nvme: Avoid flush dependency in delete controller flow
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7be7f0be 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 101 .name = RCU_STATE_NAME(sname), \
a4889858 102 .abbr = sabbr, \
f6a12f34 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 105}
64db4cff 106
a41bfeb2
SRRH
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 109
b28a7c01 110static struct rcu_state *const rcu_state_p;
6ce75a23 111LIST_HEAD(rcu_struct_flavors);
27f4d280 112
a3dc2948
PM
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
7fa27001
PM
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 121module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 123/* Number of rcu_nodes at specified level. */
e95d68d2 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
126/* panic() on RCU Stall sysctl. */
127int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 128
b0d30417 129/*
52d7e48b
PM
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 134 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
0aa04b05
PM
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
3549c2bc 165static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 166
a94844b2 167/* rcuc/rcub kthread realtime priority */
26730f55 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
169module_param(kthread_prio, int, 0644);
170
8d7dc928 171/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 172
90040c9e
PM
173static int gp_preinit_delay;
174module_param(gp_preinit_delay, int, 0444);
175static int gp_init_delay;
176module_param(gp_init_delay, int, 0444);
177static int gp_cleanup_delay;
178module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 179
eab128e8
PM
180/*
181 * Number of grace periods between delays, normalized by the duration of
bfd090be 182 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
188 */
189#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 190
4a298656
PM
191/*
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
199 */
200unsigned long rcutorture_testseq;
201unsigned long rcutorture_vernum;
202
0aa04b05
PM
203/*
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
207 * in most contexts.
208 */
209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210{
7d0ae808 211 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
212}
213
fc2219d4 214/*
7d0ae808 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
218 */
219static int rcu_gp_in_progress(struct rcu_state *rsp)
220{
7d0ae808 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
222}
223
b1f77b05 224/*
d6714c22 225 * Note a quiescent state. Because we do not need to know
b1f77b05 226 * how many quiescent states passed, just if there was at least
d6714c22 227 * one since the start of the grace period, this just sets a flag.
e4cc1f22 228 * The caller must have disabled preemption.
b1f77b05 229 */
284a8c93 230void rcu_sched_qs(void)
b1f77b05 231{
f4687d26 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 return;
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
237 TPS("cpuqs"));
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 return;
46a5d164
PM
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
244}
245
284a8c93 246void rcu_bh_qs(void)
b1f77b05 247{
f4687d26 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
252 TPS("cpuqs"));
5b74c458 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 254 }
b1f77b05 255}
64db4cff 256
b8c17e66
PM
257/*
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
260 */
261#define RCU_DYNTICK_CTRL_MASK 0x1
262#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263#ifndef rcu_eqs_special_exit
264#define rcu_eqs_special_exit() do { } while (0)
265#endif
4a81e832
PM
266
267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
51a1fd30 268 .dynticks_nesting = 1,
58721f5d 269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
b8c17e66 270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
271};
272
2625d469
PM
273/*
274 * Record entry into an extended quiescent state. This is only to be
275 * called when not already in an extended quiescent state.
276 */
277static void rcu_dynticks_eqs_enter(void)
278{
279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 280 int seq;
2625d469
PM
281
282 /*
b8c17e66 283 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
284 * critical sections, and we also must force ordering with the
285 * next idle sojourn.
286 */
b8c17e66
PM
287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
288 /* Better be in an extended quiescent state! */
289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
290 (seq & RCU_DYNTICK_CTRL_CTR));
291 /* Better not have special action (TLB flush) pending! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
294}
295
296/*
297 * Record exit from an extended quiescent state. This is only to be
298 * called from an extended quiescent state.
299 */
300static void rcu_dynticks_eqs_exit(void)
301{
302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 303 int seq;
2625d469
PM
304
305 /*
b8c17e66 306 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
307 * and we also must force ordering with the next RCU read-side
308 * critical section.
309 */
b8c17e66
PM
310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
312 !(seq & RCU_DYNTICK_CTRL_CTR));
313 if (seq & RCU_DYNTICK_CTRL_MASK) {
314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
315 smp_mb__after_atomic(); /* _exit after clearing mask. */
316 /* Prefer duplicate flushes to losing a flush. */
317 rcu_eqs_special_exit();
318 }
2625d469
PM
319}
320
321/*
322 * Reset the current CPU's ->dynticks counter to indicate that the
323 * newly onlined CPU is no longer in an extended quiescent state.
324 * This will either leave the counter unchanged, or increment it
325 * to the next non-quiescent value.
326 *
327 * The non-atomic test/increment sequence works because the upper bits
328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
329 * or when the corresponding CPU is offline.
330 */
331static void rcu_dynticks_eqs_online(void)
332{
333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
334
b8c17e66 335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 336 return;
b8c17e66 337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
338}
339
02a5c550
PM
340/*
341 * Is the current CPU in an extended quiescent state?
342 *
343 * No ordering, as we are sampling CPU-local information.
344 */
345bool rcu_dynticks_curr_cpu_in_eqs(void)
346{
347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
348
b8c17e66 349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
350}
351
8b2f63ab
PM
352/*
353 * Snapshot the ->dynticks counter with full ordering so as to allow
354 * stable comparison of this counter with past and future snapshots.
355 */
02a5c550 356int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
357{
358 int snap = atomic_add_return(0, &rdtp->dynticks);
359
b8c17e66 360 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
361}
362
02a5c550
PM
363/*
364 * Return true if the snapshot returned from rcu_dynticks_snap()
365 * indicates that RCU is in an extended quiescent state.
366 */
367static bool rcu_dynticks_in_eqs(int snap)
368{
b8c17e66 369 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
370}
371
372/*
373 * Return true if the CPU corresponding to the specified rcu_dynticks
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
376 */
377static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
378{
379 return snap != rcu_dynticks_snap(rdtp);
380}
381
6563de9d
PM
382/*
383 * Do a double-increment of the ->dynticks counter to emulate a
384 * momentary idle-CPU quiescent state.
385 */
386static void rcu_dynticks_momentary_idle(void)
387{
388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
390 &rdtp->dynticks);
6563de9d
PM
391
392 /* It is illegal to call this from idle state. */
b8c17e66 393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
394}
395
b8c17e66
PM
396/*
397 * Set the special (bottom) bit of the specified CPU so that it
398 * will take special action (such as flushing its TLB) on the
399 * next exit from an extended quiescent state. Returns true if
400 * the bit was successfully set, or false if the CPU was not in
401 * an extended quiescent state.
402 */
403bool rcu_eqs_special_set(int cpu)
404{
405 int old;
406 int new;
407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
408
409 do {
410 old = atomic_read(&rdtp->dynticks);
411 if (old & RCU_DYNTICK_CTRL_CTR)
412 return false;
413 new = old | RCU_DYNTICK_CTRL_MASK;
414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
415 return true;
6563de9d 416}
5cd37193 417
4a81e832
PM
418/*
419 * Let the RCU core know that this CPU has gone through the scheduler,
420 * which is a quiescent state. This is called when the need for a
421 * quiescent state is urgent, so we burn an atomic operation and full
422 * memory barriers to let the RCU core know about it, regardless of what
423 * this CPU might (or might not) do in the near future.
424 *
0f9be8ca 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
426 *
427 * The caller must have disabled interrupts.
4a81e832
PM
428 */
429static void rcu_momentary_dyntick_idle(void)
430{
0f9be8ca
PM
431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
432 rcu_dynticks_momentary_idle();
4a81e832
PM
433}
434
25502a6c
PM
435/*
436 * Note a context switch. This is a quiescent state for RCU-sched,
437 * and requires special handling for preemptible RCU.
46a5d164 438 * The caller must have disabled interrupts.
25502a6c 439 */
bcbfdd01 440void rcu_note_context_switch(bool preempt)
25502a6c 441{
bb73c52b 442 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 443 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 444 rcu_sched_qs();
5b72f964 445 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
446 /* Load rcu_urgent_qs before other flags. */
447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
448 goto out;
449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 451 rcu_momentary_dyntick_idle();
9226b10d 452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
453 if (!preempt)
454 rcu_note_voluntary_context_switch_lite(current);
9226b10d 455out:
f7f7bac9 456 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 457 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 458}
29ce8310 459EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 460
5cd37193 461/*
1925d196 462 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 465 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
466 * be none of them). Either way, do a lightweight quiescent state for
467 * all RCU flavors.
bb73c52b
BF
468 *
469 * The barrier() calls are redundant in the common case when this is
470 * called externally, but just in case this is called from within this
471 * file.
472 *
5cd37193
PM
473 */
474void rcu_all_qs(void)
475{
46a5d164
PM
476 unsigned long flags;
477
9226b10d
PM
478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
479 return;
480 preempt_disable();
481 /* Load rcu_urgent_qs before other flags. */
482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
483 preempt_enable();
484 return;
485 }
486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 487 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 489 local_irq_save(flags);
5cd37193 490 rcu_momentary_dyntick_idle();
46a5d164
PM
491 local_irq_restore(flags);
492 }
9226b10d 493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 494 rcu_sched_qs();
9577df9a 495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 496 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 497 preempt_enable();
5cd37193
PM
498}
499EXPORT_SYMBOL_GPL(rcu_all_qs);
500
17c7798b
PM
501#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
502static long blimit = DEFAULT_RCU_BLIMIT;
503#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504static long qhimark = DEFAULT_RCU_QHIMARK;
505#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
506static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 507
878d7439
ED
508module_param(blimit, long, 0444);
509module_param(qhimark, long, 0444);
510module_param(qlowmark, long, 0444);
3d76c082 511
026ad283
PM
512static ulong jiffies_till_first_fqs = ULONG_MAX;
513static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 514static bool rcu_kick_kthreads;
d40011f6
PM
515
516module_param(jiffies_till_first_fqs, ulong, 0644);
517module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 518module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 519
4a81e832
PM
520/*
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
523 */
f79c3ad6
PM
524static ulong jiffies_till_sched_qs = HZ / 10;
525module_param(jiffies_till_sched_qs, ulong, 0444);
4a81e832 526
48a7639c 527static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 528 struct rcu_data *rdp);
fe5ac724 529static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 530static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 531static int rcu_pending(void);
64db4cff
PM
532
533/*
917963d0 534 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 535 */
917963d0
PM
536unsigned long rcu_batches_started(void)
537{
538 return rcu_state_p->gpnum;
539}
540EXPORT_SYMBOL_GPL(rcu_batches_started);
541
542/*
543 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 544 */
917963d0
PM
545unsigned long rcu_batches_started_sched(void)
546{
547 return rcu_sched_state.gpnum;
548}
549EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
550
551/*
552 * Return the number of RCU BH batches started thus far for debug & stats.
553 */
554unsigned long rcu_batches_started_bh(void)
555{
556 return rcu_bh_state.gpnum;
557}
558EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
559
560/*
561 * Return the number of RCU batches completed thus far for debug & stats.
562 */
563unsigned long rcu_batches_completed(void)
564{
565 return rcu_state_p->completed;
566}
567EXPORT_SYMBOL_GPL(rcu_batches_completed);
568
569/*
570 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 571 */
9733e4f0 572unsigned long rcu_batches_completed_sched(void)
64db4cff 573{
d6714c22 574 return rcu_sched_state.completed;
64db4cff 575}
d6714c22 576EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
577
578/*
917963d0 579 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 580 */
9733e4f0 581unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
582{
583 return rcu_bh_state.completed;
584}
585EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
586
291783b8
PM
587/*
588 * Return the number of RCU expedited batches completed thus far for
589 * debug & stats. Odd numbers mean that a batch is in progress, even
590 * numbers mean idle. The value returned will thus be roughly double
591 * the cumulative batches since boot.
592 */
593unsigned long rcu_exp_batches_completed(void)
594{
595 return rcu_state_p->expedited_sequence;
596}
597EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
598
599/*
600 * Return the number of RCU-sched expedited batches completed thus far
601 * for debug & stats. Similar to rcu_exp_batches_completed().
602 */
603unsigned long rcu_exp_batches_completed_sched(void)
604{
605 return rcu_sched_state.expedited_sequence;
606}
607EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
608
a381d757
ACB
609/*
610 * Force a quiescent state.
611 */
612void rcu_force_quiescent_state(void)
613{
e534165b 614 force_quiescent_state(rcu_state_p);
a381d757
ACB
615}
616EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
617
bf66f18e
PM
618/*
619 * Force a quiescent state for RCU BH.
620 */
621void rcu_bh_force_quiescent_state(void)
622{
4cdfc175 623 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
624}
625EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
626
e7580f33
PM
627/*
628 * Force a quiescent state for RCU-sched.
629 */
630void rcu_sched_force_quiescent_state(void)
631{
632 force_quiescent_state(&rcu_sched_state);
633}
634EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
635
afea227f
PM
636/*
637 * Show the state of the grace-period kthreads.
638 */
639void show_rcu_gp_kthreads(void)
640{
641 struct rcu_state *rsp;
642
643 for_each_rcu_flavor(rsp) {
644 pr_info("%s: wait state: %d ->state: %#lx\n",
645 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
646 /* sched_show_task(rsp->gp_kthread); */
647 }
648}
649EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
650
4a298656
PM
651/*
652 * Record the number of times rcutorture tests have been initiated and
653 * terminated. This information allows the debugfs tracing stats to be
654 * correlated to the rcutorture messages, even when the rcutorture module
655 * is being repeatedly loaded and unloaded. In other words, we cannot
656 * store this state in rcutorture itself.
657 */
658void rcutorture_record_test_transition(void)
659{
660 rcutorture_testseq++;
661 rcutorture_vernum = 0;
662}
663EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
664
ad0dc7f9
PM
665/*
666 * Send along grace-period-related data for rcutorture diagnostics.
667 */
668void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 unsigned long *gpnum, unsigned long *completed)
670{
671 struct rcu_state *rsp = NULL;
672
673 switch (test_type) {
674 case RCU_FLAVOR:
e534165b 675 rsp = rcu_state_p;
ad0dc7f9
PM
676 break;
677 case RCU_BH_FLAVOR:
678 rsp = &rcu_bh_state;
679 break;
680 case RCU_SCHED_FLAVOR:
681 rsp = &rcu_sched_state;
682 break;
683 default:
684 break;
685 }
7f6733c3 686 if (rsp == NULL)
ad0dc7f9 687 return;
7f6733c3
PM
688 *flags = READ_ONCE(rsp->gp_flags);
689 *gpnum = READ_ONCE(rsp->gpnum);
690 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
691}
692EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
693
4a298656
PM
694/*
695 * Record the number of writer passes through the current rcutorture test.
696 * This is also used to correlate debugfs tracing stats with the rcutorture
697 * messages.
698 */
699void rcutorture_record_progress(unsigned long vernum)
700{
701 rcutorture_vernum++;
702}
703EXPORT_SYMBOL_GPL(rcutorture_record_progress);
704
365187fb
PM
705/*
706 * Return the root node of the specified rcu_state structure.
707 */
708static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
709{
710 return &rsp->node[0];
711}
712
713/*
714 * Is there any need for future grace periods?
715 * Interrupts must be disabled. If the caller does not hold the root
716 * rnp_node structure's ->lock, the results are advisory only.
717 */
718static int rcu_future_needs_gp(struct rcu_state *rsp)
719{
720 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 721 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
722 int *fp = &rnp->need_future_gp[idx];
723
b04db8e1 724 lockdep_assert_irqs_disabled();
7d0ae808 725 return READ_ONCE(*fp);
365187fb
PM
726}
727
64db4cff 728/*
dc35c893
PM
729 * Does the current CPU require a not-yet-started grace period?
730 * The caller must have disabled interrupts to prevent races with
731 * normal callback registry.
