rcu: Remove obsolete ->dynticks_fqs and ->cond_resched_completed
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff 29 */
a7538352
JP
30
31#define pr_fmt(fmt) "rcu: " fmt
32
64db4cff
PM
33#include <linux/types.h>
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/spinlock.h>
37#include <linux/smp.h>
f9411ebe 38#include <linux/rcupdate_wait.h>
64db4cff
PM
39#include <linux/interrupt.h>
40#include <linux/sched.h>
b17b0153 41#include <linux/sched/debug.h>
c1dc0b9c 42#include <linux/nmi.h>
8826f3b0 43#include <linux/atomic.h>
64db4cff 44#include <linux/bitops.h>
9984de1a 45#include <linux/export.h>
64db4cff
PM
46#include <linux/completion.h>
47#include <linux/moduleparam.h>
48#include <linux/percpu.h>
49#include <linux/notifier.h>
50#include <linux/cpu.h>
51#include <linux/mutex.h>
52#include <linux/time.h>
bbad9379 53#include <linux/kernel_stat.h>
a26ac245
PM
54#include <linux/wait.h>
55#include <linux/kthread.h>
ae7e81c0 56#include <uapi/linux/sched/types.h>
268bb0ce 57#include <linux/prefetch.h>
3d3b7db0
PM
58#include <linux/delay.h>
59#include <linux/stop_machine.h>
661a85dc 60#include <linux/random.h>
af658dca 61#include <linux/trace_events.h>
d1d74d14 62#include <linux/suspend.h>
a278d471 63#include <linux/ftrace.h>
d3052109 64#include <linux/tick.h>
64db4cff 65
4102adab 66#include "tree.h"
29c00b4a 67#include "rcu.h"
9f77da9f 68
4102adab
PM
69#ifdef MODULE_PARAM_PREFIX
70#undef MODULE_PARAM_PREFIX
71#endif
72#define MODULE_PARAM_PREFIX "rcutree."
73
64db4cff
PM
74/* Data structures. */
75
dc5a4f29
PM
76/*
77 * Steal a bit from the bottom of ->dynticks for idle entry/exit
78 * control. Initially this is for TLB flushing.
79 */
80#define RCU_DYNTICK_CTRL_MASK 0x1
81#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
82#ifndef rcu_eqs_special_exit
83#define rcu_eqs_special_exit() do { } while (0)
84#endif
85
4c5273bf
PM
86static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
87 .dynticks_nesting = 1,
88 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
dc5a4f29 89 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4c5273bf 90};
358be2d3
PM
91struct rcu_state rcu_state = {
92 .level = { &rcu_state.node[0] },
358be2d3
PM
93 .gp_state = RCU_GP_IDLE,
94 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
95 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
96 .name = RCU_NAME,
97 .abbr = RCU_ABBR,
98 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
99 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
100 .ofl_lock = __SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
101};
b1f77b05 102
a3dc2948
PM
103/* Dump rcu_node combining tree at boot to verify correct setup. */
104static bool dump_tree;
105module_param(dump_tree, bool, 0444);
7fa27001
PM
106/* Control rcu_node-tree auto-balancing at boot time. */
107static bool rcu_fanout_exact;
108module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
109/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 113/* Number of rcu_nodes at specified level. */
e95d68d2 114int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 115int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
116/* panic() on RCU Stall sysctl. */
117int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 118
b0d30417 119/*
52d7e48b
PM
120 * The rcu_scheduler_active variable is initialized to the value
121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
122 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
123 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 124 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
126 * to detect real grace periods. This variable is also used to suppress
127 * boot-time false positives from lockdep-RCU error checking. Finally, it
128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
129 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 130 */
bbad9379
PM
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
b0d30417
PM
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
b50912d0
PM
148static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
149 unsigned long gps, unsigned long flags);
0aa04b05
PM
150static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
151static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 152static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 153static void invoke_rcu_core(void);
aff4e9ed 154static void invoke_rcu_callbacks(struct rcu_data *rdp);
63d4c8c9 155static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 156static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 157
a94844b2 158/* rcuc/rcub kthread realtime priority */
26730f55 159static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
160module_param(kthread_prio, int, 0644);
161
8d7dc928 162/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 163
90040c9e
PM
164static int gp_preinit_delay;
165module_param(gp_preinit_delay, int, 0444);
166static int gp_init_delay;
167module_param(gp_init_delay, int, 0444);
168static int gp_cleanup_delay;
169module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 170
4cf439a2 171/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
172int rcu_get_gp_kthreads_prio(void)
173{
174 return kthread_prio;
175}
176EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
177
eab128e8
PM
178/*
179 * Number of grace periods between delays, normalized by the duration of
bfd090be 180 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
181 * each delay. The reason for this normalization is that it means that,
182 * for non-zero delays, the overall slowdown of grace periods is constant
183 * regardless of the duration of the delay. This arrangement balances
184 * the need for long delays to increase some race probabilities with the
185 * need for fast grace periods to increase other race probabilities.
186 */
187#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 188
0aa04b05
PM
189/*
190 * Compute the mask of online CPUs for the specified rcu_node structure.
191 * This will not be stable unless the rcu_node structure's ->lock is
192 * held, but the bit corresponding to the current CPU will be stable
193 * in most contexts.
194 */
195unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
196{
7d0ae808 197 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
198}
199
fc2219d4 200/*
7d0ae808 201 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
202 * permit this function to be invoked without holding the root rcu_node
203 * structure's ->lock, but of course results can be subject to change.
204 */
de8e8730 205static int rcu_gp_in_progress(void)
fc2219d4 206{
de8e8730 207 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
fc2219d4
PM
208}
209
d28139c4
PM
210void rcu_softirq_qs(void)
211{
45975c7d 212 rcu_qs();
d28139c4
PM
213 rcu_preempt_deferred_qs(current);
214}
215
2625d469
PM
216/*
217 * Record entry into an extended quiescent state. This is only to be
218 * called when not already in an extended quiescent state.
219 */
220static void rcu_dynticks_eqs_enter(void)
221{
dc5a4f29 222 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 223 int seq;
2625d469
PM
224
225 /*
b8c17e66 226 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
227 * critical sections, and we also must force ordering with the
228 * next idle sojourn.
229 */
dc5a4f29 230 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
231 /* Better be in an extended quiescent state! */
232 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
233 (seq & RCU_DYNTICK_CTRL_CTR));
234 /* Better not have special action (TLB flush) pending! */
235 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
236 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
237}
238
239/*
240 * Record exit from an extended quiescent state. This is only to be
241 * called from an extended quiescent state.
242 */
243static void rcu_dynticks_eqs_exit(void)
244{
dc5a4f29 245 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 246 int seq;
2625d469
PM
247
248 /*
b8c17e66 249 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
250 * and we also must force ordering with the next RCU read-side
251 * critical section.
252 */
dc5a4f29 253 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
254 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
255 !(seq & RCU_DYNTICK_CTRL_CTR));
256 if (seq & RCU_DYNTICK_CTRL_MASK) {
dc5a4f29 257 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
b8c17e66
PM
258 smp_mb__after_atomic(); /* _exit after clearing mask. */
259 /* Prefer duplicate flushes to losing a flush. */
260 rcu_eqs_special_exit();
261 }
2625d469
PM
262}
263
264/*
265 * Reset the current CPU's ->dynticks counter to indicate that the
266 * newly onlined CPU is no longer in an extended quiescent state.
267 * This will either leave the counter unchanged, or increment it
268 * to the next non-quiescent value.
269 *
270 * The non-atomic test/increment sequence works because the upper bits
271 * of the ->dynticks counter are manipulated only by the corresponding CPU,
272 * or when the corresponding CPU is offline.
273 */
274static void rcu_dynticks_eqs_online(void)
275{
dc5a4f29 276 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2625d469 277
dc5a4f29 278 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 279 return;
dc5a4f29 280 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
2625d469
PM
281}
282
02a5c550
PM
283/*
284 * Is the current CPU in an extended quiescent state?
285 *
286 * No ordering, as we are sampling CPU-local information.
287 */
288bool rcu_dynticks_curr_cpu_in_eqs(void)
289{
dc5a4f29 290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
02a5c550 291
dc5a4f29 292 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
293}
294
8b2f63ab
PM
295/*
296 * Snapshot the ->dynticks counter with full ordering so as to allow
297 * stable comparison of this counter with past and future snapshots.
298 */
dc5a4f29 299int rcu_dynticks_snap(struct rcu_data *rdp)
8b2f63ab 300{
dc5a4f29 301 int snap = atomic_add_return(0, &rdp->dynticks);
8b2f63ab 302
b8c17e66 303 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
304}
305
02a5c550
PM
306/*
307 * Return true if the snapshot returned from rcu_dynticks_snap()
308 * indicates that RCU is in an extended quiescent state.
309 */
310static bool rcu_dynticks_in_eqs(int snap)
311{
b8c17e66 312 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
313}
314
315/*
dc5a4f29 316 * Return true if the CPU corresponding to the specified rcu_data
02a5c550
PM
317 * structure has spent some time in an extended quiescent state since
318 * rcu_dynticks_snap() returned the specified snapshot.
319 */
dc5a4f29 320static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
02a5c550 321{
dc5a4f29 322 return snap != rcu_dynticks_snap(rdp);
02a5c550
PM
323}
324
b8c17e66
PM
325/*
326 * Set the special (bottom) bit of the specified CPU so that it
327 * will take special action (such as flushing its TLB) on the
328 * next exit from an extended quiescent state. Returns true if
329 * the bit was successfully set, or false if the CPU was not in
330 * an extended quiescent state.
331 */
332bool rcu_eqs_special_set(int cpu)
333{
334 int old;
335 int new;
dc5a4f29 336 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
b8c17e66
PM
337
338 do {
dc5a4f29 339 old = atomic_read(&rdp->dynticks);
b8c17e66
PM
340 if (old & RCU_DYNTICK_CTRL_CTR)
341 return false;
342 new = old | RCU_DYNTICK_CTRL_MASK;
dc5a4f29 343 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
b8c17e66 344 return true;
6563de9d 345}
5cd37193 346
4a81e832
PM
347/*
348 * Let the RCU core know that this CPU has gone through the scheduler,
349 * which is a quiescent state. This is called when the need for a
350 * quiescent state is urgent, so we burn an atomic operation and full
351 * memory barriers to let the RCU core know about it, regardless of what
352 * this CPU might (or might not) do in the near future.
353 *
0f9be8ca 354 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 355 *
3b57a399 356 * The caller must have disabled interrupts and must not be idle.
4a81e832 357 */
395a2f09 358static void __maybe_unused rcu_momentary_dyntick_idle(void)
4a81e832 359{
3b57a399
PM
360 int special;
361
2dba13f0 362 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
dc5a4f29
PM
363 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
364 &this_cpu_ptr(&rcu_data)->dynticks);
3b57a399
PM
365 /* It is illegal to call this from idle state. */
366 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
3e310098 367 rcu_preempt_deferred_qs(current);
4a81e832
PM
368}
369
45975c7d
PM
370/**
371 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
372 *
373 * If the current CPU is idle or running at a first-level (not nested)
374 * interrupt from idle, return true. The caller must have at least
375 * disabled preemption.
25502a6c 376 */
45975c7d 377static int rcu_is_cpu_rrupt_from_idle(void)
25502a6c 378{
4c5273bf
PM
379 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
380 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
25502a6c
PM
381}
382
17c7798b
PM
383#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
384static long blimit = DEFAULT_RCU_BLIMIT;
385#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
386static long qhimark = DEFAULT_RCU_QHIMARK;
387#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
388static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 389
878d7439
ED
390module_param(blimit, long, 0444);
391module_param(qhimark, long, 0444);
392module_param(qlowmark, long, 0444);
3d76c082 393
026ad283
PM
394static ulong jiffies_till_first_fqs = ULONG_MAX;
395static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 396static bool rcu_kick_kthreads;
d40011f6 397
c06aed0e
PM
398/*
399 * How long the grace period must be before we start recruiting
400 * quiescent-state help from rcu_note_context_switch().
401 */
402static ulong jiffies_till_sched_qs = ULONG_MAX;
403module_param(jiffies_till_sched_qs, ulong, 0444);
404static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
405module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
406
407/*
408 * Make sure that we give the grace-period kthread time to detect any
409 * idle CPUs before taking active measures to force quiescent states.
410 * However, don't go below 100 milliseconds, adjusted upwards for really
411 * large systems.
412 */
413static void adjust_jiffies_till_sched_qs(void)
414{
415 unsigned long j;
416
417 /* If jiffies_till_sched_qs was specified, respect the request. */
418 if (jiffies_till_sched_qs != ULONG_MAX) {
419 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
420 return;
421 }
422 j = READ_ONCE(jiffies_till_first_fqs) +
423 2 * READ_ONCE(jiffies_till_next_fqs);
424 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
425 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
426 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
427 WRITE_ONCE(jiffies_to_sched_qs, j);
428}
429
67abb96c
BP
430static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
431{
432 ulong j;
433 int ret = kstrtoul(val, 0, &j);
434
c06aed0e 435 if (!ret) {
67abb96c 436 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
437 adjust_jiffies_till_sched_qs();
438 }
67abb96c
BP
439 return ret;
440}
441
442static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
443{
444 ulong j;
445 int ret = kstrtoul(val, 0, &j);
446
c06aed0e 447 if (!ret) {
67abb96c 448 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
449 adjust_jiffies_till_sched_qs();
450 }
67abb96c
BP
451 return ret;
452}
453
454static struct kernel_param_ops first_fqs_jiffies_ops = {
455 .set = param_set_first_fqs_jiffies,
456 .get = param_get_ulong,
457};
458
459static struct kernel_param_ops next_fqs_jiffies_ops = {
460 .set = param_set_next_fqs_jiffies,
461 .get = param_get_ulong,
462};
463
464module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
465module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 466module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 467
8ff0b907 468static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
e9ecb780 469static void force_quiescent_state(void);
e3950ecd 470static int rcu_pending(void);
64db4cff
PM
471
472/*
17ef2fe9 473 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 474 */
17ef2fe9 475unsigned long rcu_get_gp_seq(void)
917963d0 476{
16fc9c60 477 return READ_ONCE(rcu_state.gp_seq);
917963d0 478}
17ef2fe9 479EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 480
291783b8
PM
481/*
482 * Return the number of RCU expedited batches completed thus far for
483 * debug & stats. Odd numbers mean that a batch is in progress, even
484 * numbers mean idle. The value returned will thus be roughly double
485 * the cumulative batches since boot.
486 */
487unsigned long rcu_exp_batches_completed(void)
488{
16fc9c60 489 return rcu_state.expedited_sequence;
291783b8
PM
490}
491EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
492
a381d757
ACB
493/*
494 * Force a quiescent state.
495 */
496void rcu_force_quiescent_state(void)
497{
e9ecb780 498 force_quiescent_state();
a381d757
ACB
499}
500EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
501
afea227f
PM
502/*
503 * Show the state of the grace-period kthreads.
504 */
505void show_rcu_gp_kthreads(void)
506{
47199a08
PM
507 int cpu;
508 struct rcu_data *rdp;
509 struct rcu_node *rnp;
afea227f 510
b97d23c5
PM
511 pr_info("%s: wait state: %d ->state: %#lx\n", rcu_state.name,
512 rcu_state.gp_state, rcu_state.gp_kthread->state);
513 rcu_for_each_node_breadth_first(rnp) {
514 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
515 continue;
516 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
517 rnp->grplo, rnp->grphi, rnp->gp_seq,
518 rnp->gp_seq_needed);
519 if (!rcu_is_leaf_node(rnp))
520 continue;
521 for_each_leaf_node_possible_cpu(rnp, cpu) {
522 rdp = per_cpu_ptr(&rcu_data, cpu);
523 if (rdp->gpwrap ||
524 ULONG_CMP_GE(rcu_state.gp_seq,
525 rdp->gp_seq_needed))
47199a08 526 continue;
b97d23c5
PM
527 pr_info("\tcpu %d ->gp_seq_needed %lu\n",
528 cpu, rdp->gp_seq_needed);
47199a08 529 }
afea227f 530 }
b97d23c5 531 /* sched_show_task(rcu_state.gp_kthread); */
afea227f
PM
532}
533EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
534
ad0dc7f9
PM
535/*
536 * Send along grace-period-related data for rcutorture diagnostics.
