(&sync_rcu_preempt_exp_mutex);
901mb_ret:
902 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
903}
904EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
905
e74f4c45
PM
906/**
907 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
908 *
909 * Note that this primitive does not necessarily wait for an RCU grace period
910 * to complete. For example, if there are no RCU callbacks queued anywhere
911 * in the system, then rcu_barrier() is within its rights to return
912 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
913 */
914void rcu_barrier(void)
915{
037b64ed 916 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
917}
918EXPORT_SYMBOL_GPL(rcu_barrier);
919
1eba8f84 920/*
6cc68793 921 * Initialize preemptible RCU's state structures.
1eba8f84
PM
922 */
923static void __init __rcu_init_preempt(void)
924{
394f99a9 925 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
926}
927
2439b696
PM
928/*
929 * Check for a task exiting while in a preemptible-RCU read-side
930 * critical section, clean up if so. No need to issue warnings,
931 * as debug_check_no_locks_held() already does this if lockdep
932 * is enabled.
933 */
934void exit_rcu(void)
935{
936 struct task_struct *t = current;
937
938 if (likely(list_empty(&current->rcu_node_entry)))
939 return;
940 t->rcu_read_lock_nesting = 1;
941 barrier();
1d082fd0 942 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
943 __rcu_read_unlock();
944}
945
f41d911f
PM
946#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
947
e534165b 948static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 949
f41d911f
PM
950/*
951 * Tell them what RCU they are running.
952 */
0e0fc1c2 953static void __init rcu_bootup_announce(void)
f41d911f 954{
efc151c3 955 pr_info("Hierarchical RCU implementation.\n");
26845c28 956 rcu_bootup_announce_oddness();
f41d911f
PM
957}
958
959/*
960 * Return the number of RCU batches processed thus far for debug & stats.
961 */
962long rcu_batches_completed(void)
963{
964 return rcu_batches_completed_sched();
965}
966EXPORT_SYMBOL_GPL(rcu_batches_completed);
967
cba6d0d6
PM
968/*
969 * Because preemptible RCU does not exist, we never have to check for
970 * CPUs being in quiescent states.
971 */
972static void rcu_preempt_note_context_switch(int cpu)
973{
974}
975
fc2219d4 976/*
6cc68793 977 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
978 * RCU readers.
979 */
27f4d280 980static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
981{
982 return 0;
983}
984
b668c9cf
PM
985#ifdef CONFIG_HOTPLUG_CPU
986
987/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 988static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b41d1b92 989 __releases(rnp->lock)
b668c9cf 990{
1304afb2 991 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
992}
993
994#endif /* #ifdef CONFIG_HOTPLUG_CPU */
995
1ed509a2 996/*
6cc68793 997 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
998 * tasks blocked within RCU read-side critical sections.
999 */
1000static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1001{
1002}
1003
f41d911f 1004/*
6cc68793 1005 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1006 * tasks blocked within RCU read-side critical sections.
1007 */
9bc8b558 1008static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1009{
9bc8b558 1010 return 0;
f41d911f
PM
1011}
1012
b0e165c0 1013/*
6cc68793 1014 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1015 * so there is no need to check for blocked tasks. So check only for
1016 * bogus qsmask values.
b0e165c0
PM
1017 */
1018static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1019{
49e29126 1020 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1021}
1022
33f76148
PM
1023#ifdef CONFIG_HOTPLUG_CPU
1024
dd5d19ba 1025/*
6cc68793 1026 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1027 * tasks that were blocked within RCU read-side critical sections, and
1028 * such non-existent tasks cannot possibly have been blocking the current
1029 * grace period.
dd5d19ba 1030 */
237c80c5
PM
1031static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1032 struct rcu_node *rnp,
1033 struct rcu_data *rdp)
dd5d19ba 1034{
237c80c5 1035 return 0;
dd5d19ba
PM
1036}
1037
e5601400
PM
1038#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1039
f41d911f 1040/*
6cc68793 1041 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1042 * to check.
1043 */
1eba8f84 1044static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1045{
1046}
1047
019129d5
PM
1048/*
1049 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1050 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1051 */
1052void synchronize_rcu_expedited(void)
1053{
1054 synchronize_sched_expedited();
1055}
1056EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1057
d9a3da06
PM
1058#ifdef CONFIG_HOTPLUG_CPU
1059
1060/*
6cc68793 1061 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1062 * report on tasks preempted in RCU read-side critical sections during
1063 * expedited RCU grace periods.
1064 */
b40d293e
TG
1065static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1066 bool wake)
d9a3da06 1067{
d9a3da06
PM
1068}
1069
1070#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1071
e74f4c45 1072/*
6cc68793 1073 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1074 * another name for rcu_barrier_sched().
1075 */
1076void rcu_barrier(void)
1077{
1078 rcu_barrier_sched();
1079}
1080EXPORT_SYMBOL_GPL(rcu_barrier);
1081
1eba8f84 1082/*
6cc68793 1083 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1084 */
1085static void __init __rcu_init_preempt(void)
1086{
1087}
1088
2439b696
PM
1089/*
1090 * Because preemptible RCU does not exist, tasks cannot possibly exit
1091 * while in preemptible RCU read-side critical sections.
1092 */
1093void exit_rcu(void)
1094{
1095}
1096
f41d911f 1097#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1098
27f4d280
PM
1099#ifdef CONFIG_RCU_BOOST
1100
1696a8be 1101#include "../locking/rtmutex_common.h"
27f4d280 1102
0ea1f2eb
PM
1103#ifdef CONFIG_RCU_TRACE
1104
1105static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1106{
1107 if (list_empty(&rnp->blkd_tasks))
1108 rnp->n_balk_blkd_tasks++;
1109 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1110 rnp->n_balk_exp_gp_tasks++;
1111 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1112 rnp->n_balk_boost_tasks++;
1113 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1114 rnp->n_balk_notblocked++;
1115 else if (rnp->gp_tasks != NULL &&
a9f4793d 1116 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1117 rnp->n_balk_notyet++;
1118 else
1119 rnp->n_balk_nos++;
1120}
1121
1122#else /* #ifdef CONFIG_RCU_TRACE */
1123
1124static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1125{
1126}
1127
1128#endif /* #else #ifdef CONFIG_RCU_TRACE */
1129
5d01bbd1
TG
1130static void rcu_wake_cond(struct task_struct *t, int status)
1131{
1132 /*
1133 * If the thread is yielding, only wake it when this
1134 * is invoked from idle
1135 */
1136 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1137 wake_up_process(t);
1138}
1139
27f4d280
PM
1140/*
1141 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1142 * or ->boost_tasks, advancing the pointer to the next task in the
1143 * ->blkd_tasks list.
1144 *
1145 * Note that irqs must be enabled: boosting the task can block.
1146 * Returns 1 if there are more tasks needing to be boosted.
1147 */
1148static int rcu_boost(struct rcu_node *rnp)
1149{
1150 unsigned long flags;
27f4d280
PM
1151 struct task_struct *t;
1152 struct list_head *tb;
1153
1154 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1155 return 0; /* Nothing left to boost. */
1156
1157 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1158 smp_mb__after_unlock_lock();
27f4d280
PM
1159
1160 /*
1161 * Recheck under the lock: all tasks in need of boosting
1162 * might exit their RCU read-side critical sections on their own.
1163 */
1164 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1165 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1166 return 0;
1167 }
1168
1169 /*
1170 * Preferentially boost tasks blocking expedited grace periods.
1171 * This cannot starve the normal grace periods because a second
1172 * expedited grace period must boost all blocked tasks, including
1173 * those blocking the pre-existing normal grace period.
1174 */
0ea1f2eb 1175 if (rnp->exp_tasks != NULL) {
27f4d280 1176 tb = rnp->exp_tasks;
0ea1f2eb
PM
1177 rnp->n_exp_boosts++;
1178 } else {
27f4d280 1179 tb = rnp->boost_tasks;
0ea1f2eb
PM
1180 rnp->n_normal_boosts++;
1181 }
1182 rnp->n_tasks_boosted++;
27f4d280
PM
1183
1184 /*
1185 * We boost task t by manufacturing an rt_mutex that appears to
1186 * be held by task t. We leave a pointer to that rt_mutex where
1187 * task t can find it, and task t will release the mutex when it
1188 * exits its outermost RCU read-side critical section. Then
1189 * simply acquiring this artificial rt_mutex will boost task
1190 * t's priority. (Thanks to tglx for suggesting this approach!)
