rcu: Identify grace period is in progress as we advance up the tree
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
de30ad51 98 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \
7be7f0be 99 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 100 .name = RCU_STATE_NAME(sname), \
a4889858 101 .abbr = sabbr, \
f6a12f34 102 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 103 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 104}
64db4cff 105
a41bfeb2
SRRH
106RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
107RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 108
b28a7c01 109static struct rcu_state *const rcu_state_p;
6ce75a23 110LIST_HEAD(rcu_struct_flavors);
27f4d280 111
a3dc2948
PM
112/* Dump rcu_node combining tree at boot to verify correct setup. */
113static bool dump_tree;
114module_param(dump_tree, bool, 0444);
7fa27001
PM
115/* Control rcu_node-tree auto-balancing at boot time. */
116static bool rcu_fanout_exact;
117module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
118/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
119static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 120module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 121int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 122/* Number of rcu_nodes at specified level. */
e95d68d2 123int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 124int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
125/* panic() on RCU Stall sysctl. */
126int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 127
b0d30417 128/*
52d7e48b
PM
129 * The rcu_scheduler_active variable is initialized to the value
130 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
131 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
132 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 133 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
134 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
135 * to detect real grace periods. This variable is also used to suppress
136 * boot-time false positives from lockdep-RCU error checking. Finally, it
137 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
138 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 139 */
bbad9379
PM
140int rcu_scheduler_active __read_mostly;
141EXPORT_SYMBOL_GPL(rcu_scheduler_active);
142
b0d30417
PM
143/*
144 * The rcu_scheduler_fully_active variable transitions from zero to one
145 * during the early_initcall() processing, which is after the scheduler
146 * is capable of creating new tasks. So RCU processing (for example,
147 * creating tasks for RCU priority boosting) must be delayed until after
148 * rcu_scheduler_fully_active transitions from zero to one. We also
149 * currently delay invocation of any RCU callbacks until after this point.
150 *
151 * It might later prove better for people registering RCU callbacks during
152 * early boot to take responsibility for these callbacks, but one step at
153 * a time.
154 */
155static int rcu_scheduler_fully_active __read_mostly;
156
0aa04b05
PM
157static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
162static void rcu_report_exp_rdp(struct rcu_state *rsp,
163 struct rcu_data *rdp, bool wake);
3549c2bc 164static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 165
a94844b2 166/* rcuc/rcub kthread realtime priority */
26730f55 167static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
168module_param(kthread_prio, int, 0644);
169
8d7dc928 170/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 171
90040c9e
PM
172static int gp_preinit_delay;
173module_param(gp_preinit_delay, int, 0444);
174static int gp_init_delay;
175module_param(gp_init_delay, int, 0444);
176static int gp_cleanup_delay;
177module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 178
eab128e8
PM
179/*
180 * Number of grace periods between delays, normalized by the duration of
bfd090be 181 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
182 * each delay. The reason for this normalization is that it means that,
183 * for non-zero delays, the overall slowdown of grace periods is constant
184 * regardless of the duration of the delay. This arrangement balances
185 * the need for long delays to increase some race probabilities with the
186 * need for fast grace periods to increase other race probabilities.
187 */
188#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 189
4a298656
PM
190/*
191 * Track the rcutorture test sequence number and the update version
192 * number within a given test. The rcutorture_testseq is incremented
193 * on every rcutorture module load and unload, so has an odd value
194 * when a test is running. The rcutorture_vernum is set to zero
195 * when rcutorture starts and is incremented on each rcutorture update.
196 * These variables enable correlating rcutorture output with the
197 * RCU tracing information.
198 */
199unsigned long rcutorture_testseq;
200unsigned long rcutorture_vernum;
201
0aa04b05
PM
202/*
203 * Compute the mask of online CPUs for the specified rcu_node structure.
204 * This will not be stable unless the rcu_node structure's ->lock is
205 * held, but the bit corresponding to the current CPU will be stable
206 * in most contexts.
207 */
208unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
209{
7d0ae808 210 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
211}
212
fc2219d4 213/*
7d0ae808 214 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
215 * permit this function to be invoked without holding the root rcu_node
216 * structure's ->lock, but of course results can be subject to change.
217 */
218static int rcu_gp_in_progress(struct rcu_state *rsp)
219{
ba04107f 220 return rcu_seq_state(rcu_seq_current(&rsp->gp_seq));
fc2219d4
PM
221}
222
b1f77b05 223/*
d6714c22 224 * Note a quiescent state. Because we do not need to know
b1f77b05 225 * how many quiescent states passed, just if there was at least
d6714c22 226 * one since the start of the grace period, this just sets a flag.
e4cc1f22 227 * The caller must have disabled preemption.
b1f77b05 228 */
284a8c93 229void rcu_sched_qs(void)
b1f77b05 230{
f4687d26 231 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
232 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
233 return;
234 trace_rcu_grace_period(TPS("rcu_sched"),
477351f7 235 __this_cpu_read(rcu_sched_data.gp_seq),
fecbf6f0
PM
236 TPS("cpuqs"));
237 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
238 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
239 return;
46a5d164
PM
240 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
241 rcu_report_exp_rdp(&rcu_sched_state,
242 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
243}
244
284a8c93 245void rcu_bh_qs(void)
b1f77b05 246{
f4687d26 247 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 248 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93 249 trace_rcu_grace_period(TPS("rcu_bh"),
477351f7 250 __this_cpu_read(rcu_bh_data.gp_seq),
284a8c93 251 TPS("cpuqs"));
5b74c458 252 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 253 }
b1f77b05 254}
64db4cff 255
b8c17e66
PM
256/*
257 * Steal a bit from the bottom of ->dynticks for idle entry/exit
258 * control. Initially this is for TLB flushing.
259 */
260#define RCU_DYNTICK_CTRL_MASK 0x1
261#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
262#ifndef rcu_eqs_special_exit
263#define rcu_eqs_special_exit() do { } while (0)
264#endif
4a81e832
PM
265
266static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
51a1fd30 267 .dynticks_nesting = 1,
58721f5d 268 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
b8c17e66 269 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
270};
271
2625d469
PM
272/*
273 * Record entry into an extended quiescent state. This is only to be
274 * called when not already in an extended quiescent state.
275 */
276static void rcu_dynticks_eqs_enter(void)
277{
278 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 279 int seq;
2625d469
PM
280
281 /*
b8c17e66 282 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
283 * critical sections, and we also must force ordering with the
284 * next idle sojourn.
285 */
b8c17e66
PM
286 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
287 /* Better be in an extended quiescent state! */
288 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
289 (seq & RCU_DYNTICK_CTRL_CTR));
290 /* Better not have special action (TLB flush) pending! */
291 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
292 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
293}
294
295/*
296 * Record exit from an extended quiescent state. This is only to be
297 * called from an extended quiescent state.
298 */
299static void rcu_dynticks_eqs_exit(void)
300{
301 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 302 int seq;
2625d469
PM
303
304 /*
b8c17e66 305 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
306 * and we also must force ordering with the next RCU read-side
307 * critical section.
308 */
b8c17e66
PM
309 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
310 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
311 !(seq & RCU_DYNTICK_CTRL_CTR));
312 if (seq & RCU_DYNTICK_CTRL_MASK) {
313 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
314 smp_mb__after_atomic(); /* _exit after clearing mask. */
315 /* Prefer duplicate flushes to losing a flush. */
316 rcu_eqs_special_exit();
317 }
2625d469
PM
318}
319
320/*
321 * Reset the current CPU's ->dynticks counter to indicate that the
322 * newly onlined CPU is no longer in an extended quiescent state.
323 * This will either leave the counter unchanged, or increment it
324 * to the next non-quiescent value.
325 *
326 * The non-atomic test/increment sequence works because the upper bits
327 * of the ->dynticks counter are manipulated only by the corresponding CPU,
328 * or when the corresponding CPU is offline.
329 */
330static void rcu_dynticks_eqs_online(void)
331{
332 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
333
b8c17e66 334 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 335 return;
b8c17e66 336 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
337}
338
02a5c550
PM
339/*
340 * Is the current CPU in an extended quiescent state?
341 *
342 * No ordering, as we are sampling CPU-local information.
343 */
344bool rcu_dynticks_curr_cpu_in_eqs(void)
345{
346 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347
b8c17e66 348 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
349}
350
8b2f63ab
PM
351/*
352 * Snapshot the ->dynticks counter with full ordering so as to allow
353 * stable comparison of this counter with past and future snapshots.
354 */
02a5c550 355int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
356{
357 int snap = atomic_add_return(0, &rdtp->dynticks);
358
b8c17e66 359 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
360}
361
02a5c550
PM
362/*
363 * Return true if the snapshot returned from rcu_dynticks_snap()
364 * indicates that RCU is in an extended quiescent state.
365 */
366static bool rcu_dynticks_in_eqs(int snap)
367{
b8c17e66 368 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
369}
370
371/*
372 * Return true if the CPU corresponding to the specified rcu_dynticks
373 * structure has spent some time in an extended quiescent state since
374 * rcu_dynticks_snap() returned the specified snapshot.