537 */
538void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 539 unsigned long *gp_seq)
ad0dc7f9 540{
ad0dc7f9
PM
541 switch (test_type) {
542 case RCU_FLAVOR:
ad0dc7f9 543 case RCU_BH_FLAVOR:
ad0dc7f9 544 case RCU_SCHED_FLAVOR:
f7dd7d44
PM
545 *flags = READ_ONCE(rcu_state.gp_flags);
546 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
547 break;
548 default:
549 break;
550 }
ad0dc7f9
PM
551}
552EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
553
365187fb 554/*
49918a54 555 * Return the root node of the rcu_state structure.
365187fb 556 */
336a4f6c 557static struct rcu_node *rcu_get_root(void)
365187fb 558{
336a4f6c 559 return &rcu_state.node[0];
365187fb
PM
560}
561
9b2e4f18 562/*
215bba9f
PM
563 * Enter an RCU extended quiescent state, which can be either the
564 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 565 *
215bba9f
PM
566 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
567 * the possibility of usermode upcalls having messed up our count
568 * of interrupt nesting level during the prior busy period.
9b2e4f18 569 */
215bba9f 570static void rcu_eqs_enter(bool user)
9b2e4f18 571{
4c5273bf 572 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
96d3fd0d 573
4c5273bf
PM
574 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
575 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
215bba9f 576 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
4c5273bf
PM
577 rdp->dynticks_nesting == 0);
578 if (rdp->dynticks_nesting != 1) {
579 rdp->dynticks_nesting--;
215bba9f 580 return;
9b2e4f18 581 }
96d3fd0d 582
b04db8e1 583 lockdep_assert_irqs_disabled();
dc5a4f29 584 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
e68bbb26 585 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
b97d23c5
PM
586 rdp = this_cpu_ptr(&rcu_data);
587 do_nocb_deferred_wakeup(rdp);
198bbf81 588 rcu_prepare_for_idle();
3e310098 589 rcu_preempt_deferred_qs(current);
4c5273bf 590 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 591 rcu_dynticks_eqs_enter();
176f8f7a 592 rcu_dynticks_task_enter();
64db4cff 593}
adf5091e
FW
594
595/**
596 * rcu_idle_enter - inform RCU that current CPU is entering idle
597 *
598 * Enter idle mode, in other words, -leave- the mode in which RCU
599 * read-side critical sections can occur. (Though RCU read-side
600 * critical sections can occur in irq handlers in idle, a possibility
601 * handled by irq_enter() and irq_exit().)
602 *
c0da313e
PM
603 * If you add or remove a call to rcu_idle_enter(), be sure to test with
604 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
605 */
606void rcu_idle_enter(void)
607{
b04db8e1 608 lockdep_assert_irqs_disabled();
cb349ca9 609 rcu_eqs_enter(false);
adf5091e 610}
64db4cff 611
d1ec4c34 612#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
613/**
614 * rcu_user_enter - inform RCU that we are resuming userspace.
615 *
616 * Enter RCU idle mode right before resuming userspace. No use of RCU
617 * is permitted between this call and rcu_user_exit(). This way the
618 * CPU doesn't need to maintain the tick for RCU maintenance purposes
619 * when the CPU runs in userspace.
c0da313e
PM
620 *
621 * If you add or remove a call to rcu_user_enter(), be sure to test with
622 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
623 */
624void rcu_user_enter(void)
625{
b04db8e1 626 lockdep_assert_irqs_disabled();
d4db30af 627 rcu_eqs_enter(true);
adf5091e 628}
d1ec4c34 629#endif /* CONFIG_NO_HZ_FULL */
19dd1591 630
cf7614e1 631/*
fd581a91 632 * If we are returning from the outermost NMI handler that interrupted an
dc5a4f29 633 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
fd581a91
PM
634 * to let the RCU grace-period handling know that the CPU is back to
635 * being RCU-idle.
636 *
cf7614e1 637 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
fd581a91
PM
638 * with CONFIG_RCU_EQS_DEBUG=y.
639 */
cf7614e1 640static __always_inline void rcu_nmi_exit_common(bool irq)
fd581a91 641{
4c5273bf 642 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
fd581a91
PM
643
644 /*
645 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
646 * (We are exiting an NMI handler, so RCU better be paying attention
647 * to us!)
648 */
4c5273bf 649 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
fd581a91
PM
650 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
651
652 /*
653 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
654 * leave it in non-RCU-idle state.
655 */
4c5273bf 656 if (rdp->dynticks_nmi_nesting != 1) {
dc5a4f29 657 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
4c5273bf
PM
658 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
659 rdp->dynticks_nmi_nesting - 2);
fd581a91
PM
660 return;
661 }
662
663 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dc5a4f29 664 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
4c5273bf 665 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
cf7614e1
BP
666
667 if (irq)
668 rcu_prepare_for_idle();
669
fd581a91 670 rcu_dynticks_eqs_enter();
cf7614e1
BP
671
672 if (irq)
673 rcu_dynticks_task_enter();
674}
675
676/**
677 * rcu_nmi_exit - inform RCU of exit from NMI context
678 * @irq: Is this call from rcu_irq_exit?
679 *
680 * If you add or remove a call to rcu_nmi_exit(), be sure to test
681 * with CONFIG_RCU_EQS_DEBUG=y.
682 */
683void rcu_nmi_exit(void)
684{
685 rcu_nmi_exit_common(false);
fd581a91
PM
686}
687
9b2e4f18
PM
688/**
689 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
690 *
691 * Exit from an interrupt handler, which might possibly result in entering
692 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 693 * sections can occur. The caller must have disabled interrupts.
64db4cff 694 *
9b2e4f18
PM
695 * This code assumes that the idle loop never does anything that might
696 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
697 * architecture's idle loop violates this assumption, RCU will give you what
698 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
699 *
700 * Use things like work queues to work around this limitation.
701 *
702 * You have been warned.
c0da313e
PM
703 *
704 * If you add or remove a call to rcu_irq_exit(), be sure to test with
705 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 706 */
9b2e4f18 707void rcu_irq_exit(void)
64db4cff 708{
b04db8e1 709 lockdep_assert_irqs_disabled();
cf7614e1 710 rcu_nmi_exit_common(true);
7c9906ca
PM
711}
712
713/*
714 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
715 *
716 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
717 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
718 */
719void rcu_irq_exit_irqson(void)
720{
721 unsigned long flags;
722
723 local_irq_save(flags);
724 rcu_irq_exit();
9b2e4f18
PM
725 local_irq_restore(flags);
726}
727
adf5091e
FW
728/*
729 * Exit an RCU extended quiescent state, which can be either the
730 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
731 *
732 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
733 * allow for the possibility of usermode upcalls messing up our count of
734 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 735 */
adf5091e 736static void rcu_eqs_exit(bool user)
9b2e4f18 737{
4c5273bf 738 struct rcu_data *rdp;
84585aa8 739 long oldval;
9b2e4f18 740
b04db8e1 741 lockdep_assert_irqs_disabled();
4c5273bf
PM
742 rdp = this_cpu_ptr(&rcu_data);
743 oldval = rdp->dynticks_nesting;
1ce46ee5 744 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30 745 if (oldval) {
4c5273bf 746 rdp->dynticks_nesting++;
9dd238e2 747 return;
3a592405 748 }
9dd238e2
PM
749 rcu_dynticks_task_exit();
750 rcu_dynticks_eqs_exit();
751 rcu_cleanup_after_idle();
dc5a4f29 752 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
e68bbb26 753 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
4c5273bf
PM
754 WRITE_ONCE(rdp->dynticks_nesting, 1);
755 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
756 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 757}
adf5091e
FW
758
759/**
760 * rcu_idle_exit - inform RCU that current CPU is leaving idle
761 *
762 * Exit idle mode, in other words, -enter- the mode in which RCU
763 * read-side critical sections can occur.
764 *
c0da313e
PM
765 * If you add or remove a call to rcu_idle_exit(), be sure to test with
766 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
767 */
768void rcu_idle_exit(void)
769{
c5d900bf
FW
770 unsigned long flags;
771
772 local_irq_save(flags);
cb349ca9 773 rcu_eqs_exit(false);
c5d900bf 774 local_irq_restore(flags);
adf5091e 775}
9b2e4f18 776
d1ec4c34 777#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
778/**
779 * rcu_user_exit - inform RCU that we are exiting userspace.
780 *
781 * Exit RCU idle mode while entering the kernel because it can
782 * run a RCU read side critical section anytime.
c0da313e
PM
783 *
784 * If you add or remove a call to rcu_user_exit(), be sure to test with
785 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
786 */
787void rcu_user_exit(void)
788{
91d1aa43 789 rcu_eqs_exit(1);
adf5091e 790}
d1ec4c34 791#endif /* CONFIG_NO_HZ_FULL */
19dd1591 792
64db4cff 793/**
cf7614e1
BP
794 * rcu_nmi_enter_common - inform RCU of entry to NMI context
795 * @irq: Is this call from rcu_irq_enter?
64db4cff 796 *
dc5a4f29 797 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
4c5273bf 798 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
734d1680
PM
799 * that the CPU is active. This implementation permits nested NMIs, as
800 * long as the nesting level does not overflow an int. (You will probably
801 * run out of stack space first.)
c0da313e 802 *
cf7614e1 803 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
c0da313e 804 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff 805 */
cf7614e1 806static __always_inline void rcu_nmi_enter_common(bool irq)
64db4cff 807{
4c5273bf 808 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
84585aa8 809 long incby = 2;
64db4cff 810
734d1680 811 /* Complain about underflow. */
4c5273bf 812 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
734d1680
PM
813
814 /*
815 * If idle from RCU viewpoint, atomically increment ->dynticks
816 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
817 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
818 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
819 * to be in the outermost NMI handler that interrupted an RCU-idle
820 * period (observation due to Andy Lutomirski).
821 */
02a5c550 822 if (rcu_dynticks_curr_cpu_in_eqs()) {
cf7614e1
BP
823
824 if (irq)
825 rcu_dynticks_task_exit();
826
2625d469 827 rcu_dynticks_eqs_exit();
cf7614e1
BP
828
829 if (irq)
830 rcu_cleanup_after_idle();
831
734d1680
PM
832 incby = 1;
833 }
bd2b879a 834 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
4c5273bf 835 rdp->dynticks_nmi_nesting,
dc5a4f29 836 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
4c5273bf
PM
837 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
838 rdp->dynticks_nmi_nesting + incby);
734d1680 839 barrier();
64db4cff
PM
840}
841
cf7614e1
BP
842/**
843 * rcu_nmi_enter - inform RCU of entry to NMI context
844 */
845void rcu_nmi_enter(void)
846{
847 rcu_nmi_enter_common(false);
848}
849
64db4cff 850/**
9b2e4f18 851 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 852 *
9b2e4f18
PM
853 * Enter an interrupt handler, which might possibly result in exiting
854 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 855 * sections can occur. The caller must have disabled interrupts.
c0da313e 856 *
9b2e4f18 857 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
858 * handler that it never exits, for example when doing upcalls to user mode!
859 * This code assumes that the idle loop never does upcalls to user mode.
860 * If your architecture's idle loop does do upcalls to user mode (or does
861 * anything else that results in unbalanced calls to the irq_enter() and
862 * irq_exit() functions), RCU will give you what you deserve, good and hard.
863 * But very infrequently and irreproducibly.
9b2e4f18
PM
864 *
865 * Use things like work queues to work around this limitation.
866 *
867 * You have been warned.
c0da313e
PM
868 *
869 * If you add or remove a call to rcu_irq_enter(), be sure to test with
870 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 871 */
9b2e4f18 872void rcu_irq_enter(void)
64db4cff 873{
b04db8e1 874 lockdep_assert_irqs_disabled();
cf7614e1 875 rcu_nmi_enter_common(true);
7c9906ca 876}
734d1680 877
7c9906ca
PM
878/*
879 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
880 *
881 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
882 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
883 */
884void rcu_irq_enter_irqson(void)
885{
886 unsigned long flags;
734d1680 887
7c9906ca
PM
888 local_irq_save(flags);
889 rcu_irq_enter();
64db4cff 890 local_irq_restore(flags);
64db4cff
PM
891}
892
5c173eb8
PM
893/**
894 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 895 *
791875d1
PM
896 * Return true if RCU is watching the running CPU, which means that this
897 * CPU can safely enter RCU read-side critical sections. In other words,
898 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 899 * or NMI handler, return true.
64db4cff 900 */
9418fb20 901bool notrace rcu_is_watching(void)
64db4cff 902{
f534ed1f 903 bool ret;
34240697 904
46f00d18 905 preempt_disable_notrace();
791875d1 906 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 907 preempt_enable_notrace();
34240697 908 return ret;
64db4cff 909}
5c173eb8 910EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 911
bcbfdd01
PM
912/*
913 * If a holdout task is actually running, request an urgent quiescent
914 * state from its CPU. This is unsynchronized, so migrations can cause
915 * the request to go to the wrong CPU. Which is OK, all that will happen
916 * is that the CPU's next context switch will be a bit slower and next
917 * time around this task will generate another request.
918 */
919void rcu_request_urgent_qs_task(struct task_struct *t)
920{
921 int cpu;
922
923 barrier();
924 cpu = task_cpu(t);
925 if (!task_curr(t))
926 return; /* This task is not running on that CPU. */
2dba13f0 927 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
928}
929
62fde6ed 930#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
931
932/*
5554788e 933 * Is the current CPU online as far as RCU is concerned?
2036d94a 934 *
5554788e
PM
935 * Disable preemption to avoid false positives that could otherwise
936 * happen due to the current CPU number being sampled, this task being
937 * preempted, its old CPU being taken offline, resuming on some other CPU,
49918a54 938 * then determining that its old CPU is now offline.
c0d6d01b 939 *
5554788e
PM
940 * Disable checking if in an NMI handler because we cannot safely
941 * report errors from NMI handlers anyway. In addition, it is OK to use
942 * RCU on an offline processor during initial boot, hence the check for
943 * rcu_scheduler_fully_active.
c0d6d01b
PM
944 */
945bool rcu_lockdep_current_cpu_online(void)
946{
2036d94a
PM
947 struct rcu_data *rdp;
948 struct rcu_node *rnp;
b97d23c5 949 bool ret = false;
c0d6d01b 950
5554788e 951 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 952 return true;
c0d6d01b 953 preempt_disable();
b97d23c5
PM
954 rdp = this_cpu_ptr(&rcu_data);
955 rnp = rdp->mynode;
956 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
957 ret = true;
c0d6d01b 958 preempt_enable();
b97d23c5 959 return ret;
c0d6d01b
PM
960}
961EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
962
62fde6ed 963#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 964
9b9500da
PM
965/*
966 * We are reporting a quiescent state on behalf of some other CPU, so
967 * it is our responsibility to check for and handle potential overflow
a66ae8ae 968 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
969 * After all, the CPU might be in deep idle state, and thus executing no
970 * code whatsoever.
971 */
972static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
973{
a32e01ee 974 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
975 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
976 rnp->gp_seq))
9b9500da 977 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
978 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
979 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
980}
981
64db4cff
PM
982/*
983 * Snapshot the specified CPU's dynticks counter so that we can later
984 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 985 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 986 */
fe5ac724 987static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 988{
dc5a4f29 989 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
02a5c550 990 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 991 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 992 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 993 return 1;
7941dbde 994 }
23a9bacd 995 return 0;
64db4cff
PM
996}
997
9b9500da
PM
998/*
999 * Handler for the irq_work request posted when a grace period has
1000 * gone on for too long, but not yet long enough for an RCU CPU
1001 * stall warning. Set state appropriately, but just complain if
1002 * there is unexpected state on entry.
1003 */
1004static void rcu_iw_handler(struct irq_work *iwp)
1005{
1006 struct rcu_data *rdp;
1007 struct rcu_node *rnp;
1008
1009 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1010 rnp = rdp->mynode;
1011 raw_spin_lock_rcu_node(rnp);
1012 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
8aa670cd 1013 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1014 rdp->rcu_iw_pending = false;
1015 }
1016 raw_spin_unlock_rcu_node(rnp);
1017}
1018
64db4cff
PM
1019/*
1020 * Return true if the specified CPU has passed through a quiescent
1021 * state by virtue of being in or having passed through an dynticks
1022 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1023 * for this same CPU, or by virtue of having been offline.