64db4cff 732 */
d117c8aa 733static bool
64db4cff
PM
734cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
735{
b04db8e1 736 lockdep_assert_irqs_disabled();
dc35c893 737 if (rcu_gp_in_progress(rsp))
d117c8aa 738 return false; /* No, a grace period is already in progress. */
365187fb 739 if (rcu_future_needs_gp(rsp))
d117c8aa 740 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 741 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 742 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 743 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 744 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
745 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
746 READ_ONCE(rsp->completed)))
747 return true; /* Yes, CBs for future grace period. */
d117c8aa 748 return false; /* No grace period needed. */
64db4cff
PM
749}
750
9b2e4f18 751/*
215bba9f
PM
752 * Enter an RCU extended quiescent state, which can be either the
753 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 754 *
215bba9f
PM
755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
756 * the possibility of usermode upcalls having messed up our count
757 * of interrupt nesting level during the prior busy period.
9b2e4f18 758 */
215bba9f 759static void rcu_eqs_enter(bool user)
9b2e4f18 760{
96d3fd0d
PM
761 struct rcu_state *rsp;
762 struct rcu_data *rdp;
215bba9f 763 struct rcu_dynticks *rdtp;
96d3fd0d 764
215bba9f
PM
765 rdtp = this_cpu_ptr(&rcu_dynticks);
766 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
767 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
768 rdtp->dynticks_nesting == 0);
769 if (rdtp->dynticks_nesting != 1) {
770 rdtp->dynticks_nesting--;
771 return;
9b2e4f18 772 }
96d3fd0d 773
b04db8e1 774 lockdep_assert_irqs_disabled();
dec98900 775 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
e68bbb26 776 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
96d3fd0d
PM
777 for_each_rcu_flavor(rsp) {
778 rdp = this_cpu_ptr(rsp->rda);
779 do_nocb_deferred_wakeup(rdp);
780 }
198bbf81 781 rcu_prepare_for_idle();
2342172f 782 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 783 rcu_dynticks_eqs_enter();
176f8f7a 784 rcu_dynticks_task_enter();
64db4cff 785}
adf5091e
FW
786
787/**
788 * rcu_idle_enter - inform RCU that current CPU is entering idle
789 *
790 * Enter idle mode, in other words, -leave- the mode in which RCU
791 * read-side critical sections can occur. (Though RCU read-side
792 * critical sections can occur in irq handlers in idle, a possibility
793 * handled by irq_enter() and irq_exit().)
794 *
c0da313e
PM
795 * If you add or remove a call to rcu_idle_enter(), be sure to test with
796 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
797 */
798void rcu_idle_enter(void)
799{
b04db8e1 800 lockdep_assert_irqs_disabled();
cb349ca9 801 rcu_eqs_enter(false);
adf5091e 802}
64db4cff 803
d1ec4c34 804#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
805/**
806 * rcu_user_enter - inform RCU that we are resuming userspace.
807 *
808 * Enter RCU idle mode right before resuming userspace. No use of RCU
809 * is permitted between this call and rcu_user_exit(). This way the
810 * CPU doesn't need to maintain the tick for RCU maintenance purposes
811 * when the CPU runs in userspace.
c0da313e
PM
812 *
813 * If you add or remove a call to rcu_user_enter(), be sure to test with
814 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
815 */
816void rcu_user_enter(void)
817{
b04db8e1 818 lockdep_assert_irqs_disabled();
d4db30af 819 rcu_eqs_enter(true);
adf5091e 820}
d1ec4c34 821#endif /* CONFIG_NO_HZ_FULL */
19dd1591 822
fd581a91
PM
823/**
824 * rcu_nmi_exit - inform RCU of exit from NMI context
825 *
826 * If we are returning from the outermost NMI handler that interrupted an
827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
828 * to let the RCU grace-period handling know that the CPU is back to
829 * being RCU-idle.
830 *
831 * If you add or remove a call to rcu_nmi_exit(), be sure to test
832 * with CONFIG_RCU_EQS_DEBUG=y.
833 */
834void rcu_nmi_exit(void)
835{
836 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
837
838 /*
839 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
840 * (We are exiting an NMI handler, so RCU better be paying attention
841 * to us!)
842 */
843 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
844 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
845
846 /*
847 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
848 * leave it in non-RCU-idle state.
849 */
850 if (rdtp->dynticks_nmi_nesting != 1) {
dec98900 851 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
fd581a91
PM
852 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
853 rdtp->dynticks_nmi_nesting - 2);
854 return;
855 }
856
857 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dec98900 858 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
fd581a91
PM
859 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
860 rcu_dynticks_eqs_enter();
861}
862
9b2e4f18
PM
863/**
864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
865 *
866 * Exit from an interrupt handler, which might possibly result in entering
867 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 868 * sections can occur. The caller must have disabled interrupts.
64db4cff 869 *
9b2e4f18
PM
870 * This code assumes that the idle loop never does anything that might
871 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
872 * architecture's idle loop violates this assumption, RCU will give you what
873 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
874 *
875 * Use things like work queues to work around this limitation.
876 *
877 * You have been warned.
c0da313e
PM
878 *
879 * If you add or remove a call to rcu_irq_exit(), be sure to test with
880 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 881 */
9b2e4f18 882void rcu_irq_exit(void)
64db4cff 883{
58721f5d 884 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 885
b04db8e1 886 lockdep_assert_irqs_disabled();
58721f5d
PM
887 if (rdtp->dynticks_nmi_nesting == 1)
888 rcu_prepare_for_idle();
889 rcu_nmi_exit();
890 if (rdtp->dynticks_nmi_nesting == 0)
891 rcu_dynticks_task_enter();
7c9906ca
PM
892}
893
894/*
895 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
896 *
897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
898 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
899 */
900void rcu_irq_exit_irqson(void)
901{
902 unsigned long flags;
903
904 local_irq_save(flags);
905 rcu_irq_exit();
9b2e4f18
PM
906 local_irq_restore(flags);
907}
908
adf5091e
FW
909/*
910 * Exit an RCU extended quiescent state, which can be either the
911 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
912 *
913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
914 * allow for the possibility of usermode upcalls messing up our count of
915 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 916 */
adf5091e 917static void rcu_eqs_exit(bool user)
9b2e4f18 918{
9b2e4f18 919 struct rcu_dynticks *rdtp;
84585aa8 920 long oldval;
9b2e4f18 921
b04db8e1 922 lockdep_assert_irqs_disabled();
c9d4b0af 923 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 924 oldval = rdtp->dynticks_nesting;
1ce46ee5 925 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30
PM
926 if (oldval) {
927 rdtp->dynticks_nesting++;
9dd238e2 928 return;
3a592405 929 }
9dd238e2
PM
930 rcu_dynticks_task_exit();
931 rcu_dynticks_eqs_exit();
932 rcu_cleanup_after_idle();
933 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
e68bbb26 934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
9dd238e2
PM
935 WRITE_ONCE(rdtp->dynticks_nesting, 1);
936 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 937}
adf5091e
FW
938
939/**
940 * rcu_idle_exit - inform RCU that current CPU is leaving idle
941 *
942 * Exit idle mode, in other words, -enter- the mode in which RCU
943 * read-side critical sections can occur.
944 *
c0da313e
PM
945 * If you add or remove a call to rcu_idle_exit(), be sure to test with
946 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
947 */
948void rcu_idle_exit(void)
949{
c5d900bf
FW
950 unsigned long flags;
951
952 local_irq_save(flags);
cb349ca9 953 rcu_eqs_exit(false);
c5d900bf 954 local_irq_restore(flags);
adf5091e 955}
9b2e4f18 956
d1ec4c34 957#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
958/**
959 * rcu_user_exit - inform RCU that we are exiting userspace.
960 *
961 * Exit RCU idle mode while entering the kernel because it can
962 * run a RCU read side critical section anytime.
c0da313e
PM
963 *
964 * If you add or remove a call to rcu_user_exit(), be sure to test with
965 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
966 */
967void rcu_user_exit(void)
968{
91d1aa43 969 rcu_eqs_exit(1);
adf5091e 970}
d1ec4c34 971#endif /* CONFIG_NO_HZ_FULL */
19dd1591 972
64db4cff
PM
973/**
974 * rcu_nmi_enter - inform RCU of entry to NMI context
975 *
734d1680
PM
976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
978 * that the CPU is active. This implementation permits nested NMIs, as
979 * long as the nesting level does not overflow an int. (You will probably
980 * run out of stack space first.)
c0da313e
PM
981 *
982 * If you add or remove a call to rcu_nmi_enter(), be sure to test
983 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff
PM
984 */
985void rcu_nmi_enter(void)
986{
c9d4b0af 987 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
84585aa8 988 long incby = 2;
64db4cff 989
734d1680
PM
990 /* Complain about underflow. */
991 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
992
993 /*
994 * If idle from RCU viewpoint, atomically increment ->dynticks
995 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
996 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
997 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
998 * to be in the outermost NMI handler that interrupted an RCU-idle
999 * period (observation due to Andy Lutomirski).
1000 */
02a5c550 1001 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1002 rcu_dynticks_eqs_exit();
734d1680
PM
1003 incby = 1;
1004 }
bd2b879a
PM
1005 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1006 rdtp->dynticks_nmi_nesting,
dec98900 1007 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
fd581a91
PM
1008 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1009 rdtp->dynticks_nmi_nesting + incby);
734d1680 1010 barrier();
64db4cff
PM
1011}
1012
1013/**
9b2e4f18 1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 1015 *
9b2e4f18
PM
1016 * Enter an interrupt handler, which might possibly result in exiting
1017 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1018 * sections can occur. The caller must have disabled interrupts.
c0da313e 1019 *
9b2e4f18 1020 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
1021 * handler that it never exits, for example when doing upcalls to user mode!
1022 * This code assumes that the idle loop never does upcalls to user mode.
1023 * If your architecture's idle loop does do upcalls to user mode (or does
1024 * anything else that results in unbalanced calls to the irq_enter() and
1025 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026 * But very infrequently and irreproducibly.
9b2e4f18
PM
1027 *
1028 * Use things like work queues to work around this limitation.
1029 *
1030 * You have been warned.
c0da313e
PM
1031 *
1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 1034 */
9b2e4f18 1035void rcu_irq_enter(void)
64db4cff 1036{
c9d4b0af 1037 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1038
b04db8e1 1039 lockdep_assert_irqs_disabled();
58721f5d
PM
1040 if (rdtp->dynticks_nmi_nesting == 0)
1041 rcu_dynticks_task_exit();
1042 rcu_nmi_enter();
1043 if (rdtp->dynticks_nmi_nesting == 1)
1044 rcu_cleanup_after_idle();
7c9906ca 1045}
734d1680 1046
7c9906ca
PM
1047/*
1048 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
1049 *
1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
1052 */
1053void rcu_irq_enter_irqson(void)
1054{
1055 unsigned long flags;
734d1680 1056
7c9906ca
PM
1057 local_irq_save(flags);
1058 rcu_irq_enter();
64db4cff 1059 local_irq_restore(flags);
64db4cff
PM
1060}
1061
5c173eb8
PM
1062/**
1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1064 *
791875d1
PM
1065 * Return true if RCU is watching the running CPU, which means that this
1066 * CPU can safely enter RCU read-side critical sections. In other words,
1067 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 1068 * or NMI handler, return true.
64db4cff 1069 */
9418fb20 1070bool notrace rcu_is_watching(void)
64db4cff 1071{
f534ed1f 1072 bool ret;
34240697 1073
46f00d18 1074 preempt_disable_notrace();
791875d1 1075 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1076 preempt_enable_notrace();
34240697 1077 return ret;
64db4cff 1078}
5c173eb8 1079EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1080
bcbfdd01
PM
1081/*
1082 * If a holdout task is actually running, request an urgent quiescent
1083 * state from its CPU. This is unsynchronized, so migrations can cause
1084 * the request to go to the wrong CPU. Which is OK, all that will happen
1085 * is that the CPU's next context switch will be a bit slower and next
1086 * time around this task will generate another request.
1087 */
1088void rcu_request_urgent_qs_task(struct task_struct *t)
1089{
1090 int cpu;
1091
1092 barrier();
1093 cpu = task_cpu(t);
1094 if (!task_curr(t))
1095 return; /* This task is not running on that CPU. */
1096 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1097}
1098
62fde6ed 1099#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1100
1101/*
1102 * Is the current CPU online? Disable preemption to avoid false positives
1103 * that could otherwise happen due to the current CPU number being sampled,
1104 * this task being preempted, its old CPU being taken offline, resuming
1105 * on some other CPU, then determining that its old CPU is now offline.
1106 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1107 * the check for rcu_scheduler_fully_active. Note also that it is OK
1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1110 * offline to continue to use RCU for one jiffy after marking itself
1111 * offline in the cpu_online_mask. This leniency is necessary given the
1112 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1113 * the fact that a CPU enters the scheduler after completing the teardown
1114 * of the CPU.
2036d94a 1115 *
4df83742
TG
1116 * This is also why RCU internally marks CPUs online during in the
1117 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1118 *
1119 * Disable checking if in an NMI handler because we cannot safely report
1120 * errors from NMI handlers anyway.
1121 */
1122bool rcu_lockdep_current_cpu_online(void)
1123{
2036d94a
PM
1124 struct rcu_data *rdp;
1125 struct rcu_node *rnp;
c0d6d01b
PM
1126 bool ret;
1127
1128 if (in_nmi())
f6f7ee9a 1129 return true;
c0d6d01b 1130 preempt_disable();
c9d4b0af 1131 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1132 rnp = rdp->mynode;
0aa04b05 1133 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1134 !rcu_scheduler_fully_active;
1135 preempt_enable();
1136 return ret;
1137}
1138EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1139
62fde6ed 1140#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1141
64db4cff 1142/**
9b2e4f18 1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1144 *
9b2e4f18
PM
1145 * If the current CPU is idle or running at a first-level (not nested)
1146 * interrupt from idle, return true. The caller must have at least
1147 * disabled preemption.
64db4cff 1148 */
62e3cb14 1149static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1150{
51a1fd30
PM
1151 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1152 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
64db4cff
PM
1153}
1154
9b9500da
PM
1155/*
1156 * We are reporting a quiescent state on behalf of some other CPU, so
1157 * it is our responsibility to check for and handle potential overflow
1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159 * After all, the CPU might be in deep idle state, and thus executing no
1160 * code whatsoever.
1161 */
1162static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1163{
a32e01ee 1164 raw_lockdep_assert_held_rcu_node(rnp);
9b9500da
PM
1165 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1166 WRITE_ONCE(rdp->gpwrap, true);
1167 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1168 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1169}
1170
64db4cff
PM
1171/*
1172 * Snapshot the specified CPU's dynticks counter so that we can later
1173 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1174 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1175 */
fe5ac724 1176static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1177{
8b2f63ab 1178 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1179 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1180 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
9b9500da 1181 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1182 return 1;
7941dbde 1183 }
23a9bacd 1184 return 0;
64db4cff
PM
1185}
1186
9b9500da
PM
1187/*
1188 * Handler for the irq_work request posted when a grace period has
1189 * gone on for too long, but not yet long enough for an RCU CPU
1190 * stall warning. Set state appropriately, but just complain if
1191 * there is unexpected state on entry.
1192 */
1193static void rcu_iw_handler(struct irq_work *iwp)
1194{
1195 struct rcu_data *rdp;
1196 struct rcu_node *rnp;
1197
1198 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1199 rnp = rdp->mynode;
1200 raw_spin_lock_rcu_node(rnp);
1201 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1202 rdp->rcu_iw_gpnum = rnp->gpnum;
1203 rdp->rcu_iw_pending = false;
1204 }
1205 raw_spin_unlock_rcu_node(rnp);
1206}
1207
64db4cff
PM
1208/*
1209 * Return true if the specified CPU has passed through a quiescent
1210 * state by virtue of being in or having passed through an dynticks
1211 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1212 * for this same CPU, or by virtue of having been offline.
64db4cff 1213 */
fe5ac724 1214static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1215{
3a19b46a 1216 unsigned long jtsq;
0f9be8ca 1217 bool *rnhqp;
9226b10d 1218 bool *ruqp;
9b9500da 1219 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1220
1221 /*
1222 * If the CPU passed through or entered a dynticks idle phase with
1223 * no active irq/NMI handlers, then we can safely pretend that the CPU
1224 * already acknowledged the request to pass through a quiescent
1225 * state. Either way, that CPU cannot possibly be in an RCU
1226 * read-side critical section that started before the beginning
1227 * of the current RCU grace period.