375 */
376static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
377{
378 return snap != rcu_dynticks_snap(rdtp);
379}
380
6563de9d
PM
381/*
382 * Do a double-increment of the ->dynticks counter to emulate a
383 * momentary idle-CPU quiescent state.
384 */
385static void rcu_dynticks_momentary_idle(void)
386{
387 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
388 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
389 &rdtp->dynticks);
6563de9d
PM
390
391 /* It is illegal to call this from idle state. */
b8c17e66 392 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
393}
394
b8c17e66
PM
395/*
396 * Set the special (bottom) bit of the specified CPU so that it
397 * will take special action (such as flushing its TLB) on the
398 * next exit from an extended quiescent state. Returns true if
399 * the bit was successfully set, or false if the CPU was not in
400 * an extended quiescent state.
401 */
402bool rcu_eqs_special_set(int cpu)
403{
404 int old;
405 int new;
406 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
407
408 do {
409 old = atomic_read(&rdtp->dynticks);
410 if (old & RCU_DYNTICK_CTRL_CTR)
411 return false;
412 new = old | RCU_DYNTICK_CTRL_MASK;
413 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
414 return true;
6563de9d 415}
5cd37193 416
4a81e832
PM
417/*
418 * Let the RCU core know that this CPU has gone through the scheduler,
419 * which is a quiescent state. This is called when the need for a
420 * quiescent state is urgent, so we burn an atomic operation and full
421 * memory barriers to let the RCU core know about it, regardless of what
422 * this CPU might (or might not) do in the near future.
423 *
0f9be8ca 424 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
425 *
426 * The caller must have disabled interrupts.
4a81e832
PM
427 */
428static void rcu_momentary_dyntick_idle(void)
429{
0f9be8ca
PM
430 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
431 rcu_dynticks_momentary_idle();
4a81e832
PM
432}
433
25502a6c
PM
434/*
435 * Note a context switch. This is a quiescent state for RCU-sched,
436 * and requires special handling for preemptible RCU.
46a5d164 437 * The caller must have disabled interrupts.
25502a6c 438 */
bcbfdd01 439void rcu_note_context_switch(bool preempt)
25502a6c 440{
bb73c52b 441 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 442 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 443 rcu_sched_qs();
5b72f964 444 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
445 /* Load rcu_urgent_qs before other flags. */
446 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
447 goto out;
448 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 449 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 450 rcu_momentary_dyntick_idle();
9226b10d 451 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
452 if (!preempt)
453 rcu_note_voluntary_context_switch_lite(current);
9226b10d 454out:
f7f7bac9 455 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 456 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 457}
29ce8310 458EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 459
5cd37193 460/*
1925d196 461 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
462 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
463 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 464 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
465 * be none of them). Either way, do a lightweight quiescent state for
466 * all RCU flavors.
bb73c52b
BF
467 *
468 * The barrier() calls are redundant in the common case when this is
469 * called externally, but just in case this is called from within this
470 * file.
471 *
5cd37193
PM
472 */
473void rcu_all_qs(void)
474{
46a5d164
PM
475 unsigned long flags;
476
9226b10d
PM
477 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
478 return;
479 preempt_disable();
480 /* Load rcu_urgent_qs before other flags. */
481 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
482 preempt_enable();
483 return;
484 }
485 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 486 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 487 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 488 local_irq_save(flags);
5cd37193 489 rcu_momentary_dyntick_idle();
46a5d164
PM
490 local_irq_restore(flags);
491 }
9226b10d 492 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 493 rcu_sched_qs();
9577df9a 494 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 495 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 496 preempt_enable();
5cd37193
PM
497}
498EXPORT_SYMBOL_GPL(rcu_all_qs);
499
17c7798b
PM
500#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
501static long blimit = DEFAULT_RCU_BLIMIT;
502#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
503static long qhimark = DEFAULT_RCU_QHIMARK;
504#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
505static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 506
878d7439
ED
507module_param(blimit, long, 0444);
508module_param(qhimark, long, 0444);
509module_param(qlowmark, long, 0444);
3d76c082 510
026ad283
PM
511static ulong jiffies_till_first_fqs = ULONG_MAX;
512static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 513static bool rcu_kick_kthreads;
d40011f6
PM
514
515module_param(jiffies_till_first_fqs, ulong, 0644);
516module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 517module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 518
4a81e832
PM
519/*
520 * How long the grace period must be before we start recruiting
521 * quiescent-state help from rcu_note_context_switch().
522 */
f79c3ad6
PM
523static ulong jiffies_till_sched_qs = HZ / 10;
524module_param(jiffies_till_sched_qs, ulong, 0444);
4a81e832 525
fe5ac724 526static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 527static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 528static int rcu_pending(void);
64db4cff
PM
529
530/*
17ef2fe9 531 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 532 */
17ef2fe9 533unsigned long rcu_get_gp_seq(void)
917963d0 534{
d7219312 535 return READ_ONCE(rcu_state_p->gp_seq);
917963d0 536}
17ef2fe9 537EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0
PM
538
539/*
17ef2fe9 540 * Return the number of RCU-sched GPs completed thus far for debug & stats.
64db4cff 541 */
17ef2fe9 542unsigned long rcu_sched_get_gp_seq(void)
917963d0 543{
d7219312 544 return READ_ONCE(rcu_sched_state.gp_seq);
917963d0 545}
17ef2fe9 546EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq);
917963d0
PM
547
548/*
17ef2fe9 549 * Return the number of RCU-bh GPs completed thus far for debug & stats.
917963d0 550 */
17ef2fe9 551unsigned long rcu_bh_get_gp_seq(void)
917963d0 552{
d7219312 553 return READ_ONCE(rcu_bh_state.gp_seq);
917963d0 554}
17ef2fe9 555EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq);
64db4cff 556
291783b8
PM
557/*
558 * Return the number of RCU expedited batches completed thus far for
559 * debug & stats. Odd numbers mean that a batch is in progress, even
560 * numbers mean idle. The value returned will thus be roughly double
561 * the cumulative batches since boot.
562 */
563unsigned long rcu_exp_batches_completed(void)
564{
565 return rcu_state_p->expedited_sequence;
566}
567EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
568
569/*
570 * Return the number of RCU-sched expedited batches completed thus far
571 * for debug & stats. Similar to rcu_exp_batches_completed().
572 */
573unsigned long rcu_exp_batches_completed_sched(void)
574{
575 return rcu_sched_state.expedited_sequence;
576}
577EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
578
a381d757
ACB
579/*
580 * Force a quiescent state.
581 */
582void rcu_force_quiescent_state(void)
583{
e534165b 584 force_quiescent_state(rcu_state_p);
a381d757
ACB
585}
586EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
587
bf66f18e
PM
588/*
589 * Force a quiescent state for RCU BH.
590 */
591void rcu_bh_force_quiescent_state(void)
592{
4cdfc175 593 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
594}
595EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
596
e7580f33
PM
597/*
598 * Force a quiescent state for RCU-sched.
599 */
600void rcu_sched_force_quiescent_state(void)
601{
602 force_quiescent_state(&rcu_sched_state);
603}
604EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
605
afea227f
PM
606/*
607 * Show the state of the grace-period kthreads.
608 */
609void show_rcu_gp_kthreads(void)
610{
611 struct rcu_state *rsp;
612
613 for_each_rcu_flavor(rsp) {
614 pr_info("%s: wait state: %d ->state: %#lx\n",
615 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
616 /* sched_show_task(rsp->gp_kthread); */
617 }
618}
619EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
620
4a298656
PM
621/*
622 * Record the number of times rcutorture tests have been initiated and
623 * terminated. This information allows the debugfs tracing stats to be
624 * correlated to the rcutorture messages, even when the rcutorture module
625 * is being repeatedly loaded and unloaded. In other words, we cannot
626 * store this state in rcutorture itself.
627 */
628void rcutorture_record_test_transition(void)
629{
630 rcutorture_testseq++;
631 rcutorture_vernum = 0;
632}
633EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
634
ad0dc7f9
PM
635/*
636 * Send along grace-period-related data for rcutorture diagnostics.
637 */
638void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 639 unsigned long *gp_seq)
ad0dc7f9
PM
640{
641 struct rcu_state *rsp = NULL;
642
643 switch (test_type) {
644 case RCU_FLAVOR:
e534165b 645 rsp = rcu_state_p;
ad0dc7f9
PM
646 break;
647 case RCU_BH_FLAVOR:
648 rsp = &rcu_bh_state;
649 break;
650 case RCU_SCHED_FLAVOR:
651 rsp = &rcu_sched_state;
652 break;
653 default:
654 break;
655 }
7f6733c3 656 if (rsp == NULL)
ad0dc7f9 657 return;
7f6733c3 658 *flags = READ_ONCE(rsp->gp_flags);
aebc8264 659 *gp_seq = rcu_seq_current(&rsp->gp_seq);
ad0dc7f9
PM
660}
661EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
662
4a298656
PM
663/*
664 * Record the number of writer passes through the current rcutorture test.