64db4cff 1024 */
fe5ac724 1025static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1026{
3a19b46a 1027 unsigned long jtsq;
0f9be8ca 1028 bool *rnhqp;
9226b10d 1029 bool *ruqp;
9b9500da 1030 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1031
1032 /*
1033 * If the CPU passed through or entered a dynticks idle phase with
1034 * no active irq/NMI handlers, then we can safely pretend that the CPU
1035 * already acknowledged the request to pass through a quiescent
1036 * state. Either way, that CPU cannot possibly be in an RCU
1037 * read-side critical section that started before the beginning
1038 * of the current RCU grace period.
1039 */
dc5a4f29 1040 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
88d1bead 1041 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1042 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1043 return 1;
1044 }
1045
f2e2df59
PM
1046 /* If waiting too long on an offline CPU, complain. */
1047 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
88d1bead 1048 time_after(jiffies, rcu_state.gp_start + HZ)) {
f2e2df59
PM
1049 bool onl;
1050 struct rcu_node *rnp1;
1051
1052 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1053 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1054 __func__, rnp->grplo, rnp->grphi, rnp->level,
1055 (long)rnp->gp_seq, (long)rnp->completedqs);
1056 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1057 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1058 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1059 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1060 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1061 __func__, rdp->cpu, ".o"[onl],
1062 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1063 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1064 return 1; /* Break things loose after complaining. */
1065 }
1066
65d798f0 1067 /*
4a81e832 1068 * A CPU running for an extended time within the kernel can
c06aed0e
PM
1069 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1070 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
1071 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1072 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1073 * variable are safe because the assignments are repeated if this
1074 * CPU failed to pass through a quiescent state. This code
c06aed0e 1075 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 1076 * is set way high.
6193c76a 1077 */
c06aed0e 1078 jtsq = READ_ONCE(jiffies_to_sched_qs);
2dba13f0
PM
1079 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1080 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
0f9be8ca 1081 if (!READ_ONCE(*rnhqp) &&
7e28c5af 1082 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
88d1bead 1083 time_after(jiffies, rcu_state.jiffies_resched))) {
0f9be8ca 1084 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1085 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1086 smp_store_release(ruqp, true);
7e28c5af
PM
1087 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1088 WRITE_ONCE(*ruqp, true);
6193c76a
PM
1089 }
1090
28053bc7 1091 /*
d3052109
PM
1092 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
1093 * The above code handles this, but only for straight cond_resched().
1094 * And some in-kernel loops check need_resched() before calling
1095 * cond_resched(), which defeats the above code for CPUs that are
1096 * running in-kernel with scheduling-clock interrupts disabled.
1097 * So hit them over the head with the resched_cpu() hammer!
28053bc7 1098 */
d3052109
PM
1099 if (tick_nohz_full_cpu(rdp->cpu) &&
1100 time_after(jiffies,
1101 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
28053bc7 1102 resched_cpu(rdp->cpu);
d3052109
PM
1103 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1104 }
1105
1106 /*
1107 * If more than halfway to RCU CPU stall-warning time, invoke
1108 * resched_cpu() more frequently to try to loosen things up a bit.
1109 * Also check to see if the CPU is getting hammered with interrupts,
1110 * but only once per grace period, just to keep the IPIs down to
1111 * a dull roar.
1112 */
1113 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1114 if (time_after(jiffies,
1115 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1116 resched_cpu(rdp->cpu);
1117 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1118 }
9b9500da 1119 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1120 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1121 (rnp->ffmask & rdp->grpmask)) {
1122 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1123 rdp->rcu_iw_pending = true;
8aa670cd 1124 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1125 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1126 }
1127 }
4914950a 1128
a82dcc76 1129 return 0;
64db4cff
PM
1130}
1131
ad3832e9 1132static void record_gp_stall_check_time(void)
64db4cff 1133{
cb1e78cf 1134 unsigned long j = jiffies;
6193c76a 1135 unsigned long j1;
26cdfedf 1136
ad3832e9 1137 rcu_state.gp_start = j;
6193c76a 1138 j1 = rcu_jiffies_till_stall_check();
91f63ced 1139 /* Record ->gp_start before ->jiffies_stall. */
ad3832e9
PM
1140 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1141 rcu_state.jiffies_resched = j + j1 / 2;
1142 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
64db4cff
PM
1143}
1144
6b50e119
PM
1145/*
1146 * Convert a ->gp_state value to a character string.
1147 */
1148static const char *gp_state_getname(short gs)
1149{
1150 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1151 return "???";
1152 return gp_state_names[gs];
1153}
1154
fb81a44b
PM
1155/*
1156 * Complain about starvation of grace-period kthread.
1157 */
8fd119b6 1158static void rcu_check_gp_kthread_starvation(void)
fb81a44b 1159{
7cba4775 1160 struct task_struct *gpk = rcu_state.gp_kthread;
fb81a44b
PM
1161 unsigned long j;
1162
7cba4775
PM
1163 j = jiffies - READ_ONCE(rcu_state.gp_activity);
1164 if (j > 2 * HZ) {
78c5a67f 1165 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
7cba4775
PM
1166 rcu_state.name, j,
1167 (long)rcu_seq_current(&rcu_state.gp_seq),
1168 rcu_state.gp_flags,
1169 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1170 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1171 if (gpk) {
d07aee2c 1172 pr_err("RCU grace-period kthread stack dump:\n");
7cba4775
PM
1173 sched_show_task(gpk);
1174 wake_up_process(gpk);
86057b80 1175 }
b1adb3e2 1176 }
64db4cff
PM
1177}
1178
b637a328 1179/*
7aa92230
PM
1180 * Dump stacks of all tasks running on stalled CPUs. First try using
1181 * NMIs, but fall back to manual remote stack tracing on architectures
1182 * that don't support NMI-based stack dumps. The NMI-triggered stack
1183 * traces are more accurate because they are printed by the target CPU.
b637a328 1184 */
33dbdbf0 1185static void rcu_dump_cpu_stacks(void)
b637a328
PM
1186{
1187 int cpu;
1188 unsigned long flags;
1189 struct rcu_node *rnp;
1190
aedf4ba9 1191 rcu_for_each_leaf_node(rnp) {
6cf10081 1192 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1193 for_each_leaf_node_possible_cpu(rnp, cpu)
1194 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1195 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1196 dump_cpu_task(cpu);
67c583a7 1197 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1198 }
1199}
1200
8c7c4829
PM
1201/*
1202 * If too much time has passed in the current grace period, and if
1203 * so configured, go kick the relevant kthreads.
1204 */
e1741c69 1205static void rcu_stall_kick_kthreads(void)
8c7c4829
PM
1206{
1207 unsigned long j;
1208
1209 if (!rcu_kick_kthreads)
1210 return;
4c6ed437
PM
1211 j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1212 if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1213 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1214 WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1215 rcu_state.name);
5dffed1e 1216 rcu_ftrace_dump(DUMP_ALL);
4c6ed437
PM
1217 wake_up_process(rcu_state.gp_kthread);
1218 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
8c7c4829
PM
1219 }
1220}
1221
95394e69 1222static void panic_on_rcu_stall(void)
088e9d25
DBO
1223{
1224 if (sysctl_panic_on_rcu_stall)
1225 panic("RCU Stall\n");
1226}
1227
a91e7e58 1228static void print_other_cpu_stall(unsigned long gp_seq)
64db4cff
PM
1229{
1230 int cpu;
64db4cff 1231 unsigned long flags;
6ccd2ecd
PM
1232 unsigned long gpa;
1233 unsigned long j;
285fe294 1234 int ndetected = 0;
336a4f6c 1235 struct rcu_node *rnp = rcu_get_root();
53bb857c 1236 long totqlen = 0;
64db4cff 1237
8c7c4829 1238 /* Kick and suppress, if so configured. */
e1741c69 1239 rcu_stall_kick_kthreads();
8c7c4829
PM
1240 if (rcu_cpu_stall_suppress)
1241 return;
1242
8cdd32a9
PM
1243 /*
1244 * OK, time to rat on our buddy...
1245 * See Documentation/RCU/stallwarn.txt for info on how to debug
1246 * RCU CPU stall warnings.
1247 */
4c6ed437 1248 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
a858af28 1249 print_cpu_stall_info_begin();
aedf4ba9 1250 rcu_for_each_leaf_node(rnp) {
6cf10081 1251 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1252 ndetected += rcu_print_task_stall(rnp);
c8020a67 1253 if (rnp->qsmask != 0) {
bc75e999
MR
1254 for_each_leaf_node_possible_cpu(rnp, cpu)
1255 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
b21ebed9 1256 print_cpu_stall_info(cpu);
c8020a67
PM
1257 ndetected++;
1258 }
1259 }
67c583a7 1260 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1261 }
a858af28 1262
a858af28 1263 print_cpu_stall_info_end();
53bb857c 1264 for_each_possible_cpu(cpu)
da1df50d 1265 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
15fecf89 1266 cpu)->cblist);
471f87c3 1267 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
4c6ed437
PM
1268 smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1269 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
6ccd2ecd 1270 if (ndetected) {
33dbdbf0 1271 rcu_dump_cpu_stacks();
c4402b27
BP
1272
1273 /* Complain about tasks blocking the grace period. */
a2887cd8 1274 rcu_print_detail_task_stall();
6ccd2ecd 1275 } else {
4c6ed437 1276 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
6ccd2ecd
PM
1277 pr_err("INFO: Stall ended before state dump start\n");
1278 } else {
1279 j = jiffies;
4c6ed437 1280 gpa = READ_ONCE(rcu_state.gp_activity);
237a0f21 1281 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
4c6ed437 1282 rcu_state.name, j - gpa, j, gpa,
c06aed0e 1283 READ_ONCE(jiffies_till_next_fqs),
336a4f6c 1284 rcu_get_root()->qsmask);
6ccd2ecd
PM
1285 /* In this case, the current CPU might be at fault. */
1286 sched_show_task(current);
1287 }
1288 }
8c42b1f3 1289 /* Rewrite if needed in case of slow consoles. */
4c6ed437
PM
1290 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1291 WRITE_ONCE(rcu_state.jiffies_stall,
8c42b1f3 1292 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
c1dc0b9c 1293
8fd119b6 1294 rcu_check_gp_kthread_starvation();
fb81a44b 1295
088e9d25
DBO
1296 panic_on_rcu_stall();
1297
e9ecb780 1298 force_quiescent_state(); /* Kick them all. */
64db4cff
PM
1299}
1300
4e8b8e08 1301static void print_cpu_stall(void)
64db4cff 1302{
53bb857c 1303 int cpu;
64db4cff 1304 unsigned long flags;
da1df50d 1305 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
336a4f6c 1306 struct rcu_node *rnp = rcu_get_root();
53bb857c 1307 long totqlen = 0;
64db4cff 1308
8c7c4829 1309 /* Kick and suppress, if so configured. */
e1741c69 1310 rcu_stall_kick_kthreads();
8c7c4829
PM
1311 if (rcu_cpu_stall_suppress)
1312 return;
1313
8cdd32a9
PM
1314 /*
1315 * OK, time to rat on ourselves...
1316 * See Documentation/RCU/stallwarn.txt for info on how to debug
1317 * RCU CPU stall warnings.
1318 */
4c6ed437 1319 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
a858af28 1320 print_cpu_stall_info_begin();
9b9500da 1321 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
b21ebed9 1322 print_cpu_stall_info(smp_processor_id());
9b9500da 1323 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1324 print_cpu_stall_info_end();
53bb857c 1325 for_each_possible_cpu(cpu)
da1df50d 1326 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data,
15fecf89 1327 cpu)->cblist);
471f87c3 1328 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
4c6ed437
PM
1329 jiffies - rcu_state.gp_start,
1330 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
fb81a44b 1331
8fd119b6 1332 rcu_check_gp_kthread_starvation();
fb81a44b 1333
33dbdbf0 1334 rcu_dump_cpu_stacks();
c1dc0b9c 1335
6cf10081 1336 raw_spin_lock_irqsave_rcu_node(rnp, flags);
8c42b1f3 1337 /* Rewrite if needed in case of slow consoles. */
4c6ed437
PM
1338 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1339 WRITE_ONCE(rcu_state.jiffies_stall,
7d0ae808 1340 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1341 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1342
088e9d25
DBO
1343 panic_on_rcu_stall();
1344
b021fe3e
PZ
1345 /*
1346 * Attempt to revive the RCU machinery by forcing a context switch.
1347 *
1348 * A context switch would normally allow the RCU state machine to make
1349 * progress and it could be we're stuck in kernel space without context
1350 * switches for an entirely unreasonable amount of time.
1351 */
fced9c8c
PM
1352 set_tsk_need_resched(current);
1353 set_preempt_need_resched();
64db4cff
PM
1354}
1355
ea12ff2b 1356static void check_cpu_stall(struct rcu_data *rdp)
64db4cff 1357{
471f87c3
PM
1358 unsigned long gs1;
1359 unsigned long gs2;
26cdfedf 1360 unsigned long gps;
bad6e139 1361 unsigned long j;
8c42b1f3 1362 unsigned long jn;
bad6e139 1363 unsigned long js;
64db4cff
PM
1364 struct rcu_node *rnp;
1365
8c7c4829 1366 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
de8e8730 1367 !rcu_gp_in_progress())
c68de209 1368 return;
e1741c69 1369 rcu_stall_kick_kthreads();
cb1e78cf 1370 j = jiffies;
26cdfedf
PM
1371
1372 /*
1373 * Lots of memory barriers to reject false positives.
1374 *
4c6ed437
PM
1375 * The idea is to pick up rcu_state.gp_seq, then
1376 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1377 * another copy of rcu_state.gp_seq. These values are updated in
1378 * the opposite order with memory barriers (or equivalent) during
1379 * grace-period initialization and cleanup. Now, a false positive
1380 * can occur if we get an new value of rcu_state.gp_start and a old
1381 * value of rcu_state.jiffies_stall. But given the memory barriers,
1382 * the only way that this can happen is if one grace period ends
1383 * and another starts between these two fetches. This is detected
1384 * by comparing the second fetch of rcu_state.gp_seq with the
1385 * previous fetch from rcu_state.gp_seq.
26cdfedf 1386 *
4c6ed437
PM
1387 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1388 * and rcu_state.gp_start suffice to forestall false positives.
26cdfedf 1389 */
4c6ed437 1390 gs1 = READ_ONCE(rcu_state.gp_seq);
471f87c3 1391 smp_rmb(); /* Pick up ->gp_seq first... */
4c6ed437 1392 js = READ_ONCE(rcu_state.jiffies_stall);
26cdfedf 1393 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
4c6ed437 1394 gps = READ_ONCE(rcu_state.gp_start);
471f87c3 1395 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
4c6ed437 1396 gs2 = READ_ONCE(rcu_state.gp_seq);
471f87c3 1397 if (gs1 != gs2 ||
26cdfedf
PM
1398 ULONG_CMP_LT(j, js) ||
1399 ULONG_CMP_GE(gps, js))
1400 return; /* No stall or GP completed since entering function. */
64db4cff 1401 rnp = rdp->mynode;
8c42b1f3 1402 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
de8e8730 1403 if (rcu_gp_in_progress() &&
8c42b1f3 1404 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
4c6ed437 1405 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
64db4cff
PM
1406
1407 /* We haven't checked in, so go dump stack. */
4e8b8e08 1408 print_cpu_stall();
64db4cff 1409
de8e8730 1410 } else if (rcu_gp_in_progress() &&
8c42b1f3 1411 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
4c6ed437 1412 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
64db4cff 1413
bad6e139 1414 /* They had a few time units to dump stack, so complain. */
a91e7e58 1415 print_other_cpu_stall(gs2);
64db4cff
PM
1416 }
1417}
1418
53d84e00
PM
1419/**
1420 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1421 *
1422 * Set the stall-warning timeout way off into the future, thus preventing
1423 * any RCU CPU stall-warning messages from appearing in the current set of
1424 * RCU grace periods.
1425 *
1426 * The caller must disable hard irqs.