1191 *
1192 * Note that task t must acquire rnp->lock to remove itself from
1193 * the ->blkd_tasks list, which it will do from exit() if from
1194 * nowhere else. We therefore are guaranteed that task t will
1195 * stay around at least until we drop rnp->lock. Note that
1196 * rnp->lock also resolves races between our priority boosting
1197 * and task t's exiting its outermost RCU read-side critical
1198 * section.
1199 */
1200 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1201 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
dfeb9765 1202 init_completion(&rnp->boost_completion);
27f4d280 1203 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1204 /* Lock only for side effect: boosts task t's priority. */
1205 rt_mutex_lock(&rnp->boost_mtx);
1206 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1207
abaa93d9 1208 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
dfeb9765 1209 wait_for_completion(&rnp->boost_completion);
27f4d280 1210
4f89b336
PM
1211 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1212 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1213}
1214
27f4d280
PM
1215/*
1216 * Priority-boosting kthread. One per leaf rcu_node and one for the
1217 * root rcu_node.
1218 */
1219static int rcu_boost_kthread(void *arg)
1220{
1221 struct rcu_node *rnp = (struct rcu_node *)arg;
1222 int spincnt = 0;
1223 int more2boost;
1224
f7f7bac9 1225 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1226 for (;;) {
d71df90e 1227 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1228 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1229 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1230 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1231 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1232 more2boost = rcu_boost(rnp);
1233 if (more2boost)
1234 spincnt++;
1235 else
1236 spincnt = 0;
1237 if (spincnt > 10) {
5d01bbd1 1238 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1239 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1240 schedule_timeout_interruptible(2);
f7f7bac9 1241 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1242 spincnt = 0;
1243 }
1244 }
1217ed1b 1245 /* NOTREACHED */
f7f7bac9 1246 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1247 return 0;
1248}
1249
1250/*
1251 * Check to see if it is time to start boosting RCU readers that are
1252 * blocking the current grace period, and, if so, tell the per-rcu_node
1253 * kthread to start boosting them. If there is an expedited grace
1254 * period in progress, it is always time to boost.
1255 *
b065a853
PM
1256 * The caller must hold rnp->lock, which this function releases.
1257 * The ->boost_kthread_task is immortal, so we don't need to worry
1258 * about it going away.
27f4d280 1259 */
1217ed1b 1260static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1261 __releases(rnp->lock)
27f4d280
PM
1262{
1263 struct task_struct *t;
1264
0ea1f2eb
PM
1265 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1266 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1267 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1268 return;
0ea1f2eb 1269 }
27f4d280
PM
1270 if (rnp->exp_tasks != NULL ||
1271 (rnp->gp_tasks != NULL &&
1272 rnp->boost_tasks == NULL &&
1273 rnp->qsmask == 0 &&
1274 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1275 if (rnp->exp_tasks == NULL)
1276 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1277 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1278 t = rnp->boost_kthread_task;
5d01bbd1
TG
1279 if (t)
1280 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1281 } else {
0ea1f2eb 1282 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1283 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1284 }
27f4d280
PM
1285}
1286
a46e0899
PM
1287/*
1288 * Wake up the per-CPU kthread to invoke RCU callbacks.
1289 */
1290static void invoke_rcu_callbacks_kthread(void)
1291{
1292 unsigned long flags;
1293
1294 local_irq_save(flags);
1295 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1296 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1297 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1298 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1299 __this_cpu_read(rcu_cpu_kthread_status));
1300 }
a46e0899
PM
1301 local_irq_restore(flags);
1302}
1303
dff1672d
PM
1304/*
1305 * Is the current CPU running the RCU-callbacks kthread?
1306 * Caller must have preemption disabled.
1307 */
1308static bool rcu_is_callbacks_kthread(void)
1309{
c9d4b0af 1310 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1311}
1312
27f4d280
PM
1313#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1314
1315/*
1316 * Do priority-boost accounting for the start of a new grace period.
1317 */
1318static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1319{
1320 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1321}
1322
27f4d280
PM
1323/*
1324 * Create an RCU-boost kthread for the specified node if one does not
1325 * already exist. We only create this kthread for preemptible RCU.
1326 * Returns zero if all is well, a negated errno otherwise.
1327 */
49fb4c62 1328static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1329 struct rcu_node *rnp)
27f4d280 1330{
5d01bbd1 1331 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1332 unsigned long flags;
1333 struct sched_param sp;
1334 struct task_struct *t;
1335
1336 if (&rcu_preempt_state != rsp)
1337 return 0;
5d01bbd1
TG
1338
1339 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1340 return 0;
1341
a46e0899 1342 rsp->boost = 1;
27f4d280
PM
1343 if (rnp->boost_kthread_task != NULL)
1344 return 0;
1345 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1346 "rcub/%d", rnp_index);
27f4d280
PM
1347 if (IS_ERR(t))
1348 return PTR_ERR(t);
1349 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1350 smp_mb__after_unlock_lock();
27f4d280
PM
1351 rnp->boost_kthread_task = t;
1352 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1353 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1354 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1355 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1356 return 0;
1357}
1358
f8b7fc6b
PM
1359static void rcu_kthread_do_work(void)
1360{
c9d4b0af
CL
1361 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1362 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1363 rcu_preempt_do_callbacks();
1364}
1365
62ab7072 1366static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1367{
f8b7fc6b 1368 struct sched_param sp;
f8b7fc6b 1369
62ab7072
PM
1370 sp.sched_priority = RCU_KTHREAD_PRIO;
1371 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1372}
1373
62ab7072 1374static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1375{
62ab7072 1376 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1377}
1378
62ab7072 1379static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1380{
c9d4b0af 1381 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1382}
1383
1384/*
1385 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1386 * RCU softirq used in flavors and configurations of RCU that do not
1387 * support RCU priority boosting.
f8b7fc6b 1388 */
62ab7072 1389static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1390{
c9d4b0af
CL
1391 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1392 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1393 int spincnt;
f8b7fc6b 1394
62ab7072 1395 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1396 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1397 local_bh_disable();
f8b7fc6b 1398 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1399 this_cpu_inc(rcu_cpu_kthread_loops);
1400 local_irq_disable();
f8b7fc6b
PM
1401 work = *workp;
1402 *workp = 0;
62ab7072 1403 local_irq_enable();
f8b7fc6b
PM
1404 if (work)
1405 rcu_kthread_do_work();
1406 local_bh_enable();
62ab7072 1407 if (*workp == 0) {
f7f7bac9 1408 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1409 *statusp = RCU_KTHREAD_WAITING;
1410 return;
f8b7fc6b
PM
1411 }
1412 }
62ab7072 1413 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1414 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1415 schedule_timeout_interruptible(2);
f7f7bac9 1416 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1417 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1418}
1419
1420/*
1421 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1422 * served by the rcu_node in question. The CPU hotplug lock is still
1423 * held, so the value of rnp->qsmaskinit will be stable.
1424 *
1425 * We don't include outgoingcpu in the affinity set, use -1 if there is
1426 * no outgoing CPU. If there are no CPUs left in the affinity set,
1427 * this function allows the kthread to execute on any CPU.
1428 */
5d01bbd1 1429static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1430{
5d01bbd1
TG
1431 struct task_struct *t = rnp->boost_kthread_task;
1432 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1433 cpumask_var_t cm;
1434 int cpu;
f8b7fc6b 1435
5d01bbd1 1436 if (!t)
f8b7fc6b 1437 return;
5d01bbd1 1438 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1439 return;
f8b7fc6b
PM
1440 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1441 if ((mask & 0x1) && cpu != outgoingcpu)
1442 cpumask_set_cpu(cpu, cm);
1443 if (cpumask_weight(cm) == 0) {
1444 cpumask_setall(cm);
1445 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1446 cpumask_clear_cpu(cpu, cm);
1447 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1448 }
5d01bbd1 1449 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1450 free_cpumask_var(cm);
1451}
1452
62ab7072
PM
1453static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1454 .store = &rcu_cpu_kthread_task,
1455 .thread_should_run = rcu_cpu_kthread_should_run,
1456 .thread_fn = rcu_cpu_kthread,
1457 .thread_comm = "rcuc/%u",
1458 .setup = rcu_cpu_kthread_setup,
1459 .park = rcu_cpu_kthread_park,
1460};
f8b7fc6b
PM
1461
1462/*
1463 * Spawn all kthreads -- called as soon as the scheduler is running.