665 * This is also used to correlate debugfs tracing stats with the rcutorture
666 * messages.
667 */
668void rcutorture_record_progress(unsigned long vernum)
669{
670 rcutorture_vernum++;
671}
672EXPORT_SYMBOL_GPL(rcutorture_record_progress);
673
365187fb
PM
674/*
675 * Return the root node of the specified rcu_state structure.
676 */
677static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
678{
679 return &rsp->node[0];
680}
681
9b2e4f18 682/*
215bba9f
PM
683 * Enter an RCU extended quiescent state, which can be either the
684 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 685 *
215bba9f
PM
686 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
687 * the possibility of usermode upcalls having messed up our count
688 * of interrupt nesting level during the prior busy period.
9b2e4f18 689 */
215bba9f 690static void rcu_eqs_enter(bool user)
9b2e4f18 691{
96d3fd0d
PM
692 struct rcu_state *rsp;
693 struct rcu_data *rdp;
215bba9f 694 struct rcu_dynticks *rdtp;
96d3fd0d 695
215bba9f
PM
696 rdtp = this_cpu_ptr(&rcu_dynticks);
697 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
698 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
699 rdtp->dynticks_nesting == 0);
700 if (rdtp->dynticks_nesting != 1) {
701 rdtp->dynticks_nesting--;
702 return;
9b2e4f18 703 }
96d3fd0d 704
b04db8e1 705 lockdep_assert_irqs_disabled();
dec98900 706 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
e68bbb26 707 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
96d3fd0d
PM
708 for_each_rcu_flavor(rsp) {
709 rdp = this_cpu_ptr(rsp->rda);
710 do_nocb_deferred_wakeup(rdp);
711 }
198bbf81 712 rcu_prepare_for_idle();
2342172f 713 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 714 rcu_dynticks_eqs_enter();
176f8f7a 715 rcu_dynticks_task_enter();
64db4cff 716}
adf5091e
FW
717
718/**
719 * rcu_idle_enter - inform RCU that current CPU is entering idle
720 *
721 * Enter idle mode, in other words, -leave- the mode in which RCU
722 * read-side critical sections can occur. (Though RCU read-side
723 * critical sections can occur in irq handlers in idle, a possibility
724 * handled by irq_enter() and irq_exit().)
725 *
c0da313e
PM
726 * If you add or remove a call to rcu_idle_enter(), be sure to test with
727 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
728 */
729void rcu_idle_enter(void)
730{
b04db8e1 731 lockdep_assert_irqs_disabled();
cb349ca9 732 rcu_eqs_enter(false);
adf5091e 733}
64db4cff 734
d1ec4c34 735#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
736/**
737 * rcu_user_enter - inform RCU that we are resuming userspace.
738 *
739 * Enter RCU idle mode right before resuming userspace. No use of RCU
740 * is permitted between this call and rcu_user_exit(). This way the
741 * CPU doesn't need to maintain the tick for RCU maintenance purposes
742 * when the CPU runs in userspace.
c0da313e
PM
743 *
744 * If you add or remove a call to rcu_user_enter(), be sure to test with
745 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
746 */
747void rcu_user_enter(void)
748{
b04db8e1 749 lockdep_assert_irqs_disabled();
d4db30af 750 rcu_eqs_enter(true);
adf5091e 751}
d1ec4c34 752#endif /* CONFIG_NO_HZ_FULL */
19dd1591 753
fd581a91
PM
754/**
755 * rcu_nmi_exit - inform RCU of exit from NMI context
756 *
757 * If we are returning from the outermost NMI handler that interrupted an
758 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
759 * to let the RCU grace-period handling know that the CPU is back to
760 * being RCU-idle.
761 *
762 * If you add or remove a call to rcu_nmi_exit(), be sure to test
763 * with CONFIG_RCU_EQS_DEBUG=y.
764 */
765void rcu_nmi_exit(void)
766{
767 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
768
769 /*
770 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
771 * (We are exiting an NMI handler, so RCU better be paying attention
772 * to us!)
773 */
774 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
775 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
776
777 /*
778 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
779 * leave it in non-RCU-idle state.
780 */
781 if (rdtp->dynticks_nmi_nesting != 1) {
dec98900 782 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
fd581a91
PM
783 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
784 rdtp->dynticks_nmi_nesting - 2);
785 return;
786 }
787
788 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dec98900 789 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
fd581a91
PM
790 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
791 rcu_dynticks_eqs_enter();
792}
793
9b2e4f18
PM
794/**
795 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
796 *
797 * Exit from an interrupt handler, which might possibly result in entering
798 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 799 * sections can occur. The caller must have disabled interrupts.
64db4cff 800 *
9b2e4f18
PM
801 * This code assumes that the idle loop never does anything that might
802 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
803 * architecture's idle loop violates this assumption, RCU will give you what
804 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
805 *
806 * Use things like work queues to work around this limitation.
807 *
808 * You have been warned.
c0da313e
PM
809 *
810 * If you add or remove a call to rcu_irq_exit(), be sure to test with
811 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 812 */
9b2e4f18 813void rcu_irq_exit(void)
64db4cff 814{
58721f5d 815 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 816
b04db8e1 817 lockdep_assert_irqs_disabled();
58721f5d
PM
818 if (rdtp->dynticks_nmi_nesting == 1)
819 rcu_prepare_for_idle();
820 rcu_nmi_exit();
821 if (rdtp->dynticks_nmi_nesting == 0)
822 rcu_dynticks_task_enter();
7c9906ca
PM
823}
824
825/*
826 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
827 *
828 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
829 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
830 */
831void rcu_irq_exit_irqson(void)
832{
833 unsigned long flags;
834
835 local_irq_save(flags);
836 rcu_irq_exit();
9b2e4f18
PM
837 local_irq_restore(flags);
838}
839
adf5091e
FW
840/*
841 * Exit an RCU extended quiescent state, which can be either the
842 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
843 *
844 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
845 * allow for the possibility of usermode upcalls messing up our count of
846 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 847 */
adf5091e 848static void rcu_eqs_exit(bool user)
9b2e4f18 849{
9b2e4f18 850 struct rcu_dynticks *rdtp;
84585aa8 851 long oldval;
9b2e4f18 852
b04db8e1 853 lockdep_assert_irqs_disabled();
c9d4b0af 854 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 855 oldval = rdtp->dynticks_nesting;
1ce46ee5 856 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30
PM
857 if (oldval) {
858 rdtp->dynticks_nesting++;
9dd238e2 859 return;
3a592405 860 }
9dd238e2
PM
861 rcu_dynticks_task_exit();
862 rcu_dynticks_eqs_exit();
863 rcu_cleanup_after_idle();
864 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
e68bbb26 865 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
9dd238e2
PM
866 WRITE_ONCE(rdtp->dynticks_nesting, 1);
867 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 868}
adf5091e
FW
869
870/**
871 * rcu_idle_exit - inform RCU that current CPU is leaving idle
872 *
873 * Exit idle mode, in other words, -enter- the mode in which RCU
874 * read-side critical sections can occur.
875 *
c0da313e
PM
876 * If you add or remove a call to rcu_idle_exit(), be sure to test with
877 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
878 */
879void rcu_idle_exit(void)
880{
c5d900bf
FW
881 unsigned long flags;
882
883 local_irq_save(flags);
cb349ca9 884 rcu_eqs_exit(false);
c5d900bf 885 local_irq_restore(flags);
adf5091e 886}
9b2e4f18 887
d1ec4c34 888#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
889/**
890 * rcu_user_exit - inform RCU that we are exiting userspace.
891 *
892 * Exit RCU idle mode while entering the kernel because it can
893 * run a RCU read side critical section anytime.
c0da313e
PM
894 *
895 * If you add or remove a call to rcu_user_exit(), be sure to test with
896 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
897 */
898void rcu_user_exit(void)
899{
91d1aa43 900 rcu_eqs_exit(1);
adf5091e 901}
d1ec4c34 902#endif /* CONFIG_NO_HZ_FULL */
19dd1591 903
64db4cff
PM
904/**
905 * rcu_nmi_enter - inform RCU of entry to NMI context
906 *
734d1680
PM
907 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
908 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
909 * that the CPU is active. This implementation permits nested NMIs, as
910 * long as the nesting level does not overflow an int. (You will probably
911 * run out of stack space first.)
c0da313e
PM
912 *
913 * If you add or remove a call to rcu_nmi_enter(), be sure to test
914 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff
PM
915 */
916void rcu_nmi_enter(void)
917{
c9d4b0af 918 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
84585aa8 919 long incby = 2;
64db4cff 920
734d1680
PM
921 /* Complain about underflow. */
922 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
923
924 /*
925 * If idle from RCU viewpoint, atomically increment ->dynticks
926 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
927 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
928 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
929 * to be in the outermost NMI handler that interrupted an RCU-idle
930 * period (observation due to Andy Lutomirski).