1427 */
1428void rcu_cpu_stall_reset(void)
1429{
b97d23c5 1430 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1431}
1432
41e80595
PM
1433/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1434static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1435 unsigned long gp_seq_req, const char *s)
0446be48 1436{
88d1bead 1437 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
abd13fdd 1438 rnp->level, rnp->grplo, rnp->grphi, s);
0446be48
PM
1439}
1440
1441/*
b73de91d 1442 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1443 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1444 * @rdp: The rcu_data corresponding to the CPU from which to start.
1445 * @gp_seq_req: The gp_seq of the grace period to start.
1446 *
41e80595 1447 * Start the specified grace period, as needed to handle newly arrived
0446be48 1448 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1449 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1450 * is reason to awaken the grace-period kthread.
0446be48 1451 *
d5cd9685
PM
1452 * The caller must hold the specified rcu_node structure's ->lock, which
1453 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1454 *
1455 * Returns true if the GP thread needs to be awakened else false.
0446be48 1456 */
df2bf8f7 1457static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1458 unsigned long gp_seq_req)
0446be48 1459{
48a7639c 1460 bool ret = false;
df2bf8f7 1461 struct rcu_node *rnp;
0446be48
PM
1462
1463 /*
360e0da6
PM
1464 * Use funnel locking to either acquire the root rcu_node
1465 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1466 * has already been recorded -- or if that grace period has in
1467 * fact already started. If there is already a grace period in
1468 * progress in a non-leaf node, no recording is needed because the
1469 * end of the grace period will scan the leaf rcu_node structures.
1470 * Note that rnp_start->lock must not be released.
0446be48 1471 */
df2bf8f7
JFG
1472 raw_lockdep_assert_held_rcu_node(rnp_start);
1473 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1474 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1475 if (rnp != rnp_start)
1476 raw_spin_lock_rcu_node(rnp);
1477 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1478 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1479 (rnp != rnp_start &&
1480 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1481 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1482 TPS("Prestarted"));
360e0da6
PM
1483 goto unlock_out;
1484 }
df2bf8f7 1485 rnp->gp_seq_needed = gp_seq_req;
226ca5e7 1486 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1487 /*
226ca5e7
JFG
1488 * We just marked the leaf or internal node, and a
1489 * grace period is in progress, which means that
1490 * rcu_gp_cleanup() will see the marking. Bail to
1491 * reduce contention.
a2165e41 1492 */
df2bf8f7 1493 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1494 TPS("Startedleaf"));
a2165e41
PM
1495 goto unlock_out;
1496 }
df2bf8f7
JFG
1497 if (rnp != rnp_start && rnp->parent != NULL)
1498 raw_spin_unlock_rcu_node(rnp);
1499 if (!rnp->parent)
360e0da6 1500 break; /* At root, and perhaps also leaf. */
0446be48
PM
1501 }
1502
360e0da6 1503 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 1504 if (rcu_gp_in_progress()) {
df2bf8f7 1505 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1506 goto unlock_out;
1507 }
df2bf8f7 1508 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97
PM
1509 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1510 rcu_state.gp_req_activity = jiffies;
1511 if (!rcu_state.gp_kthread) {
df2bf8f7 1512 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1513 goto unlock_out;
0446be48 1514 }
9cbc5b97 1515 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
360e0da6 1516 ret = true; /* Caller must wake GP kthread. */
0446be48 1517unlock_out:
ab5e869c 1518 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7
JFG
1519 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1520 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1521 rdp->gp_seq_needed = rnp->gp_seq_needed;
ab5e869c 1522 }
df2bf8f7
JFG
1523 if (rnp != rnp_start)
1524 raw_spin_unlock_rcu_node(rnp);
48a7639c 1525 return ret;
0446be48
PM
1526}
1527
1528/*
1529 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1530 * whether any additional grace periods have been requested.
0446be48 1531 */
3481f2ea 1532static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1533{
fb31340f 1534 bool needmore;
da1df50d 1535 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1536
7a1d0f23
PM
1537 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1538 if (!needmore)
1539 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1540 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1541 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1542 return needmore;
1543}
1544
48a7639c 1545/*
49918a54
PM
1546 * Awaken the grace-period kthread. Don't do a self-awaken, and don't
1547 * bother awakening when there is nothing for the grace-period kthread
1548 * to do (as in several CPUs raced to awaken, and we lost), and finally
1549 * don't try to awaken a kthread that has not yet been created.
48a7639c 1550 */
532c00c9 1551static void rcu_gp_kthread_wake(void)
48a7639c 1552{
532c00c9
PM
1553 if (current == rcu_state.gp_kthread ||
1554 !READ_ONCE(rcu_state.gp_flags) ||
1555 !rcu_state.gp_kthread)
48a7639c 1556 return;
532c00c9 1557 swake_up_one(&rcu_state.gp_wq);
48a7639c
PM
1558}
1559
dc35c893 1560/*
29365e56
PM
1561 * If there is room, assign a ->gp_seq number to any callbacks on this
1562 * CPU that have not already been assigned. Also accelerate any callbacks
1563 * that were previously assigned a ->gp_seq number that has since proven
1564 * to be too conservative, which can happen if callbacks get assigned a
1565 * ->gp_seq number while RCU is idle, but with reference to a non-root
1566 * rcu_node structure. This function is idempotent, so it does not hurt
1567 * to call it repeatedly. Returns an flag saying that we should awaken
1568 * the RCU grace-period kthread.
dc35c893
PM
1569 *
1570 * The caller must hold rnp->lock with interrupts disabled.
1571 */
02f50142 1572static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1573{
b73de91d 1574 unsigned long gp_seq_req;
15fecf89 1575 bool ret = false;
dc35c893 1576
a32e01ee 1577 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1578
15fecf89
PM
1579 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1580 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1581 return false;
dc35c893
PM
1582
1583 /*
15fecf89
PM
1584 * Callbacks are often registered with incomplete grace-period
1585 * information. Something about the fact that getting exact
1586 * information requires acquiring a global lock... RCU therefore
1587 * makes a conservative estimate of the grace period number at which
1588 * a given callback will become ready to invoke. The following
1589 * code checks this estimate and improves it when possible, thus
1590 * accelerating callback invocation to an earlier grace-period
1591 * number.
dc35c893 1592 */
9cbc5b97 1593 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1594 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1595 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1596
1597 /* Trace depending on how much we were able to accelerate. */
15fecf89 1598 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
9cbc5b97 1599 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1600 else
9cbc5b97 1601 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1602 return ret;
dc35c893
PM
1603}
1604
e44e73ca
PM
1605/*
1606 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1607 * rcu_node structure's ->lock be held. It consults the cached value
1608 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1609 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1610 * while holding the leaf rcu_node structure's ->lock.
1611 */
c6e09b97 1612static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1613 struct rcu_data *rdp)
1614{
1615 unsigned long c;
1616 bool needwake;
1617
1618 lockdep_assert_irqs_disabled();
c6e09b97 1619 c = rcu_seq_snap(&rcu_state.gp_seq);
e44e73ca
PM
1620 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1621 /* Old request still live, so mark recent callbacks. */
1622 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1623 return;
1624 }
1625 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1626 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1627 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1628 if (needwake)
532c00c9 1629 rcu_gp_kthread_wake();
e44e73ca
PM
1630}
1631
dc35c893
PM
1632/*
1633 * Move any callbacks whose grace period has completed to the
1634 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1635 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1636 * sublist. This function is idempotent, so it does not hurt to
1637 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1638 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1639 *
1640 * The caller must hold rnp->lock with interrupts disabled.
1641 */
834f56bf 1642static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1643{
a32e01ee 1644 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1645
15fecf89
PM
1646 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1647 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1648 return false;
dc35c893
PM
1649
1650 /*
29365e56 1651 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1652 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1653 */
29365e56 1654 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1655
1656 /* Classify any remaining callbacks. */
02f50142 1657 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1658}
1659
d09b62df 1660/*
ba9fbe95
PM
1661 * Update CPU-local rcu_data state to record the beginnings and ends of
1662 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1663 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1664 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1665 */
c7e48f7b 1666static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1667{
48a7639c 1668 bool ret;
3563a438 1669 bool need_gp;
48a7639c 1670
a32e01ee 1671 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1672
67e14c1e
PM
1673 if (rdp->gp_seq == rnp->gp_seq)
1674 return false; /* Nothing to do. */
d09b62df 1675
67e14c1e
PM
1676 /* Handle the ends of any preceding grace periods first. */
1677 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1678 unlikely(READ_ONCE(rdp->gpwrap))) {
834f56bf 1679 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
9cbc5b97 1680 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1681 } else {
02f50142 1682 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
d09b62df 1683 }
398ebe60 1684
67e14c1e
PM
1685 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1686 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1687 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1688 /*
1689 * If the current grace period is waiting for this CPU,
1690 * set up to detect a quiescent state, otherwise don't
1691 * go looking for one.
1692 */
9cbc5b97 1693 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
3563a438
PM
1694 need_gp = !!(rnp->qsmask & rdp->grpmask);
1695 rdp->cpu_no_qs.b.norm = need_gp;
3563a438 1696 rdp->core_needs_qs = need_gp;
6eaef633
PM
1697 zero_cpu_stall_ticks(rdp);
1698 }
67e14c1e 1699 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
3d18469a
PM
1700 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1701 rdp->gp_seq_needed = rnp->gp_seq_needed;
1702 WRITE_ONCE(rdp->gpwrap, false);
1703 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1704 return ret;
6eaef633
PM
1705}
1706
15cabdff 1707static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1708{
1709 unsigned long flags;
48a7639c 1710 bool needwake;
6eaef633
PM
1711 struct rcu_node *rnp;
1712
1713 local_irq_save(flags);
1714 rnp = rdp->mynode;
67e14c1e 1715 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1716 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1717 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1718 local_irq_restore(flags);
1719 return;
1720 }
c7e48f7b 1721 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1722 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c 1723 if (needwake)
532c00c9 1724 rcu_gp_kthread_wake();
6eaef633
PM
1725}
1726
22212332 1727static void rcu_gp_slow(int delay)
0f41c0dd
PM
1728{
1729 if (delay > 0 &&
22212332 1730 !(rcu_seq_ctr(rcu_state.gp_seq) %
dee4f422 1731 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1732 schedule_timeout_uninterruptible(delay);
1733}
1734
b3dbec76 1735/*
45fed3e7 1736 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1737 */
0854a05c 1738static bool rcu_gp_init(void)
b3dbec76 1739{
ec2c2976 1740 unsigned long flags;
0aa04b05 1741 unsigned long oldmask;
ec2c2976 1742 unsigned long mask;
b3dbec76 1743 struct rcu_data *rdp;
336a4f6c 1744 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1745
9cbc5b97 1746 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1747 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1748 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1749 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1750 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1751 return false;
f7be8209 1752 }
9cbc5b97 1753 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1754
de8e8730 1755 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1756 /*
1757 * Grace period already in progress, don't start another.
1758 * Not supposed to be able to happen.
1759 */
67c583a7 1760 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1761 return false;
7fdefc10
PM
1762 }
1763
7fdefc10 1764 /* Advance to a new grace period and initialize state. */
ad3832e9 1765 record_gp_stall_check_time();
ff3bb6f4 1766 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97
PM
1767 rcu_seq_start(&rcu_state.gp_seq);
1768 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
67c583a7 1769 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1770
0aa04b05
PM
1771 /*
1772 * Apply per-leaf buffered online and offline operations to the
1773 * rcu_node tree. Note that this new grace period need not wait
1774 * for subsequent online CPUs, and that quiescent-state forcing
1775 * will handle subsequent offline CPUs.
1776 */
9cbc5b97 1777 rcu_state.gp_state = RCU_GP_ONOFF;
aedf4ba9 1778 rcu_for_each_leaf_node(rnp) {
9cbc5b97 1779 spin_lock(&rcu_state.ofl_lock);
2a67e741 1780 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1781 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1782 !rnp->wait_blkd_tasks) {
1783 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1784 raw_spin_unlock_irq_rcu_node(rnp);
9cbc5b97 1785 spin_unlock(&rcu_state.ofl_lock);
0aa04b05
PM
1786 continue;
1787 }
1788
1789 /* Record old state, apply changes to ->qsmaskinit field. */
1790 oldmask = rnp->qsmaskinit;
1791 rnp->qsmaskinit = rnp->qsmaskinitnext;
1792
1793 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1794 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1795 if (!oldmask) { /* First online CPU for rcu_node. */
1796 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1797 rcu_init_new_rnp(rnp);
1798 } else if (rcu_preempt_has_tasks(rnp)) {
1799 rnp->wait_blkd_tasks = true; /* blocked tasks */
1800 } else { /* Last offline CPU and can propagate. */
0aa04b05 1801 rcu_cleanup_dead_rnp(rnp);
962aff03 1802 }
0aa04b05
PM
1803 }
1804
1805 /*
1806 * If all waited-on tasks from prior grace period are
1807 * done, and if all this rcu_node structure's CPUs are
1808 * still offline, propagate up the rcu_node tree and
1809 * clear ->wait_blkd_tasks. Otherwise, if one of this
1810 * rcu_node structure's CPUs has since come back online,
962aff03 1811 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1812 */
1813 if (rnp->wait_blkd_tasks &&
962aff03 1814 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1815 rnp->wait_blkd_tasks = false;
962aff03
PM
1816 if (!rnp->qsmaskinit)
1817 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1818 }
1819
67c583a7 1820 raw_spin_unlock_irq_rcu_node(rnp);
9cbc5b97 1821 spin_unlock(&rcu_state.ofl_lock);
0aa04b05 1822 }
22212332 1823 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1824
1825 /*
1826 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1827 * structures for all currently online CPUs in breadth-first
1828 * order, starting from the root rcu_node structure, relying on the
1829 * layout of the tree within the rcu_state.node[] array. Note that
1830 * other CPUs will access only the leaves of the hierarchy, thus
1831 * seeing that no grace period is in progress, at least until the
1832 * corresponding leaf node has been initialized.
7fdefc10
PM
1833 *
1834 * The grace period cannot complete until the initialization
1835 * process finishes, because this kthread handles both.
1836 */
9cbc5b97 1837 rcu_state.gp_state = RCU_GP_INIT;
aedf4ba9 1838 rcu_for_each_node_breadth_first(rnp) {
22212332 1839 rcu_gp_slow(gp_init_delay);
ec2c2976 1840 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1841 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1842 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1843 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1844 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1845 if (rnp == rdp->mynode)
c7e48f7b 1846 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1847 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1848 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1849 rnp->level, rnp->grplo,
1850 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1851 /* Quiescent states for tasks on any now-offline CPUs. */
1852 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1853 rnp->rcu_gp_init_mask = mask;
ec2c2976 1854 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1855 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1856 else
1857 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1858 cond_resched_tasks_rcu_qs();
9cbc5b97 1859 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1860 }
b3dbec76 1861
45fed3e7 1862 return true;
7fdefc10 1863}
b3dbec76 1864
b9a425cf 1865/*
b3dae109 1866 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1867 * time.
b9a425cf 1868 */
0854a05c 1869static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1870{
336a4f6c 1871 struct rcu_node *rnp = rcu_get_root();
b9a425cf
PM
1872
1873 /* Someone like call_rcu() requested a force-quiescent-state scan. */
0854a05c 1874 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1875 if (*gfp & RCU_GP_FLAG_FQS)
1876 return true;
1877
1878 /* The current grace period has completed. */
1879 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1880 return true;
1881
1882 return false;
1883}
1884
4cdfc175
PM
1885/*
1886 * Do one round of quiescent-state forcing.
1887 */
0854a05c 1888static void rcu_gp_fqs(bool first_time)
4cdfc175 1889{
336a4f6c 1890 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1891
9cbc5b97
PM
1892 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1893 rcu_state.n_force_qs++;
77f81fe0 1894 if (first_time) {
4cdfc175 1895 /* Collect dyntick-idle snapshots. */
e9ecb780 1896 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1897 } else {
1898 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1899 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1900 }
1901 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1902 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1903 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1904 WRITE_ONCE(rcu_state.gp_flags,
1905 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1906 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1907 }
4cdfc175
PM
1908}
1909
c3854a05
PM
1910/*
1911 * Loop doing repeated quiescent-state forcing until the grace period ends.