1464 */
1465static int __init rcu_spawn_kthreads(void)
1466{
f8b7fc6b 1467 struct rcu_node *rnp;
5d01bbd1 1468 int cpu;
f8b7fc6b 1469
b0d30417 1470 rcu_scheduler_fully_active = 1;
62ab7072 1471 for_each_possible_cpu(cpu)
f8b7fc6b 1472 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1473 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
e534165b
US
1474 rnp = rcu_get_root(rcu_state_p);
1475 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1476 if (NUM_RCU_NODES > 1) {
e534165b
US
1477 rcu_for_each_leaf_node(rcu_state_p, rnp)
1478 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1479 }
1480 return 0;
1481}
1482early_initcall(rcu_spawn_kthreads);
1483
49fb4c62 1484static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1485{
e534165b 1486 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1487 struct rcu_node *rnp = rdp->mynode;
1488
1489 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1490 if (rcu_scheduler_fully_active)
e534165b 1491 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1492}
1493
27f4d280
PM
1494#else /* #ifdef CONFIG_RCU_BOOST */
1495
1217ed1b 1496static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1497 __releases(rnp->lock)
27f4d280 1498{
1217ed1b 1499 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1500}
1501
a46e0899 1502static void invoke_rcu_callbacks_kthread(void)
27f4d280 1503{
a46e0899 1504 WARN_ON_ONCE(1);
27f4d280
PM
1505}
1506
dff1672d
PM
1507static bool rcu_is_callbacks_kthread(void)
1508{
1509 return false;
1510}
1511
27f4d280
PM
1512static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1513{
1514}
1515
5d01bbd1 1516static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1517{
1518}
1519
b0d30417
PM
1520static int __init rcu_scheduler_really_started(void)
1521{
1522 rcu_scheduler_fully_active = 1;
1523 return 0;
1524}
1525early_initcall(rcu_scheduler_really_started);
1526
49fb4c62 1527static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1528{
1529}
1530
27f4d280
PM
1531#endif /* #else #ifdef CONFIG_RCU_BOOST */
1532
8bd93a2c
PM
1533#if !defined(CONFIG_RCU_FAST_NO_HZ)
1534
1535/*
1536 * Check to see if any future RCU-related work will need to be done
1537 * by the current CPU, even if none need be done immediately, returning
1538 * 1 if so. This function is part of the RCU implementation; it is -not-
1539 * an exported member of the RCU API.
1540 *
7cb92499
PM
1541 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1542 * any flavor of RCU.
8bd93a2c 1543 */
ffa83fb5 1544#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa9b1630 1545int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1546{
aa9b1630 1547 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1548 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499 1549}
ffa83fb5 1550#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1551
1552/*
1553 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1554 * after it.
1555 */
1556static void rcu_cleanup_after_idle(int cpu)
1557{
1558}
1559
aea1b35e 1560/*
a858af28 1561 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1562 * is nothing.
1563 */
1564static void rcu_prepare_for_idle(int cpu)
1565{
1566}
1567
c57afe80
PM
1568/*
1569 * Don't bother keeping a running count of the number of RCU callbacks
1570 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1571 */
1572static void rcu_idle_count_callbacks_posted(void)
1573{
1574}
1575
8bd93a2c
PM
1576#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1577
f23f7fa1
PM
1578/*
1579 * This code is invoked when a CPU goes idle, at which point we want
1580 * to have the CPU do everything required for RCU so that it can enter
1581 * the energy-efficient dyntick-idle mode. This is handled by a
1582 * state machine implemented by rcu_prepare_for_idle() below.
1583 *
1584 * The following three proprocessor symbols control this state machine:
1585 *
f23f7fa1
PM
1586 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1587 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1588 * is sized to be roughly one RCU grace period. Those energy-efficiency
1589 * benchmarkers who might otherwise be tempted to set this to a large
1590 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1591 * system. And if you are -that- concerned about energy efficiency,
1592 * just power the system down and be done with it!
778d250a
PM
1593 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1594 * permitted to sleep in dyntick-idle mode with only lazy RCU
1595 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1596 *
1597 * The values below work well in practice. If future workloads require
1598 * adjustment, they can be converted into kernel config parameters, though
1599 * making the state machine smarter might be a better option.
1600 */
e84c48ae 1601#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1602#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1603
5e44ce35
PM
1604static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1605module_param(rcu_idle_gp_delay, int, 0644);
1606static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1607module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1608
d689fe22 1609extern int tick_nohz_active;
486e2593
PM
1610
1611/*
c229828c
PM
1612 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1613 * only if it has been awhile since the last time we did so. Afterwards,
1614 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1615 */
f1f399d1 1616static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1617{
c0f4dfd4
PM
1618 bool cbs_ready = false;
1619 struct rcu_data *rdp;
c229828c 1620 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1621 struct rcu_node *rnp;
1622 struct rcu_state *rsp;
486e2593 1623
c229828c
PM
1624 /* Exit early if we advanced recently. */
1625 if (jiffies == rdtp->last_advance_all)
1626 return 0;
1627 rdtp->last_advance_all = jiffies;
1628
c0f4dfd4
PM
1629 for_each_rcu_flavor(rsp) {
1630 rdp = this_cpu_ptr(rsp->rda);
1631 rnp = rdp->mynode;
486e2593 1632
c0f4dfd4
PM
1633 /*
1634 * Don't bother checking unless a grace period has
1635 * completed since we last checked and there are
1636 * callbacks not yet ready to invoke.
1637 */
1638 if (rdp->completed != rnp->completed &&
1639 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1640 note_gp_changes(rsp, rdp);
486e2593 1641
c0f4dfd4
PM
1642 if (cpu_has_callbacks_ready_to_invoke(rdp))
1643 cbs_ready = true;
1644 }
1645 return cbs_ready;
486e2593
PM
1646}
1647
aa9b1630 1648/*
c0f4dfd4
PM
1649 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1650 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1651 * caller to set the timeout based on whether or not there are non-lazy
1652 * callbacks.
aa9b1630 1653 *
c0f4dfd4 1654 * The caller must have disabled interrupts.
aa9b1630 1655 */
ffa83fb5 1656#ifndef CONFIG_RCU_NOCB_CPU_ALL
c0f4dfd4 1657int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1658{
1659 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1660
c0f4dfd4
PM
1661 /* Snapshot to detect later posting of non-lazy callback. */
1662 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1663
aa9b1630 1664 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1665 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1666 *dj = ULONG_MAX;
aa9b1630
PM
1667 return 0;
1668 }
c0f4dfd4
PM
1669
1670 /* Attempt to advance callbacks. */
1671 if (rcu_try_advance_all_cbs()) {
1672 /* Some ready to invoke, so initiate later invocation. */
1673 invoke_rcu_core();
aa9b1630
PM
1674 return 1;
1675 }
c0f4dfd4
PM
1676 rdtp->last_accelerate = jiffies;
1677
1678 /* Request timer delay depending on laziness, and round. */
6faf7283 1679 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1680 *dj = round_up(rcu_idle_gp_delay + jiffies,
1681 rcu_idle_gp_delay) - jiffies;
e84c48ae 1682 } else {
c0f4dfd4 1683 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1684 }
aa9b1630
PM
1685 return 0;
1686}
ffa83fb5 1687#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1688
21e52e15 1689/*
c0f4dfd4
PM
1690 * Prepare a CPU for idle from an RCU perspective. The first major task
1691 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1692 * The second major task is to check to see if a non-lazy callback has
1693 * arrived at a CPU that previously had only lazy callbacks. The third
1694 * major task is to accelerate (that is, assign grace-period numbers to)
1695 * any recently arrived callbacks.
aea1b35e
PM
1696 *
1697 * The caller must have disabled interrupts.