1228 */
02a5c550 1229 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1230 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff 1231 rdp->dynticks_fqs++;
9b9500da 1232 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1233 return 1;
1234 }
1235
a82dcc76 1236 /*
cee43939
PM
1237 * Has this CPU encountered a cond_resched() since the beginning
1238 * of the grace period? For this to be the case, the CPU has to
1239 * have noticed the current grace period. This might not be the
1240 * case for nohz_full CPUs looping in the kernel.
a82dcc76 1241 */
f79c3ad6 1242 jtsq = jiffies_till_sched_qs;
9226b10d 1243 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1244 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1245 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1246 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1247 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
9b9500da 1248 rcu_gpnum_ovf(rnp, rdp);
3a19b46a 1249 return 1;
f79c3ad6 1250 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
9226b10d
PM
1251 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252 smp_store_release(ruqp, true);
3a19b46a
PM
1253 }
1254
38d30b33
PM
1255 /* Check for the CPU being offline. */
1256 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1257 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76 1258 rdp->offline_fqs++;
9b9500da 1259 rcu_gpnum_ovf(rnp, rdp);
a82dcc76
PM
1260 return 1;
1261 }
65d798f0
PM
1262
1263 /*
4a81e832
PM
1264 * A CPU running for an extended time within the kernel can
1265 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1266 * even context-switching back and forth between a pair of
1267 * in-kernel CPU-bound tasks cannot advance grace periods.
1268 * So if the grace period is old enough, make the CPU pay attention.
1269 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1270 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1271 * bits can be lost, but they will be set again on the next
1272 * force-quiescent-state pass. So lost bit sets do not result
1273 * in incorrect behavior, merely in a grace period lasting
1274 * a few jiffies longer than it might otherwise. Because
1275 * there are at most four threads involved, and because the
1276 * updates are only once every few jiffies, the probability of
1277 * lossage (and thus of slight grace-period extension) is
1278 * quite low.
6193c76a 1279 */
0f9be8ca
PM
1280 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1281 if (!READ_ONCE(*rnhqp) &&
1282 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1283 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1284 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1285 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286 smp_store_release(ruqp, true);
f79c3ad6 1287 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
6193c76a
PM
1288 }
1289
28053bc7 1290 /*
9b9500da
PM
1291 * If more than halfway to RCU CPU stall-warning time, do a
1292 * resched_cpu() to try to loosen things up a bit. Also check to
1293 * see if the CPU is getting hammered with interrupts, but only
1294 * once per grace period, just to keep the IPIs down to a dull roar.
28053bc7 1295 */
9b9500da 1296 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
28053bc7 1297 resched_cpu(rdp->cpu);
9b9500da
PM
1298 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1299 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1300 (rnp->ffmask & rdp->grpmask)) {
1301 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1302 rdp->rcu_iw_pending = true;
1303 rdp->rcu_iw_gpnum = rnp->gpnum;
1304 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1305 }
1306 }
4914950a 1307
a82dcc76 1308 return 0;
64db4cff
PM
1309}
1310
64db4cff
PM
1311static void record_gp_stall_check_time(struct rcu_state *rsp)
1312{
cb1e78cf 1313 unsigned long j = jiffies;
6193c76a 1314 unsigned long j1;
26cdfedf
PM
1315
1316 rsp->gp_start = j;
1317 smp_wmb(); /* Record start time before stall time. */
6193c76a 1318 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1319 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1320 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1321 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1322}
1323
6b50e119
PM
1324/*
1325 * Convert a ->gp_state value to a character string.
1326 */
1327static const char *gp_state_getname(short gs)
1328{
1329 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1330 return "???";
1331 return gp_state_names[gs];
1332}
1333
fb81a44b
PM
1334/*
1335 * Complain about starvation of grace-period kthread.
1336 */
1337static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1338{
1339 unsigned long gpa;
1340 unsigned long j;
1341
1342 j = jiffies;
7d0ae808 1343 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1344 if (j - gpa > 2 * HZ) {
96036c43 1345 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
81e701e4 1346 rsp->name, j - gpa,
319362c9 1347 rsp->gpnum, rsp->completed,
6b50e119
PM
1348 rsp->gp_flags,
1349 gp_state_getname(rsp->gp_state), rsp->gp_state,
96036c43
PM
1350 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1351 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
86057b80 1352 if (rsp->gp_kthread) {
d07aee2c 1353 pr_err("RCU grace-period kthread stack dump:\n");
b1adb3e2 1354 sched_show_task(rsp->gp_kthread);
86057b80
PM
1355 wake_up_process(rsp->gp_kthread);
1356 }
b1adb3e2 1357 }
64db4cff
PM
1358}
1359
b637a328 1360/*
7aa92230
PM
1361 * Dump stacks of all tasks running on stalled CPUs. First try using
1362 * NMIs, but fall back to manual remote stack tracing on architectures
1363 * that don't support NMI-based stack dumps. The NMI-triggered stack
1364 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1365 */
1366static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1367{
1368 int cpu;
1369 unsigned long flags;
1370 struct rcu_node *rnp;
1371
1372 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1373 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1374 for_each_leaf_node_possible_cpu(rnp, cpu)
1375 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1376 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1377 dump_cpu_task(cpu);
67c583a7 1378 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1379 }
1380}
1381
8c7c4829
PM
1382/*
1383 * If too much time has passed in the current grace period, and if
1384 * so configured, go kick the relevant kthreads.
1385 */
1386static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1387{
1388 unsigned long j;
1389
1390 if (!rcu_kick_kthreads)
1391 return;
1392 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1393 if (time_after(jiffies, j) && rsp->gp_kthread &&
1394 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1395 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1396 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1397 wake_up_process(rsp->gp_kthread);
1398 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1399 }
1400}
1401
088e9d25
DBO
1402static inline void panic_on_rcu_stall(void)
1403{
1404 if (sysctl_panic_on_rcu_stall)
1405 panic("RCU Stall\n");
1406}
1407
6ccd2ecd 1408static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1409{
1410 int cpu;
1411 long delta;
1412 unsigned long flags;
6ccd2ecd
PM
1413 unsigned long gpa;
1414 unsigned long j;
285fe294 1415 int ndetected = 0;
64db4cff 1416 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1417 long totqlen = 0;
64db4cff 1418
8c7c4829
PM
1419 /* Kick and suppress, if so configured. */
1420 rcu_stall_kick_kthreads(rsp);
1421 if (rcu_cpu_stall_suppress)
1422 return;
1423
64db4cff
PM
1424 /* Only let one CPU complain about others per time interval. */
1425
6cf10081 1426 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1427 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1428 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1429 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1430 return;
1431 }
7d0ae808
PM
1432 WRITE_ONCE(rsp->jiffies_stall,
1433 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1434 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1435
8cdd32a9
PM
1436 /*
1437 * OK, time to rat on our buddy...
1438 * See Documentation/RCU/stallwarn.txt for info on how to debug
1439 * RCU CPU stall warnings.
1440 */
d7f3e207 1441 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1442 rsp->name);
a858af28 1443 print_cpu_stall_info_begin();
a0b6c9a7 1444 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1445 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1446 ndetected += rcu_print_task_stall(rnp);
c8020a67 1447 if (rnp->qsmask != 0) {
bc75e999
MR
1448 for_each_leaf_node_possible_cpu(rnp, cpu)
1449 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1450 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1451 ndetected++;
1452 }
1453 }
67c583a7 1454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1455 }
a858af28 1456
a858af28 1457 print_cpu_stall_info_end();
53bb857c 1458 for_each_possible_cpu(cpu)
15fecf89
PM
1459 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1460 cpu)->cblist);
83ebe63e 1461 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1462 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1463 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1464 if (ndetected) {
b637a328 1465 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1466
1467 /* Complain about tasks blocking the grace period. */
1468 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1469 } else {
7d0ae808
PM
1470 if (READ_ONCE(rsp->gpnum) != gpnum ||
1471 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1472 pr_err("INFO: Stall ended before state dump start\n");
1473 } else {
1474 j = jiffies;
7d0ae808 1475 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1476 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1477 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1478 jiffies_till_next_fqs,
1479 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1480 /* In this case, the current CPU might be at fault. */
1481 sched_show_task(current);
1482 }
1483 }
c1dc0b9c 1484
fb81a44b
PM
1485 rcu_check_gp_kthread_starvation(rsp);
1486
088e9d25
DBO
1487 panic_on_rcu_stall();
1488
4cdfc175 1489 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1490}
1491
1492static void print_cpu_stall(struct rcu_state *rsp)
1493{
53bb857c 1494 int cpu;
64db4cff 1495 unsigned long flags;
9b9500da 1496 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1497 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1498 long totqlen = 0;
64db4cff 1499
8c7c4829
PM
1500 /* Kick and suppress, if so configured. */
1501 rcu_stall_kick_kthreads(rsp);
1502 if (rcu_cpu_stall_suppress)
1503 return;
1504
8cdd32a9
PM
1505 /*
1506 * OK, time to rat on ourselves...
1507 * See Documentation/RCU/stallwarn.txt for info on how to debug
1508 * RCU CPU stall warnings.
1509 */
d7f3e207 1510 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28 1511 print_cpu_stall_info_begin();
9b9500da 1512 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
a858af28 1513 print_cpu_stall_info(rsp, smp_processor_id());
9b9500da 1514 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1515 print_cpu_stall_info_end();
53bb857c 1516 for_each_possible_cpu(cpu)
15fecf89
PM
1517 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1518 cpu)->cblist);
83ebe63e
PM
1519 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1520 jiffies - rsp->gp_start,
1521 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1522
1523 rcu_check_gp_kthread_starvation(rsp);
1524
bc1dce51 1525 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1526
6cf10081 1527 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1528 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1529 WRITE_ONCE(rsp->jiffies_stall,
1530 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1532
088e9d25
DBO
1533 panic_on_rcu_stall();
1534
b021fe3e
PZ
1535 /*
1536 * Attempt to revive the RCU machinery by forcing a context switch.
1537 *
1538 * A context switch would normally allow the RCU state machine to make
1539 * progress and it could be we're stuck in kernel space without context
1540 * switches for an entirely unreasonable amount of time.
1541 */
1542 resched_cpu(smp_processor_id());
64db4cff
PM
1543}
1544
1545static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1546{
26cdfedf
PM
1547 unsigned long completed;
1548 unsigned long gpnum;
1549 unsigned long gps;
bad6e139
PM
1550 unsigned long j;
1551 unsigned long js;
64db4cff
PM
1552 struct rcu_node *rnp;
1553
8c7c4829
PM
1554 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1555 !rcu_gp_in_progress(rsp))
c68de209 1556 return;
8c7c4829 1557 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1558 j = jiffies;
26cdfedf
PM
1559
1560 /*
1561 * Lots of memory barriers to reject false positives.
1562 *
1563 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1564 * then rsp->gp_start, and finally rsp->completed. These values
1565 * are updated in the opposite order with memory barriers (or
1566 * equivalent) during grace-period initialization and cleanup.
1567 * Now, a false positive can occur if we get an new value of
1568 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1569 * the memory barriers, the only way that this can happen is if one
1570 * grace period ends and another starts between these two fetches.
1571 * Detect this by comparing rsp->completed with the previous fetch
1572 * from rsp->gpnum.
1573 *
1574 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1575 * and rsp->gp_start suffice to forestall false positives.
1576 */
7d0ae808 1577 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1578 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1579 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1580 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1581 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1582 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1583 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1584 if (ULONG_CMP_GE(completed, gpnum) ||
1585 ULONG_CMP_LT(j, js) ||
1586 ULONG_CMP_GE(gps, js))
1587 return; /* No stall or GP completed since entering function. */
64db4cff 1588 rnp = rdp->mynode;
c96ea7cf 1589 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1590 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1591
1592 /* We haven't checked in, so go dump stack. */
1593 print_cpu_stall(rsp);
1594
bad6e139
PM
1595 } else if (rcu_gp_in_progress(rsp) &&
1596 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1597
bad6e139 1598 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1599 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1600 }
1601}
1602
53d84e00
PM
1603/**
1604 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1605 *
1606 * Set the stall-warning timeout way off into the future, thus preventing
1607 * any RCU CPU stall-warning messages from appearing in the current set of
1608 * RCU grace periods.
1609 *
1610 * The caller must disable hard irqs.
1611 */
1612void rcu_cpu_stall_reset(void)
1613{
6ce75a23
PM
1614 struct rcu_state *rsp;
1615
1616 for_each_rcu_flavor(rsp)
7d0ae808 1617 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1618}
1619
dc35c893
PM
1620/*
1621 * Determine the value that ->completed will have at the end of the
1622 * next subsequent grace period. This is used to tag callbacks so that
1623 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1624 * been dyntick-idle for an extended period with callbacks under the
1625 * influence of RCU_FAST_NO_HZ.
1626 *
1627 * The caller must hold rnp->lock with interrupts disabled.
1628 */
1629static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1630 struct rcu_node *rnp)
1631{
a32e01ee 1632 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1633
dc35c893
PM
1634 /*
1635 * If RCU is idle, we just wait for the next grace period.
1636 * But we can only be sure that RCU is idle if we are looking
1637 * at the root rcu_node structure -- otherwise, a new grace
1638 * period might have started, but just not yet gotten around
1639 * to initializing the current non-root rcu_node structure.
1640 */
1641 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1642 return rnp->completed + 1;
1643
1644 /*
1645 * Otherwise, wait for a possible partial grace period and
1646 * then the subsequent full grace period.
1647 */
1648 return rnp->completed + 2;
1649}
1650
0446be48
PM
1651/*
1652 * Trace-event helper function for rcu_start_future_gp() and
1653 * rcu_nocb_wait_gp().
1654 */
1655static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1656 unsigned long c, const char *s)
0446be48
PM
1657{
1658 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1659 rnp->completed, c, rnp->level,
1660 rnp->grplo, rnp->grphi, s);
1661}
1662
1663/*
1664 * Start some future grace period, as needed to handle newly arrived
1665 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1666 * rcu_node structure's ->need_future_gp field. Returns true if there
1667 * is reason to awaken the grace-period kthread.
0446be48
PM
1668 *
1669 * The caller must hold the specified rcu_node structure's ->lock.
1670 */
48a7639c
PM
1671static bool __maybe_unused
1672rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673 unsigned long *c_out)
0446be48
PM
1674{
1675 unsigned long c;
48a7639c 1676 bool ret = false;
0446be48
PM
1677 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1678
a32e01ee 1679 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1680
0446be48
PM
1681 /*
1682 * Pick up grace-period number for new callbacks. If this
1683 * grace period is already marked as needed, return to the caller.
1684 */
1685 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1686 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1687 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1688 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1689 goto out;
0446be48
PM
1690 }
1691
1692 /*
1693 * If either this rcu_node structure or the root rcu_node structure
1694 * believe that a grace period is in progress, then we must wait
1695 * for the one following, which is in "c". Because our request
1696 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1697 * need to explicitly start one. We only do the lockless check
1698 * of rnp_root's fields if the current rcu_node structure thinks
1699 * there is no grace period in flight, and because we hold rnp->lock,
1700 * the only possible change is when rnp_root's two fields are
1701 * equal, in which case rnp_root->gpnum might be concurrently
1702 * incremented. But that is OK, as it will just result in our
1703 * doing some extra useless work.
0446be48
PM
1704 */
1705 if (rnp->gpnum != rnp->completed ||
7d0ae808 1706 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1707 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1708 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1709 goto out;
0446be48
PM
1710 }
1711
1712 /*
1713 * There might be no grace period in progress. If we don't already
1714 * hold it, acquire the root rcu_node structure's lock in order to
1715 * start one (if needed).