1912 */
1913static void rcu_gp_fqs_loop(void)
1914{
1915 bool first_gp_fqs;
1916 int gf;
1917 unsigned long j;
1918 int ret;
1919 struct rcu_node *rnp = rcu_get_root();
1920
1921 first_gp_fqs = true;
c06aed0e 1922 j = READ_ONCE(jiffies_till_first_fqs);
c3854a05
PM
1923 ret = 0;
1924 for (;;) {
1925 if (!ret) {
1926 rcu_state.jiffies_force_qs = jiffies + j;
1927 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1928 jiffies + 3 * j);
1929 }
1930 trace_rcu_grace_period(rcu_state.name,
1931 READ_ONCE(rcu_state.gp_seq),
1932 TPS("fqswait"));
1933 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1934 ret = swait_event_idle_timeout_exclusive(
1935 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1936 rcu_state.gp_state = RCU_GP_DOING_FQS;
1937 /* Locking provides needed memory barriers. */
1938 /* If grace period done, leave loop. */
1939 if (!READ_ONCE(rnp->qsmask) &&
1940 !rcu_preempt_blocked_readers_cgp(rnp))
1941 break;
1942 /* If time for quiescent-state forcing, do it. */
1943 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1944 (gf & RCU_GP_FLAG_FQS)) {
1945 trace_rcu_grace_period(rcu_state.name,
1946 READ_ONCE(rcu_state.gp_seq),
1947 TPS("fqsstart"));
1948 rcu_gp_fqs(first_gp_fqs);
1949 first_gp_fqs = false;
1950 trace_rcu_grace_period(rcu_state.name,
1951 READ_ONCE(rcu_state.gp_seq),
1952 TPS("fqsend"));
1953 cond_resched_tasks_rcu_qs();
1954 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1955 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1956 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1957 } else {
1958 /* Deal with stray signal. */
1959 cond_resched_tasks_rcu_qs();
1960 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1961 WARN_ON(signal_pending(current));
1962 trace_rcu_grace_period(rcu_state.name,
1963 READ_ONCE(rcu_state.gp_seq),
1964 TPS("fqswaitsig"));
1965 ret = 1; /* Keep old FQS timing. */
1966 j = jiffies;
1967 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1968 j = 1;
1969 else
1970 j = rcu_state.jiffies_force_qs - j;
1971 }
1972 }
1973}
1974
7fdefc10
PM
1975/*
1976 * Clean up after the old grace period.
1977 */
0854a05c 1978static void rcu_gp_cleanup(void)
7fdefc10
PM
1979{
1980 unsigned long gp_duration;
48a7639c 1981 bool needgp = false;
de30ad51 1982 unsigned long new_gp_seq;
7fdefc10 1983 struct rcu_data *rdp;
336a4f6c 1984 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1985 struct swait_queue_head *sq;
b3dbec76 1986
9cbc5b97 1987 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1988 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1989 gp_duration = jiffies - rcu_state.gp_start;
1990 if (gp_duration > rcu_state.gp_max)
1991 rcu_state.gp_max = gp_duration;
b3dbec76 1992
7fdefc10
PM
1993 /*
1994 * We know the grace period is complete, but to everyone else
1995 * it appears to still be ongoing. But it is also the case
1996 * that to everyone else it looks like there is nothing that
1997 * they can do to advance the grace period. It is therefore
1998 * safe for us to drop the lock in order to mark the grace
1999 * period as completed in all of the rcu_node structures.
7fdefc10 2000 */
67c583a7 2001 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2002
5d4b8659 2003 /*
ff3bb6f4
PM
2004 * Propagate new ->gp_seq value to rcu_node structures so that
2005 * other CPUs don't have to wait until the start of the next grace
2006 * period to process their callbacks. This also avoids some nasty
2007 * RCU grace-period initialization races by forcing the end of
2008 * the current grace period to be completely recorded in all of
2009 * the rcu_node structures before the beginning of the next grace
2010 * period is recorded in any of the rcu_node structures.
5d4b8659 2011 */
9cbc5b97 2012 new_gp_seq = rcu_state.gp_seq;
de30ad51 2013 rcu_seq_end(&new_gp_seq);
aedf4ba9 2014 rcu_for_each_node_breadth_first(rnp) {
2a67e741 2015 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 2016 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 2017 dump_blkd_tasks(rnp, 10);
5c60d25f 2018 WARN_ON_ONCE(rnp->qsmask);
de30ad51 2019 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
da1df50d 2020 rdp = this_cpu_ptr(&rcu_data);
b11cc576 2021 if (rnp == rdp->mynode)
c7e48f7b 2022 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 2023 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 2024 needgp = rcu_future_gp_cleanup(rnp) || needgp;
065bb78c 2025 sq = rcu_nocb_gp_get(rnp);
67c583a7 2026 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2027 rcu_nocb_gp_cleanup(sq);
cee43939 2028 cond_resched_tasks_rcu_qs();
9cbc5b97 2029 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 2030 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 2031 }
336a4f6c 2032 rnp = rcu_get_root();
9cbc5b97 2033 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 2034
765a3f4f 2035 /* Declare grace period done. */
9cbc5b97
PM
2036 rcu_seq_end(&rcu_state.gp_seq);
2037 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2038 rcu_state.gp_state = RCU_GP_IDLE;
fb31340f 2039 /* Check for GP requests since above loop. */
da1df50d 2040 rdp = this_cpu_ptr(&rcu_data);
5b55072f 2041 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 2042 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 2043 TPS("CleanupMore"));
fb31340f
PM
2044 needgp = true;
2045 }
48a7639c 2046 /* Advance CBs to reduce false positives below. */
02f50142 2047 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
9cbc5b97
PM
2048 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2049 rcu_state.gp_req_activity = jiffies;
2050 trace_rcu_grace_period(rcu_state.name,
2051 READ_ONCE(rcu_state.gp_seq),
bb311ecc 2052 TPS("newreq"));
18390aea 2053 } else {
9cbc5b97
PM
2054 WRITE_ONCE(rcu_state.gp_flags,
2055 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 2056 }
67c583a7 2057 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2058}
2059
2060/*
2061 * Body of kthread that handles grace periods.
2062 */
0854a05c 2063static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 2064{
5871968d 2065 rcu_bind_gp_kthread();
7fdefc10
PM
2066 for (;;) {
2067
2068 /* Handle grace-period start. */
2069 for (;;) {
9cbc5b97
PM
2070 trace_rcu_grace_period(rcu_state.name,
2071 READ_ONCE(rcu_state.gp_seq),
63c4db78 2072 TPS("reqwait"));
9cbc5b97
PM
2073 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2074 swait_event_idle_exclusive(rcu_state.gp_wq,
2075 READ_ONCE(rcu_state.gp_flags) &
2076 RCU_GP_FLAG_INIT);
2077 rcu_state.gp_state = RCU_GP_DONE_GPS;
78e4bc34 2078 /* Locking provides needed memory barrier. */
0854a05c 2079 if (rcu_gp_init())
7fdefc10 2080 break;
cee43939 2081 cond_resched_tasks_rcu_qs();
9cbc5b97 2082 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 2083 WARN_ON(signal_pending(current));
9cbc5b97
PM
2084 trace_rcu_grace_period(rcu_state.name,
2085 READ_ONCE(rcu_state.gp_seq),
63c4db78 2086 TPS("reqwaitsig"));
7fdefc10 2087 }
cabc49c1 2088
4cdfc175 2089 /* Handle quiescent-state forcing. */
c3854a05 2090 rcu_gp_fqs_loop();
4cdfc175
PM
2091
2092 /* Handle grace-period end. */
9cbc5b97 2093 rcu_state.gp_state = RCU_GP_CLEANUP;
0854a05c 2094 rcu_gp_cleanup();
9cbc5b97 2095 rcu_state.gp_state = RCU_GP_CLEANED;
b3dbec76 2096 }
b3dbec76
PM
2097}
2098
f41d911f 2099/*
49918a54
PM
2100 * Report a full set of quiescent states to the rcu_state data structure.
2101 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2102 * another grace period is required. Whether we wake the grace-period
2103 * kthread or it awakens itself for the next round of quiescent-state
2104 * forcing, that kthread will clean up after the just-completed grace
2105 * period. Note that the caller must hold rnp->lock, which is released
2106 * before return.
f41d911f 2107 */
aff4e9ed 2108static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 2109 __releases(rcu_get_root()->lock)
f41d911f 2110{
336a4f6c 2111 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 2112 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
2113 WRITE_ONCE(rcu_state.gp_flags,
2114 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 2115 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 2116 rcu_gp_kthread_wake();
f41d911f
PM
2117}
2118
64db4cff 2119/*
d3f6bad3
PM
2120 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2121 * Allows quiescent states for a group of CPUs to be reported at one go
2122 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2123 * must be represented by the same rcu_node structure (which need not be a
2124 * leaf rcu_node structure, though it often will be). The gps parameter
2125 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 2126 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 2127 * must be held upon entry, and it is released before return.
ec2c2976
PM
2128 *
2129 * As a special case, if mask is zero, the bit-already-cleared check is
2130 * disabled. This allows propagating quiescent state due to resumed tasks
2131 * during grace-period initialization.
64db4cff 2132 */
b50912d0
PM
2133static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2134 unsigned long gps, unsigned long flags)
64db4cff
PM
2135 __releases(rnp->lock)
2136{
654e9533 2137 unsigned long oldmask = 0;
28ecd580
PM
2138 struct rcu_node *rnp_c;
2139
a32e01ee 2140 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 2141
64db4cff
PM
2142 /* Walk up the rcu_node hierarchy. */
2143 for (;;) {
ec2c2976 2144 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 2145
654e9533
PM
2146 /*
2147 * Our bit has already been cleared, or the
2148 * relevant grace period is already over, so done.
2149 */
67c583a7 2150 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2151 return;
2152 }
654e9533 2153 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 2154 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 2155 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2156 rnp->qsmask &= ~mask;
67a0edbf 2157 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
2158 mask, rnp->qsmask, rnp->level,
2159 rnp->grplo, rnp->grphi,
2160 !!rnp->gp_tasks);
27f4d280 2161 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2162
2163 /* Other bits still set at this level, so done. */
67c583a7 2164 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2165 return;
2166 }
d43a5d32 2167 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
2168 mask = rnp->grpmask;
2169 if (rnp->parent == NULL) {
2170
2171 /* No more levels. Exit loop holding root lock. */
2172
2173 break;
2174 }
67c583a7 2175 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2176 rnp_c = rnp;
64db4cff 2177 rnp = rnp->parent;
2a67e741 2178 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2179 oldmask = rnp_c->qsmask;
64db4cff
PM
2180 }
2181
2182 /*
2183 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2184 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2185 * to clean up and start the next grace period if one is needed.
64db4cff 2186 */
aff4e9ed 2187 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
2188}
2189
cc99a310
PM
2190/*
2191 * Record a quiescent state for all tasks that were previously queued
2192 * on the specified rcu_node structure and that were blocking the current
49918a54 2193 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
2194 * irqs disabled, and this lock is released upon return, but irqs remain
2195 * disabled.
2196 */
17a8212b 2197static void __maybe_unused
139ad4da 2198rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
2199 __releases(rnp->lock)
2200{
654e9533 2201 unsigned long gps;
cc99a310
PM
2202 unsigned long mask;
2203 struct rcu_node *rnp_p;
2204
a32e01ee 2205 raw_lockdep_assert_held_rcu_node(rnp);
45975c7d 2206 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
c74859d1
PM
2207 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2208 rnp->qsmask != 0) {
67c583a7 2209 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2210 return; /* Still need more quiescent states! */
2211 }
2212
77cfc7bf 2213 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
2214 rnp_p = rnp->parent;
2215 if (rnp_p == NULL) {
2216 /*
a77da14c
PM
2217 * Only one rcu_node structure in the tree, so don't
2218 * try to report up to its nonexistent parent!
cc99a310 2219 */
aff4e9ed 2220 rcu_report_qs_rsp(flags);
cc99a310
PM
2221 return;
2222 }
2223
c9a24e2d
PM
2224 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2225 gps = rnp->gp_seq;
cc99a310 2226 mask = rnp->grpmask;
67c583a7 2227 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2228 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 2229 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
2230}
2231
64db4cff 2232/*
d3f6bad3 2233 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2234 * structure. This must be called from the specified CPU.
64db4cff
PM
2235 */
2236static void
33085c46 2237rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
64db4cff
PM
2238{
2239 unsigned long flags;
2240 unsigned long mask;
48a7639c 2241 bool needwake;
64db4cff
PM
2242 struct rcu_node *rnp;
2243
2244 rnp = rdp->mynode;
2a67e741 2245 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
2246 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2247 rdp->gpwrap) {
64db4cff
PM
2248
2249 /*
e4cc1f22
PM
2250 * The grace period in which this quiescent state was
2251 * recorded has ended, so don't report it upwards.
2252 * We will instead need a new quiescent state that lies
2253 * within the current grace period.
64db4cff 2254 */
5b74c458 2255 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 2256 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2257 return;
2258 }
2259 mask = rdp->grpmask;
2260 if ((rnp->qsmask & mask) == 0) {
67c583a7 2261 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2262 } else {
bb53e416 2263 rdp->core_needs_qs = false;
64db4cff
PM
2264
2265 /*
2266 * This GP can't end until cpu checks in, so all of our
2267 * callbacks can be processed during the next GP.
2268 */
02f50142 2269 needwake = rcu_accelerate_cbs(rnp, rdp);
64db4cff 2270
b50912d0 2271 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 2272 /* ^^^ Released rnp->lock */
48a7639c 2273 if (needwake)
532c00c9 2274 rcu_gp_kthread_wake();
64db4cff
PM
2275 }
2276}
2277
2278/*
2279 * Check to see if there is a new grace period of which this CPU
2280 * is not yet aware, and if so, set up local rcu_data state for it.
2281 * Otherwise, see if this CPU has just passed through its first
2282 * quiescent state for this grace period, and record that fact if so.
2283 */
2284static void
8087d3e3 2285rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 2286{
05eb552b 2287 /* Check for grace-period ends and beginnings. */
15cabdff 2288 note_gp_changes(rdp);
64db4cff
PM
2289
2290 /*
2291 * Does this CPU still need to do its part for current grace period?
2292 * If no, return and let the other CPUs do their part as well.
2293 */
97c668b8 2294 if (!rdp->core_needs_qs)
64db4cff
PM
2295 return;
2296
2297 /*
2298 * Was there a quiescent state since the beginning of the grace
2299 * period? If no, then exit and wait for the next call.
2300 */
3a19b46a 2301 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2302 return;
2303
d3f6bad3
PM
2304 /*
2305 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2306 * judge of that).
2307 */
33085c46 2308 rcu_report_qs_rdp(rdp->cpu, rdp);
64db4cff
PM
2309}
2310
b1420f1c 2311/*
780cd590
PM
2312 * Near the end of the offline process. Trace the fact that this CPU
2313 * is going offline.
b1420f1c 2314 */
780cd590 2315int rcutree_dying_cpu(unsigned int cpu)
b1420f1c 2316{
477351f7 2317 RCU_TRACE(bool blkd;)
da1df50d 2318 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
88a4976d 2319 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2320
ea46351c 2321 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2322 return 0;
ea46351c 2323
477351f7 2324 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
780cd590 2325 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
477351f7 2326 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
780cd590 2327 return 0;
64db4cff
PM
2328}
2329
8af3a5e7
PM
2330/*
2331 * All CPUs for the specified rcu_node structure have gone offline,
2332 * and all tasks that were preempted within an RCU read-side critical
2333 * section while running on one of those CPUs have since exited their RCU
2334 * read-side critical section. Some other CPU is reporting this fact with
2335 * the specified rcu_node structure's ->lock held and interrupts disabled.
2336 * This function therefore goes up the tree of rcu_node structures,
2337 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2338 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2339 * updated.
8af3a5e7
PM
2340 *
2341 * This function does check that the specified rcu_node structure has
2342 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2343 * prematurely. That said, invoking it after the fact will cost you
2344 * a needless lock acquisition. So once it has done its work, don't
2345 * invoke it again.