8bd93a2c 1698 */
aea1b35e 1699static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1700{
f1f399d1 1701#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1702 bool needwake;
c0f4dfd4 1703 struct rcu_data *rdp;
5955f7ee 1704 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1705 struct rcu_node *rnp;
1706 struct rcu_state *rsp;
9d2ad243
PM
1707 int tne;
1708
1709 /* Handle nohz enablement switches conservatively. */
d689fe22 1710 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1711 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1712 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1713 invoke_rcu_core(); /* force nohz to see update. */
1714 rdtp->tick_nohz_enabled_snap = tne;
1715 return;
1716 }
1717 if (!tne)
1718 return;
f511fc62 1719
c0f4dfd4 1720 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1721 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1722 return;
9a0c6fef 1723
c57afe80 1724 /*
c0f4dfd4
PM
1725 * If a non-lazy callback arrived at a CPU having only lazy
1726 * callbacks, invoke RCU core for the side-effect of recalculating
1727 * idle duration on re-entry to idle.
c57afe80 1728 */
c0f4dfd4
PM
1729 if (rdtp->all_lazy &&
1730 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1731 rdtp->all_lazy = false;
1732 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1733 invoke_rcu_core();
c57afe80
PM
1734 return;
1735 }
c57afe80 1736
3084f2f8 1737 /*
c0f4dfd4
PM
1738 * If we have not yet accelerated this jiffy, accelerate all
1739 * callbacks on this CPU.
3084f2f8 1740 */
c0f4dfd4 1741 if (rdtp->last_accelerate == jiffies)
aea1b35e 1742 return;
c0f4dfd4
PM
1743 rdtp->last_accelerate = jiffies;
1744 for_each_rcu_flavor(rsp) {
1745 rdp = per_cpu_ptr(rsp->rda, cpu);
1746 if (!*rdp->nxttail[RCU_DONE_TAIL])
1747 continue;
1748 rnp = rdp->mynode;
1749 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1750 smp_mb__after_unlock_lock();
48a7639c 1751 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1752 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1753 if (needwake)
1754 rcu_gp_kthread_wake(rsp);
77e38ed3 1755 }
f1f399d1 1756#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1757}
3084f2f8 1758
c0f4dfd4
PM
1759/*
1760 * Clean up for exit from idle. Attempt to advance callbacks based on
1761 * any grace periods that elapsed while the CPU was idle, and if any
1762 * callbacks are now ready to invoke, initiate invocation.
1763 */
1764static void rcu_cleanup_after_idle(int cpu)
1765{
f1f399d1 1766#ifndef CONFIG_RCU_NOCB_CPU_ALL
534c97b0 1767 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1768 return;
7a497c96
PM
1769 if (rcu_try_advance_all_cbs())
1770 invoke_rcu_core();
f1f399d1 1771#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1772}
1773
c57afe80 1774/*
98248a0e
PM
1775 * Keep a running count of the number of non-lazy callbacks posted
1776 * on this CPU. This running counter (which is never decremented) allows
1777 * rcu_prepare_for_idle() to detect when something out of the idle loop
1778 * posts a callback, even if an equal number of callbacks are invoked.
1779 * Of course, callbacks should only be posted from within a trace event
1780 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1781 */
1782static void rcu_idle_count_callbacks_posted(void)
1783{
5955f7ee 1784 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1785}
1786
b626c1b6
PM
1787/*
1788 * Data for flushing lazy RCU callbacks at OOM time.
1789 */
1790static atomic_t oom_callback_count;
1791static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1792
1793/*
1794 * RCU OOM callback -- decrement the outstanding count and deliver the
1795 * wake-up if we are the last one.
1796 */
1797static void rcu_oom_callback(struct rcu_head *rhp)
1798{
1799 if (atomic_dec_and_test(&oom_callback_count))
1800 wake_up(&oom_callback_wq);
1801}
1802
1803/*
1804 * Post an rcu_oom_notify callback on the current CPU if it has at
1805 * least one lazy callback. This will unnecessarily post callbacks
1806 * to CPUs that already have a non-lazy callback at the end of their
1807 * callback list, but this is an infrequent operation, so accept some
1808 * extra overhead to keep things simple.
1809 */
1810static void rcu_oom_notify_cpu(void *unused)
1811{
1812 struct rcu_state *rsp;
1813 struct rcu_data *rdp;
1814
1815 for_each_rcu_flavor(rsp) {
fa07a58f 1816 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1817 if (rdp->qlen_lazy != 0) {
1818 atomic_inc(&oom_callback_count);
1819 rsp->call(&rdp->oom_head, rcu_oom_callback);
1820 }
1821 }
1822}
1823
1824/*
1825 * If low on memory, ensure that each CPU has a non-lazy callback.
1826 * This will wake up CPUs that have only lazy callbacks, in turn
1827 * ensuring that they free up the corresponding memory in a timely manner.
1828 * Because an uncertain amount of memory will be freed in some uncertain
1829 * timeframe, we do not claim to have freed anything.
1830 */
1831static int rcu_oom_notify(struct notifier_block *self,
1832 unsigned long notused, void *nfreed)
1833{
1834 int cpu;
1835
1836 /* Wait for callbacks from earlier instance to complete. */
1837 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1838 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1839
1840 /*
1841 * Prevent premature wakeup: ensure that all increments happen
1842 * before there is a chance of the counter reaching zero.
1843 */
1844 atomic_set(&oom_callback_count, 1);
1845
1846 get_online_cpus();
1847 for_each_online_cpu(cpu) {
1848 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1849 cond_resched_rcu_qs();
b626c1b6
PM
1850 }
1851 put_online_cpus();
1852
1853 /* Unconditionally decrement: no need to wake ourselves up. */
1854 atomic_dec(&oom_callback_count);
1855
1856 return NOTIFY_OK;
1857}
1858
1859static struct notifier_block rcu_oom_nb = {
1860 .notifier_call = rcu_oom_notify
1861};
1862
1863static int __init rcu_register_oom_notifier(void)
1864{
1865 register_oom_notifier(&rcu_oom_nb);
1866 return 0;
1867}
1868early_initcall(rcu_register_oom_notifier);
1869
8bd93a2c 1870#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1871
1872#ifdef CONFIG_RCU_CPU_STALL_INFO
1873
1874#ifdef CONFIG_RCU_FAST_NO_HZ
1875
1876static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1877{
5955f7ee 1878 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1879 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1880
c0f4dfd4
PM
1881 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1882 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1883 ulong2long(nlpd),
1884 rdtp->all_lazy ? 'L' : '.',
1885 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1886}
1887
1888#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1889
1890static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1891{
1c17e4d4 1892 *cp = '\0';
a858af28
PM
1893}
1894
1895#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1896
1897/* Initiate the stall-info list. */
1898static void print_cpu_stall_info_begin(void)
1899{
efc151c3 1900 pr_cont("\n");
a858af28
PM
1901}
1902
1903/*
1904 * Print out diagnostic information for the specified stalled CPU.
1905 *
1906 * If the specified CPU is aware of the current RCU grace period
1907 * (flavor specified by rsp), then print the number of scheduling
1908 * clock interrupts the CPU has taken during the time that it has
1909 * been aware. Otherwise, print the number of RCU grace periods
1910 * that this CPU is ignorant of, for example, "1" if the CPU was
1911 * aware of the previous grace period.