931 */
02a5c550 932 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 933 rcu_dynticks_eqs_exit();
734d1680
PM
934 incby = 1;
935 }
bd2b879a
PM
936 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
937 rdtp->dynticks_nmi_nesting,
dec98900 938 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
fd581a91
PM
939 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
940 rdtp->dynticks_nmi_nesting + incby);
734d1680 941 barrier();
64db4cff
PM
942}
943
944/**
9b2e4f18 945 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 946 *
9b2e4f18
PM
947 * Enter an interrupt handler, which might possibly result in exiting
948 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 949 * sections can occur. The caller must have disabled interrupts.
c0da313e 950 *
9b2e4f18 951 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
952 * handler that it never exits, for example when doing upcalls to user mode!
953 * This code assumes that the idle loop never does upcalls to user mode.
954 * If your architecture's idle loop does do upcalls to user mode (or does
955 * anything else that results in unbalanced calls to the irq_enter() and
956 * irq_exit() functions), RCU will give you what you deserve, good and hard.
957 * But very infrequently and irreproducibly.
9b2e4f18
PM
958 *
959 * Use things like work queues to work around this limitation.
960 *
961 * You have been warned.
c0da313e
PM
962 *
963 * If you add or remove a call to rcu_irq_enter(), be sure to test with
964 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 965 */
9b2e4f18 966void rcu_irq_enter(void)
64db4cff 967{
c9d4b0af 968 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 969
b04db8e1 970 lockdep_assert_irqs_disabled();
58721f5d
PM
971 if (rdtp->dynticks_nmi_nesting == 0)
972 rcu_dynticks_task_exit();
973 rcu_nmi_enter();
974 if (rdtp->dynticks_nmi_nesting == 1)
975 rcu_cleanup_after_idle();
7c9906ca 976}
734d1680 977
7c9906ca
PM
978/*
979 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
980 *
981 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
982 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
983 */
984void rcu_irq_enter_irqson(void)
985{
986 unsigned long flags;
734d1680 987
7c9906ca
PM
988 local_irq_save(flags);
989 rcu_irq_enter();
64db4cff 990 local_irq_restore(flags);
64db4cff
PM
991}
992
5c173eb8
PM
993/**
994 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 995 *
791875d1
PM
996 * Return true if RCU is watching the running CPU, which means that this
997 * CPU can safely enter RCU read-side critical sections. In other words,
998 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 999 * or NMI handler, return true.
64db4cff 1000 */
9418fb20 1001bool notrace rcu_is_watching(void)
64db4cff 1002{
f534ed1f 1003 bool ret;
34240697 1004
46f00d18 1005 preempt_disable_notrace();
791875d1 1006 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1007 preempt_enable_notrace();
34240697 1008 return ret;
64db4cff 1009}
5c173eb8 1010EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1011
bcbfdd01
PM
1012/*
1013 * If a holdout task is actually running, request an urgent quiescent
1014 * state from its CPU. This is unsynchronized, so migrations can cause
1015 * the request to go to the wrong CPU. Which is OK, all that will happen
1016 * is that the CPU's next context switch will be a bit slower and next
1017 * time around this task will generate another request.
1018 */
1019void rcu_request_urgent_qs_task(struct task_struct *t)
1020{
1021 int cpu;
1022
1023 barrier();
1024 cpu = task_cpu(t);
1025 if (!task_curr(t))
1026 return; /* This task is not running on that CPU. */
1027 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1028}
1029
62fde6ed 1030#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1031
1032/*
1033 * Is the current CPU online? Disable preemption to avoid false positives
1034 * that could otherwise happen due to the current CPU number being sampled,
1035 * this task being preempted, its old CPU being taken offline, resuming
1036 * on some other CPU, then determining that its old CPU is now offline.
1037 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1038 * the check for rcu_scheduler_fully_active. Note also that it is OK
1039 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1040 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1041 * offline to continue to use RCU for one jiffy after marking itself
1042 * offline in the cpu_online_mask. This leniency is necessary given the
1043 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1044 * the fact that a CPU enters the scheduler after completing the teardown
1045 * of the CPU.
2036d94a 1046 *
4df83742
TG
1047 * This is also why RCU internally marks CPUs online during in the
1048 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1049 *
1050 * Disable checking if in an NMI handler because we cannot safely report
1051 * errors from NMI handlers anyway.
1052 */
1053bool rcu_lockdep_current_cpu_online(void)
1054{
2036d94a
PM
1055 struct rcu_data *rdp;
1056 struct rcu_node *rnp;
c0d6d01b
PM
1057 bool ret;
1058
1059 if (in_nmi())
f6f7ee9a 1060 return true;
c0d6d01b 1061 preempt_disable();
c9d4b0af 1062 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1063 rnp = rdp->mynode;
0aa04b05 1064 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1065 !rcu_scheduler_fully_active;
1066 preempt_enable();
1067 return ret;
1068}
1069EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1070
62fde6ed 1071#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1072
64db4cff 1073/**
9b2e4f18 1074 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1075 *
9b2e4f18
PM
1076 * If the current CPU is idle or running at a first-level (not nested)
1077 * interrupt from idle, return true. The caller must have at least
1078 * disabled preemption.
64db4cff 1079 */
62e3cb14 1080static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1081{
51a1fd30
PM
1082 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1083 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
64db4cff
PM
1084}
1085
9b9500da
PM
1086/*
1087 * We are reporting a quiescent state on behalf of some other CPU, so
1088 * it is our responsibility to check for and handle potential overflow
a66ae8ae 1089 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
1090 * After all, the CPU might be in deep idle state, and thus executing no
1091 * code whatsoever.
1092 */
1093static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1094{
a32e01ee 1095 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
1096 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1097 rnp->gp_seq))
9b9500da 1098 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
1099 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1100 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
1101}
1102
64db4cff
PM
1103/*
1104 * Snapshot the specified CPU's dynticks counter so that we can later
1105 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1106 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1107 */
fe5ac724 1108static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1109{
8b2f63ab 1110 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1111 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
fee5997c 1112 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1113 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1114 return 1;
7941dbde 1115 }
23a9bacd 1116 return 0;
64db4cff
PM
1117}
1118
9b9500da
PM
1119/*
1120 * Handler for the irq_work request posted when a grace period has
1121 * gone on for too long, but not yet long enough for an RCU CPU
1122 * stall warning. Set state appropriately, but just complain if
1123 * there is unexpected state on entry.
1124 */
1125static void rcu_iw_handler(struct irq_work *iwp)
1126{
1127 struct rcu_data *rdp;
1128 struct rcu_node *rnp;
1129
1130 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1131 rnp = rdp->mynode;
1132 raw_spin_lock_rcu_node(rnp);
1133 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
8aa670cd 1134 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1135 rdp->rcu_iw_pending = false;
1136 }
1137 raw_spin_unlock_rcu_node(rnp);
1138}
1139
64db4cff
PM
1140/*
1141 * Return true if the specified CPU has passed through a quiescent
1142 * state by virtue of being in or having passed through an dynticks
1143 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1144 * for this same CPU, or by virtue of having been offline.
64db4cff 1145 */
fe5ac724 1146static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1147{
3a19b46a 1148 unsigned long jtsq;
0f9be8ca 1149 bool *rnhqp;
9226b10d 1150 bool *ruqp;
9b9500da 1151 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1152
1153 /*
1154 * If the CPU passed through or entered a dynticks idle phase with
1155 * no active irq/NMI handlers, then we can safely pretend that the CPU
1156 * already acknowledged the request to pass through a quiescent
1157 * state. Either way, that CPU cannot possibly be in an RCU
1158 * read-side critical section that started before the beginning
1159 * of the current RCU grace period.
1160 */
02a5c550 1161 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
fee5997c 1162 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
64db4cff 1163 rdp->dynticks_fqs++;
9b9500da 1164 rcu_gpnum_ovf(rnp, rdp);
64db4cff
PM
1165 return 1;
1166 }
1167
a82dcc76 1168 /*
cee43939
PM
1169 * Has this CPU encountered a cond_resched() since the beginning
1170 * of the grace period? For this to be the case, the CPU has to
1171 * have noticed the current grace period. This might not be the
1172 * case for nohz_full CPUs looping in the kernel.
a82dcc76 1173 */
f79c3ad6 1174 jtsq = jiffies_till_sched_qs;
9226b10d 1175 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1176 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1177 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
e05720b0 1178 rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) {
fee5997c 1179 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc"));
9b9500da 1180 rcu_gpnum_ovf(rnp, rdp);
3a19b46a 1181 return 1;
f79c3ad6 1182 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
9226b10d
PM
1183 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1184 smp_store_release(ruqp, true);
3a19b46a
PM
1185 }
1186
38d30b33
PM
1187 /* Check for the CPU being offline. */
1188 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
fee5997c 1189 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("ofl"));
a82dcc76 1190 rdp->offline_fqs++;
9b9500da 1191 rcu_gpnum_ovf(rnp, rdp);
a82dcc76
PM
1192 return 1;
1193 }
65d798f0
PM
1194
1195 /*
4a81e832
PM
1196 * A CPU running for an extended time within the kernel can
1197 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1198 * even context-switching back and forth between a pair of
1199 * in-kernel CPU-bound tasks cannot advance grace periods.