1716 */
2a67e741
PZ
1717 if (rnp != rnp_root)
1718 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1719
1720 /*
1721 * Get a new grace-period number. If there really is no grace
1722 * period in progress, it will be smaller than the one we obtained
15fecf89 1723 * earlier. Adjust callbacks as needed.
0446be48
PM
1724 */
1725 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1726 if (!rcu_is_nocb_cpu(rdp->cpu))
1727 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1728
1729 /*
1730 * If the needed for the required grace period is already
1731 * recorded, trace and leave.
1732 */
1733 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1734 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1735 goto unlock_out;
1736 }
1737
1738 /* Record the need for the future grace period. */
1739 rnp_root->need_future_gp[c & 0x1]++;
1740
1741 /* If a grace period is not already in progress, start one. */
1742 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1743 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1744 } else {
f7f7bac9 1745 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1746 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1747 }
1748unlock_out:
1749 if (rnp != rnp_root)
67c583a7 1750 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1751out:
1752 if (c_out != NULL)
1753 *c_out = c;
1754 return ret;
0446be48
PM
1755}
1756
1757/*
1758 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1759 * whether any additional grace periods have been requested.
0446be48
PM
1760 */
1761static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1762{
1763 int c = rnp->completed;
1764 int needmore;
1765 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1766
0446be48
PM
1767 rnp->need_future_gp[c & 0x1] = 0;
1768 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1769 trace_rcu_future_gp(rnp, rdp, c,
1770 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1771 return needmore;
1772}
1773
48a7639c
PM
1774/*
1775 * Awaken the grace-period kthread for the specified flavor of RCU.
1776 * Don't do a self-awaken, and don't bother awakening when there is
1777 * nothing for the grace-period kthread to do (as in several CPUs
1778 * raced to awaken, and we lost), and finally don't try to awaken
1779 * a kthread that has not yet been created.
1780 */
1781static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1782{
1783 if (current == rsp->gp_kthread ||
7d0ae808 1784 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1785 !rsp->gp_kthread)
1786 return;
abedf8e2 1787 swake_up(&rsp->gp_wq);
48a7639c
PM
1788}
1789
dc35c893
PM
1790/*
1791 * If there is room, assign a ->completed number to any callbacks on
1792 * this CPU that have not already been assigned. Also accelerate any
1793 * callbacks that were previously assigned a ->completed number that has
1794 * since proven to be too conservative, which can happen if callbacks get
1795 * assigned a ->completed number while RCU is idle, but with reference to
1796 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1797 * not hurt to call it repeatedly. Returns an flag saying that we should
1798 * awaken the RCU grace-period kthread.
dc35c893
PM
1799 *
1800 * The caller must hold rnp->lock with interrupts disabled.
1801 */
48a7639c 1802static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1803 struct rcu_data *rdp)
1804{
15fecf89 1805 bool ret = false;
dc35c893 1806
a32e01ee 1807 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1808
15fecf89
PM
1809 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1810 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1811 return false;
dc35c893
PM
1812
1813 /*
15fecf89
PM
1814 * Callbacks are often registered with incomplete grace-period
1815 * information. Something about the fact that getting exact
1816 * information requires acquiring a global lock... RCU therefore
1817 * makes a conservative estimate of the grace period number at which
1818 * a given callback will become ready to invoke. The following
1819 * code checks this estimate and improves it when possible, thus
1820 * accelerating callback invocation to an earlier grace-period
1821 * number.
dc35c893 1822 */
15fecf89
PM
1823 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1824 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1825
1826 /* Trace depending on how much we were able to accelerate. */
15fecf89 1827 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1828 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1829 else
f7f7bac9 1830 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1831 return ret;
dc35c893
PM
1832}
1833
1834/*
1835 * Move any callbacks whose grace period has completed to the
1836 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1837 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1838 * sublist. This function is idempotent, so it does not hurt to
1839 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1840 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1841 *
1842 * The caller must hold rnp->lock with interrupts disabled.
1843 */
48a7639c 1844static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1845 struct rcu_data *rdp)
1846{
a32e01ee 1847 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1848
15fecf89
PM
1849 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1850 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1851 return false;
dc35c893
PM
1852
1853 /*
1854 * Find all callbacks whose ->completed numbers indicate that they
1855 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1856 */
15fecf89 1857 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1858
1859 /* Classify any remaining callbacks. */
48a7639c 1860 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1861}
1862
d09b62df 1863/*
ba9fbe95
PM
1864 * Update CPU-local rcu_data state to record the beginnings and ends of
1865 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1866 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1867 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1868 */
48a7639c
PM
1869static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1870 struct rcu_data *rdp)
d09b62df 1871{
48a7639c 1872 bool ret;
3563a438 1873 bool need_gp;
48a7639c 1874
a32e01ee 1875 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1876
ba9fbe95 1877 /* Handle the ends of any preceding grace periods first. */
e3663b10 1878 if (rdp->completed == rnp->completed &&
7d0ae808 1879 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1880
ba9fbe95 1881 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1882 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1883
dc35c893
PM
1884 } else {
1885
1886 /* Advance callbacks. */
48a7639c 1887 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1888
1889 /* Remember that we saw this grace-period completion. */
1890 rdp->completed = rnp->completed;
f7f7bac9 1891 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1892 }
398ebe60 1893
7d0ae808 1894 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1895 /*
1896 * If the current grace period is waiting for this CPU,
1897 * set up to detect a quiescent state, otherwise don't
1898 * go looking for one.
1899 */
1900 rdp->gpnum = rnp->gpnum;
f7f7bac9 1901 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1902 need_gp = !!(rnp->qsmask & rdp->grpmask);
1903 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1904 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1905 rdp->core_needs_qs = need_gp;
6eaef633 1906 zero_cpu_stall_ticks(rdp);
7d0ae808 1907 WRITE_ONCE(rdp->gpwrap, false);
9b9500da 1908 rcu_gpnum_ovf(rnp, rdp);
6eaef633 1909 }
48a7639c 1910 return ret;
6eaef633
PM
1911}
1912
d34ea322 1913static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1914{
1915 unsigned long flags;
48a7639c 1916 bool needwake;
6eaef633
PM
1917 struct rcu_node *rnp;
1918
1919 local_irq_save(flags);
1920 rnp = rdp->mynode;
7d0ae808
PM
1921 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1922 rdp->completed == READ_ONCE(rnp->completed) &&
1923 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1924 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1925 local_irq_restore(flags);
1926 return;
1927 }
48a7639c 1928 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1929 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1930 if (needwake)
1931 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1932}
1933
0f41c0dd
PM
1934static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1935{
1936 if (delay > 0 &&
1937 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1938 schedule_timeout_uninterruptible(delay);
1939}
1940
b3dbec76 1941/*
45fed3e7 1942 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1943 */
45fed3e7 1944static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1945{
0aa04b05 1946 unsigned long oldmask;
b3dbec76 1947 struct rcu_data *rdp;
7fdefc10 1948 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1949
7d0ae808 1950 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1951 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1952 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1953 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1954 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1955 return false;
f7be8209 1956 }
7d0ae808 1957 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1958
f7be8209
PM
1959 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1960 /*
1961 * Grace period already in progress, don't start another.
1962 * Not supposed to be able to happen.
1963 */
67c583a7 1964 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1965 return false;
7fdefc10
PM
1966 }
1967
7fdefc10 1968 /* Advance to a new grace period and initialize state. */
26cdfedf 1969 record_gp_stall_check_time(rsp);
765a3f4f
PM
1970 /* Record GP times before starting GP, hence smp_store_release(). */
1971 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1972 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1973 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1974
0aa04b05
PM
1975 /*
1976 * Apply per-leaf buffered online and offline operations to the
1977 * rcu_node tree. Note that this new grace period need not wait
1978 * for subsequent online CPUs, and that quiescent-state forcing
1979 * will handle subsequent offline CPUs.
1980 */
1981 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1982 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1983 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1984 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1985 !rnp->wait_blkd_tasks) {
1986 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1987 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
1988 continue;
1989 }
1990
1991 /* Record old state, apply changes to ->qsmaskinit field. */
1992 oldmask = rnp->qsmaskinit;
1993 rnp->qsmaskinit = rnp->qsmaskinitnext;
1994
1995 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1996 if (!oldmask != !rnp->qsmaskinit) {
1997 if (!oldmask) /* First online CPU for this rcu_node. */
1998 rcu_init_new_rnp(rnp);
1999 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2000 rnp->wait_blkd_tasks = true;
2001 else /* Last offline CPU and can propagate. */
2002 rcu_cleanup_dead_rnp(rnp);
2003 }
2004
2005 /*
2006 * If all waited-on tasks from prior grace period are
2007 * done, and if all this rcu_node structure's CPUs are
2008 * still offline, propagate up the rcu_node tree and
2009 * clear ->wait_blkd_tasks. Otherwise, if one of this
2010 * rcu_node structure's CPUs has since come back online,
2011 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2012 * checks for this, so just call it unconditionally).
2013 */
2014 if (rnp->wait_blkd_tasks &&
2015 (!rcu_preempt_has_tasks(rnp) ||
2016 rnp->qsmaskinit)) {
2017 rnp->wait_blkd_tasks = false;
2018 rcu_cleanup_dead_rnp(rnp);
2019 }
2020
67c583a7 2021 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2022 }
7fdefc10
PM
2023
2024 /*
2025 * Set the quiescent-state-needed bits in all the rcu_node
2026 * structures for all currently online CPUs in breadth-first order,
2027 * starting from the root rcu_node structure, relying on the layout
2028 * of the tree within the rsp->node[] array. Note that other CPUs
2029 * will access only the leaves of the hierarchy, thus seeing that no
2030 * grace period is in progress, at least until the corresponding
590d1757 2031 * leaf node has been initialized.
7fdefc10
PM
2032 *
2033 * The grace period cannot complete until the initialization
2034 * process finishes, because this kthread handles both.
2035 */
2036 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2037 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2038 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2039 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2040 rcu_preempt_check_blocked_tasks(rnp);
2041 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2042 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2043 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2044 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2045 if (rnp == rdp->mynode)
48a7639c 2046 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2047 rcu_preempt_boost_start_gp(rnp);
2048 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2049 rnp->level, rnp->grplo,
2050 rnp->grphi, rnp->qsmask);
67c583a7 2051 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 2052 cond_resched_tasks_rcu_qs();
7d0ae808 2053 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2054 }
b3dbec76 2055
45fed3e7 2056 return true;
7fdefc10 2057}
b3dbec76 2058
b9a425cf 2059/*
d5374226
LR
2060 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2061 * time.
b9a425cf
PM
2062 */
2063static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2064{
2065 struct rcu_node *rnp = rcu_get_root(rsp);
2066
2067 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2068 *gfp = READ_ONCE(rsp->gp_flags);
2069 if (*gfp & RCU_GP_FLAG_FQS)
2070 return true;
2071
2072 /* The current grace period has completed. */
2073 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2074 return true;
2075
2076 return false;
2077}
2078
4cdfc175
PM
2079/*
2080 * Do one round of quiescent-state forcing.
2081 */
77f81fe0 2082static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2083{
4cdfc175
PM
2084 struct rcu_node *rnp = rcu_get_root(rsp);
2085
7d0ae808 2086 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2087 rsp->n_force_qs++;
77f81fe0 2088 if (first_time) {
4cdfc175 2089 /* Collect dyntick-idle snapshots. */
fe5ac724 2090 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2091 } else {
2092 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2093 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2094 }
2095 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2096 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2097 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2098 WRITE_ONCE(rsp->gp_flags,
2099 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2100 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2101 }
4cdfc175
PM
2102}
2103
7fdefc10
PM
2104/*
2105 * Clean up after the old grace period.
2106 */
4cdfc175 2107static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2108{
2109 unsigned long gp_duration;
48a7639c 2110 bool needgp = false;
dae6e64d 2111 int nocb = 0;
7fdefc10
PM
2112 struct rcu_data *rdp;
2113 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2114 struct swait_queue_head *sq;
b3dbec76 2115
7d0ae808 2116 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2117 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2118 gp_duration = jiffies - rsp->gp_start;
2119 if (gp_duration > rsp->gp_max)
2120 rsp->gp_max = gp_duration;
b3dbec76 2121
7fdefc10
PM
2122 /*
2123 * We know the grace period is complete, but to everyone else
2124 * it appears to still be ongoing. But it is also the case
2125 * that to everyone else it looks like there is nothing that
2126 * they can do to advance the grace period. It is therefore
2127 * safe for us to drop the lock in order to mark the grace
2128 * period as completed in all of the rcu_node structures.
7fdefc10 2129 */
67c583a7 2130 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2131
5d4b8659
PM
2132 /*
2133 * Propagate new ->completed value to rcu_node structures so
2134 * that other CPUs don't have to wait until the start of the next
2135 * grace period to process their callbacks. This also avoids
2136 * some nasty RCU grace-period initialization races by forcing
2137 * the end of the current grace period to be completely recorded in
2138 * all of the rcu_node structures before the beginning of the next
2139 * grace period is recorded in any of the rcu_node structures.
2140 */
2141 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2142 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2143 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2144 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2145 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2146 rdp = this_cpu_ptr(rsp->rda);
2147 if (rnp == rdp->mynode)
48a7639c 2148 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2149 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2150 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2151 sq = rcu_nocb_gp_get(rnp);
67c583a7 2152 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2153 rcu_nocb_gp_cleanup(sq);
cee43939 2154 cond_resched_tasks_rcu_qs();
7d0ae808 2155 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2156 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2157 }
5d4b8659 2158 rnp = rcu_get_root(rsp);
2a67e741 2159 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2160 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2161
765a3f4f 2162 /* Declare grace period done. */
7d0ae808 2163 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2164 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2165 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2166 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2167 /* Advance CBs to reduce false positives below. */
2168 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2169 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2170 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2171 trace_rcu_grace_period(rsp->name,
7d0ae808 2172 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2173 TPS("newreq"));
2174 }
67c583a7 2175 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2176}
2177
2178/*
2179 * Body of kthread that handles grace periods.