1912 *
1913 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1914 */
1915static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1916{
1917 char fast_no_hz[72];
1918 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1919 struct rcu_dynticks *rdtp = rdp->dynticks;
1920 char *ticks_title;
1921 unsigned long ticks_value;
1922
1923 if (rsp->gpnum == rdp->gpnum) {
1924 ticks_title = "ticks this GP";
1925 ticks_value = rdp->ticks_this_gp;
1926 } else {
1927 ticks_title = "GPs behind";
1928 ticks_value = rsp->gpnum - rdp->gpnum;
1929 }
1930 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1931 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1932 cpu, ticks_value, ticks_title,
1933 atomic_read(&rdtp->dynticks) & 0xfff,
1934 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1935 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1936 fast_no_hz);
1937}
1938
1939/* Terminate the stall-info list. */
1940static void print_cpu_stall_info_end(void)
1941{
efc151c3 1942 pr_err("\t");
a858af28
PM
1943}
1944
1945/* Zero ->ticks_this_gp for all flavors of RCU. */
1946static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1947{
1948 rdp->ticks_this_gp = 0;
6231069b 1949 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1950}
1951
1952/* Increment ->ticks_this_gp for all flavors of RCU. */
1953static void increment_cpu_stall_ticks(void)
1954{
115f7a7c
PM
1955 struct rcu_state *rsp;
1956
1957 for_each_rcu_flavor(rsp)
fa07a58f 1958 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1959}
1960
1961#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1962
1963static void print_cpu_stall_info_begin(void)
1964{
efc151c3 1965 pr_cont(" {");
a858af28
PM
1966}
1967
1968static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1969{
efc151c3 1970 pr_cont(" %d", cpu);
a858af28
PM
1971}
1972
1973static void print_cpu_stall_info_end(void)
1974{
efc151c3 1975 pr_cont("} ");
a858af28
PM
1976}
1977
1978static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1979{
1980}
1981
1982static void increment_cpu_stall_ticks(void)
1983{
1984}
1985
1986#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1987
1988#ifdef CONFIG_RCU_NOCB_CPU
1989
1990/*
1991 * Offload callback processing from the boot-time-specified set of CPUs
1992 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1993 * kthread created that pulls the callbacks from the corresponding CPU,
1994 * waits for a grace period to elapse, and invokes the callbacks.
1995 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1996 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1997 * has been specified, in which case each kthread actively polls its
1998 * CPU. (Which isn't so great for energy efficiency, but which does
1999 * reduce RCU's overhead on that CPU.)
2000 *
2001 * This is intended to be used in conjunction with Frederic Weisbecker's
2002 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2003 * running CPU-bound user-mode computations.
2004 *
2005 * Offloading of callback processing could also in theory be used as
2006 * an energy-efficiency measure because CPUs with no RCU callbacks
2007 * queued are more aggressive about entering dyntick-idle mode.
2008 */
2009
2010
2011/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2012static int __init rcu_nocb_setup(char *str)
2013{
2014 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2015 have_rcu_nocb_mask = true;
2016 cpulist_parse(str, rcu_nocb_mask);
2017 return 1;
2018}
2019__setup("rcu_nocbs=", rcu_nocb_setup);
2020
1b0048a4
PG
2021static int __init parse_rcu_nocb_poll(char *arg)
2022{
2023 rcu_nocb_poll = 1;
2024 return 0;
2025}
2026early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2027
dae6e64d 2028/*
0446be48
PM
2029 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2030 * grace period.
dae6e64d 2031 */
0446be48 2032static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2033{
0446be48 2034 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2035}
2036
2037/*
8b425aa8 2038 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2039 * based on the sum of those of all rcu_node structures. This does
2040 * double-count the root rcu_node structure's requests, but this
2041 * is necessary to handle the possibility of a rcu_nocb_kthread()
2042 * having awakened during the time that the rcu_node structures
2043 * were being updated for the end of the previous grace period.
34ed6246 2044 */
dae6e64d
PM
2045static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2046{
8b425aa8 2047 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2048}
2049
2050static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2051{
dae6e64d
PM
2052 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2053 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2054}
2055
2f33b512 2056#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 2057/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 2058bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2059{
2060 if (have_rcu_nocb_mask)
2061 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2062 return false;
2063}
2f33b512 2064#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 2065
fbce7497
PM
2066/*
2067 * Kick the leader kthread for this NOCB group.
2068 */
2069static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2070{
2071 struct rcu_data *rdp_leader = rdp->nocb_leader;
2072
2073 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2074 return;
11ed7f93 2075 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
fbce7497 2076 /* Prior xchg orders against prior callback enqueue. */
11ed7f93 2077 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
fbce7497
PM
2078 wake_up(&rdp_leader->nocb_wq);
2079 }
2080}
2081
3fbfbf7a
PM
2082/*
2083 * Enqueue the specified string of rcu_head structures onto the specified
2084 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2085 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2086 * counts are supplied by rhcount and rhcount_lazy.
2087 *
2088 * If warranted, also wake up the kthread servicing this CPUs queues.
2089 */
2090static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2091 struct rcu_head *rhp,
2092 struct rcu_head **rhtp,
96d3fd0d
PM
2093 int rhcount, int rhcount_lazy,
2094 unsigned long flags)
3fbfbf7a
PM
2095{
2096 int len;
2097 struct rcu_head **old_rhpp;
2098 struct task_struct *t;
2099
2100 /* Enqueue the callback on the nocb list and update counts. */
2101 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2102 ACCESS_ONCE(*old_rhpp) = rhp;
2103 atomic_long_add(rhcount, &rdp->nocb_q_count);
2104 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2105
2106 /* If we are not being polled and there is a kthread, awaken it ... */
2107 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 2108 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2109 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2110 TPS("WakeNotPoll"));
3fbfbf7a 2111 return;
9261dd0d 2112 }
3fbfbf7a
PM
2113 len = atomic_long_read(&rdp->nocb_q_count);
2114 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2115 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2116 /* ... if queue was empty ... */
2117 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2118 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2119 TPS("WakeEmpty"));
2120 } else {
2121 rdp->nocb_defer_wakeup = true;
2122 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2123 TPS("WakeEmptyIsDeferred"));
2124 }
3fbfbf7a
PM
2125 rdp->qlen_last_fqs_check = 0;
2126 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497
PM
2127 /* ... or if many callbacks queued. */
2128 wake_nocb_leader(rdp, true);
3fbfbf7a 2129 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2130 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2131 } else {
2132 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2133 }
2134 return;
2135}
2136
2137/*
2138 * This is a helper for __call_rcu(), which invokes this when the normal
2139 * callback queue is inoperable. If this is not a no-CBs CPU, this
2140 * function returns failure back to __call_rcu(), which can complain
2141 * appropriately.
2142 *
2143 * Otherwise, this function queues the callback where the corresponding
2144 * "rcuo" kthread can find it.
2145 */
2146static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2147 bool lazy, unsigned long flags)
3fbfbf7a
PM
2148{
2149
d1e43fa5 2150 if (!rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a 2151 return 0;
96d3fd0d 2152 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2153 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2154 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2155 (unsigned long)rhp->func,
756cbf6b
PM
2156 -atomic_long_read(&rdp->nocb_q_count_lazy),
2157 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2158 else
2159 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2160 -atomic_long_read(&rdp->nocb_q_count_lazy),
2161 -atomic_long_read(&rdp->nocb_q_count));
3fbfbf7a
PM
2162 return 1;
2163}
2164
2165/*
2166 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2167 * not a no-CBs CPU.
2168 */
2169static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2170 struct rcu_data *rdp,
2171 unsigned long flags)
3fbfbf7a
PM
2172{
2173 long ql = rsp->qlen;
2174 long qll = rsp->qlen_lazy;
2175
2176 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2177 if (!rcu_is_nocb_cpu(smp_processor_id()))
3fbfbf7a
PM
2178 return 0;
2179 rsp->qlen = 0;
2180 rsp->qlen_lazy = 0;
2181
2182 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2183 if (rsp->orphan_donelist != NULL) {
2184 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2185 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2186 ql = qll = 0;
2187 rsp->orphan_donelist = NULL;
2188 rsp->orphan_donetail = &rsp->orphan_donelist;
2189 }
2190 if (rsp->orphan_nxtlist != NULL) {
2191 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2192 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2193 ql = qll = 0;
2194 rsp->orphan_nxtlist = NULL;
2195 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2196 }
2197 return 1;
2198}
2199
2200/*
34ed6246
PM
2201 * If necessary, kick off a new grace period, and either way wait
2202 * for a subsequent grace period to complete.
3fbfbf7a 2203 */
34ed6246 2204static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2205{
34ed6246 2206 unsigned long c;
dae6e64d 2207 bool d;
34ed6246 2208 unsigned long flags;
48a7639c 2209 bool needwake;
34ed6246
PM
2210 struct rcu_node *rnp = rdp->mynode;
2211
2212 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2213 smp_mb__after_unlock_lock();
48a7639c 2214 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2215 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2216 if (needwake)
2217 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2218
2219 /*
34ed6246
PM
2220 * Wait for the grace period. Do so interruptibly to avoid messing
2221 * up the load average.