1200 * So if the grace period is old enough, make the CPU pay attention.
1201 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1202 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1203 * bits can be lost, but they will be set again on the next
1204 * force-quiescent-state pass. So lost bit sets do not result
1205 * in incorrect behavior, merely in a grace period lasting
1206 * a few jiffies longer than it might otherwise. Because
1207 * there are at most four threads involved, and because the
1208 * updates are only once every few jiffies, the probability of
1209 * lossage (and thus of slight grace-period extension) is
1210 * quite low.
6193c76a 1211 */
0f9be8ca
PM
1212 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1213 if (!READ_ONCE(*rnhqp) &&
1214 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1215 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1216 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1217 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1218 smp_store_release(ruqp, true);
f79c3ad6 1219 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
6193c76a
PM
1220 }
1221
28053bc7 1222 /*
9b9500da
PM
1223 * If more than halfway to RCU CPU stall-warning time, do a
1224 * resched_cpu() to try to loosen things up a bit. Also check to
1225 * see if the CPU is getting hammered with interrupts, but only
1226 * once per grace period, just to keep the IPIs down to a dull roar.
28053bc7 1227 */
9b9500da 1228 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
28053bc7 1229 resched_cpu(rdp->cpu);
9b9500da 1230 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1231 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1232 (rnp->ffmask & rdp->grpmask)) {
1233 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1234 rdp->rcu_iw_pending = true;
8aa670cd 1235 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1236 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1237 }
1238 }
4914950a 1239
a82dcc76 1240 return 0;
64db4cff
PM
1241}
1242
64db4cff
PM
1243static void record_gp_stall_check_time(struct rcu_state *rsp)
1244{
cb1e78cf 1245 unsigned long j = jiffies;
6193c76a 1246 unsigned long j1;
26cdfedf
PM
1247
1248 rsp->gp_start = j;
1249 smp_wmb(); /* Record start time before stall time. */
6193c76a 1250 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1251 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1252 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1253 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1254}
1255
6b50e119
PM
1256/*
1257 * Convert a ->gp_state value to a character string.
1258 */
1259static const char *gp_state_getname(short gs)
1260{
1261 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1262 return "???";
1263 return gp_state_names[gs];
1264}
1265
fb81a44b
PM
1266/*
1267 * Complain about starvation of grace-period kthread.
1268 */
1269static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1270{
1271 unsigned long gpa;
1272 unsigned long j;
1273
1274 j = jiffies;
7d0ae808 1275 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1276 if (j - gpa > 2 * HZ) {
78c5a67f 1277 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
81e701e4 1278 rsp->name, j - gpa,
78c5a67f 1279 (long)rcu_seq_current(&rsp->gp_seq),
6b50e119
PM
1280 rsp->gp_flags,
1281 gp_state_getname(rsp->gp_state), rsp->gp_state,
96036c43
PM
1282 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1283 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
86057b80 1284 if (rsp->gp_kthread) {
d07aee2c 1285 pr_err("RCU grace-period kthread stack dump:\n");
b1adb3e2 1286 sched_show_task(rsp->gp_kthread);
86057b80
PM
1287 wake_up_process(rsp->gp_kthread);
1288 }
b1adb3e2 1289 }
64db4cff
PM
1290}
1291
b637a328 1292/*
7aa92230
PM
1293 * Dump stacks of all tasks running on stalled CPUs. First try using
1294 * NMIs, but fall back to manual remote stack tracing on architectures
1295 * that don't support NMI-based stack dumps. The NMI-triggered stack
1296 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1297 */
1298static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1299{
1300 int cpu;
1301 unsigned long flags;
1302 struct rcu_node *rnp;
1303
1304 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1305 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1306 for_each_leaf_node_possible_cpu(rnp, cpu)
1307 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1308 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1309 dump_cpu_task(cpu);
67c583a7 1310 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1311 }
1312}
1313
8c7c4829
PM
1314/*
1315 * If too much time has passed in the current grace period, and if
1316 * so configured, go kick the relevant kthreads.
1317 */
1318static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1319{
1320 unsigned long j;
1321
1322 if (!rcu_kick_kthreads)
1323 return;
1324 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1325 if (time_after(jiffies, j) && rsp->gp_kthread &&
1326 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1327 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1328 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1329 wake_up_process(rsp->gp_kthread);
1330 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1331 }
1332}
1333
088e9d25
DBO
1334static inline void panic_on_rcu_stall(void)
1335{
1336 if (sysctl_panic_on_rcu_stall)
1337 panic("RCU Stall\n");
1338}
1339
471f87c3 1340static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq)
64db4cff
PM
1341{
1342 int cpu;
64db4cff 1343 unsigned long flags;
6ccd2ecd
PM
1344 unsigned long gpa;
1345 unsigned long j;
285fe294 1346 int ndetected = 0;
64db4cff 1347 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1348 long totqlen = 0;
64db4cff 1349
8c7c4829
PM
1350 /* Kick and suppress, if so configured. */
1351 rcu_stall_kick_kthreads(rsp);
1352 if (rcu_cpu_stall_suppress)
1353 return;
1354
8cdd32a9
PM
1355 /*
1356 * OK, time to rat on our buddy...
1357 * See Documentation/RCU/stallwarn.txt for info on how to debug
1358 * RCU CPU stall warnings.
1359 */
d7f3e207 1360 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1361 rsp->name);
a858af28 1362 print_cpu_stall_info_begin();
a0b6c9a7 1363 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1364 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1365 ndetected += rcu_print_task_stall(rnp);
c8020a67 1366 if (rnp->qsmask != 0) {
bc75e999
MR
1367 for_each_leaf_node_possible_cpu(rnp, cpu)
1368 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1369 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1370 ndetected++;
1371 }
1372 }
67c583a7 1373 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1374 }
a858af28 1375
a858af28 1376 print_cpu_stall_info_end();
53bb857c 1377 for_each_possible_cpu(cpu)
15fecf89
PM
1378 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1379 cpu)->cblist);
471f87c3 1380 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
eee05882 1381 smp_processor_id(), (long)(jiffies - rsp->gp_start),
471f87c3 1382 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
6ccd2ecd 1383 if (ndetected) {
b637a328 1384 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1385
1386 /* Complain about tasks blocking the grace period. */
1387 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1388 } else {
471f87c3 1389 if (rcu_seq_current(&rsp->gp_seq) != gp_seq) {
6ccd2ecd
PM
1390 pr_err("INFO: Stall ended before state dump start\n");
1391 } else {
1392 j = jiffies;
7d0ae808 1393 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1394 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1395 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1396 jiffies_till_next_fqs,
1397 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1398 /* In this case, the current CPU might be at fault. */
1399 sched_show_task(current);
1400 }
1401 }
8c42b1f3
PM
1402 /* Rewrite if needed in case of slow consoles. */
1403 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1404 WRITE_ONCE(rsp->jiffies_stall,
1405 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
c1dc0b9c 1406
fb81a44b
PM
1407 rcu_check_gp_kthread_starvation(rsp);
1408
088e9d25
DBO
1409 panic_on_rcu_stall();
1410
4cdfc175 1411 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1412}
1413
1414static void print_cpu_stall(struct rcu_state *rsp)
1415{
53bb857c 1416 int cpu;
64db4cff 1417 unsigned long flags;
9b9500da 1418 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1419 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1420 long totqlen = 0;
64db4cff 1421
8c7c4829
PM
1422 /* Kick and suppress, if so configured. */
1423 rcu_stall_kick_kthreads(rsp);
1424 if (rcu_cpu_stall_suppress)
1425 return;
1426
8cdd32a9
PM
1427 /*
1428 * OK, time to rat on ourselves...
1429 * See Documentation/RCU/stallwarn.txt for info on how to debug
1430 * RCU CPU stall warnings.
1431 */
d7f3e207 1432 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28 1433 print_cpu_stall_info_begin();
9b9500da 1434 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
a858af28 1435 print_cpu_stall_info(rsp, smp_processor_id());
9b9500da 1436 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
a858af28 1437 print_cpu_stall_info_end();
53bb857c 1438 for_each_possible_cpu(cpu)
15fecf89
PM
1439 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1440 cpu)->cblist);
471f87c3 1441 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
83ebe63e 1442 jiffies - rsp->gp_start,
471f87c3 1443 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
fb81a44b
PM
1444
1445 rcu_check_gp_kthread_starvation(rsp);
1446
bc1dce51 1447 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1448
6cf10081 1449 raw_spin_lock_irqsave_rcu_node(rnp, flags);
8c42b1f3 1450 /* Rewrite if needed in case of slow consoles. */
7d0ae808
PM
1451 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1452 WRITE_ONCE(rsp->jiffies_stall,
1453 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1455
088e9d25
DBO
1456 panic_on_rcu_stall();
1457
b021fe3e
PZ
1458 /*
1459 * Attempt to revive the RCU machinery by forcing a context switch.