2180 */
2181static int __noreturn rcu_gp_kthread(void *arg)
2182{
77f81fe0 2183 bool first_gp_fqs;
88d6df61 2184 int gf;
d40011f6 2185 unsigned long j;
4cdfc175 2186 int ret;
7fdefc10
PM
2187 struct rcu_state *rsp = arg;
2188 struct rcu_node *rnp = rcu_get_root(rsp);
2189
5871968d 2190 rcu_bind_gp_kthread();
7fdefc10
PM
2191 for (;;) {
2192
2193 /* Handle grace-period start. */
2194 for (;;) {
63c4db78 2195 trace_rcu_grace_period(rsp->name,
7d0ae808 2196 READ_ONCE(rsp->gpnum),
63c4db78 2197 TPS("reqwait"));
afea227f 2198 rsp->gp_state = RCU_GP_WAIT_GPS;
d5374226
LR
2199 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2200 RCU_GP_FLAG_INIT);
319362c9 2201 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2202 /* Locking provides needed memory barrier. */
f7be8209 2203 if (rcu_gp_init(rsp))
7fdefc10 2204 break;
cee43939 2205 cond_resched_tasks_rcu_qs();
7d0ae808 2206 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2207 WARN_ON(signal_pending(current));
63c4db78 2208 trace_rcu_grace_period(rsp->name,
7d0ae808 2209 READ_ONCE(rsp->gpnum),
63c4db78 2210 TPS("reqwaitsig"));
7fdefc10 2211 }
cabc49c1 2212
4cdfc175 2213 /* Handle quiescent-state forcing. */
77f81fe0 2214 first_gp_fqs = true;
d40011f6
PM
2215 j = jiffies_till_first_fqs;
2216 if (j > HZ) {
2217 j = HZ;
2218 jiffies_till_first_fqs = HZ;
2219 }
88d6df61 2220 ret = 0;
cabc49c1 2221 for (;;) {
8c7c4829 2222 if (!ret) {
88d6df61 2223 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2224 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2225 jiffies + 3 * j);
2226 }
63c4db78 2227 trace_rcu_grace_period(rsp->name,
7d0ae808 2228 READ_ONCE(rsp->gpnum),
63c4db78 2229 TPS("fqswait"));
afea227f 2230 rsp->gp_state = RCU_GP_WAIT_FQS;
d5374226 2231 ret = swait_event_idle_timeout(rsp->gp_wq,
b9a425cf 2232 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2233 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2234 /* Locking provides needed memory barriers. */
4cdfc175 2235 /* If grace period done, leave loop. */
7d0ae808 2236 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2237 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2238 break;
4cdfc175 2239 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2240 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2241 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2242 trace_rcu_grace_period(rsp->name,
7d0ae808 2243 READ_ONCE(rsp->gpnum),
63c4db78 2244 TPS("fqsstart"));
77f81fe0
PM
2245 rcu_gp_fqs(rsp, first_gp_fqs);
2246 first_gp_fqs = false;
63c4db78 2247 trace_rcu_grace_period(rsp->name,
7d0ae808 2248 READ_ONCE(rsp->gpnum),
63c4db78 2249 TPS("fqsend"));
cee43939 2250 cond_resched_tasks_rcu_qs();
7d0ae808 2251 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2252 ret = 0; /* Force full wait till next FQS. */
2253 j = jiffies_till_next_fqs;
2254 if (j > HZ) {
2255 j = HZ;
2256 jiffies_till_next_fqs = HZ;
2257 } else if (j < 1) {
2258 j = 1;
2259 jiffies_till_next_fqs = 1;
2260 }
4cdfc175
PM
2261 } else {
2262 /* Deal with stray signal. */
cee43939 2263 cond_resched_tasks_rcu_qs();
7d0ae808 2264 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2265 WARN_ON(signal_pending(current));
63c4db78 2266 trace_rcu_grace_period(rsp->name,
7d0ae808 2267 READ_ONCE(rsp->gpnum),
63c4db78 2268 TPS("fqswaitsig"));
fcfd0a23
PM
2269 ret = 1; /* Keep old FQS timing. */
2270 j = jiffies;
2271 if (time_after(jiffies, rsp->jiffies_force_qs))
2272 j = 1;
2273 else
2274 j = rsp->jiffies_force_qs - j;
d40011f6 2275 }
cabc49c1 2276 }
4cdfc175
PM
2277
2278 /* Handle grace-period end. */
319362c9 2279 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2280 rcu_gp_cleanup(rsp);
319362c9 2281 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2282 }
b3dbec76
PM
2283}
2284
64db4cff
PM
2285/*
2286 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2287 * in preparation for detecting the next grace period. The caller must hold
b8462084 2288 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2289 *
2290 * Note that it is legal for a dying CPU (which is marked as offline) to
2291 * invoke this function. This can happen when the dying CPU reports its
2292 * quiescent state.
48a7639c
PM
2293 *
2294 * Returns true if the grace-period kthread must be awakened.
64db4cff 2295 */
48a7639c 2296static bool
910ee45d
PM
2297rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2298 struct rcu_data *rdp)
64db4cff 2299{
a32e01ee 2300 raw_lockdep_assert_held_rcu_node(rnp);
b8462084 2301 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2302 /*
b3dbec76 2303 * Either we have not yet spawned the grace-period
62da1921
PM
2304 * task, this CPU does not need another grace period,
2305 * or a grace period is already in progress.
b3dbec76 2306 * Either way, don't start a new grace period.
afe24b12 2307 */
48a7639c 2308 return false;
afe24b12 2309 }
7d0ae808
PM
2310 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2311 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2312 TPS("newreq"));
62da1921 2313
016a8d5b
SR
2314 /*
2315 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2316 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2317 * the wakeup to our caller.
016a8d5b 2318 */
48a7639c 2319 return true;
64db4cff
PM
2320}
2321
910ee45d
PM
2322/*
2323 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2324 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2325 * is invoked indirectly from rcu_advance_cbs(), which would result in
2326 * endless recursion -- or would do so if it wasn't for the self-deadlock
2327 * that is encountered beforehand.
48a7639c
PM
2328 *
2329 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2330 */
48a7639c 2331static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2332{
2333 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2334 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2335 bool ret = false;
910ee45d
PM
2336
2337 /*
2338 * If there is no grace period in progress right now, any
2339 * callbacks we have up to this point will be satisfied by the
2340 * next grace period. Also, advancing the callbacks reduces the
2341 * probability of false positives from cpu_needs_another_gp()
2342 * resulting in pointless grace periods. So, advance callbacks
2343 * then start the grace period!
2344 */
48a7639c
PM
2345 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2346 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2347 return ret;
910ee45d
PM
2348}
2349
f41d911f 2350/*
8994515c
PM
2351 * Report a full set of quiescent states to the specified rcu_state data
2352 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2353 * kthread if another grace period is required. Whether we wake
2354 * the grace-period kthread or it awakens itself for the next round
2355 * of quiescent-state forcing, that kthread will clean up after the
2356 * just-completed grace period. Note that the caller must hold rnp->lock,
2357 * which is released before return.
f41d911f 2358 */
d3f6bad3 2359static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2360 __releases(rcu_get_root(rsp)->lock)
f41d911f 2361{
a32e01ee 2362 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
fc2219d4 2363 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2364 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2365 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2366 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2367}
2368
64db4cff 2369/*
d3f6bad3
PM
2370 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2371 * Allows quiescent states for a group of CPUs to be reported at one go
2372 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2373 * must be represented by the same rcu_node structure (which need not be a
2374 * leaf rcu_node structure, though it often will be). The gps parameter
2375 * is the grace-period snapshot, which means that the quiescent states
2376 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2377 * must be held upon entry, and it is released before return.
64db4cff
PM
2378 */
2379static void
d3f6bad3 2380rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2381 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2382 __releases(rnp->lock)
2383{
654e9533 2384 unsigned long oldmask = 0;
28ecd580
PM
2385 struct rcu_node *rnp_c;
2386
a32e01ee 2387 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 2388
64db4cff
PM
2389 /* Walk up the rcu_node hierarchy. */
2390 for (;;) {
654e9533 2391 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2392
654e9533
PM
2393 /*
2394 * Our bit has already been cleared, or the
2395 * relevant grace period is already over, so done.
2396 */
67c583a7 2397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2398 return;
2399 }
654e9533 2400 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2dee9404
PM
2401 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2402 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2403 rnp->qsmask &= ~mask;
d4c08f2a
PM
2404 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2405 mask, rnp->qsmask, rnp->level,
2406 rnp->grplo, rnp->grphi,
2407 !!rnp->gp_tasks);
27f4d280 2408 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2409
2410 /* Other bits still set at this level, so done. */
67c583a7 2411 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2412 return;
2413 }
2414 mask = rnp->grpmask;
2415 if (rnp->parent == NULL) {
2416
2417 /* No more levels. Exit loop holding root lock. */
2418
2419 break;
2420 }
67c583a7 2421 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2422 rnp_c = rnp;
64db4cff 2423 rnp = rnp->parent;
2a67e741 2424 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2425 oldmask = rnp_c->qsmask;
64db4cff
PM
2426 }
2427
2428 /*
2429 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2430 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2431 * to clean up and start the next grace period if one is needed.
64db4cff 2432 */
d3f6bad3 2433 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2434}
2435
cc99a310
PM
2436/*
2437 * Record a quiescent state for all tasks that were previously queued
2438 * on the specified rcu_node structure and that were blocking the current
2439 * RCU grace period. The caller must hold the specified rnp->lock with
2440 * irqs disabled, and this lock is released upon return, but irqs remain
2441 * disabled.
2442 */
0aa04b05 2443static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2444 struct rcu_node *rnp, unsigned long flags)
2445 __releases(rnp->lock)
2446{
654e9533 2447 unsigned long gps;
cc99a310
PM
2448 unsigned long mask;
2449 struct rcu_node *rnp_p;
2450
a32e01ee 2451 raw_lockdep_assert_held_rcu_node(rnp);
a77da14c
PM
2452 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2453 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2455 return; /* Still need more quiescent states! */
2456 }
2457
2458 rnp_p = rnp->parent;
2459 if (rnp_p == NULL) {
2460 /*
a77da14c
PM
2461 * Only one rcu_node structure in the tree, so don't
2462 * try to report up to its nonexistent parent!
cc99a310
PM
2463 */
2464 rcu_report_qs_rsp(rsp, flags);
2465 return;
2466 }
2467
654e9533
PM
2468 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2469 gps = rnp->gpnum;
cc99a310 2470 mask = rnp->grpmask;
67c583a7 2471 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2472 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2473 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2474}
2475
64db4cff 2476/*
d3f6bad3 2477 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2478 * structure. This must be called from the specified CPU.
64db4cff
PM
2479 */
2480static void
d7d6a11e 2481rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2482{
2483 unsigned long flags;
2484 unsigned long mask;
48a7639c 2485 bool needwake;
64db4cff
PM
2486 struct rcu_node *rnp;
2487
2488 rnp = rdp->mynode;
2a67e741 2489 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2490 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2491 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2492
2493 /*
e4cc1f22
PM
2494 * The grace period in which this quiescent state was
2495 * recorded has ended, so don't report it upwards.
2496 * We will instead need a new quiescent state that lies
2497 * within the current grace period.
64db4cff 2498 */
5b74c458 2499 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2500 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2501 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2502 return;
2503 }
2504 mask = rdp->grpmask;
2505 if ((rnp->qsmask & mask) == 0) {
67c583a7 2506 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2507 } else {
bb53e416 2508 rdp->core_needs_qs = false;
64db4cff
PM
2509
2510 /*
2511 * This GP can't end until cpu checks in, so all of our
2512 * callbacks can be processed during the next GP.
2513 */
48a7639c 2514 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2515
654e9533
PM
2516 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2517 /* ^^^ Released rnp->lock */
48a7639c
PM
2518 if (needwake)
2519 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2520 }
2521}
2522
2523/*
2524 * Check to see if there is a new grace period of which this CPU
2525 * is not yet aware, and if so, set up local rcu_data state for it.
2526 * Otherwise, see if this CPU has just passed through its first
2527 * quiescent state for this grace period, and record that fact if so.
2528 */
2529static void
2530rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2531{
05eb552b
PM
2532 /* Check for grace-period ends and beginnings. */
2533 note_gp_changes(rsp, rdp);
64db4cff
PM
2534
2535 /*
2536 * Does this CPU still need to do its part for current grace period?
2537 * If no, return and let the other CPUs do their part as well.
2538 */
97c668b8 2539 if (!rdp->core_needs_qs)
64db4cff
PM
2540 return;
2541
2542 /*
2543 * Was there a quiescent state since the beginning of the grace
2544 * period? If no, then exit and wait for the next call.
2545 */
3a19b46a 2546 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2547 return;
2548
d3f6bad3
PM
2549 /*
2550 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2551 * judge of that).
2552 */
d7d6a11e 2553 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2554}
2555
b1420f1c
PM
2556/*
2557 * Trace the fact that this CPU is going offline.
2558 */
2559static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2560{
88a4976d
PM
2561 RCU_TRACE(unsigned long mask;)
2562 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2563 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2564
ea46351c
PM
2565 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2566 return;
2567
88a4976d 2568 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2569 trace_rcu_grace_period(rsp->name,
2570 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2571 TPS("cpuofl"));
64db4cff
PM
2572}
2573
8af3a5e7
PM
2574/*
2575 * All CPUs for the specified rcu_node structure have gone offline,
2576 * and all tasks that were preempted within an RCU read-side critical
2577 * section while running on one of those CPUs have since exited their RCU
2578 * read-side critical section. Some other CPU is reporting this fact with
2579 * the specified rcu_node structure's ->lock held and interrupts disabled.
2580 * This function therefore goes up the tree of rcu_node structures,
2581 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2582 * the leaf rcu_node structure's ->qsmaskinit field has already been
2583 * updated
2584 *
2585 * This function does check that the specified rcu_node structure has
2586 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2587 * prematurely. That said, invoking it after the fact will cost you
2588 * a needless lock acquisition. So once it has done its work, don't
2589 * invoke it again.
2590 */
2591static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2592{
2593 long mask;
2594 struct rcu_node *rnp = rnp_leaf;
2595
a32e01ee 2596 raw_lockdep_assert_held_rcu_node(rnp);
ea46351c
PM
2597 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2598 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2599 return;
2600 for (;;) {
2601 mask = rnp->grpmask;
2602 rnp = rnp->parent;
2603 if (!rnp)
2604 break;
2a67e741 2605 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2606 rnp->qsmaskinit &= ~mask;
0aa04b05 2607 rnp->qsmask &= ~mask;
8af3a5e7 2608 if (rnp->qsmaskinit) {
67c583a7
BF
2609 raw_spin_unlock_rcu_node(rnp);
2610 /* irqs remain disabled. */
8af3a5e7
PM
2611 return;
2612 }
67c583a7 2613 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2614 }
2615}
2616
64db4cff 2617/*
e5601400 2618 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2619 * this fact from process context. Do the remainder of the cleanup.
2620 * There can only be one CPU hotplug operation at a time, so no need for
2621 * explicit locking.
64db4cff 2622 */
e5601400 2623static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2624{
e5601400 2625 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2626 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2627
ea46351c
PM
2628 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2629 return;
2630
2036d94a 2631 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2632 rcu_boost_kthread_setaffinity(rnp, -1);
64db4cff
PM
2633}
2634
64db4cff
PM
2635/*
2636 * Invoke any RCU callbacks that have made it to the end of their grace
2637 * period. Thottle as specified by rdp->blimit.
2638 */
37c72e56 2639static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2640{
2641 unsigned long flags;
15fecf89
PM
2642 struct rcu_head *rhp;
2643 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2644 long bl, count;
64db4cff 2645
dc35c893 2646 /* If no callbacks are ready, just return. */
15fecf89
PM
2647 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2648 trace_rcu_batch_start(rsp->name,
2649 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2650 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2651 trace_rcu_batch_end(rsp->name, 0,
2652 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2653 need_resched(), is_idle_task(current),
2654 rcu_is_callbacks_kthread());
64db4cff 2655 return;
29c00b4a 2656 }
64db4cff
PM
2657
2658 /*
2659 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2660 * races with call_rcu() from interrupt handlers. Leave the
2661 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2662 */
2663 local_irq_save(flags);
8146c4e2 2664 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2665 bl = rdp->blimit;
15fecf89
PM
2666 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2667 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2668 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2669 local_irq_restore(flags);
2670
2671 /* Invoke callbacks. */
15fecf89
PM
2672 rhp = rcu_cblist_dequeue(&rcl);
2673 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2674 debug_rcu_head_unqueue(rhp);
2675 if (__rcu_reclaim(rsp->name, rhp))
2676 rcu_cblist_dequeued_lazy(&rcl);
2677 /*
2678 * Stop only if limit reached and CPU has something to do.
2679 * Note: The rcl structure counts down from zero.
2680 */
4b27f20b 2681 if (-rcl.len >= bl &&
dff1672d
PM
2682 (need_resched() ||
2683 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2684 break;
2685 }
2686
2687 local_irq_save(flags);
4b27f20b 2688 count = -rcl.len;
8ef0f37e
PM
2689 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2690 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2691
15fecf89
PM
2692 /* Update counts and requeue any remaining callbacks. */
2693 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2694 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2695 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2696
2697 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2698 count = rcu_segcblist_n_cbs(&rdp->cblist);
2699 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2700 rdp->blimit = blimit;
2701
37c72e56 2702 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2703 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2704 rdp->qlen_last_fqs_check = 0;
2705 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2706 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2707 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2708
2709 /*
2710 * The following usually indicates a double call_rcu(). To track
2711 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2712 */
15fecf89 2713 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2714
64db4cff
PM
2715 local_irq_restore(flags);
2716
e0f23060 2717 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2718 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2719 invoke_rcu_core();
64db4cff
PM
2720}
2721
2722/*
2723 * Check to see if this CPU is in a non-context-switch quiescent state
2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2725 * Also schedule RCU core processing.