2346 */
2347static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2348{
2349 long mask;
2350 struct rcu_node *rnp = rnp_leaf;
2351
962aff03 2352 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2353 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2354 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2355 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2356 return;
2357 for (;;) {
2358 mask = rnp->grpmask;
2359 rnp = rnp->parent;
2360 if (!rnp)
2361 break;
2a67e741 2362 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2363 rnp->qsmaskinit &= ~mask;
962aff03
PM
2364 /* Between grace periods, so better already be zero! */
2365 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2366 if (rnp->qsmaskinit) {
67c583a7
BF
2367 raw_spin_unlock_rcu_node(rnp);
2368 /* irqs remain disabled. */
8af3a5e7
PM
2369 return;
2370 }
67c583a7 2371 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2372 }
2373}
2374
64db4cff 2375/*
e5601400 2376 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2377 * this fact from process context. Do the remainder of the cleanup.
2378 * There can only be one CPU hotplug operation at a time, so no need for
2379 * explicit locking.
64db4cff 2380 */
780cd590 2381int rcutree_dead_cpu(unsigned int cpu)
64db4cff 2382{
da1df50d 2383 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
b1420f1c 2384 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2385
ea46351c 2386 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2387 return 0;
ea46351c 2388
2036d94a 2389 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2390 rcu_boost_kthread_setaffinity(rnp, -1);
780cd590
PM
2391 /* Do any needed no-CB deferred wakeups from this CPU. */
2392 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2393 return 0;
64db4cff
PM
2394}
2395
64db4cff
PM
2396/*
2397 * Invoke any RCU callbacks that have made it to the end of their grace
2398 * period. Thottle as specified by rdp->blimit.
2399 */
5bb5d09c 2400static void rcu_do_batch(struct rcu_data *rdp)
64db4cff
PM
2401{
2402 unsigned long flags;
15fecf89
PM
2403 struct rcu_head *rhp;
2404 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2405 long bl, count;
64db4cff 2406
dc35c893 2407 /* If no callbacks are ready, just return. */
15fecf89 2408 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2409 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2410 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2411 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2412 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2413 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2414 need_resched(), is_idle_task(current),
2415 rcu_is_callbacks_kthread());
64db4cff 2416 return;
29c00b4a 2417 }
64db4cff
PM
2418
2419 /*
2420 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2421 * races with call_rcu() from interrupt handlers. Leave the
2422 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2423 */
2424 local_irq_save(flags);
8146c4e2 2425 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2426 bl = rdp->blimit;
3c779dfe
PM
2427 trace_rcu_batch_start(rcu_state.name,
2428 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
15fecf89
PM
2429 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2430 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2431 local_irq_restore(flags);
2432
2433 /* Invoke callbacks. */
15fecf89
PM
2434 rhp = rcu_cblist_dequeue(&rcl);
2435 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2436 debug_rcu_head_unqueue(rhp);
3c779dfe 2437 if (__rcu_reclaim(rcu_state.name, rhp))
15fecf89
PM
2438 rcu_cblist_dequeued_lazy(&rcl);
2439 /*
2440 * Stop only if limit reached and CPU has something to do.
2441 * Note: The rcl structure counts down from zero.
2442 */
4b27f20b 2443 if (-rcl.len >= bl &&
dff1672d
PM
2444 (need_resched() ||
2445 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2446 break;
2447 }
2448
2449 local_irq_save(flags);
4b27f20b 2450 count = -rcl.len;
3c779dfe 2451 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
8ef0f37e 2452 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2453
15fecf89
PM
2454 /* Update counts and requeue any remaining callbacks. */
2455 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2456 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2457 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2458
2459 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2460 count = rcu_segcblist_n_cbs(&rdp->cblist);
2461 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2462 rdp->blimit = blimit;
2463
37c72e56 2464 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2465 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2466 rdp->qlen_last_fqs_check = 0;
3c779dfe 2467 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89
PM
2468 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2469 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2470
2471 /*
2472 * The following usually indicates a double call_rcu(). To track
2473 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2474 */
15fecf89 2475 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2476
64db4cff
PM
2477 local_irq_restore(flags);
2478
e0f23060 2479 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2480 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2481 invoke_rcu_core();
64db4cff
PM
2482}
2483
2484/*
2485 * Check to see if this CPU is in a non-context-switch quiescent state
2486 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2487 * Also schedule RCU core processing.
64db4cff 2488 *
9b2e4f18 2489 * This function must be called from hardirq context. It is normally
5403d367 2490 * invoked from the scheduling-clock interrupt.
64db4cff 2491 */
c3377c2d 2492void rcu_check_callbacks(int user)
64db4cff 2493{
f7f7bac9 2494 trace_rcu_utilization(TPS("Start scheduler-tick"));
4e95020c 2495 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2496 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2497 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2498 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2499 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2500 set_tsk_need_resched(current);
2501 set_preempt_need_resched();
2502 }
2dba13f0 2503 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
92aa39e9 2504 }
45975c7d 2505 rcu_flavor_check_callbacks(user);
e3950ecd 2506 if (rcu_pending())
a46e0899 2507 invoke_rcu_core();
07f27570 2508
f7f7bac9 2509 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2510}
2511
64db4cff
PM
2512/*
2513 * Scan the leaf rcu_node structures, processing dyntick state for any that
2514 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2515 * Also initiate boosting for any threads blocked on the root rcu_node.
2516 *
ee47eb9f 2517 * The caller must have suppressed start of new grace periods.
64db4cff 2518 */
8ff0b907 2519static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2520{
64db4cff
PM
2521 int cpu;
2522 unsigned long flags;
2523 unsigned long mask;
a0b6c9a7 2524 struct rcu_node *rnp;
64db4cff 2525
aedf4ba9 2526 rcu_for_each_leaf_node(rnp) {
cee43939 2527 cond_resched_tasks_rcu_qs();
64db4cff 2528 mask = 0;
2a67e741 2529 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2530 if (rnp->qsmask == 0) {
45975c7d 2531 if (!IS_ENABLED(CONFIG_PREEMPT) ||
a77da14c
PM
2532 rcu_preempt_blocked_readers_cgp(rnp)) {
2533 /*
2534 * No point in scanning bits because they
2535 * are all zero. But we might need to
2536 * priority-boost blocked readers.
2537 */
2538 rcu_initiate_boost(rnp, flags);
2539 /* rcu_initiate_boost() releases rnp->lock */
2540 continue;
2541 }
92816435
PM
2542 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2543 continue;
64db4cff 2544 }
bc75e999
MR
2545 for_each_leaf_node_possible_cpu(rnp, cpu) {
2546 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2547 if ((rnp->qsmask & bit) != 0) {
da1df50d 2548 if (f(per_cpu_ptr(&rcu_data, cpu)))
0edd1b17
PM
2549 mask |= bit;
2550 }
64db4cff 2551 }
45f014c5 2552 if (mask != 0) {
c9a24e2d 2553 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2554 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2555 } else {
2556 /* Nothing to do here, so just drop the lock. */
67c583a7 2557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2558 }
64db4cff 2559 }
64db4cff
PM
2560}
2561
2562/*
2563 * Force quiescent states on reluctant CPUs, and also detect which
2564 * CPUs are in dyntick-idle mode.
2565 */
e9ecb780 2566static void force_quiescent_state(void)
64db4cff
PM
2567{
2568 unsigned long flags;
394f2769
PM
2569 bool ret;
2570 struct rcu_node *rnp;
2571 struct rcu_node *rnp_old = NULL;
2572
2573 /* Funnel through hierarchy to reduce memory contention. */
da1df50d 2574 rnp = __this_cpu_read(rcu_data.mynode);
394f2769 2575 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2576 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2577 !raw_spin_trylock(&rnp->fqslock);
2578 if (rnp_old != NULL)
2579 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2580 if (ret)
394f2769 2581 return;
394f2769
PM
2582 rnp_old = rnp;
2583 }
336a4f6c 2584 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2585
394f2769 2586 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2587 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2588 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2589 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2590 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2591 return; /* Someone beat us to it. */
46a1e34e 2592 }
67a0edbf
PM
2593 WRITE_ONCE(rcu_state.gp_flags,
2594 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2595 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2596 rcu_gp_kthread_wake();
64db4cff
PM
2597}
2598
26d950a9
PM
2599/*
2600 * This function checks for grace-period requests that fail to motivate
2601 * RCU to come out of its idle mode.
2602 */
2603static void
b96f9dc4 2604rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp)
26d950a9 2605{
b06ae25a 2606 const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
26d950a9
PM
2607 unsigned long flags;
2608 unsigned long j;
336a4f6c 2609 struct rcu_node *rnp_root = rcu_get_root();
26d950a9
PM
2610 static atomic_t warned = ATOMIC_INIT(0);
2611
de8e8730 2612 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
7a1d0f23 2613 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
26d950a9
PM
2614 return;
2615 j = jiffies; /* Expensive access, and in common case don't get here. */
67a0edbf
PM
2616 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2617 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
26d950a9
PM
2618 atomic_read(&warned))
2619 return;
2620
2621 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2622 j = jiffies;
de8e8730 2623 if (rcu_gp_in_progress() ||
7a1d0f23 2624 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
67a0edbf
PM
2625 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2626 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
26d950a9
PM
2627 atomic_read(&warned)) {
2628 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2629 return;
2630 }
2631 /* Hold onto the leaf lock to make others see warned==1. */
2632
2633 if (rnp_root != rnp)
2634 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2635 j = jiffies;
de8e8730 2636 if (rcu_gp_in_progress() ||
7a1d0f23 2637 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
67a0edbf
PM
2638 time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2639 time_before(j, rcu_state.gp_activity + gpssdelay) ||
26d950a9
PM
2640 atomic_xchg(&warned, 1)) {
2641 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2642 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2643 return;
2644 }
b06ae25a 2645 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
67a0edbf 2646 __func__, (long)READ_ONCE(rcu_state.gp_seq),
7a1d0f23 2647 (long)READ_ONCE(rnp_root->gp_seq_needed),
67a0edbf
PM
2648 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity,
2649 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name,
2650 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL);
26d950a9
PM
2651 WARN_ON(1);
2652 if (rnp_root != rnp)
2653 raw_spin_unlock_rcu_node(rnp_root);
2654 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2655}
2656
64db4cff 2657/*
b049fdf8
PM
2658 * This does the RCU core processing work for the specified rcu_data
2659 * structures. This may be called only from the CPU to whom the rdp
2660 * belongs.
64db4cff 2661 */
b049fdf8 2662static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff
PM
2663{
2664 unsigned long flags;
da1df50d 2665 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2666 struct rcu_node *rnp = rdp->mynode;
64db4cff 2667
b049fdf8
PM
2668 if (cpu_is_offline(smp_processor_id()))
2669 return;
2670 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2671 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2672
3e310098 2673 /* Report any deferred quiescent states if preemption enabled. */
fced9c8c 2674 if (!(preempt_count() & PREEMPT_MASK)) {
3e310098 2675 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2676 } else if (rcu_preempt_need_deferred_qs(current)) {
2677 set_tsk_need_resched(current);
2678 set_preempt_need_resched();
2679 }
3e310098 2680
64db4cff 2681 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2682 rcu_check_quiescent_state(rdp);
64db4cff 2683
bd7af846 2684 /* No grace period and unregistered callbacks? */
de8e8730 2685 if (!rcu_gp_in_progress() &&
bd7af846
PM
2686 rcu_segcblist_is_enabled(&rdp->cblist)) {
2687 local_irq_save(flags);
e44e73ca 2688 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2689 rcu_accelerate_cbs_unlocked(rnp, rdp);
e44e73ca 2690 local_irq_restore(flags);
64db4cff
PM
2691 }
2692
b96f9dc4 2693 rcu_check_gp_start_stall(rnp, rdp);
26d950a9 2694
64db4cff 2695 /* If there are callbacks ready, invoke them. */
15fecf89 2696 if (rcu_segcblist_ready_cbs(&rdp->cblist))
aff4e9ed 2697 invoke_rcu_callbacks(rdp);
96d3fd0d
PM
2698
2699 /* Do any needed deferred wakeups of rcuo kthreads. */
2700 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2701 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2702}
2703
a26ac245 2704/*
49918a54
PM
2705 * Schedule RCU callback invocation. If the running implementation of RCU
2706 * does not support RCU priority boosting, just do a direct call, otherwise
2707 * wake up the per-CPU kernel kthread. Note that because we are running
2708 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2709 * cannot disappear out from under us.
a26ac245 2710 */
aff4e9ed 2711static void invoke_rcu_callbacks(struct rcu_data *rdp)
a26ac245 2712{
7d0ae808 2713 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2714 return;
3c779dfe 2715 if (likely(!rcu_state.boost)) {
5bb5d09c 2716 rcu_do_batch(rdp);
a26ac245
PM
2717 return;
2718 }
a46e0899 2719 invoke_rcu_callbacks_kthread();
a26ac245
PM
2720}
2721
a46e0899 2722static void invoke_rcu_core(void)
09223371 2723{
b0f74036
PM
2724 if (cpu_online(smp_processor_id()))
2725 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2726}
2727
29154c57
PM
2728/*
2729 * Handle any core-RCU processing required by a call_rcu() invocation.
2730 */
5c7d8967
PM
2731static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2732 unsigned long flags)
64db4cff 2733{
62fde6ed
PM
2734 /*
2735 * If called from an extended quiescent state, invoke the RCU
2736 * core in order to force a re-evaluation of RCU's idleness.
2737 */
9910affa 2738 if (!rcu_is_watching())
62fde6ed
PM
2739 invoke_rcu_core();
2740
a16b7a69 2741 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2742 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2743 return;
64db4cff 2744
37c72e56
PM
2745 /*
2746 * Force the grace period if too many callbacks or too long waiting.
2747 * Enforce hysteresis, and don't invoke force_quiescent_state()
2748 * if some other CPU has recently done so. Also, don't bother
2749 * invoking force_quiescent_state() if the newly enqueued callback
2750 * is the only one waiting for a grace period to complete.
2751 */
15fecf89
PM
2752 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2753 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2754
2755 /* Are we ignoring a completed grace period? */
15cabdff 2756 note_gp_changes(rdp);
b52573d2
PM
2757
2758 /* Start a new grace period if one not already started. */
de8e8730 2759 if (!rcu_gp_in_progress()) {
c6e09b97 2760 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2761 } else {
2762 /* Give the grace period a kick. */
2763 rdp->blimit = LONG_MAX;
5c7d8967 2764 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2765 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
e9ecb780 2766 force_quiescent_state();
5c7d8967 2767 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89 2768 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2769 }
4cdfc175 2770 }
29154c57
PM
2771}
2772
ae150184
PM
2773/*
2774 * RCU callback function to leak a callback.
2775 */
2776static void rcu_leak_callback(struct rcu_head *rhp)
2777{
2778}
2779
3fbfbf7a
PM
2780/*
2781 * Helper function for call_rcu() and friends. The cpu argument will
2782 * normally be -1, indicating "currently running CPU". It may specify
dd46a788 2783 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
3fbfbf7a
PM
2784 * is expected to specify a CPU.
2785 */
64db4cff 2786static void
5c7d8967 2787__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
64db4cff
PM
2788{
2789 unsigned long flags;
2790 struct rcu_data *rdp;
2791
b8f2ed53
PM
2792 /* Misaligned rcu_head! */
2793 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2794
ae150184 2795 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2796 /*
2797 * Probable double call_rcu(), so leak the callback.
2798 * Use rcu:rcu_callback trace event to find the previous
2799 * time callback was passed to __call_rcu().
2800 */
2801 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2802 head, head->func);
7d0ae808 2803 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2804 return;
2805 }
64db4cff
PM
2806 head->func = func;
2807 head->next = NULL;
64db4cff 2808 local_irq_save(flags);
da1df50d 2809 rdp = this_cpu_ptr(&rcu_data);
64db4cff
PM
2810
2811 /* Add the callback to our list. */
15fecf89 2812 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2813 int offline;
2814
2815 if (cpu != -1)
da1df50d 2816 rdp = per_cpu_ptr(&rcu_data, cpu);
143da9c2
PM
2817 if (likely(rdp->mynode)) {
2818 /* Post-boot, so this should be for a no-CBs CPU. */
2819 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2820 WARN_ON_ONCE(offline);
2821 /* Offline CPU, _call_rcu() illegal, leak callback. */
2822 local_irq_restore(flags);
2823 return;
2824 }
2825 /*
2826 * Very early boot, before rcu_init(). Initialize if needed
2827 * and then drop through to queue the callback.