1460 *
1461 * A context switch would normally allow the RCU state machine to make
1462 * progress and it could be we're stuck in kernel space without context
1463 * switches for an entirely unreasonable amount of time.
1464 */
1465 resched_cpu(smp_processor_id());
64db4cff
PM
1466}
1467
1468static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1469{
471f87c3
PM
1470 unsigned long gs1;
1471 unsigned long gs2;
26cdfedf 1472 unsigned long gps;
bad6e139 1473 unsigned long j;
8c42b1f3 1474 unsigned long jn;
bad6e139 1475 unsigned long js;
64db4cff
PM
1476 struct rcu_node *rnp;
1477
8c7c4829
PM
1478 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1479 !rcu_gp_in_progress(rsp))
c68de209 1480 return;
8c7c4829 1481 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1482 j = jiffies;
26cdfedf
PM
1483
1484 /*
1485 * Lots of memory barriers to reject false positives.
1486 *
471f87c3
PM
1487 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall,
1488 * then rsp->gp_start, and finally another copy of rsp->gp_seq.
1489 * These values are updated in the opposite order with memory
1490 * barriers (or equivalent) during grace-period initialization
1491 * and cleanup. Now, a false positive can occur if we get an new
1492 * value of rsp->gp_start and a old value of rsp->jiffies_stall.
1493 * But given the memory barriers, the only way that this can happen
1494 * is if one grace period ends and another starts between these
1495 * two fetches. This is detected by comparing the second fetch
1496 * of rsp->gp_seq with the previous fetch from rsp->gp_seq.
26cdfedf
PM
1497 *
1498 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1499 * and rsp->gp_start suffice to forestall false positives.
1500 */
471f87c3
PM
1501 gs1 = READ_ONCE(rsp->gp_seq);
1502 smp_rmb(); /* Pick up ->gp_seq first... */
7d0ae808 1503 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1504 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1505 gps = READ_ONCE(rsp->gp_start);
471f87c3
PM
1506 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1507 gs2 = READ_ONCE(rsp->gp_seq);
1508 if (gs1 != gs2 ||
26cdfedf
PM
1509 ULONG_CMP_LT(j, js) ||
1510 ULONG_CMP_GE(gps, js))
1511 return; /* No stall or GP completed since entering function. */
64db4cff 1512 rnp = rdp->mynode;
8c42b1f3 1513 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
c96ea7cf 1514 if (rcu_gp_in_progress(rsp) &&
8c42b1f3
PM
1515 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1516 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
64db4cff
PM
1517
1518 /* We haven't checked in, so go dump stack. */
1519 print_cpu_stall(rsp);
1520
bad6e139 1521 } else if (rcu_gp_in_progress(rsp) &&
8c42b1f3
PM
1522 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1523 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
64db4cff 1524
bad6e139 1525 /* They had a few time units to dump stack, so complain. */
471f87c3 1526 print_other_cpu_stall(rsp, gs2);
64db4cff
PM
1527 }
1528}
1529
53d84e00
PM
1530/**
1531 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1532 *
1533 * Set the stall-warning timeout way off into the future, thus preventing
1534 * any RCU CPU stall-warning messages from appearing in the current set of
1535 * RCU grace periods.
1536 *
1537 * The caller must disable hard irqs.
1538 */
1539void rcu_cpu_stall_reset(void)
1540{
6ce75a23
PM
1541 struct rcu_state *rsp;
1542
1543 for_each_rcu_flavor(rsp)
7d0ae808 1544 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1545}
1546
41e80595
PM
1547/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1548static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1549 unsigned long gp_seq_req, const char *s)
0446be48 1550{
b73de91d 1551 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req,
abd13fdd 1552 rnp->level, rnp->grplo, rnp->grphi, s);
0446be48
PM
1553}
1554
1555/*
b73de91d 1556 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1557 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1558 * @rdp: The rcu_data corresponding to the CPU from which to start.
1559 * @gp_seq_req: The gp_seq of the grace period to start.
1560 *
41e80595 1561 * Start the specified grace period, as needed to handle newly arrived
0446be48 1562 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1563 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1564 * is reason to awaken the grace-period kthread.
0446be48 1565 *
d5cd9685
PM
1566 * The caller must hold the specified rcu_node structure's ->lock, which
1567 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1568 *
1569 * Returns true if the GP thread needs to be awakened else false.
0446be48 1570 */
df2bf8f7 1571static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1572 unsigned long gp_seq_req)
0446be48 1573{
48a7639c 1574 bool ret = false;
d5cd9685 1575 struct rcu_state *rsp = rdp->rsp;
df2bf8f7 1576 struct rcu_node *rnp;
0446be48
PM
1577
1578 /*
360e0da6
PM
1579 * Use funnel locking to either acquire the root rcu_node
1580 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1581 * has already been recorded -- or if that grace period has in
1582 * fact already started. If there is already a grace period in
1583 * progress in a non-leaf node, no recording is needed because the
1584 * end of the grace period will scan the leaf rcu_node structures.
1585 * Note that rnp_start->lock must not be released.
0446be48 1586 */
df2bf8f7
JFG
1587 raw_lockdep_assert_held_rcu_node(rnp_start);
1588 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1589 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1590 if (rnp != rnp_start)
1591 raw_spin_lock_rcu_node(rnp);
1592 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1593 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1594 (rnp != rnp_start &&
1595 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1596 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1597 TPS("Prestarted"));
360e0da6
PM
1598 goto unlock_out;
1599 }
df2bf8f7 1600 rnp->gp_seq_needed = gp_seq_req;
226ca5e7 1601 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1602 /*
226ca5e7
JFG
1603 * We just marked the leaf or internal node, and a
1604 * grace period is in progress, which means that
1605 * rcu_gp_cleanup() will see the marking. Bail to
1606 * reduce contention.
a2165e41 1607 */
df2bf8f7 1608 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1609 TPS("Startedleaf"));
a2165e41
PM
1610 goto unlock_out;
1611 }
df2bf8f7
JFG
1612 if (rnp != rnp_start && rnp->parent != NULL)
1613 raw_spin_unlock_rcu_node(rnp);
1614 if (!rnp->parent)
360e0da6 1615 break; /* At root, and perhaps also leaf. */
0446be48
PM
1616 }
1617
360e0da6 1618 /* If GP already in progress, just leave, otherwise start one. */
29365e56 1619 if (rcu_gp_in_progress(rsp)) {
df2bf8f7 1620 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1621 goto unlock_out;
1622 }
df2bf8f7 1623 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
360e0da6 1624 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
26d950a9 1625 rsp->gp_req_activity = jiffies;
360e0da6 1626 if (!rsp->gp_kthread) {
df2bf8f7 1627 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1628 goto unlock_out;
0446be48 1629 }
477351f7 1630 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq"));
360e0da6 1631 ret = true; /* Caller must wake GP kthread. */
0446be48 1632unlock_out:
ab5e869c 1633 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7
JFG
1634 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1635 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1636 rdp->gp_seq_needed = rnp->gp_seq_needed;
ab5e869c 1637 }
df2bf8f7
JFG
1638 if (rnp != rnp_start)
1639 raw_spin_unlock_rcu_node(rnp);
48a7639c 1640 return ret;
0446be48
PM
1641}
1642
1643/*
1644 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1645 * whether any additional grace periods have been requested.
0446be48 1646 */
fb31340f 1647static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
0446be48 1648{
fb31340f 1649 bool needmore;
0446be48
PM
1650 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1651
7a1d0f23
PM
1652 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1653 if (!needmore)
1654 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1655 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1656 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1657 return needmore;
1658}
1659
48a7639c
PM
1660/*
1661 * Awaken the grace-period kthread for the specified flavor of RCU.
1662 * Don't do a self-awaken, and don't bother awakening when there is
1663 * nothing for the grace-period kthread to do (as in several CPUs
1664 * raced to awaken, and we lost), and finally don't try to awaken
1665 * a kthread that has not yet been created.
1666 */
1667static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1668{
1669 if (current == rsp->gp_kthread ||
7d0ae808 1670 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1671 !rsp->gp_kthread)
1672 return;
abedf8e2 1673 swake_up(&rsp->gp_wq);
48a7639c
PM
1674}
1675
dc35c893 1676/*
29365e56
PM
1677 * If there is room, assign a ->gp_seq number to any callbacks on this
1678 * CPU that have not already been assigned. Also accelerate any callbacks
1679 * that were previously assigned a ->gp_seq number that has since proven
1680 * to be too conservative, which can happen if callbacks get assigned a
1681 * ->gp_seq number while RCU is idle, but with reference to a non-root
1682 * rcu_node structure. This function is idempotent, so it does not hurt
1683 * to call it repeatedly. Returns an flag saying that we should awaken
1684 * the RCU grace-period kthread.
dc35c893
PM
1685 *
1686 * The caller must hold rnp->lock with interrupts disabled.