3fbfbf7a 2222 */
f7f7bac9 2223 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2224 for (;;) {
dae6e64d
PM
2225 wait_event_interruptible(
2226 rnp->nocb_gp_wq[c & 0x1],
2227 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2228 if (likely(d))
34ed6246 2229 break;
dae6e64d 2230 flush_signals(current);
f7f7bac9 2231 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2232 }
f7f7bac9 2233 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2234 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2235}
2236
fbce7497
PM
2237/*
2238 * Leaders come here to wait for additional callbacks to show up.
2239 * This function does not return until callbacks appear.
2240 */
2241static void nocb_leader_wait(struct rcu_data *my_rdp)
2242{
2243 bool firsttime = true;
2244 bool gotcbs;
2245 struct rcu_data *rdp;
2246 struct rcu_head **tail;
2247
2248wait_again:
2249
2250 /* Wait for callbacks to appear. */
2251 if (!rcu_nocb_poll) {
2252 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2253 wait_event_interruptible(my_rdp->nocb_wq,
11ed7f93 2254 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2255 /* Memory barrier handled by smp_mb() calls below and repoll. */
2256 } else if (firsttime) {
2257 firsttime = false; /* Don't drown trace log with "Poll"! */
2258 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2259 }
2260
2261 /*
2262 * Each pass through the following loop checks a follower for CBs.
2263 * We are our own first follower. Any CBs found are moved to
2264 * nocb_gp_head, where they await a grace period.
2265 */
2266 gotcbs = false;
2267 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2268 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2269 if (!rdp->nocb_gp_head)
2270 continue; /* No CBs here, try next follower. */
2271
2272 /* Move callbacks to wait-for-GP list, which is empty. */
2273 ACCESS_ONCE(rdp->nocb_head) = NULL;
2274 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2275 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2276 rdp->nocb_gp_count_lazy =
2277 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2278 gotcbs = true;
2279 }
2280
2281 /*
2282 * If there were no callbacks, sleep a bit, rescan after a
2283 * memory barrier, and go retry.
2284 */
2285 if (unlikely(!gotcbs)) {
2286 if (!rcu_nocb_poll)
2287 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2288 "WokeEmpty");
2289 flush_signals(current);
2290 schedule_timeout_interruptible(1);
2291
2292 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2293 my_rdp->nocb_leader_sleep = true;
2294 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497
PM
2295 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2296 if (ACCESS_ONCE(rdp->nocb_head)) {
2297 /* Found CB, so short-circuit next wait. */
11ed7f93 2298 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2299 break;
2300 }
2301 goto wait_again;
2302 }
2303
2304 /* Wait for one grace period. */
2305 rcu_nocb_wait_gp(my_rdp);
2306
2307 /*
11ed7f93
PK
2308 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2309 * We set it now, but recheck for new callbacks while
fbce7497
PM
2310 * traversing our follower list.
2311 */
11ed7f93
PK
2312 my_rdp->nocb_leader_sleep = true;
2313 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2314
2315 /* Each pass through the following loop wakes a follower, if needed. */
2316 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2317 if (ACCESS_ONCE(rdp->nocb_head))
11ed7f93 2318 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2319 if (!rdp->nocb_gp_head)
2320 continue; /* No CBs, so no need to wake follower. */
2321
2322 /* Append callbacks to follower's "done" list. */
2323 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2324 *tail = rdp->nocb_gp_head;
2325 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2326 atomic_long_add(rdp->nocb_gp_count_lazy,
2327 &rdp->nocb_follower_count_lazy);
2328 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2329 /*
2330 * List was empty, wake up the follower.
2331 * Memory barriers supplied by atomic_long_add().
2332 */
2333 wake_up(&rdp->nocb_wq);
2334 }
2335 }
2336
2337 /* If we (the leader) don't have CBs, go wait some more. */
2338 if (!my_rdp->nocb_follower_head)
2339 goto wait_again;
2340}
2341
2342/*
2343 * Followers come here to wait for additional callbacks to show up.
2344 * This function does not return until callbacks appear.
2345 */
2346static void nocb_follower_wait(struct rcu_data *rdp)
2347{
2348 bool firsttime = true;
2349
2350 for (;;) {
2351 if (!rcu_nocb_poll) {
2352 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2353 "FollowerSleep");
2354 wait_event_interruptible(rdp->nocb_wq,
2355 ACCESS_ONCE(rdp->nocb_follower_head));
2356 } else if (firsttime) {
2357 /* Don't drown trace log with "Poll"! */
2358 firsttime = false;
2359 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2360 }
2361 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2362 /* ^^^ Ensure CB invocation follows _head test. */
2363 return;
2364 }
2365 if (!rcu_nocb_poll)
2366 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2367 "WokeEmpty");
2368 flush_signals(current);
2369 schedule_timeout_interruptible(1);
2370 }
2371}
2372
3fbfbf7a
PM
2373/*
2374 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2375 * callbacks queued by the corresponding no-CBs CPU, however, there is
2376 * an optional leader-follower relationship so that the grace-period
2377 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2378 */
2379static int rcu_nocb_kthread(void *arg)
2380{
2381 int c, cl;
2382 struct rcu_head *list;
2383 struct rcu_head *next;
2384 struct rcu_head **tail;
2385 struct rcu_data *rdp = arg;
2386
2387 /* Each pass through this loop invokes one batch of callbacks */
2388 for (;;) {
fbce7497
PM
2389 /* Wait for callbacks. */
2390 if (rdp->nocb_leader == rdp)
2391 nocb_leader_wait(rdp);
2392 else
2393 nocb_follower_wait(rdp);
2394
2395 /* Pull the ready-to-invoke callbacks onto local list. */
2396 list = ACCESS_ONCE(rdp->nocb_follower_head);
2397 BUG_ON(!list);
2398 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2399 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2400 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2401 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2402 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2403 rdp->nocb_p_count += c;
2404 rdp->nocb_p_count_lazy += cl;
3fbfbf7a
PM
2405
2406 /* Each pass through the following loop invokes a callback. */
2407 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2408 c = cl = 0;
2409 while (list) {
2410 next = list->next;
2411 /* Wait for enqueuing to complete, if needed. */
2412 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2413 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2414 TPS("WaitQueue"));
3fbfbf7a 2415 schedule_timeout_interruptible(1);
69a79bb1
PM
2416 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2417 TPS("WokeQueue"));
3fbfbf7a
PM
2418 next = list->next;
2419 }
2420 debug_rcu_head_unqueue(list);
2421 local_bh_disable();
2422 if (__rcu_reclaim(rdp->rsp->name, list))
2423 cl++;
2424 c++;
2425 local_bh_enable();
2426 list = next;
2427 }
2428 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2429 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2430 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
c635a4e1 2431 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2432 }
2433 return 0;
2434}
2435
96d3fd0d
PM
2436/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2437static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2438{
2439 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2440}
2441
2442/* Do a deferred wakeup of rcu_nocb_kthread(). */
2443static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2444{
2445 if (!rcu_nocb_need_deferred_wakeup(rdp))
2446 return;
2447 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
fbce7497 2448 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2449 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2450}
2451
3fbfbf7a
PM
2452/* Initialize per-rcu_data variables for no-CBs CPUs. */
2453static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2454{
2455 rdp->nocb_tail = &rdp->nocb_head;
2456 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2457 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2458}
2459
fbce7497
PM
2460/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2461static int rcu_nocb_leader_stride = -1;
2462module_param(rcu_nocb_leader_stride, int, 0444);
2463
2464/*
2465 * Create a kthread for each RCU flavor for each no-CBs CPU.
2466 * Also initialize leader-follower relationships.
2467 */
3fbfbf7a
PM
2468static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2469{
2470 int cpu;
fbce7497
PM
2471 int ls = rcu_nocb_leader_stride;
2472 int nl = 0; /* Next leader. */
3fbfbf7a 2473 struct rcu_data *rdp;
fbce7497
PM
2474 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2475 struct rcu_data *rdp_prev = NULL;
3fbfbf7a
PM
2476 struct task_struct *t;
2477
2478 if (rcu_nocb_mask == NULL)
2479 return;
187497fa
PM
2480#if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
2481 if (tick_nohz_full_running)
2482 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2483#endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
fbce7497
PM
2484 if (ls == -1) {
2485 ls = int_sqrt(nr_cpu_ids);
2486 rcu_nocb_leader_stride = ls;
2487 }
2488
2489 /*
2490 * Each pass through this loop sets up one rcu_data structure and
2491 * spawns one rcu_nocb_kthread().