64db4cff 2726 *
9b2e4f18 2727 * This function must be called from hardirq context. It is normally
5403d367 2728 * invoked from the scheduling-clock interrupt.
64db4cff 2729 */
c3377c2d 2730void rcu_check_callbacks(int user)
64db4cff 2731{
f7f7bac9 2732 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2733 increment_cpu_stall_ticks();
9b2e4f18 2734 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2735
2736 /*
2737 * Get here if this CPU took its interrupt from user
2738 * mode or from the idle loop, and if this is not a
2739 * nested interrupt. In this case, the CPU is in
d6714c22 2740 * a quiescent state, so note it.
64db4cff
PM
2741 *
2742 * No memory barrier is required here because both
d6714c22
PM
2743 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744 * variables that other CPUs neither access nor modify,
2745 * at least not while the corresponding CPU is online.
64db4cff
PM
2746 */
2747
284a8c93
PM
2748 rcu_sched_qs();
2749 rcu_bh_qs();
64db4cff
PM
2750
2751 } else if (!in_softirq()) {
2752
2753 /*
2754 * Get here if this CPU did not take its interrupt from
2755 * softirq, in other words, if it is not interrupting
2756 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2757 * critical section, so note it.
64db4cff
PM
2758 */
2759
284a8c93 2760 rcu_bh_qs();
64db4cff 2761 }
86aea0e6 2762 rcu_preempt_check_callbacks();
e3950ecd 2763 if (rcu_pending())
a46e0899 2764 invoke_rcu_core();
8315f422
PM
2765 if (user)
2766 rcu_note_voluntary_context_switch(current);
f7f7bac9 2767 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2768}
2769
64db4cff
PM
2770/*
2771 * Scan the leaf rcu_node structures, processing dyntick state for any that
2772 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2773 * Also initiate boosting for any threads blocked on the root rcu_node.
2774 *
ee47eb9f 2775 * The caller must have suppressed start of new grace periods.
64db4cff 2776 */
fe5ac724 2777static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2778{
64db4cff
PM
2779 int cpu;
2780 unsigned long flags;
2781 unsigned long mask;
a0b6c9a7 2782 struct rcu_node *rnp;
64db4cff 2783
a0b6c9a7 2784 rcu_for_each_leaf_node(rsp, rnp) {
cee43939 2785 cond_resched_tasks_rcu_qs();
64db4cff 2786 mask = 0;
2a67e741 2787 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2788 if (rnp->qsmask == 0) {
a77da14c
PM
2789 if (rcu_state_p == &rcu_sched_state ||
2790 rsp != rcu_state_p ||
2791 rcu_preempt_blocked_readers_cgp(rnp)) {
2792 /*
2793 * No point in scanning bits because they
2794 * are all zero. But we might need to
2795 * priority-boost blocked readers.
2796 */
2797 rcu_initiate_boost(rnp, flags);
2798 /* rcu_initiate_boost() releases rnp->lock */
2799 continue;
2800 }
2801 if (rnp->parent &&
2802 (rnp->parent->qsmask & rnp->grpmask)) {
2803 /*
2804 * Race between grace-period
2805 * initialization and task exiting RCU
2806 * read-side critical section: Report.
2807 */
2808 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2809 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2810 continue;
2811 }
64db4cff 2812 }
bc75e999
MR
2813 for_each_leaf_node_possible_cpu(rnp, cpu) {
2814 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2815 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2816 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2817 mask |= bit;
2818 }
64db4cff 2819 }
45f014c5 2820 if (mask != 0) {
654e9533
PM
2821 /* Idle/offline CPUs, report (releases rnp->lock. */
2822 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2823 } else {
2824 /* Nothing to do here, so just drop the lock. */
67c583a7 2825 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2826 }
64db4cff 2827 }
64db4cff
PM
2828}
2829
2830/*
2831 * Force quiescent states on reluctant CPUs, and also detect which
2832 * CPUs are in dyntick-idle mode.
2833 */
4cdfc175 2834static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2835{
2836 unsigned long flags;
394f2769
PM
2837 bool ret;
2838 struct rcu_node *rnp;
2839 struct rcu_node *rnp_old = NULL;
2840
2841 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2842 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2843 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2844 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2845 !raw_spin_trylock(&rnp->fqslock);
2846 if (rnp_old != NULL)
2847 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2848 if (ret)
394f2769 2849 return;
394f2769
PM
2850 rnp_old = rnp;
2851 }
2852 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2853
394f2769 2854 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2855 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2856 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2857 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2858 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2859 return; /* Someone beat us to it. */
46a1e34e 2860 }
7d0ae808 2861 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2862 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2863 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2864}
2865
64db4cff 2866/*
e0f23060
PM
2867 * This does the RCU core processing work for the specified rcu_state
2868 * and rcu_data structures. This may be called only from the CPU to
2869 * whom the rdp belongs.
64db4cff
PM
2870 */
2871static void
1bca8cf1 2872__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2873{
2874 unsigned long flags;
48a7639c 2875 bool needwake;
fa07a58f 2876 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2877
50dc7def 2878 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2879
64db4cff
PM
2880 /* Update RCU state based on any recent quiescent states. */
2881 rcu_check_quiescent_state(rsp, rdp);
2882
2883 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2884 local_irq_save(flags);
64db4cff 2885 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2886 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2887 needwake = rcu_start_gp(rsp);
67c583a7 2888 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
2889 if (needwake)
2890 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2891 } else {
2892 local_irq_restore(flags);
64db4cff
PM
2893 }
2894
2895 /* If there are callbacks ready, invoke them. */
15fecf89 2896 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2897 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2898
2899 /* Do any needed deferred wakeups of rcuo kthreads. */
2900 do_nocb_deferred_wakeup(rdp);
09223371
SL
2901}
2902
64db4cff 2903/*
e0f23060 2904 * Do RCU core processing for the current CPU.
64db4cff 2905 */
0766f788 2906static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2907{
6ce75a23
PM
2908 struct rcu_state *rsp;
2909
bfa00b4c
PM
2910 if (cpu_is_offline(smp_processor_id()))
2911 return;
f7f7bac9 2912 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2913 for_each_rcu_flavor(rsp)
2914 __rcu_process_callbacks(rsp);
f7f7bac9 2915 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2916}
2917
a26ac245 2918/*
e0f23060
PM
2919 * Schedule RCU callback invocation. If the specified type of RCU
2920 * does not support RCU priority boosting, just do a direct call,
2921 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2922 * are running on the current CPU with softirqs disabled, the
e0f23060 2923 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2924 */
a46e0899 2925static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2926{
7d0ae808 2927 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2928 return;
a46e0899
PM
2929 if (likely(!rsp->boost)) {
2930 rcu_do_batch(rsp, rdp);
a26ac245
PM
2931 return;
2932 }
a46e0899 2933 invoke_rcu_callbacks_kthread();
a26ac245
PM
2934}
2935
a46e0899 2936static void invoke_rcu_core(void)
09223371 2937{
b0f74036
PM
2938 if (cpu_online(smp_processor_id()))
2939 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2940}
2941
29154c57
PM
2942/*
2943 * Handle any core-RCU processing required by a call_rcu() invocation.
2944 */
2945static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2946 struct rcu_head *head, unsigned long flags)
64db4cff 2947{
48a7639c
PM
2948 bool needwake;
2949
62fde6ed
PM
2950 /*
2951 * If called from an extended quiescent state, invoke the RCU
2952 * core in order to force a re-evaluation of RCU's idleness.
2953 */
9910affa 2954 if (!rcu_is_watching())
62fde6ed
PM
2955 invoke_rcu_core();
2956
a16b7a69 2957 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2958 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2959 return;
64db4cff 2960
37c72e56
PM
2961 /*
2962 * Force the grace period if too many callbacks or too long waiting.
2963 * Enforce hysteresis, and don't invoke force_quiescent_state()
2964 * if some other CPU has recently done so. Also, don't bother
2965 * invoking force_quiescent_state() if the newly enqueued callback
2966 * is the only one waiting for a grace period to complete.
2967 */
15fecf89
PM
2968 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2969 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2970
2971 /* Are we ignoring a completed grace period? */
470716fc 2972 note_gp_changes(rsp, rdp);
b52573d2
PM
2973
2974 /* Start a new grace period if one not already started. */
2975 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2976 struct rcu_node *rnp_root = rcu_get_root(rsp);
2977
2a67e741 2978 raw_spin_lock_rcu_node(rnp_root);
48a7639c 2979 needwake = rcu_start_gp(rsp);
67c583a7 2980 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
2981 if (needwake)
2982 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2983 } else {
2984 /* Give the grace period a kick. */
2985 rdp->blimit = LONG_MAX;
2986 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2987 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 2988 force_quiescent_state(rsp);
b52573d2 2989 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 2990 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2991 }
4cdfc175 2992 }
29154c57
PM
2993}
2994
ae150184
PM
2995/*
2996 * RCU callback function to leak a callback.
2997 */
2998static void rcu_leak_callback(struct rcu_head *rhp)
2999{
3000}
3001
3fbfbf7a
PM
3002/*
3003 * Helper function for call_rcu() and friends. The cpu argument will
3004 * normally be -1, indicating "currently running CPU". It may specify
3005 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3006 * is expected to specify a CPU.
3007 */
64db4cff 3008static void
b6a4ae76 3009__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3010 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3011{
3012 unsigned long flags;
3013 struct rcu_data *rdp;
3014
b8f2ed53
PM
3015 /* Misaligned rcu_head! */
3016 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3017
ae150184 3018 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
3019 /*
3020 * Probable double call_rcu(), so leak the callback.
3021 * Use rcu:rcu_callback trace event to find the previous
3022 * time callback was passed to __call_rcu().
3023 */
3024 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3025 head, head->func);
7d0ae808 3026 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3027 return;
3028 }
64db4cff
PM
3029 head->func = func;
3030 head->next = NULL;
64db4cff 3031 local_irq_save(flags);
394f99a9 3032 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3033
3034 /* Add the callback to our list. */
15fecf89 3035 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3036 int offline;
3037
3038 if (cpu != -1)
3039 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3040 if (likely(rdp->mynode)) {
3041 /* Post-boot, so this should be for a no-CBs CPU. */
3042 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3043 WARN_ON_ONCE(offline);
3044 /* Offline CPU, _call_rcu() illegal, leak callback. */
3045 local_irq_restore(flags);
3046 return;
3047 }
3048 /*
3049 * Very early boot, before rcu_init(). Initialize if needed
3050 * and then drop through to queue the callback.
3051 */
3052 BUG_ON(cpu != -1);
34404ca8 3053 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3054 if (rcu_segcblist_empty(&rdp->cblist))
3055 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3056 }
15fecf89
PM
3057 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3058 if (!lazy)
c57afe80 3059 rcu_idle_count_callbacks_posted();
2655d57e 3060
d4c08f2a
PM
3061 if (__is_kfree_rcu_offset((unsigned long)func))
3062 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3063 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3064 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3065 else
15fecf89
PM
3066 trace_rcu_callback(rsp->name, head,
3067 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3068 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3069
29154c57
PM
3070 /* Go handle any RCU core processing required. */
3071 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3072 local_irq_restore(flags);
3073}
3074
a68a2bb2
PM
3075/**
3076 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3077 * @head: structure to be used for queueing the RCU updates.
3078 * @func: actual callback function to be invoked after the grace period
3079 *
3080 * The callback function will be invoked some time after a full grace
3081 * period elapses, in other words after all currently executing RCU
3082 * read-side critical sections have completed. call_rcu_sched() assumes
3083 * that the read-side critical sections end on enabling of preemption
3084 * or on voluntary preemption.
27fdb35f
PM
3085 * RCU read-side critical sections are delimited by:
3086 *
3087 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3088 * - anything that disables preemption.
a68a2bb2
PM
3089 *
3090 * These may be nested.
3091 *
3092 * See the description of call_rcu() for more detailed information on
3093 * memory ordering guarantees.
64db4cff 3094 */
b6a4ae76 3095void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3096{
3fbfbf7a 3097 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3098}
d6714c22 3099EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3100
a68a2bb2
PM
3101/**
3102 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3103 * @head: structure to be used for queueing the RCU updates.
3104 * @func: actual callback function to be invoked after the grace period
3105 *
3106 * The callback function will be invoked some time after a full grace
3107 * period elapses, in other words after all currently executing RCU
3108 * read-side critical sections have completed. call_rcu_bh() assumes
3109 * that the read-side critical sections end on completion of a softirq
3110 * handler. This means that read-side critical sections in process
3111 * context must not be interrupted by softirqs. This interface is to be
3112 * used when most of the read-side critical sections are in softirq context.
27fdb35f
PM
3113 * RCU read-side critical sections are delimited by:
3114 *
3115 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3116 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3117 *
3118 * These may be nested.
a68a2bb2
PM
3119 *
3120 * See the description of call_rcu() for more detailed information on
3121 * memory ordering guarantees.
64db4cff 3122 */
b6a4ae76 3123void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3124{
3fbfbf7a 3125 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3126}
3127EXPORT_SYMBOL_GPL(call_rcu_bh);
3128
495aa969
ACB
3129/*
3130 * Queue an RCU callback for lazy invocation after a grace period.
3131 * This will likely be later named something like "call_rcu_lazy()",
3132 * but this change will require some way of tagging the lazy RCU
3133 * callbacks in the list of pending callbacks. Until then, this
3134 * function may only be called from __kfree_rcu().
3135 */
3136void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3137 rcu_callback_t func)
495aa969 3138{
e534165b 3139 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3140}
3141EXPORT_SYMBOL_GPL(kfree_call_rcu);
3142
6d813391
PM
3143/*
3144 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3145 * any blocking grace-period wait automatically implies a grace period
3146 * if there is only one CPU online at any point time during execution
3147 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3148 * occasionally incorrectly indicate that there are multiple CPUs online
3149 * when there was in fact only one the whole time, as this just adds
3150 * some overhead: RCU still operates correctly.
6d813391
PM
3151 */
3152static inline int rcu_blocking_is_gp(void)
3153{
95f0c1de
PM
3154 int ret;
3155
6d813391 3156 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3157 preempt_disable();
3158 ret = num_online_cpus() <= 1;
3159 preempt_enable();
3160 return ret;
6d813391
PM
3161}
3162
6ebb237b
PM
3163/**
3164 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3165 *
3166 * Control will return to the caller some time after a full rcu-sched
3167 * grace period has elapsed, in other words after all currently executing
3168 * rcu-sched read-side critical sections have completed. These read-side
3169 * critical sections are delimited by rcu_read_lock_sched() and
3170 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3171 * local_irq_disable(), and so on may be used in place of
3172 * rcu_read_lock_sched().
3173 *
3174 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3175 * non-threaded hardware-interrupt handlers, in progress on entry will
3176 * have completed before this primitive returns. However, this does not
3177 * guarantee that softirq handlers will have completed, since in some
3178 * kernels, these handlers can run in process context, and can block.
3179 *
3180 * Note that this guarantee implies further memory-ordering guarantees.
3181 * On systems with more than one CPU, when synchronize_sched() returns,
3182 * each CPU is guaranteed to have executed a full memory barrier since the
3183 * end of its last RCU-sched read-side critical section whose beginning
3184 * preceded the call to synchronize_sched(). In addition, each CPU having
3185 * an RCU read-side critical section that extends beyond the return from
3186 * synchronize_sched() is guaranteed to have executed a full memory barrier
3187 * after the beginning of synchronize_sched() and before the beginning of
3188 * that RCU read-side critical section. Note that these guarantees include
3189 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3190 * that are executing in the kernel.
3191 *
3192 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3193 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3194 * to have executed a full memory barrier during the execution of
3195 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3196 * again only if the system has more than one CPU).