1687 */
48a7639c 1688static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1689 struct rcu_data *rdp)
1690{
b73de91d 1691 unsigned long gp_seq_req;
15fecf89 1692 bool ret = false;
dc35c893 1693
a32e01ee 1694 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1695
15fecf89
PM
1696 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1697 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1698 return false;
dc35c893
PM
1699
1700 /*
15fecf89
PM
1701 * Callbacks are often registered with incomplete grace-period
1702 * information. Something about the fact that getting exact
1703 * information requires acquiring a global lock... RCU therefore
1704 * makes a conservative estimate of the grace period number at which
1705 * a given callback will become ready to invoke. The following
1706 * code checks this estimate and improves it when possible, thus
1707 * accelerating callback invocation to an earlier grace-period
1708 * number.
dc35c893 1709 */
b73de91d
JF
1710 gp_seq_req = rcu_seq_snap(&rsp->gp_seq);
1711 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1712 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1713
1714 /* Trace depending on how much we were able to accelerate. */
15fecf89 1715 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
477351f7 1716 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1717 else
477351f7 1718 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1719 return ret;
dc35c893
PM
1720}
1721
e44e73ca
PM
1722/*
1723 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1724 * rcu_node structure's ->lock be held. It consults the cached value
1725 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1726 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1727 * while holding the leaf rcu_node structure's ->lock.
1728 */
1729static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp,
1730 struct rcu_node *rnp,
1731 struct rcu_data *rdp)
1732{
1733 unsigned long c;
1734 bool needwake;
1735
1736 lockdep_assert_irqs_disabled();
1737 c = rcu_seq_snap(&rsp->gp_seq);
1738 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1739 /* Old request still live, so mark recent callbacks. */
1740 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1741 return;
1742 }
1743 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1744 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1745 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1746 if (needwake)
1747 rcu_gp_kthread_wake(rsp);
1748}
1749
dc35c893
PM
1750/*
1751 * Move any callbacks whose grace period has completed to the
1752 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1753 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1754 * sublist. This function is idempotent, so it does not hurt to
1755 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1756 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1757 *
1758 * The caller must hold rnp->lock with interrupts disabled.
1759 */
48a7639c 1760static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1761 struct rcu_data *rdp)
1762{
a32e01ee 1763 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1764
15fecf89
PM
1765 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1766 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1767 return false;
dc35c893
PM
1768
1769 /*
29365e56 1770 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1771 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1772 */
29365e56 1773 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1774
1775 /* Classify any remaining callbacks. */
48a7639c 1776 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1777}
1778
d09b62df 1779/*
ba9fbe95
PM
1780 * Update CPU-local rcu_data state to record the beginnings and ends of
1781 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1782 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1783 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1784 */
48a7639c
PM
1785static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1786 struct rcu_data *rdp)
d09b62df 1787{
48a7639c 1788 bool ret;
3563a438 1789 bool need_gp;
48a7639c 1790
a32e01ee 1791 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1792
67e14c1e
PM
1793 if (rdp->gp_seq == rnp->gp_seq)
1794 return false; /* Nothing to do. */
d09b62df 1795
67e14c1e
PM
1796 /* Handle the ends of any preceding grace periods first. */
1797 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1798 unlikely(READ_ONCE(rdp->gpwrap))) {
1799 ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */
67e14c1e
PM
1800 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend"));
1801 } else {
1802 ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */
d09b62df 1803 }
398ebe60 1804
67e14c1e
PM
1805 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1806 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1807 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1808 /*
1809 * If the current grace period is waiting for this CPU,
1810 * set up to detect a quiescent state, otherwise don't
1811 * go looking for one.
1812 */
5ca0905f 1813 trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart"));
3563a438
PM
1814 need_gp = !!(rnp->qsmask & rdp->grpmask);
1815 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1816 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1817 rdp->core_needs_qs = need_gp;
6eaef633
PM
1818 zero_cpu_stall_ticks(rdp);
1819 }
67e14c1e 1820 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
3d18469a
PM
1821 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1822 rdp->gp_seq_needed = rnp->gp_seq_needed;
1823 WRITE_ONCE(rdp->gpwrap, false);
1824 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1825 return ret;
6eaef633
PM
1826}
1827
d34ea322 1828static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1829{
1830 unsigned long flags;
48a7639c 1831 bool needwake;
6eaef633
PM
1832 struct rcu_node *rnp;
1833
1834 local_irq_save(flags);
1835 rnp = rdp->mynode;
67e14c1e 1836 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1837 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1838 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1839 local_irq_restore(flags);
1840 return;
1841 }
48a7639c 1842 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1843 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1844 if (needwake)
1845 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1846}
1847
0f41c0dd
PM
1848static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1849{
1850 if (delay > 0 &&
dee4f422
PM
1851 !(rcu_seq_ctr(rsp->gp_seq) %
1852 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1853 schedule_timeout_uninterruptible(delay);
1854}
1855
b3dbec76 1856/*
45fed3e7 1857 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1858 */
45fed3e7 1859static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1860{
0aa04b05 1861 unsigned long oldmask;
b3dbec76 1862 struct rcu_data *rdp;
7fdefc10 1863 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1864
7d0ae808 1865 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1866 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1867 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1868 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1869 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1870 return false;
f7be8209 1871 }
7d0ae808 1872 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1873
f7be8209
PM
1874 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1875 /*
1876 * Grace period already in progress, don't start another.
1877 * Not supposed to be able to happen.
1878 */
67c583a7 1879 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1880 return false;
7fdefc10
PM
1881 }
1882
7fdefc10 1883 /* Advance to a new grace period and initialize state. */
26cdfedf 1884 record_gp_stall_check_time(rsp);
ff3bb6f4 1885 /* Record GP times before starting GP, hence rcu_seq_start(). */
de30ad51 1886 rcu_seq_start(&rsp->gp_seq);
477351f7 1887 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start"));
67c583a7 1888 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1889
0aa04b05
PM
1890 /*
1891 * Apply per-leaf buffered online and offline operations to the
1892 * rcu_node tree. Note that this new grace period need not wait
1893 * for subsequent online CPUs, and that quiescent-state forcing
1894 * will handle subsequent offline CPUs.
1895 */
1896 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1897 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1898 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1899 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1900 !rnp->wait_blkd_tasks) {
1901 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1902 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
1903 continue;
1904 }
1905
1906 /* Record old state, apply changes to ->qsmaskinit field. */
1907 oldmask = rnp->qsmaskinit;
1908 rnp->qsmaskinit = rnp->qsmaskinitnext;
1909
1910 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1911 if (!oldmask != !rnp->qsmaskinit) {
1912 if (!oldmask) /* First online CPU for this rcu_node. */
1913 rcu_init_new_rnp(rnp);
1914 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1915 rnp->wait_blkd_tasks = true;
1916 else /* Last offline CPU and can propagate. */
1917 rcu_cleanup_dead_rnp(rnp);
1918 }
1919
1920 /*
1921 * If all waited-on tasks from prior grace period are
1922 * done, and if all this rcu_node structure's CPUs are
1923 * still offline, propagate up the rcu_node tree and
1924 * clear ->wait_blkd_tasks. Otherwise, if one of this
1925 * rcu_node structure's CPUs has since come back online,
1926 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1927 * checks for this, so just call it unconditionally).
1928 */
1929 if (rnp->wait_blkd_tasks &&
1930 (!rcu_preempt_has_tasks(rnp) ||
1931 rnp->qsmaskinit)) {
1932 rnp->wait_blkd_tasks = false;
1933 rcu_cleanup_dead_rnp(rnp);
1934 }
1935
67c583a7 1936 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 1937 }
7fdefc10
PM
1938
1939 /*
1940 * Set the quiescent-state-needed bits in all the rcu_node
1941 * structures for all currently online CPUs in breadth-first order,
1942 * starting from the root rcu_node structure, relying on the layout
1943 * of the tree within the rsp->node[] array. Note that other CPUs
1944 * will access only the leaves of the hierarchy, thus seeing that no
1945 * grace period is in progress, at least until the corresponding
590d1757 1946 * leaf node has been initialized.
7fdefc10
PM
1947 *
1948 * The grace period cannot complete until the initialization
1949 * process finishes, because this kthread handles both.
1950 */
1951 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1952 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 1953 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 1954 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1955 rcu_preempt_check_blocked_tasks(rnp);
1956 rnp->qsmask = rnp->qsmaskinit;
de30ad51 1957 WRITE_ONCE(rnp->gp_seq, rsp->gp_seq);
7fdefc10 1958 if (rnp == rdp->mynode)
48a7639c 1959 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10 1960 rcu_preempt_boost_start_gp(rnp);
477351f7 1961 trace_rcu_grace_period_init(rsp->name, rnp->gp_seq,
7fdefc10
PM
1962 rnp->level, rnp->grplo,
1963 rnp->grphi, rnp->qsmask);
67c583a7 1964 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1965 cond_resched_tasks_rcu_qs();
7d0ae808 1966 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1967 }
b3dbec76 1968
45fed3e7 1969 return true;
7fdefc10 1970}
b3dbec76 1971
b9a425cf 1972/*
d5374226
LR
1973 * Helper function for swait_event_idle() wakeup at force-quiescent-state
1974 * time.
b9a425cf
PM
1975 */
1976static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1977{
1978 struct rcu_node *rnp = rcu_get_root(rsp);
1979
1980 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1981 *gfp = READ_ONCE(rsp->gp_flags);
1982 if (*gfp & RCU_GP_FLAG_FQS)
1983 return true;
1984
1985 /* The current grace period has completed. */
1986 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1987 return true;
1988
1989 return false;
1990}
1991
4cdfc175
PM
1992/*
1993 * Do one round of quiescent-state forcing.