2492 */
3fbfbf7a
PM
2493 for_each_cpu(cpu, rcu_nocb_mask) {
2494 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2495 if (rdp->cpu >= nl) {
2496 /* New leader, set up for followers & next leader. */
2497 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2498 rdp->nocb_leader = rdp;
2499 rdp_leader = rdp;
2500 } else {
2501 /* Another follower, link to previous leader. */
2502 rdp->nocb_leader = rdp_leader;
2503 rdp_prev->nocb_next_follower = rdp;
2504 }
2505 rdp_prev = rdp;
2506
2507 /* Spawn the kthread for this CPU. */
a4889858
PM
2508 t = kthread_run(rcu_nocb_kthread, rdp,
2509 "rcuo%c/%d", rsp->abbr, cpu);
3fbfbf7a
PM
2510 BUG_ON(IS_ERR(t));
2511 ACCESS_ONCE(rdp->nocb_kthread) = t;
2512 }
2513}
2514
2515/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2516static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a
PM
2517{
2518 if (rcu_nocb_mask == NULL ||
2519 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
34ed6246 2520 return false;
3fbfbf7a 2521 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2522 return true;
3fbfbf7a
PM
2523}
2524
34ed6246
PM
2525#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2526
0446be48 2527static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2528{
3fbfbf7a
PM
2529}
2530
dae6e64d
PM
2531static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2532{
2533}
2534
2535static void rcu_init_one_nocb(struct rcu_node *rnp)
2536{
2537}
3fbfbf7a 2538
3fbfbf7a 2539static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2540 bool lazy, unsigned long flags)
3fbfbf7a
PM
2541{
2542 return 0;
2543}
2544
2545static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2546 struct rcu_data *rdp,
2547 unsigned long flags)
3fbfbf7a
PM
2548{
2549 return 0;
2550}
2551
3fbfbf7a
PM
2552static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2553{
2554}
2555
96d3fd0d
PM
2556static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2557{
2558 return false;
2559}
2560
2561static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2562{
2563}
2564
3fbfbf7a
PM
2565static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2566{
2567}
2568
34ed6246 2569static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2570{
34ed6246 2571 return false;
3fbfbf7a
PM
2572}
2573
2574#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2575
2576/*
2577 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2578 * arbitrarily long period of time with the scheduling-clock tick turned
2579 * off. RCU will be paying attention to this CPU because it is in the
2580 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2581 * machine because the scheduling-clock tick has been disabled. Therefore,
2582 * if an adaptive-ticks CPU is failing to respond to the current grace
2583 * period and has not be idle from an RCU perspective, kick it.
2584 */
4a81e832 2585static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2586{
2587#ifdef CONFIG_NO_HZ_FULL
2588 if (tick_nohz_full_cpu(cpu))
2589 smp_send_reschedule(cpu);
2590#endif /* #ifdef CONFIG_NO_HZ_FULL */
2591}
2333210b
PM
2592
2593
2594#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2595
d4bd54fb
PM
2596/*
2597 * Define RCU flavor that holds sysidle state. This needs to be the
2598 * most active flavor of RCU.
2599 */
2600#ifdef CONFIG_PREEMPT_RCU
0edd1b17 2601static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
d4bd54fb 2602#else /* #ifdef CONFIG_PREEMPT_RCU */
0edd1b17 2603static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
d4bd54fb
PM
2604#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2605
0edd1b17 2606static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2607#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2608#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2609#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2610#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2611#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2612
eb348b89
PM
2613/*
2614 * Invoked to note exit from irq or task transition to idle. Note that
2615 * usermode execution does -not- count as idle here! After all, we want
2616 * to detect full-system idle states, not RCU quiescent states and grace
2617 * periods. The caller must have disabled interrupts.
2618 */
2619static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2620{
2621 unsigned long j;
2622
2623 /* Adjust nesting, check for fully idle. */
2624 if (irq) {
2625 rdtp->dynticks_idle_nesting--;
2626 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2627 if (rdtp->dynticks_idle_nesting != 0)
2628 return; /* Still not fully idle. */
2629 } else {
2630 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2631 DYNTICK_TASK_NEST_VALUE) {
2632 rdtp->dynticks_idle_nesting = 0;
2633 } else {
2634 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2635 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2636 return; /* Still not fully idle. */
2637 }
2638 }
2639
2640 /* Record start of fully idle period. */
2641 j = jiffies;
2642 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2643 smp_mb__before_atomic();
eb348b89 2644 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2645 smp_mb__after_atomic();
eb348b89
PM
2646 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2647}
2648
0edd1b17
PM
2649/*
2650 * Unconditionally force exit from full system-idle state. This is
2651 * invoked when a normal CPU exits idle, but must be called separately
2652 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2653 * is that the timekeeping CPU is permitted to take scheduling-clock
2654 * interrupts while the system is in system-idle state, and of course
2655 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2656 * interrupt from any other type of interrupt.
2657 */
2658void rcu_sysidle_force_exit(void)
2659{
2660 int oldstate = ACCESS_ONCE(full_sysidle_state);
2661 int newoldstate;
2662
2663 /*
2664 * Each pass through the following loop attempts to exit full
2665 * system-idle state. If contention proves to be a problem,
2666 * a trylock-based contention tree could be used here.
2667 */
2668 while (oldstate > RCU_SYSIDLE_SHORT) {
2669 newoldstate = cmpxchg(&full_sysidle_state,
2670 oldstate, RCU_SYSIDLE_NOT);
2671 if (oldstate == newoldstate &&
2672 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2673 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2674 return; /* We cleared it, done! */
2675 }
2676 oldstate = newoldstate;
2677 }
2678 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2679}
2680
eb348b89
PM
2681/*
2682 * Invoked to note entry to irq or task transition from idle. Note that
2683 * usermode execution does -not- count as idle here! The caller must
2684 * have disabled interrupts.
2685 */
2686static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2687{
2688 /* Adjust nesting, check for already non-idle. */
2689 if (irq) {
2690 rdtp->dynticks_idle_nesting++;
2691 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2692 if (rdtp->dynticks_idle_nesting != 1)
2693 return; /* Already non-idle. */
2694 } else {
2695 /*
2696 * Allow for irq misnesting. Yes, it really is possible
2697 * to enter an irq handler then never leave it, and maybe
2698 * also vice versa. Handle both possibilities.
2699 */
2700 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2701 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2702 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2703 return; /* Already non-idle. */
2704 } else {
2705 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2706 }
2707 }
2708
2709 /* Record end of idle period. */
4e857c58 2710 smp_mb__before_atomic();
eb348b89 2711 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2712 smp_mb__after_atomic();
eb348b89 2713 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2714
2715 /*
2716 * If we are the timekeeping CPU, we are permitted to be non-idle
2717 * during a system-idle state. This must be the case, because
2718 * the timekeeping CPU has to take scheduling-clock interrupts
2719 * during the time that the system is transitioning to full
2720 * system-idle state. This means that the timekeeping CPU must
2721 * invoke rcu_sysidle_force_exit() directly if it does anything
2722 * more than take a scheduling-clock interrupt.
2723 */
2724 if (smp_processor_id() == tick_do_timer_cpu)
2725 return;
2726
2727 /* Update system-idle state: We are clearly no longer fully idle! */
2728 rcu_sysidle_force_exit();
2729}
2730
2731/*
2732 * Check to see if the current CPU is idle. Note that usermode execution
2733 * does not count as idle. The caller must have disabled interrupts.
2734 */
2735static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2736 unsigned long *maxj)
2737{
2738 int cur;
2739 unsigned long j;
2740 struct rcu_dynticks *rdtp = rdp->dynticks;
2741
2742 /*
2743 * If some other CPU has already reported non-idle, if this is
2744 * not the flavor of RCU that tracks sysidle state, or if this
2745 * is an offline or the timekeeping CPU, nothing to do.