6ebb237b
PM
3197 */
3198void synchronize_sched(void)
3199{
f78f5b90
PM
3200 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3201 lock_is_held(&rcu_lock_map) ||
3202 lock_is_held(&rcu_sched_lock_map),
3203 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3204 if (rcu_blocking_is_gp())
3205 return;
5afff48b 3206 if (rcu_gp_is_expedited())
3705b88d
AM
3207 synchronize_sched_expedited();
3208 else
3209 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3210}
3211EXPORT_SYMBOL_GPL(synchronize_sched);
3212
3213/**
3214 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3215 *
3216 * Control will return to the caller some time after a full rcu_bh grace
3217 * period has elapsed, in other words after all currently executing rcu_bh
3218 * read-side critical sections have completed. RCU read-side critical
3219 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3220 * and may be nested.
f0a0e6f2
PM
3221 *
3222 * See the description of synchronize_sched() for more detailed information
3223 * on memory ordering guarantees.
6ebb237b
PM
3224 */
3225void synchronize_rcu_bh(void)
3226{
f78f5b90
PM
3227 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3228 lock_is_held(&rcu_lock_map) ||
3229 lock_is_held(&rcu_sched_lock_map),
3230 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3231 if (rcu_blocking_is_gp())
3232 return;
5afff48b 3233 if (rcu_gp_is_expedited())
3705b88d
AM
3234 synchronize_rcu_bh_expedited();
3235 else
3236 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3237}
3238EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3239
765a3f4f
PM
3240/**
3241 * get_state_synchronize_rcu - Snapshot current RCU state
3242 *
3243 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3244 * to determine whether or not a full grace period has elapsed in the
3245 * meantime.
3246 */
3247unsigned long get_state_synchronize_rcu(void)
3248{
3249 /*
3250 * Any prior manipulation of RCU-protected data must happen
3251 * before the load from ->gpnum.
3252 */
3253 smp_mb(); /* ^^^ */
3254
3255 /*
3256 * Make sure this load happens before the purportedly
3257 * time-consuming work between get_state_synchronize_rcu()
3258 * and cond_synchronize_rcu().
3259 */
e534165b 3260 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3261}
3262EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3263
3264/**
3265 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3266 *
3267 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3268 *
3269 * If a full RCU grace period has elapsed since the earlier call to
3270 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3271 * synchronize_rcu() to wait for a full grace period.
3272 *
3273 * Yes, this function does not take counter wrap into account. But
3274 * counter wrap is harmless. If the counter wraps, we have waited for
3275 * more than 2 billion grace periods (and way more on a 64-bit system!),
3276 * so waiting for one additional grace period should be just fine.
3277 */
3278void cond_synchronize_rcu(unsigned long oldstate)
3279{
3280 unsigned long newstate;
3281
3282 /*
3283 * Ensure that this load happens before any RCU-destructive
3284 * actions the caller might carry out after we return.
3285 */
e534165b 3286 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3287 if (ULONG_CMP_GE(oldstate, newstate))
3288 synchronize_rcu();
3289}
3290EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3291
24560056
PM
3292/**
3293 * get_state_synchronize_sched - Snapshot current RCU-sched state
3294 *
3295 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3296 * to determine whether or not a full grace period has elapsed in the
3297 * meantime.
3298 */
3299unsigned long get_state_synchronize_sched(void)
3300{
3301 /*
3302 * Any prior manipulation of RCU-protected data must happen
3303 * before the load from ->gpnum.
3304 */
3305 smp_mb(); /* ^^^ */
3306
3307 /*
3308 * Make sure this load happens before the purportedly
3309 * time-consuming work between get_state_synchronize_sched()
3310 * and cond_synchronize_sched().
3311 */
3312 return smp_load_acquire(&rcu_sched_state.gpnum);
3313}
3314EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3315
3316/**
3317 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3318 *
3319 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3320 *
3321 * If a full RCU-sched grace period has elapsed since the earlier call to
3322 * get_state_synchronize_sched(), just return. Otherwise, invoke
3323 * synchronize_sched() to wait for a full grace period.
3324 *
3325 * Yes, this function does not take counter wrap into account. But
3326 * counter wrap is harmless. If the counter wraps, we have waited for
3327 * more than 2 billion grace periods (and way more on a 64-bit system!),
3328 * so waiting for one additional grace period should be just fine.
3329 */
3330void cond_synchronize_sched(unsigned long oldstate)
3331{
3332 unsigned long newstate;
3333
3334 /*
3335 * Ensure that this load happens before any RCU-destructive
3336 * actions the caller might carry out after we return.
3337 */
3338 newstate = smp_load_acquire(&rcu_sched_state.completed);
3339 if (ULONG_CMP_GE(oldstate, newstate))
3340 synchronize_sched();
3341}
3342EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3343
64db4cff
PM
3344/*
3345 * Check to see if there is any immediate RCU-related work to be done
3346 * by the current CPU, for the specified type of RCU, returning 1 if so.
3347 * The checks are in order of increasing expense: checks that can be
3348 * carried out against CPU-local state are performed first. However,
3349 * we must check for CPU stalls first, else we might not get a chance.
3350 */
3351static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3352{
2f51f988
PM
3353 struct rcu_node *rnp = rdp->mynode;
3354
64db4cff
PM
3355 /* Check for CPU stalls, if enabled. */
3356 check_cpu_stall(rsp, rdp);
3357
a096932f
PM
3358 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3359 if (rcu_nohz_full_cpu(rsp))
3360 return 0;
3361
64db4cff 3362 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 3363 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
3364 return 1;
3365
3366 /* Does this CPU have callbacks ready to invoke? */
01c495f7 3367 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
3368 return 1;
3369
3370 /* Has RCU gone idle with this CPU needing another grace period? */
01c495f7 3371 if (cpu_needs_another_gp(rsp, rdp))
64db4cff
PM
3372 return 1;
3373
3374 /* Has another RCU grace period completed? */
01c495f7 3375 if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */
64db4cff
PM
3376 return 1;
3377
3378 /* Has a new RCU grace period started? */
7d0ae808 3379 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
01c495f7 3380 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
3381 return 1;
3382
96d3fd0d 3383 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 3384 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 3385 return 1;
96d3fd0d 3386
64db4cff
PM
3387 /* nothing to do */
3388 return 0;
3389}
3390
3391/*
3392 * Check to see if there is any immediate RCU-related work to be done
3393 * by the current CPU, returning 1 if so. This function is part of the
3394 * RCU implementation; it is -not- an exported member of the RCU API.
3395 */
e3950ecd 3396static int rcu_pending(void)
64db4cff 3397{
6ce75a23
PM
3398 struct rcu_state *rsp;
3399
3400 for_each_rcu_flavor(rsp)
e3950ecd 3401 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3402 return 1;
3403 return 0;
64db4cff
PM
3404}
3405
3406/*
c0f4dfd4
PM
3407 * Return true if the specified CPU has any callback. If all_lazy is
3408 * non-NULL, store an indication of whether all callbacks are lazy.
3409 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3410 */
82072c4f 3411static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3412{
c0f4dfd4
PM
3413 bool al = true;
3414 bool hc = false;
3415 struct rcu_data *rdp;
6ce75a23
PM
3416 struct rcu_state *rsp;
3417
c0f4dfd4 3418 for_each_rcu_flavor(rsp) {
aa6da514 3419 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3420 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3421 continue;
3422 hc = true;
15fecf89 3423 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3424 al = false;
69c8d28c
PM
3425 break;
3426 }
c0f4dfd4
PM
3427 }
3428 if (all_lazy)
3429 *all_lazy = al;
3430 return hc;
64db4cff
PM
3431}
3432
a83eff0a
PM
3433/*
3434 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3435 * the compiler is expected to optimize this away.
3436 */
e66c33d5 3437static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3438 int cpu, unsigned long done)
3439{
3440 trace_rcu_barrier(rsp->name, s, cpu,
3441 atomic_read(&rsp->barrier_cpu_count), done);
3442}
3443
b1420f1c
PM
3444/*
3445 * RCU callback function for _rcu_barrier(). If we are last, wake
3446 * up the task executing _rcu_barrier().
3447 */
24ebbca8 3448static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3449{
24ebbca8
PM
3450 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3451 struct rcu_state *rsp = rdp->rsp;
3452
a83eff0a 3453 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
d8db2e86
PM
3454 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3455 rsp->barrier_sequence);
7db74df8 3456 complete(&rsp->barrier_completion);
a83eff0a 3457 } else {
d8db2e86 3458 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
a83eff0a 3459 }
d0ec774c
PM
3460}
3461
3462/*
3463 * Called with preemption disabled, and from cross-cpu IRQ context.
3464 */
3465static void rcu_barrier_func(void *type)
3466{
037b64ed 3467 struct rcu_state *rsp = type;
fa07a58f 3468 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3469
d8db2e86 3470 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
f92c734f
PM
3471 rdp->barrier_head.func = rcu_barrier_callback;
3472 debug_rcu_head_queue(&rdp->barrier_head);
3473 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3474 atomic_inc(&rsp->barrier_cpu_count);
3475 } else {
3476 debug_rcu_head_unqueue(&rdp->barrier_head);
d8db2e86
PM
3477 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3478 rsp->barrier_sequence);
f92c734f 3479 }
d0ec774c
PM
3480}
3481
d0ec774c
PM
3482/*
3483 * Orchestrate the specified type of RCU barrier, waiting for all
3484 * RCU callbacks of the specified type to complete.
3485 */
037b64ed 3486static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3487{
b1420f1c 3488 int cpu;
b1420f1c 3489 struct rcu_data *rdp;
4f525a52 3490 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3491
d8db2e86 3492 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
b1420f1c 3493
e74f4c45 3494 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3495 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3496
4f525a52
PM
3497 /* Did someone else do our work for us? */
3498 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
d8db2e86
PM
3499 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3500 rsp->barrier_sequence);
cf3a9c48
PM
3501 smp_mb(); /* caller's subsequent code after above check. */
3502 mutex_unlock(&rsp->barrier_mutex);
3503 return;
3504 }
3505
4f525a52
PM
3506 /* Mark the start of the barrier operation. */
3507 rcu_seq_start(&rsp->barrier_sequence);
d8db2e86 3508 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
b1420f1c 3509
d0ec774c 3510 /*
b1420f1c
PM
3511 * Initialize the count to one rather than to zero in order to
3512 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3513 * (or preemption of this task). Exclude CPU-hotplug operations
3514 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3515 */
7db74df8 3516 init_completion(&rsp->barrier_completion);
24ebbca8 3517 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3518 get_online_cpus();
b1420f1c
PM
3519
3520 /*
1331e7a1
PM
3521 * Force each CPU with callbacks to register a new callback.
3522 * When that callback is invoked, we will know that all of the
3523 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3524 */
3fbfbf7a 3525 for_each_possible_cpu(cpu) {
d1e43fa5 3526 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3527 continue;
b1420f1c 3528 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3529 if (rcu_is_nocb_cpu(cpu)) {
d7e29933 3530 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
d8db2e86 3531 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
4f525a52 3532 rsp->barrier_sequence);
d7e29933 3533 } else {
d8db2e86 3534 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
4f525a52 3535 rsp->barrier_sequence);
41050a00 3536 smp_mb__before_atomic();
d7e29933
PM
3537 atomic_inc(&rsp->barrier_cpu_count);
3538 __call_rcu(&rdp->barrier_head,
3539 rcu_barrier_callback, rsp, cpu, 0);
3540 }
15fecf89 3541 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
d8db2e86 3542 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
4f525a52 3543 rsp->barrier_sequence);
037b64ed 3544 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3545 } else {
d8db2e86 3546 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
4f525a52 3547 rsp->barrier_sequence);
b1420f1c
PM
3548 }
3549 }
1331e7a1 3550 put_online_cpus();
b1420f1c
PM
3551
3552 /*
3553 * Now that we have an rcu_barrier_callback() callback on each
3554 * CPU, and thus each counted, remove the initial count.
3555 */
24ebbca8 3556 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3557 complete(&rsp->barrier_completion);
b1420f1c
PM
3558
3559 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3560 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3561
4f525a52 3562 /* Mark the end of the barrier operation. */
d8db2e86 3563 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
4f525a52
PM
3564 rcu_seq_end(&rsp->barrier_sequence);
3565
b1420f1c 3566 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3567 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3568}
d0ec774c
PM
3569
3570/**
3571 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3572 */
3573void rcu_barrier_bh(void)
3574{
037b64ed 3575 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3576}
3577EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3578
3579/**
3580 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3581 */
3582void rcu_barrier_sched(void)
3583{
037b64ed 3584 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3585}
3586EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3587
0aa04b05
PM
3588/*
3589 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3590 * first CPU in a given leaf rcu_node structure coming online. The caller
3591 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3592 * disabled.
3593 */
3594static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3595{
3596 long mask;
3597 struct rcu_node *rnp = rnp_leaf;
3598
a32e01ee 3599 raw_lockdep_assert_held_rcu_node(rnp);
0aa04b05
PM
3600 for (;;) {
3601 mask = rnp->grpmask;
3602 rnp = rnp->parent;
3603 if (rnp == NULL)
3604 return;
6cf10081 3605 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3606 rnp->qsmaskinit |= mask;
67c583a7 3607 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3608 }
3609}
3610
64db4cff 3611/*
27569620 3612 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3613 */
27569620
PM
3614static void __init
3615rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff 3616{
394f99a9 3617 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3618
3619 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3620 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3621 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
51a1fd30 3622 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
02a5c550 3623 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3624 rdp->cpu = cpu;
d4c08f2a 3625 rdp->rsp = rsp;
3fbfbf7a 3626 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3627}
3628
3629/*
3630 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3631 * offline event can be happening at a given time. Note also that we
3632 * can accept some slop in the rsp->completed access due to the fact
3633 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3634 */
49fb4c62 3635static void
9b67122a 3636rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3637{
3638 unsigned long flags;
394f99a9 3639 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3640 struct rcu_node *rnp = rcu_get_root(rsp);
3641
3642 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3643 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3644 rdp->qlen_last_fqs_check = 0;
3645 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3646 rdp->blimit = blimit;
15fecf89
PM
3647 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3648 !init_nocb_callback_list(rdp))
3649 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
2342172f 3650 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3651 rcu_dynticks_eqs_online();
67c583a7 3652 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3653
0aa04b05
PM
3654 /*
3655 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3656 * propagation up the rcu_node tree will happen at the beginning
3657 * of the next grace period.
3658 */
64db4cff 3659 rnp = rdp->mynode;
2a67e741 3660 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3661 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3662 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3663 rdp->completed = rnp->completed;
5b74c458 3664 rdp->cpu_no_qs.b.norm = true;
9577df9a 3665 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3666 rdp->core_needs_qs = false;
9b9500da
PM
3667 rdp->rcu_iw_pending = false;
3668 rdp->rcu_iw_gpnum = rnp->gpnum - 1;
0aa04b05 3669 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3670 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3671}
3672
deb34f36
PM
3673/*
3674 * Invoked early in the CPU-online process, when pretty much all
3675 * services are available. The incoming CPU is not present.
3676 */
4df83742 3677int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3678{
6ce75a23
PM
3679 struct rcu_state *rsp;
3680
3681 for_each_rcu_flavor(rsp)
9b67122a 3682 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3683
3684 rcu_prepare_kthreads(cpu);
3685 rcu_spawn_all_nocb_kthreads(cpu);
3686
3687 return 0;
3688}
3689
deb34f36
PM
3690/*
3691 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3692 */
4df83742
TG
3693static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3694{
3695 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3696
3697 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3698}
3699
deb34f36
PM
3700/*
3701 * Near the end of the CPU-online process. Pretty much all services
3702 * enabled, and the CPU is now very much alive.
3703 */
4df83742
TG
3704int rcutree_online_cpu(unsigned int cpu)
3705{
9b9500da
PM
3706 unsigned long flags;
3707 struct rcu_data *rdp;
3708 struct rcu_node *rnp;
3709 struct rcu_state *rsp;
3710
3711 for_each_rcu_flavor(rsp) {
3712 rdp = per_cpu_ptr(rsp->rda, cpu);
3713 rnp = rdp->mynode;
3714 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3715 rnp->ffmask |= rdp->grpmask;
3716 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3717 }
da915ad5
PM
3718 if (IS_ENABLED(CONFIG_TREE_SRCU))
3719 srcu_online_cpu(cpu);
9b9500da
PM
3720 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3721 return 0; /* Too early in boot for scheduler work. */
3722 sync_sched_exp_online_cleanup(cpu);
3723 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3724 return 0;
3725}
3726
deb34f36
PM
3727/*
3728 * Near the beginning of the process. The CPU is still very much alive
3729 * with pretty much all services enabled.