2828 */
2829 BUG_ON(cpu != -1);
34404ca8 2830 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
2831 if (rcu_segcblist_empty(&rdp->cblist))
2832 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2833 }
15fecf89
PM
2834 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2835 if (!lazy)
c57afe80 2836 rcu_idle_count_callbacks_posted();
2655d57e 2837
d4c08f2a 2838 if (__is_kfree_rcu_offset((unsigned long)func))
3c779dfe
PM
2839 trace_rcu_kfree_callback(rcu_state.name, head,
2840 (unsigned long)func,
15fecf89
PM
2841 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2842 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2843 else
3c779dfe 2844 trace_rcu_callback(rcu_state.name, head,
15fecf89
PM
2845 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2846 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2847
29154c57 2848 /* Go handle any RCU core processing required. */
5c7d8967 2849 __call_rcu_core(rdp, head, flags);
64db4cff
PM
2850 local_irq_restore(flags);
2851}
2852
a68a2bb2 2853/**
45975c7d 2854 * call_rcu() - Queue an RCU callback for invocation after a grace period.
a68a2bb2
PM
2855 * @head: structure to be used for queueing the RCU updates.
2856 * @func: actual callback function to be invoked after the grace period
2857 *
2858 * The callback function will be invoked some time after a full grace
45975c7d
PM
2859 * period elapses, in other words after all pre-existing RCU read-side
2860 * critical sections have completed. However, the callback function
2861 * might well execute concurrently with RCU read-side critical sections
2862 * that started after call_rcu() was invoked. RCU read-side critical
2863 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2864 * may be nested. In addition, regions of code across which interrupts,
2865 * preemption, or softirqs have been disabled also serve as RCU read-side
2866 * critical sections. This includes hardware interrupt handlers, softirq
2867 * handlers, and NMI handlers.
2868 *
2869 * Note that all CPUs must agree that the grace period extended beyond
2870 * all pre-existing RCU read-side critical section. On systems with more
2871 * than one CPU, this means that when "func()" is invoked, each CPU is
2872 * guaranteed to have executed a full memory barrier since the end of its
2873 * last RCU read-side critical section whose beginning preceded the call
2874 * to call_rcu(). It also means that each CPU executing an RCU read-side
2875 * critical section that continues beyond the start of "func()" must have
2876 * executed a memory barrier after the call_rcu() but before the beginning
2877 * of that RCU read-side critical section. Note that these guarantees
2878 * include CPUs that are offline, idle, or executing in user mode, as
2879 * well as CPUs that are executing in the kernel.
2880 *
2881 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2882 * resulting RCU callback function "func()", then both CPU A and CPU B are
2883 * guaranteed to execute a full memory barrier during the time interval
2884 * between the call to call_rcu() and the invocation of "func()" -- even
2885 * if CPU A and CPU B are the same CPU (but again only if the system has
2886 * more than one CPU).
2887 */
2888void call_rcu(struct rcu_head *head, rcu_callback_t func)
2889{
5c7d8967 2890 __call_rcu(head, func, -1, 0);
45975c7d
PM
2891}
2892EXPORT_SYMBOL_GPL(call_rcu);
2893
495aa969
ACB
2894/*
2895 * Queue an RCU callback for lazy invocation after a grace period.
2896 * This will likely be later named something like "call_rcu_lazy()",
2897 * but this change will require some way of tagging the lazy RCU
2898 * callbacks in the list of pending callbacks. Until then, this
2899 * function may only be called from __kfree_rcu().
2900 */
98ece508 2901void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
495aa969 2902{
5c7d8967 2903 __call_rcu(head, func, -1, 1);
495aa969
ACB
2904}
2905EXPORT_SYMBOL_GPL(kfree_call_rcu);
2906
765a3f4f
PM
2907/**
2908 * get_state_synchronize_rcu - Snapshot current RCU state
2909 *
2910 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2911 * to determine whether or not a full grace period has elapsed in the
2912 * meantime.
2913 */
2914unsigned long get_state_synchronize_rcu(void)
2915{
2916 /*
2917 * Any prior manipulation of RCU-protected data must happen
e4be81a2 2918 * before the load from ->gp_seq.
765a3f4f
PM
2919 */
2920 smp_mb(); /* ^^^ */
16fc9c60 2921 return rcu_seq_snap(&rcu_state.gp_seq);
765a3f4f
PM
2922}
2923EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2924
2925/**
2926 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2927 *
2928 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2929 *
2930 * If a full RCU grace period has elapsed since the earlier call to
2931 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2932 * synchronize_rcu() to wait for a full grace period.
2933 *
2934 * Yes, this function does not take counter wrap into account. But
2935 * counter wrap is harmless. If the counter wraps, we have waited for
2936 * more than 2 billion grace periods (and way more on a 64-bit system!),
2937 * so waiting for one additional grace period should be just fine.
2938 */
2939void cond_synchronize_rcu(unsigned long oldstate)
2940{
16fc9c60 2941 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
765a3f4f 2942 synchronize_rcu();
e4be81a2
PM
2943 else
2944 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
2945}
2946EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2947
64db4cff 2948/*
98ece508 2949 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
2950 * the current CPU, returning 1 if so and zero otherwise. The checks are
2951 * in order of increasing expense: checks that can be carried out against
2952 * CPU-local state are performed first. However, we must check for CPU
2953 * stalls first, else we might not get a chance.
64db4cff 2954 */
98ece508 2955static int rcu_pending(void)
64db4cff 2956{
98ece508 2957 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
2958 struct rcu_node *rnp = rdp->mynode;
2959
64db4cff 2960 /* Check for CPU stalls, if enabled. */
ea12ff2b 2961 check_cpu_stall(rdp);
64db4cff 2962
a096932f 2963 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
4580b054 2964 if (rcu_nohz_full_cpu())
a096932f
PM
2965 return 0;
2966
64db4cff 2967 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 2968 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
2969 return 1;
2970
2971 /* Does this CPU have callbacks ready to invoke? */
01c495f7 2972 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
2973 return 1;
2974
2975 /* Has RCU gone idle with this CPU needing another grace period? */
de8e8730 2976 if (!rcu_gp_in_progress() &&
c1935209
PM
2977 rcu_segcblist_is_enabled(&rdp->cblist) &&
2978 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
2979 return 1;
2980
67e14c1e
PM
2981 /* Have RCU grace period completed or started? */
2982 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 2983 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
2984 return 1;
2985
96d3fd0d 2986 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 2987 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 2988 return 1;
96d3fd0d 2989
64db4cff
PM
2990 /* nothing to do */
2991 return 0;
2992}
2993
64db4cff 2994/*
c0f4dfd4
PM
2995 * Return true if the specified CPU has any callback. If all_lazy is
2996 * non-NULL, store an indication of whether all callbacks are lazy.
2997 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2998 */
51fbb910 2999static bool rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3000{
c0f4dfd4
PM
3001 bool al = true;
3002 bool hc = false;
3003 struct rcu_data *rdp;
6ce75a23 3004
b97d23c5
PM
3005 rdp = this_cpu_ptr(&rcu_data);
3006 if (!rcu_segcblist_empty(&rdp->cblist)) {
69c8d28c 3007 hc = true;
b97d23c5 3008 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist))
c0f4dfd4 3009 al = false;
c0f4dfd4
PM
3010 }
3011 if (all_lazy)
3012 *all_lazy = al;
3013 return hc;
64db4cff
PM
3014}
3015
a83eff0a 3016/*
dd46a788 3017 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
3018 * the compiler is expected to optimize this away.
3019 */
dd46a788 3020static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 3021{
8344b871
PM
3022 trace_rcu_barrier(rcu_state.name, s, cpu,
3023 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
3024}
3025
b1420f1c 3026/*
dd46a788
PM
3027 * RCU callback function for rcu_barrier(). If we are last, wake
3028 * up the task executing rcu_barrier().
b1420f1c 3029 */
24ebbca8 3030static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3031{
ec9f5835 3032 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
dd46a788 3033 rcu_barrier_trace(TPS("LastCB"), -1,
ec9f5835
PM
3034 rcu_state.barrier_sequence);
3035 complete(&rcu_state.barrier_completion);
a83eff0a 3036 } else {
dd46a788 3037 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
a83eff0a 3038 }
d0ec774c
PM
3039}
3040
3041/*
3042 * Called with preemption disabled, and from cross-cpu IRQ context.
3043 */
ec9f5835 3044static void rcu_barrier_func(void *unused)
d0ec774c 3045{
da1df50d 3046 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
d0ec774c 3047
dd46a788 3048 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
3049 rdp->barrier_head.func = rcu_barrier_callback;
3050 debug_rcu_head_queue(&rdp->barrier_head);
3051 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
ec9f5835 3052 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
3053 } else {
3054 debug_rcu_head_unqueue(&rdp->barrier_head);
dd46a788 3055 rcu_barrier_trace(TPS("IRQNQ"), -1,
ec9f5835 3056 rcu_state.barrier_sequence);
f92c734f 3057 }
d0ec774c
PM
3058}
3059
dd46a788
PM
3060/**
3061 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3062 *
3063 * Note that this primitive does not necessarily wait for an RCU grace period
3064 * to complete. For example, if there are no RCU callbacks queued anywhere
3065 * in the system, then rcu_barrier() is within its rights to return
3066 * immediately, without waiting for anything, much less an RCU grace period.
3067 */
3068void rcu_barrier(void)
d0ec774c 3069{
b1420f1c 3070 int cpu;
b1420f1c 3071 struct rcu_data *rdp;
ec9f5835 3072 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 3073
dd46a788 3074 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 3075
e74f4c45 3076 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 3077 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 3078
4f525a52 3079 /* Did someone else do our work for us? */
ec9f5835 3080 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
dd46a788 3081 rcu_barrier_trace(TPS("EarlyExit"), -1,
ec9f5835 3082 rcu_state.barrier_sequence);
cf3a9c48 3083 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 3084 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
3085 return;
3086 }
3087
4f525a52 3088 /* Mark the start of the barrier operation. */
ec9f5835 3089 rcu_seq_start(&rcu_state.barrier_sequence);
dd46a788 3090 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 3091
d0ec774c 3092 /*
b1420f1c
PM
3093 * Initialize the count to one rather than to zero in order to
3094 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3095 * (or preemption of this task). Exclude CPU-hotplug operations
3096 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3097 */
ec9f5835
PM
3098 init_completion(&rcu_state.barrier_completion);
3099 atomic_set(&rcu_state.barrier_cpu_count, 1);
1331e7a1 3100 get_online_cpus();
b1420f1c
PM
3101
3102 /*
1331e7a1
PM
3103 * Force each CPU with callbacks to register a new callback.
3104 * When that callback is invoked, we will know that all of the
3105 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3106 */
3fbfbf7a 3107 for_each_possible_cpu(cpu) {
d1e43fa5 3108 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3109 continue;
da1df50d 3110 rdp = per_cpu_ptr(&rcu_data, cpu);
d1e43fa5 3111 if (rcu_is_nocb_cpu(cpu)) {
4580b054 3112 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
dd46a788 3113 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
ec9f5835 3114 rcu_state.barrier_sequence);
d7e29933 3115 } else {
dd46a788 3116 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
ec9f5835 3117 rcu_state.barrier_sequence);
41050a00 3118 smp_mb__before_atomic();
ec9f5835 3119 atomic_inc(&rcu_state.barrier_cpu_count);
d7e29933 3120 __call_rcu(&rdp->barrier_head,
5c7d8967 3121 rcu_barrier_callback, cpu, 0);
d7e29933 3122 }
15fecf89 3123 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
dd46a788 3124 rcu_barrier_trace(TPS("OnlineQ"), cpu,
ec9f5835
PM
3125 rcu_state.barrier_sequence);
3126 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
b1420f1c 3127 } else {
dd46a788 3128 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
ec9f5835 3129 rcu_state.barrier_sequence);
b1420f1c
PM
3130 }
3131 }
1331e7a1 3132 put_online_cpus();
b1420f1c
PM
3133
3134 /*
3135 * Now that we have an rcu_barrier_callback() callback on each
3136 * CPU, and thus each counted, remove the initial count.
3137 */
ec9f5835
PM
3138 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3139 complete(&rcu_state.barrier_completion);
b1420f1c
PM
3140
3141 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 3142 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 3143
4f525a52 3144 /* Mark the end of the barrier operation. */
dd46a788 3145 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 3146 rcu_seq_end(&rcu_state.barrier_sequence);
4f525a52 3147
b1420f1c 3148 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 3149 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 3150}
45975c7d
PM
3151EXPORT_SYMBOL_GPL(rcu_barrier);
3152
0aa04b05
PM
3153/*
3154 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3155 * first CPU in a given leaf rcu_node structure coming online. The caller
3156 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3157 * disabled.
3158 */
3159static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3160{
3161 long mask;
8d672fa6 3162 long oldmask;
0aa04b05
PM
3163 struct rcu_node *rnp = rnp_leaf;
3164
8d672fa6 3165 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 3166 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
3167 for (;;) {
3168 mask = rnp->grpmask;
3169 rnp = rnp->parent;
3170 if (rnp == NULL)
3171 return;
6cf10081 3172 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 3173 oldmask = rnp->qsmaskinit;
0aa04b05 3174 rnp->qsmaskinit |= mask;
67c583a7 3175 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
3176 if (oldmask)
3177 return;
0aa04b05
PM
3178 }
3179}
3180
64db4cff 3181/*
27569620 3182 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3183 */
27569620 3184static void __init
53b46303 3185rcu_boot_init_percpu_data(int cpu)
64db4cff 3186{
da1df50d 3187 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
3188
3189 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3190 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4c5273bf 3191 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
dc5a4f29 3192 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
53b46303 3193 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 3194 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 3195 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 3196 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
27569620 3197 rdp->cpu = cpu;
3fbfbf7a 3198 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3199}
3200
3201/*
53b46303
PM
3202 * Invoked early in the CPU-online process, when pretty much all services
3203 * are available. The incoming CPU is not present.
3204 *
3205 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
3206 * offline event can be happening at a given time. Note also that we can
3207 * accept some slop in the rsp->gp_seq access due to the fact that this
3208 * CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3209 */
53b46303 3210int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
3211{
3212 unsigned long flags;
da1df50d 3213 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3214 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
3215
3216 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3217 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 3218 rdp->qlen_last_fqs_check = 0;
53b46303 3219 rdp->n_force_qs_snap = rcu_state.n_force_qs;
64db4cff 3220 rdp->blimit = blimit;
15fecf89
PM
3221 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3222 !init_nocb_callback_list(rdp))
3223 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4c5273bf 3224 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3225 rcu_dynticks_eqs_online();
67c583a7 3226 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3227
0aa04b05
PM
3228 /*
3229 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3230 * propagation up the rcu_node tree will happen at the beginning
3231 * of the next grace period.
3232 */
64db4cff 3233 rnp = rdp->mynode;
2a67e741 3234 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3235 rdp->beenonline = true; /* We have now been online. */
de30ad51 3236 rdp->gp_seq = rnp->gp_seq;
7a1d0f23 3237 rdp->gp_seq_needed = rnp->gp_seq;
5b74c458 3238 rdp->cpu_no_qs.b.norm = true;
97c668b8 3239 rdp->core_needs_qs = false;
9b9500da 3240 rdp->rcu_iw_pending = false;
8aa670cd 3241 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
53b46303 3242 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 3243 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4df83742
TG
3244 rcu_prepare_kthreads(cpu);
3245 rcu_spawn_all_nocb_kthreads(cpu);
3246
3247 return 0;
3248}
3249
deb34f36
PM
3250/*
3251 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3252 */
4df83742
TG
3253static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3254{
da1df50d 3255 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
3256
3257 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3258}
3259
deb34f36
PM
3260/*
3261 * Near the end of the CPU-online process. Pretty much all services
3262 * enabled, and the CPU is now very much alive.