2746 */
2747 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2748 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2749 return;
eb75767b
PM
2750 if (rcu_gp_in_progress(rdp->rsp))
2751 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2752
2753 /* Pick up current idle and NMI-nesting counter and check. */
2754 cur = atomic_read(&rdtp->dynticks_idle);
2755 if (cur & 0x1) {
2756 *isidle = false; /* We are not idle! */
2757 return;
2758 }
2759 smp_mb(); /* Read counters before timestamps. */
2760
2761 /* Pick up timestamps. */
2762 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2763 /* If this CPU entered idle more recently, update maxj timestamp. */
2764 if (ULONG_CMP_LT(*maxj, j))
2765 *maxj = j;
2766}
2767
2768/*
2769 * Is this the flavor of RCU that is handling full-system idle?
2770 */
2771static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2772{
2773 return rsp == rcu_sysidle_state;
2774}
2775
2776/*
2777 * Return a delay in jiffies based on the number of CPUs, rcu_node
2778 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2779 * systems more time to transition to full-idle state in order to
2780 * avoid the cache thrashing that otherwise occur on the state variable.
2781 * Really small systems (less than a couple of tens of CPUs) should
2782 * instead use a single global atomically incremented counter, and later
2783 * versions of this will automatically reconfigure themselves accordingly.
2784 */
2785static unsigned long rcu_sysidle_delay(void)
2786{
2787 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2788 return 0;
2789 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2790}
2791
2792/*
2793 * Advance the full-system-idle state. This is invoked when all of
2794 * the non-timekeeping CPUs are idle.
2795 */
2796static void rcu_sysidle(unsigned long j)
2797{
2798 /* Check the current state. */
2799 switch (ACCESS_ONCE(full_sysidle_state)) {
2800 case RCU_SYSIDLE_NOT:
2801
2802 /* First time all are idle, so note a short idle period. */
2803 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2804 break;
2805
2806 case RCU_SYSIDLE_SHORT:
2807
2808 /*
2809 * Idle for a bit, time to advance to next state?
2810 * cmpxchg failure means race with non-idle, let them win.
2811 */
2812 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2813 (void)cmpxchg(&full_sysidle_state,
2814 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2815 break;
2816
2817 case RCU_SYSIDLE_LONG:
2818
2819 /*
2820 * Do an additional check pass before advancing to full.
2821 * cmpxchg failure means race with non-idle, let them win.
2822 */
2823 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2824 (void)cmpxchg(&full_sysidle_state,
2825 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2826 break;
2827
2828 default:
2829 break;
2830 }
2831}
2832
2833/*
2834 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2835 * back to the beginning.
2836 */
2837static void rcu_sysidle_cancel(void)
2838{
2839 smp_mb();
becb41bf
PM
2840 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2841 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2842}
2843
2844/*
2845 * Update the sysidle state based on the results of a force-quiescent-state
2846 * scan of the CPUs' dyntick-idle state.
2847 */
2848static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2849 unsigned long maxj, bool gpkt)
2850{
2851 if (rsp != rcu_sysidle_state)
2852 return; /* Wrong flavor, ignore. */
2853 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2854 return; /* Running state machine from timekeeping CPU. */
2855 if (isidle)
2856 rcu_sysidle(maxj); /* More idle! */
2857 else
2858 rcu_sysidle_cancel(); /* Idle is over. */
2859}
2860
2861/*
2862 * Wrapper for rcu_sysidle_report() when called from the grace-period
2863 * kthread's context.
2864 */
2865static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2866 unsigned long maxj)
2867{
2868 rcu_sysidle_report(rsp, isidle, maxj, true);
2869}
2870
2871/* Callback and function for forcing an RCU grace period. */
2872struct rcu_sysidle_head {
2873 struct rcu_head rh;
2874 int inuse;
2875};
2876
2877static void rcu_sysidle_cb(struct rcu_head *rhp)
2878{
2879 struct rcu_sysidle_head *rshp;
2880
2881 /*
2882 * The following memory barrier is needed to replace the
2883 * memory barriers that would normally be in the memory
2884 * allocator.
2885 */
2886 smp_mb(); /* grace period precedes setting inuse. */
2887
2888 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2889 ACCESS_ONCE(rshp->inuse) = 0;
2890}
2891
2892/*
2893 * Check to see if the system is fully idle, other than the timekeeping CPU.
2894 * The caller must have disabled interrupts.
2895 */
2896bool rcu_sys_is_idle(void)
2897{
2898 static struct rcu_sysidle_head rsh;
2899 int rss = ACCESS_ONCE(full_sysidle_state);
2900
2901 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2902 return false;
2903
2904 /* Handle small-system case by doing a full scan of CPUs. */
2905 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2906 int oldrss = rss - 1;
2907
2908 /*
2909 * One pass to advance to each state up to _FULL.
2910 * Give up if any pass fails to advance the state.
2911 */
2912 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2913 int cpu;
2914 bool isidle = true;
2915 unsigned long maxj = jiffies - ULONG_MAX / 4;
2916 struct rcu_data *rdp;
2917
2918 /* Scan all the CPUs looking for nonidle CPUs. */
2919 for_each_possible_cpu(cpu) {
2920 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2921 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2922 if (!isidle)
2923 break;
2924 }
2925 rcu_sysidle_report(rcu_sysidle_state,
2926 isidle, maxj, false);
2927 oldrss = rss;
2928 rss = ACCESS_ONCE(full_sysidle_state);
2929 }
2930 }
2931
2932 /* If this is the first observation of an idle period, record it. */
2933 if (rss == RCU_SYSIDLE_FULL) {
2934 rss = cmpxchg(&full_sysidle_state,
2935 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2936 return rss == RCU_SYSIDLE_FULL;
2937 }
2938
2939 smp_mb(); /* ensure rss load happens before later caller actions. */
2940
2941 /* If already fully idle, tell the caller (in case of races). */
2942 if (rss == RCU_SYSIDLE_FULL_NOTED)
2943 return true;
2944
2945 /*
2946 * If we aren't there yet, and a grace period is not in flight,
2947 * initiate a grace period. Either way, tell the caller that
2948 * we are not there yet. We use an xchg() rather than an assignment
2949 * to make up for the memory barriers that would otherwise be
2950 * provided by the memory allocator.
2951 */
2952 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2953 !rcu_gp_in_progress(rcu_sysidle_state) &&
2954 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2955 call_rcu(&rsh.rh, rcu_sysidle_cb);
2956 return false;
eb348b89
PM
2957}
2958
2333210b
PM
2959/*
2960 * Initialize dynticks sysidle state for CPUs coming online.
2961 */
2962static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2963{
2964 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2965}
2966
2967#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2968
eb348b89
PM
2969static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2970{
2971}
2972
2973static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2974{
2975}
2976
0edd1b17
PM
2977static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2978 unsigned long *maxj)
2979{
2980}
2981
2982static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2983{
2984 return false;
2985}
2986
2987static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2988 unsigned long maxj)
2989{
2990}
2991
2333210b
PM
2992static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2993{
2994}
2995
2996#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
2997
2998/*
2999 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3000 * grace-period kthread will do force_quiescent_state() processing?
3001 * The idea is to avoid waking up RCU core processing on such a
3002 * CPU unless the grace period has extended for too long.
3003 *
3004 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3005 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3006 */
3007static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3008{
3009#ifdef CONFIG_NO_HZ_FULL
3010 if (tick_nohz_full_cpu(smp_processor_id()) &&
3011 (!rcu_gp_in_progress(rsp) ||
3012 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3013 return 1;
3014#endif /* #ifdef CONFIG_NO_HZ_FULL */
3015 return 0;
3016}
5057f55e
PM
3017
3018/*
3019 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3020 * timekeeping CPU.
3021 */
3022static void rcu_bind_gp_kthread(void)
3023{
c0f489d2 3024 int __maybe_unused cpu;
5057f55e 3025
c0f489d2 3026 if (!tick_nohz_full_enabled())
5057f55e 3027 return;
c0f489d2
PM
3028#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3029 cpu = tick_do_timer_cpu;
3030 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
5057f55e 3031 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2
PM
3032#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3033 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3034 housekeeping_affine(current);
3035#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3036}
176f8f7a
PM
3037
3038/* Record the current task on dyntick-idle entry. */
3039static void rcu_dynticks_task_enter(void)
3040{
3041#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3042 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3043#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3044}
3045
3046/* Record no current task on dyntick-idle exit. */
3047static void rcu_dynticks_task_exit(void)
3048{
3049#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3050 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3051#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3052}