3730 */
4df83742
TG
3731int rcutree_offline_cpu(unsigned int cpu)
3732{
9b9500da
PM
3733 unsigned long flags;
3734 struct rcu_data *rdp;
3735 struct rcu_node *rnp;
3736 struct rcu_state *rsp;
3737
3738 for_each_rcu_flavor(rsp) {
3739 rdp = per_cpu_ptr(rsp->rda, cpu);
3740 rnp = rdp->mynode;
3741 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3742 rnp->ffmask &= ~rdp->grpmask;
3743 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3744 }
3745
4df83742 3746 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3747 if (IS_ENABLED(CONFIG_TREE_SRCU))
3748 srcu_offline_cpu(cpu);
4df83742
TG
3749 return 0;
3750}
3751
deb34f36
PM
3752/*
3753 * Near the end of the offline process. We do only tracing here.
3754 */
4df83742
TG
3755int rcutree_dying_cpu(unsigned int cpu)
3756{
3757 struct rcu_state *rsp;
3758
3759 for_each_rcu_flavor(rsp)
3760 rcu_cleanup_dying_cpu(rsp);
3761 return 0;
3762}
3763
deb34f36
PM
3764/*
3765 * The outgoing CPU is gone and we are running elsewhere.
3766 */
4df83742
TG
3767int rcutree_dead_cpu(unsigned int cpu)
3768{
3769 struct rcu_state *rsp;
3770
3771 for_each_rcu_flavor(rsp) {
3772 rcu_cleanup_dead_cpu(cpu, rsp);
3773 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3774 }
3775 return 0;
64db4cff
PM
3776}
3777
7ec99de3
PM
3778/*
3779 * Mark the specified CPU as being online so that subsequent grace periods
3780 * (both expedited and normal) will wait on it. Note that this means that
3781 * incoming CPUs are not allowed to use RCU read-side critical sections
3782 * until this function is called. Failing to observe this restriction
3783 * will result in lockdep splats.
deb34f36
PM
3784 *
3785 * Note that this function is special in that it is invoked directly
3786 * from the incoming CPU rather than from the cpuhp_step mechanism.
3787 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3788 */
3789void rcu_cpu_starting(unsigned int cpu)
3790{
3791 unsigned long flags;
3792 unsigned long mask;
313517fc
PM
3793 int nbits;
3794 unsigned long oldmask;
7ec99de3
PM
3795 struct rcu_data *rdp;
3796 struct rcu_node *rnp;
3797 struct rcu_state *rsp;
3798
3799 for_each_rcu_flavor(rsp) {
fdbb9b31 3800 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3801 rnp = rdp->mynode;
3802 mask = rdp->grpmask;
3803 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3804 rnp->qsmaskinitnext |= mask;
313517fc 3805 oldmask = rnp->expmaskinitnext;
7ec99de3 3806 rnp->expmaskinitnext |= mask;
313517fc
PM
3807 oldmask ^= rnp->expmaskinitnext;
3808 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3809 /* Allow lockless access for expedited grace periods. */
3810 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
7ec99de3
PM
3811 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3812 }
313517fc 3813 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3814}
3815
27d50c7e
TG
3816#ifdef CONFIG_HOTPLUG_CPU
3817/*
3818 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3819 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3820 * bit masks.
3821 */
3822static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3823{
3824 unsigned long flags;
3825 unsigned long mask;
3826 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3827 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3828
27d50c7e
TG
3829 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3830 mask = rdp->grpmask;
3831 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3832 rnp->qsmaskinitnext &= ~mask;
710d60cb 3833 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3834}
3835
deb34f36
PM
3836/*
3837 * The outgoing function has no further need of RCU, so remove it from
3838 * the list of CPUs that RCU must track.
3839 *
3840 * Note that this function is special in that it is invoked directly
3841 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3842 * This is because this function must be invoked at a precise location.
3843 */
27d50c7e
TG
3844void rcu_report_dead(unsigned int cpu)
3845{
3846 struct rcu_state *rsp;
3847
3848 /* QS for any half-done expedited RCU-sched GP. */
3849 preempt_disable();
3850 rcu_report_exp_rdp(&rcu_sched_state,
3851 this_cpu_ptr(rcu_sched_state.rda), true);
3852 preempt_enable();
3853 for_each_rcu_flavor(rsp)
3854 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3855}
a58163d8 3856
f2dbe4a5 3857/* Migrate the dead CPU's callbacks to the current CPU. */
a58163d8
PM
3858static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3859{
3860 unsigned long flags;
b1a2d79f 3861 struct rcu_data *my_rdp;
a58163d8 3862 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
9fa46fb8 3863 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
a58163d8 3864
95335c03
PM
3865 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3866 return; /* No callbacks to migrate. */
3867
b1a2d79f
PM
3868 local_irq_save(flags);
3869 my_rdp = this_cpu_ptr(rsp->rda);
3870 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3871 local_irq_restore(flags);
3872 return;
3873 }
9fa46fb8
PM
3874 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3875 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
21cc2483 3876 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
f2dbe4a5 3877 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3878 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3879 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3880 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
a58163d8
PM
3881 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3882 !rcu_segcblist_empty(&rdp->cblist),
3883 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3884 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3885 rcu_segcblist_first_cb(&rdp->cblist));
3886}
3887
3888/*
3889 * The outgoing CPU has just passed through the dying-idle state,
3890 * and we are being invoked from the CPU that was IPIed to continue the
3891 * offline operation. We need to migrate the outgoing CPU's callbacks.
3892 */
3893void rcutree_migrate_callbacks(int cpu)
3894{
3895 struct rcu_state *rsp;
3896
3897 for_each_rcu_flavor(rsp)
3898 rcu_migrate_callbacks(cpu, rsp);
3899}
27d50c7e
TG
3900#endif
3901
deb34f36
PM
3902/*
3903 * On non-huge systems, use expedited RCU grace periods to make suspend
3904 * and hibernation run faster.
3905 */
d1d74d14
BP
3906static int rcu_pm_notify(struct notifier_block *self,
3907 unsigned long action, void *hcpu)
3908{
3909 switch (action) {
3910 case PM_HIBERNATION_PREPARE:
3911 case PM_SUSPEND_PREPARE:
3912 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3913 rcu_expedite_gp();
d1d74d14
BP
3914 break;
3915 case PM_POST_HIBERNATION:
3916 case PM_POST_SUSPEND:
5afff48b
PM
3917 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3918 rcu_unexpedite_gp();
d1d74d14
BP
3919 break;
3920 default:
3921 break;
3922 }
3923 return NOTIFY_OK;
3924}
3925
b3dbec76 3926/*
9386c0b7 3927 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3928 */
3929static int __init rcu_spawn_gp_kthread(void)
3930{
3931 unsigned long flags;
a94844b2 3932 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3933 struct rcu_node *rnp;
3934 struct rcu_state *rsp;
a94844b2 3935 struct sched_param sp;
b3dbec76
PM
3936 struct task_struct *t;
3937
a94844b2
PM
3938 /* Force priority into range. */
3939 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3940 kthread_prio = 1;
3941 else if (kthread_prio < 0)
3942 kthread_prio = 0;
3943 else if (kthread_prio > 99)
3944 kthread_prio = 99;
3945 if (kthread_prio != kthread_prio_in)
3946 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3947 kthread_prio, kthread_prio_in);
3948
9386c0b7 3949 rcu_scheduler_fully_active = 1;
b3dbec76 3950 for_each_rcu_flavor(rsp) {
a94844b2 3951 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3952 BUG_ON(IS_ERR(t));
3953 rnp = rcu_get_root(rsp);
6cf10081 3954 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3955 rsp->gp_kthread = t;
a94844b2
PM
3956 if (kthread_prio) {
3957 sp.sched_priority = kthread_prio;
3958 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3959 }
67c583a7 3960 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3961 wake_up_process(t);
b3dbec76 3962 }
35ce7f29 3963 rcu_spawn_nocb_kthreads();
9386c0b7 3964 rcu_spawn_boost_kthreads();
b3dbec76
PM
3965 return 0;
3966}
3967early_initcall(rcu_spawn_gp_kthread);
3968
bbad9379 3969/*
52d7e48b
PM
3970 * This function is invoked towards the end of the scheduler's
3971 * initialization process. Before this is called, the idle task might
3972 * contain synchronous grace-period primitives (during which time, this idle
3973 * task is booting the system, and such primitives are no-ops). After this
3974 * function is called, any synchronous grace-period primitives are run as
3975 * expedited, with the requesting task driving the grace period forward.
900b1028 3976 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3977 * runtime RCU functionality.
bbad9379
PM
3978 */
3979void rcu_scheduler_starting(void)
3980{
3981 WARN_ON(num_online_cpus() != 1);
3982 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3983 rcu_test_sync_prims();
3984 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3985 rcu_test_sync_prims();
bbad9379
PM
3986}
3987
64db4cff
PM
3988/*
3989 * Helper function for rcu_init() that initializes one rcu_state structure.
3990 */
a87f203e 3991static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 3992{
cb007102
AG
3993 static const char * const buf[] = RCU_NODE_NAME_INIT;
3994 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3995 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3996 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3997
199977bf 3998 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3999 int cpustride = 1;
4000 int i;
4001 int j;
4002 struct rcu_node *rnp;
4003
05b84aec 4004 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4005
3eaaaf6c
PM
4006 /* Silence gcc 4.8 false positive about array index out of range. */
4007 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4008 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4009
64db4cff
PM
4010 /* Initialize the level-tracking arrays. */
4011
f885b7f2 4012 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4013 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4014 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4015
4016 /* Initialize the elements themselves, starting from the leaves. */
4017
f885b7f2 4018 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4019 cpustride *= levelspread[i];
64db4cff 4020 rnp = rsp->level[i];
41f5c631 4021 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4022 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4023 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4024 &rcu_node_class[i], buf[i]);
394f2769
PM
4025 raw_spin_lock_init(&rnp->fqslock);
4026 lockdep_set_class_and_name(&rnp->fqslock,
4027 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4028 rnp->gpnum = rsp->gpnum;
4029 rnp->completed = rsp->completed;
64db4cff
PM
4030 rnp->qsmask = 0;
4031 rnp->qsmaskinit = 0;
4032 rnp->grplo = j * cpustride;
4033 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4034 if (rnp->grphi >= nr_cpu_ids)
4035 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4036 if (i == 0) {
4037 rnp->grpnum = 0;
4038 rnp->grpmask = 0;
4039 rnp->parent = NULL;
4040 } else {
199977bf 4041 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4042 rnp->grpmask = 1UL << rnp->grpnum;
4043 rnp->parent = rsp->level[i - 1] +
199977bf 4044 j / levelspread[i - 1];
64db4cff
PM
4045 }
4046 rnp->level = i;
12f5f524 4047 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4048 rcu_init_one_nocb(rnp);
f6a12f34
PM
4049 init_waitqueue_head(&rnp->exp_wq[0]);
4050 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4051 init_waitqueue_head(&rnp->exp_wq[2]);
4052 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4053 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4054 }
4055 }
0c34029a 4056
abedf8e2
PG
4057 init_swait_queue_head(&rsp->gp_wq);
4058 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4059 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4060 for_each_possible_cpu(i) {
4a90a068 4061 while (i > rnp->grphi)
0c34029a 4062 rnp++;
394f99a9 4063 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4064 rcu_boot_init_percpu_data(i, rsp);
4065 }
6ce75a23 4066 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4067}
4068
f885b7f2
PM
4069/*
4070 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4071 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4072 * the ->node array in the rcu_state structure.
4073 */
4074static void __init rcu_init_geometry(void)
4075{
026ad283 4076 ulong d;
f885b7f2 4077 int i;
05b84aec 4078 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4079
026ad283
PM
4080 /*
4081 * Initialize any unspecified boot parameters.
4082 * The default values of jiffies_till_first_fqs and
4083 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4084 * value, which is a function of HZ, then adding one for each
4085 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4086 */
4087 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4088 if (jiffies_till_first_fqs == ULONG_MAX)
4089 jiffies_till_first_fqs = d;
4090 if (jiffies_till_next_fqs == ULONG_MAX)
4091 jiffies_till_next_fqs = d;
4092
f885b7f2 4093 /* If the compile-time values are accurate, just leave. */
47d631af 4094 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4095 nr_cpu_ids == NR_CPUS)
f885b7f2 4096 return;
9b130ad5 4097 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 4098 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4099
f885b7f2 4100 /*
ee968ac6
PM
4101 * The boot-time rcu_fanout_leaf parameter must be at least two
4102 * and cannot exceed the number of bits in the rcu_node masks.
4103 * Complain and fall back to the compile-time values if this
4104 * limit is exceeded.
f885b7f2 4105 */
ee968ac6 4106 if (rcu_fanout_leaf < 2 ||
75cf15a4 4107 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4108 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4109 WARN_ON(1);
4110 return;
4111 }
4112
f885b7f2
PM
4113 /*
4114 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4115 * with the given number of levels.
f885b7f2 4116 */
9618138b 4117 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4118 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4119 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4120
4121 /*
75cf15a4 4122 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4123 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4124 */
ee968ac6
PM
4125 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4126 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4127 WARN_ON(1);
4128 return;
4129 }
f885b7f2 4130
679f9858 4131 /* Calculate the number of levels in the tree. */
9618138b 4132 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4133 }
9618138b 4134 rcu_num_lvls = i + 1;
679f9858 4135
f885b7f2 4136 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4137 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4138 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4139 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4140 }
f885b7f2
PM
4141
4142 /* Calculate the total number of rcu_node structures. */
4143 rcu_num_nodes = 0;
679f9858 4144 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4145 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4146}
4147
a3dc2948
PM
4148/*
4149 * Dump out the structure of the rcu_node combining tree associated
4150 * with the rcu_state structure referenced by rsp.
4151 */
4152static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4153{
4154 int level = 0;
4155 struct rcu_node *rnp;
4156
4157 pr_info("rcu_node tree layout dump\n");
4158 pr_info(" ");
4159 rcu_for_each_node_breadth_first(rsp, rnp) {
4160 if (rnp->level != level) {
4161 pr_cont("\n");
4162 pr_info(" ");
4163 level = rnp->level;
4164 }
4165 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4166 }
4167 pr_cont("\n");
4168}
4169
ad7c946b
PM
4170struct workqueue_struct *rcu_gp_wq;
4171
9f680ab4 4172void __init rcu_init(void)
64db4cff 4173{
017c4261 4174 int cpu;
9f680ab4 4175
47627678
PM
4176 rcu_early_boot_tests();
4177
f41d911f 4178 rcu_bootup_announce();
f885b7f2 4179 rcu_init_geometry();
a87f203e
PM
4180 rcu_init_one(&rcu_bh_state);
4181 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4182 if (dump_tree)
4183 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4184 __rcu_init_preempt();
b5b39360 4185 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4186
4187 /*
4188 * We don't need protection against CPU-hotplug here because
4189 * this is called early in boot, before either interrupts
4190 * or the scheduler are operational.
4191 */
d1d74d14 4192 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4193 for_each_online_cpu(cpu) {
4df83742 4194 rcutree_prepare_cpu(cpu);
7ec99de3 4195 rcu_cpu_starting(cpu);
9b9500da 4196 rcutree_online_cpu(cpu);
7ec99de3 4197 }
ad7c946b
PM
4198
4199 /* Create workqueue for expedited GPs and for Tree SRCU. */
4200 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4201 WARN_ON(!rcu_gp_wq);
64db4cff
PM
4202}
4203
3549c2bc 4204#include "tree_exp.h"
4102adab 4205#include "tree_plugin.h"