3263 */
4df83742
TG
3264int rcutree_online_cpu(unsigned int cpu)
3265{
9b9500da
PM
3266 unsigned long flags;
3267 struct rcu_data *rdp;
3268 struct rcu_node *rnp;
9b9500da 3269
b97d23c5
PM
3270 rdp = per_cpu_ptr(&rcu_data, cpu);
3271 rnp = rdp->mynode;
3272 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3273 rnp->ffmask |= rdp->grpmask;
3274 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
da915ad5
PM
3275 if (IS_ENABLED(CONFIG_TREE_SRCU))
3276 srcu_online_cpu(cpu);
9b9500da
PM
3277 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3278 return 0; /* Too early in boot for scheduler work. */
3279 sync_sched_exp_online_cleanup(cpu);
3280 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3281 return 0;
3282}
3283
deb34f36
PM
3284/*
3285 * Near the beginning of the process. The CPU is still very much alive
3286 * with pretty much all services enabled.
3287 */
4df83742
TG
3288int rcutree_offline_cpu(unsigned int cpu)
3289{
9b9500da
PM
3290 unsigned long flags;
3291 struct rcu_data *rdp;
3292 struct rcu_node *rnp;
9b9500da 3293
b97d23c5
PM
3294 rdp = per_cpu_ptr(&rcu_data, cpu);
3295 rnp = rdp->mynode;
3296 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3297 rnp->ffmask &= ~rdp->grpmask;
3298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da 3299
4df83742 3300 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3301 if (IS_ENABLED(CONFIG_TREE_SRCU))
3302 srcu_offline_cpu(cpu);
4df83742
TG
3303 return 0;
3304}
3305
f64c6013
PZ
3306static DEFINE_PER_CPU(int, rcu_cpu_started);
3307
7ec99de3
PM
3308/*
3309 * Mark the specified CPU as being online so that subsequent grace periods
3310 * (both expedited and normal) will wait on it. Note that this means that
3311 * incoming CPUs are not allowed to use RCU read-side critical sections
3312 * until this function is called. Failing to observe this restriction
3313 * will result in lockdep splats.
deb34f36
PM
3314 *
3315 * Note that this function is special in that it is invoked directly
3316 * from the incoming CPU rather than from the cpuhp_step mechanism.
3317 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3318 */
3319void rcu_cpu_starting(unsigned int cpu)
3320{
3321 unsigned long flags;
3322 unsigned long mask;
313517fc
PM
3323 int nbits;
3324 unsigned long oldmask;
7ec99de3
PM
3325 struct rcu_data *rdp;
3326 struct rcu_node *rnp;
7ec99de3 3327
f64c6013
PZ
3328 if (per_cpu(rcu_cpu_started, cpu))
3329 return;
3330
3331 per_cpu(rcu_cpu_started, cpu) = 1;
3332
b97d23c5
PM
3333 rdp = per_cpu_ptr(&rcu_data, cpu);
3334 rnp = rdp->mynode;
3335 mask = rdp->grpmask;
3336 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3337 rnp->qsmaskinitnext |= mask;
3338 oldmask = rnp->expmaskinitnext;
3339 rnp->expmaskinitnext |= mask;
3340 oldmask ^= rnp->expmaskinitnext;
3341 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3342 /* Allow lockless access for expedited grace periods. */
eb7a6653 3343 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
b97d23c5 3344 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
3345 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3346 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
b97d23c5
PM
3347 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3348 /* Report QS -after- changing ->qsmaskinitnext! */
3349 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3350 } else {
3351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7ec99de3 3352 }
313517fc 3353 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3354}
3355
27d50c7e
TG
3356#ifdef CONFIG_HOTPLUG_CPU
3357/*
53b46303
PM
3358 * The outgoing function has no further need of RCU, so remove it from
3359 * the rcu_node tree's ->qsmaskinitnext bit masks.
3360 *
3361 * Note that this function is special in that it is invoked directly
3362 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3363 * This is because this function must be invoked at a precise location.
27d50c7e 3364 */
53b46303 3365void rcu_report_dead(unsigned int cpu)
27d50c7e
TG
3366{
3367 unsigned long flags;
3368 unsigned long mask;
da1df50d 3369 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27d50c7e
TG
3370 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3371
49918a54 3372 /* QS for any half-done expedited grace period. */
53b46303 3373 preempt_disable();
63d4c8c9 3374 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
53b46303
PM
3375 preempt_enable();
3376 rcu_preempt_deferred_qs(current);
3377
27d50c7e
TG
3378 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3379 mask = rdp->grpmask;
53b46303 3380 spin_lock(&rcu_state.ofl_lock);
27d50c7e 3381 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
3382 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3383 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
3384 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3385 /* Report quiescent state -before- changing ->qsmaskinitnext! */
b50912d0 3386 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
3387 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3388 }
27d50c7e 3389 rnp->qsmaskinitnext &= ~mask;
710d60cb 3390 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
53b46303 3391 spin_unlock(&rcu_state.ofl_lock);
f64c6013
PZ
3392
3393 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3394}
a58163d8 3395
53b46303
PM
3396/*
3397 * The outgoing CPU has just passed through the dying-idle state, and we
3398 * are being invoked from the CPU that was IPIed to continue the offline
3399 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3400 */
3401void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
3402{
3403 unsigned long flags;
b1a2d79f 3404 struct rcu_data *my_rdp;
da1df50d 3405 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3406 struct rcu_node *rnp_root = rcu_get_root();
ec4eacce 3407 bool needwake;
a58163d8 3408
95335c03
PM
3409 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3410 return; /* No callbacks to migrate. */
3411
b1a2d79f 3412 local_irq_save(flags);
da1df50d 3413 my_rdp = this_cpu_ptr(&rcu_data);
b1a2d79f
PM
3414 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3415 local_irq_restore(flags);
3416 return;
3417 }
9fa46fb8 3418 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce 3419 /* Leverage recent GPs and set GP for new callbacks. */
834f56bf
PM
3420 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3421 rcu_advance_cbs(rnp_root, my_rdp);
f2dbe4a5 3422 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3423 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3424 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3425 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce 3426 if (needwake)
532c00c9 3427 rcu_gp_kthread_wake();
a58163d8
PM
3428 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3429 !rcu_segcblist_empty(&rdp->cblist),
3430 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3431 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3432 rcu_segcblist_first_cb(&rdp->cblist));
3433}
27d50c7e
TG
3434#endif
3435
deb34f36
PM
3436/*
3437 * On non-huge systems, use expedited RCU grace periods to make suspend
3438 * and hibernation run faster.
3439 */
d1d74d14
BP
3440static int rcu_pm_notify(struct notifier_block *self,
3441 unsigned long action, void *hcpu)
3442{
3443 switch (action) {
3444 case PM_HIBERNATION_PREPARE:
3445 case PM_SUSPEND_PREPARE:
3446 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3447 rcu_expedite_gp();
d1d74d14
BP
3448 break;
3449 case PM_POST_HIBERNATION:
3450 case PM_POST_SUSPEND:
5afff48b
PM
3451 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3452 rcu_unexpedite_gp();
d1d74d14
BP
3453 break;
3454 default:
3455 break;
3456 }
3457 return NOTIFY_OK;
3458}
3459
b3dbec76 3460/*
49918a54 3461 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
3462 */
3463static int __init rcu_spawn_gp_kthread(void)
3464{
3465 unsigned long flags;
a94844b2 3466 int kthread_prio_in = kthread_prio;
b3dbec76 3467 struct rcu_node *rnp;
a94844b2 3468 struct sched_param sp;
b3dbec76
PM
3469 struct task_struct *t;
3470
a94844b2 3471 /* Force priority into range. */
c7cd161e
JFG
3472 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3473 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3474 kthread_prio = 2;
3475 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
a94844b2
PM
3476 kthread_prio = 1;
3477 else if (kthread_prio < 0)
3478 kthread_prio = 0;
3479 else if (kthread_prio > 99)
3480 kthread_prio = 99;
c7cd161e 3481
a94844b2
PM
3482 if (kthread_prio != kthread_prio_in)
3483 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3484 kthread_prio, kthread_prio_in);
3485
9386c0b7 3486 rcu_scheduler_fully_active = 1;
b97d23c5
PM
3487 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3488 BUG_ON(IS_ERR(t));
3489 rnp = rcu_get_root();
3490 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3491 rcu_state.gp_kthread = t;
3492 if (kthread_prio) {
3493 sp.sched_priority = kthread_prio;
3494 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 3495 }
b97d23c5
PM
3496 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3497 wake_up_process(t);
35ce7f29 3498 rcu_spawn_nocb_kthreads();
9386c0b7 3499 rcu_spawn_boost_kthreads();
b3dbec76
PM
3500 return 0;
3501}
3502early_initcall(rcu_spawn_gp_kthread);
3503
bbad9379 3504/*
52d7e48b
PM
3505 * This function is invoked towards the end of the scheduler's
3506 * initialization process. Before this is called, the idle task might
3507 * contain synchronous grace-period primitives (during which time, this idle
3508 * task is booting the system, and such primitives are no-ops). After this
3509 * function is called, any synchronous grace-period primitives are run as
3510 * expedited, with the requesting task driving the grace period forward.
900b1028 3511 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3512 * runtime RCU functionality.
bbad9379
PM
3513 */
3514void rcu_scheduler_starting(void)
3515{
3516 WARN_ON(num_online_cpus() != 1);
3517 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3518 rcu_test_sync_prims();
3519 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3520 rcu_test_sync_prims();
bbad9379
PM
3521}
3522
64db4cff 3523/*
49918a54 3524 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 3525 */
b8bb1f63 3526static void __init rcu_init_one(void)
64db4cff 3527{
cb007102
AG
3528 static const char * const buf[] = RCU_NODE_NAME_INIT;
3529 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3530 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3531 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3532
199977bf 3533 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3534 int cpustride = 1;
3535 int i;
3536 int j;
3537 struct rcu_node *rnp;
3538
05b84aec 3539 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3540
3eaaaf6c
PM
3541 /* Silence gcc 4.8 false positive about array index out of range. */
3542 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3543 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3544
64db4cff
PM
3545 /* Initialize the level-tracking arrays. */
3546
f885b7f2 3547 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
3548 rcu_state.level[i] =
3549 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 3550 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3551
3552 /* Initialize the elements themselves, starting from the leaves. */
3553
f885b7f2 3554 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3555 cpustride *= levelspread[i];
eb7a6653 3556 rnp = rcu_state.level[i];
41f5c631 3557 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3558 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3559 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3560 &rcu_node_class[i], buf[i]);
394f2769
PM
3561 raw_spin_lock_init(&rnp->fqslock);
3562 lockdep_set_class_and_name(&rnp->fqslock,
3563 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
3564 rnp->gp_seq = rcu_state.gp_seq;
3565 rnp->gp_seq_needed = rcu_state.gp_seq;
3566 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
3567 rnp->qsmask = 0;
3568 rnp->qsmaskinit = 0;
3569 rnp->grplo = j * cpustride;
3570 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3571 if (rnp->grphi >= nr_cpu_ids)
3572 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3573 if (i == 0) {
3574 rnp->grpnum = 0;
3575 rnp->grpmask = 0;
3576 rnp->parent = NULL;
3577 } else {
199977bf 3578 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 3579 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 3580 rnp->parent = rcu_state.level[i - 1] +
199977bf 3581 j / levelspread[i - 1];
64db4cff
PM
3582 }
3583 rnp->level = i;
12f5f524 3584 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3585 rcu_init_one_nocb(rnp);
f6a12f34
PM
3586 init_waitqueue_head(&rnp->exp_wq[0]);
3587 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
3588 init_waitqueue_head(&rnp->exp_wq[2]);
3589 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 3590 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
3591 }
3592 }
0c34029a 3593
eb7a6653
PM
3594 init_swait_queue_head(&rcu_state.gp_wq);
3595 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 3596 rnp = rcu_first_leaf_node();
0c34029a 3597 for_each_possible_cpu(i) {
4a90a068 3598 while (i > rnp->grphi)
0c34029a 3599 rnp++;
da1df50d 3600 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 3601 rcu_boot_init_percpu_data(i);
0c34029a 3602 }
64db4cff
PM
3603}
3604
f885b7f2
PM
3605/*
3606 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3607 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3608 * the ->node array in the rcu_state structure.
3609 */
3610static void __init rcu_init_geometry(void)
3611{
026ad283 3612 ulong d;
f885b7f2 3613 int i;
05b84aec 3614 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 3615
026ad283
PM
3616 /*
3617 * Initialize any unspecified boot parameters.
3618 * The default values of jiffies_till_first_fqs and
3619 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3620 * value, which is a function of HZ, then adding one for each
3621 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3622 */
3623 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3624 if (jiffies_till_first_fqs == ULONG_MAX)
3625 jiffies_till_first_fqs = d;
3626 if (jiffies_till_next_fqs == ULONG_MAX)
3627 jiffies_till_next_fqs = d;
c06aed0e
PM
3628 if (jiffies_till_sched_qs == ULONG_MAX)
3629 adjust_jiffies_till_sched_qs();
026ad283 3630
f885b7f2 3631 /* If the compile-time values are accurate, just leave. */
47d631af 3632 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 3633 nr_cpu_ids == NR_CPUS)
f885b7f2 3634 return;
a7538352 3635 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 3636 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 3637
f885b7f2 3638 /*
ee968ac6
PM
3639 * The boot-time rcu_fanout_leaf parameter must be at least two
3640 * and cannot exceed the number of bits in the rcu_node masks.
3641 * Complain and fall back to the compile-time values if this
3642 * limit is exceeded.
f885b7f2 3643 */
ee968ac6 3644 if (rcu_fanout_leaf < 2 ||
75cf15a4 3645 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 3646 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
3647 WARN_ON(1);
3648 return;
3649 }
3650
f885b7f2
PM
3651 /*
3652 * Compute number of nodes that can be handled an rcu_node tree
9618138b 3653 * with the given number of levels.
f885b7f2 3654 */
9618138b 3655 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 3656 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 3657 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
3658
3659 /*
75cf15a4 3660 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 3661 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 3662 */
ee968ac6
PM
3663 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3664 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3665 WARN_ON(1);
3666 return;
3667 }
f885b7f2 3668
679f9858 3669 /* Calculate the number of levels in the tree. */
9618138b 3670 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 3671 }
9618138b 3672 rcu_num_lvls = i + 1;
679f9858 3673
f885b7f2 3674 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 3675 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 3676 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
3677 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3678 }
f885b7f2
PM
3679
3680 /* Calculate the total number of rcu_node structures. */
3681 rcu_num_nodes = 0;
679f9858 3682 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 3683 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
3684}
3685
a3dc2948
PM
3686/*
3687 * Dump out the structure of the rcu_node combining tree associated
49918a54 3688 * with the rcu_state structure.
a3dc2948 3689 */
b8bb1f63 3690static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
3691{
3692 int level = 0;
3693 struct rcu_node *rnp;
3694
3695 pr_info("rcu_node tree layout dump\n");
3696 pr_info(" ");
aedf4ba9 3697 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
3698 if (rnp->level != level) {
3699 pr_cont("\n");
3700 pr_info(" ");
3701 level = rnp->level;
3702 }
3703 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3704 }
3705 pr_cont("\n");
3706}
3707
ad7c946b 3708struct workqueue_struct *rcu_gp_wq;
25f3d7ef 3709struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 3710
9f680ab4 3711void __init rcu_init(void)
64db4cff 3712{
017c4261 3713 int cpu;
9f680ab4 3714
47627678
PM
3715 rcu_early_boot_tests();
3716
f41d911f 3717 rcu_bootup_announce();
f885b7f2 3718 rcu_init_geometry();
b8bb1f63 3719 rcu_init_one();
a3dc2948 3720 if (dump_tree)
b8bb1f63 3721 rcu_dump_rcu_node_tree();
b5b39360 3722 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3723
3724 /*
3725 * We don't need protection against CPU-hotplug here because
3726 * this is called early in boot, before either interrupts
3727 * or the scheduler are operational.
3728 */
d1d74d14 3729 pm_notifier(rcu_pm_notify, 0);
7ec99de3 3730 for_each_online_cpu(cpu) {
4df83742 3731 rcutree_prepare_cpu(cpu);
7ec99de3 3732 rcu_cpu_starting(cpu);
9b9500da 3733 rcutree_online_cpu(cpu);
7ec99de3 3734 }
ad7c946b
PM
3735
3736 /* Create workqueue for expedited GPs and for Tree SRCU. */
3737 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3738 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
3739 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3740 WARN_ON(!rcu_par_gp_wq);
64db4cff
PM
3741}
3742
3549c2bc 3743#include "tree_exp.h"
4102adab 3744#include "tree_plugin.h"