1994 */
77f81fe0 1995static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 1996{
4cdfc175
PM
1997 struct rcu_node *rnp = rcu_get_root(rsp);
1998
7d0ae808 1999 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2000 rsp->n_force_qs++;
77f81fe0 2001 if (first_time) {
4cdfc175 2002 /* Collect dyntick-idle snapshots. */
fe5ac724 2003 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2004 } else {
2005 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2006 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2007 }
2008 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2009 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2010 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2011 WRITE_ONCE(rsp->gp_flags,
2012 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2013 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2014 }
4cdfc175
PM
2015}
2016
7fdefc10
PM
2017/*
2018 * Clean up after the old grace period.
2019 */
4cdfc175 2020static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2021{
2022 unsigned long gp_duration;
48a7639c 2023 bool needgp = false;
de30ad51 2024 unsigned long new_gp_seq;
7fdefc10
PM
2025 struct rcu_data *rdp;
2026 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2027 struct swait_queue_head *sq;
b3dbec76 2028
7d0ae808 2029 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2030 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2031 gp_duration = jiffies - rsp->gp_start;
2032 if (gp_duration > rsp->gp_max)
2033 rsp->gp_max = gp_duration;
b3dbec76 2034
7fdefc10
PM
2035 /*
2036 * We know the grace period is complete, but to everyone else
2037 * it appears to still be ongoing. But it is also the case
2038 * that to everyone else it looks like there is nothing that
2039 * they can do to advance the grace period. It is therefore
2040 * safe for us to drop the lock in order to mark the grace
2041 * period as completed in all of the rcu_node structures.
7fdefc10 2042 */
67c583a7 2043 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2044
5d4b8659 2045 /*
ff3bb6f4
PM
2046 * Propagate new ->gp_seq value to rcu_node structures so that
2047 * other CPUs don't have to wait until the start of the next grace
2048 * period to process their callbacks. This also avoids some nasty
2049 * RCU grace-period initialization races by forcing the end of
2050 * the current grace period to be completely recorded in all of
2051 * the rcu_node structures before the beginning of the next grace
2052 * period is recorded in any of the rcu_node structures.
5d4b8659 2053 */
de30ad51
PM
2054 new_gp_seq = rsp->gp_seq;
2055 rcu_seq_end(&new_gp_seq);
5d4b8659 2056 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2057 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555
PM
2058 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2059 dump_blkd_tasks(rnp, 10);
5c60d25f 2060 WARN_ON_ONCE(rnp->qsmask);
de30ad51 2061 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
b11cc576
PM
2062 rdp = this_cpu_ptr(rsp->rda);
2063 if (rnp == rdp->mynode)
48a7639c 2064 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2065 /* smp_mb() provided by prior unlock-lock pair. */
fb31340f 2066 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
065bb78c 2067 sq = rcu_nocb_gp_get(rnp);
67c583a7 2068 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2069 rcu_nocb_gp_cleanup(sq);
cee43939 2070 cond_resched_tasks_rcu_qs();
7d0ae808 2071 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2072 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2073 }
5d4b8659 2074 rnp = rcu_get_root(rsp);
de30ad51 2075 raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */
7fdefc10 2076
765a3f4f 2077 /* Declare grace period done. */
de30ad51 2078 rcu_seq_end(&rsp->gp_seq);
477351f7 2079 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end"));
77f81fe0 2080 rsp->gp_state = RCU_GP_IDLE;
fb31340f 2081 /* Check for GP requests since above loop. */
5d4b8659 2082 rdp = this_cpu_ptr(rsp->rda);
5b55072f 2083 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 2084 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 2085 TPS("CleanupMore"));
fb31340f
PM
2086 needgp = true;
2087 }
48a7639c 2088 /* Advance CBs to reduce false positives below. */
384f77f4 2089 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) {
7d0ae808 2090 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
26d950a9 2091 rsp->gp_req_activity = jiffies;
477351f7 2092 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq),
bb311ecc 2093 TPS("newreq"));
18390aea
PM
2094 } else {
2095 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 2096 }
67c583a7 2097 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2098}
2099
2100/*
2101 * Body of kthread that handles grace periods.
2102 */
2103static int __noreturn rcu_gp_kthread(void *arg)
2104{
77f81fe0 2105 bool first_gp_fqs;
88d6df61 2106 int gf;
d40011f6 2107 unsigned long j;
4cdfc175 2108 int ret;
7fdefc10
PM
2109 struct rcu_state *rsp = arg;
2110 struct rcu_node *rnp = rcu_get_root(rsp);
2111
5871968d 2112 rcu_bind_gp_kthread();
7fdefc10
PM
2113 for (;;) {
2114
2115 /* Handle grace-period start. */
2116 for (;;) {
63c4db78 2117 trace_rcu_grace_period(rsp->name,
477351f7 2118 READ_ONCE(rsp->gp_seq),
63c4db78 2119 TPS("reqwait"));
afea227f 2120 rsp->gp_state = RCU_GP_WAIT_GPS;
d5374226
LR
2121 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2122 RCU_GP_FLAG_INIT);
319362c9 2123 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2124 /* Locking provides needed memory barrier. */
f7be8209 2125 if (rcu_gp_init(rsp))
7fdefc10 2126 break;
cee43939 2127 cond_resched_tasks_rcu_qs();
7d0ae808 2128 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2129 WARN_ON(signal_pending(current));
63c4db78 2130 trace_rcu_grace_period(rsp->name,
477351f7 2131 READ_ONCE(rsp->gp_seq),
63c4db78 2132 TPS("reqwaitsig"));
7fdefc10 2133 }
cabc49c1 2134
4cdfc175 2135 /* Handle quiescent-state forcing. */
77f81fe0 2136 first_gp_fqs = true;
d40011f6
PM
2137 j = jiffies_till_first_fqs;
2138 if (j > HZ) {
2139 j = HZ;
2140 jiffies_till_first_fqs = HZ;
2141 }
88d6df61 2142 ret = 0;
cabc49c1 2143 for (;;) {
8c7c4829 2144 if (!ret) {
88d6df61 2145 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2146 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2147 jiffies + 3 * j);
2148 }
63c4db78 2149 trace_rcu_grace_period(rsp->name,
477351f7 2150 READ_ONCE(rsp->gp_seq),
63c4db78 2151 TPS("fqswait"));
afea227f 2152 rsp->gp_state = RCU_GP_WAIT_FQS;
d5374226 2153 ret = swait_event_idle_timeout(rsp->gp_wq,
b9a425cf 2154 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2155 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2156 /* Locking provides needed memory barriers. */
4cdfc175 2157 /* If grace period done, leave loop. */
7d0ae808 2158 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2159 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2160 break;
4cdfc175 2161 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2162 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2163 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2164 trace_rcu_grace_period(rsp->name,
477351f7 2165 READ_ONCE(rsp->gp_seq),
63c4db78 2166 TPS("fqsstart"));
77f81fe0
PM
2167 rcu_gp_fqs(rsp, first_gp_fqs);
2168 first_gp_fqs = false;
63c4db78 2169 trace_rcu_grace_period(rsp->name,
477351f7 2170 READ_ONCE(rsp->gp_seq),
63c4db78 2171 TPS("fqsend"));
cee43939 2172 cond_resched_tasks_rcu_qs();
7d0ae808 2173 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2174 ret = 0; /* Force full wait till next FQS. */
2175 j = jiffies_till_next_fqs;
2176 if (j > HZ) {
2177 j = HZ;
2178 jiffies_till_next_fqs = HZ;
2179 } else if (j < 1) {
2180 j = 1;
2181 jiffies_till_next_fqs = 1;
2182 }
4cdfc175
PM
2183 } else {
2184 /* Deal with stray signal. */
cee43939 2185 cond_resched_tasks_rcu_qs();
7d0ae808 2186 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2187 WARN_ON(signal_pending(current));
63c4db78 2188 trace_rcu_grace_period(rsp->name,
477351f7 2189 READ_ONCE(rsp->gp_seq),
63c4db78 2190 TPS("fqswaitsig"));
fcfd0a23
PM
2191 ret = 1; /* Keep old FQS timing. */
2192 j = jiffies;
2193 if (time_after(jiffies, rsp->jiffies_force_qs))
2194 j = 1;
2195 else
2196 j = rsp->jiffies_force_qs - j;
d40011f6 2197 }
cabc49c1 2198 }
4cdfc175
PM
2199
2200 /* Handle grace-period end. */
319362c9 2201 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2202 rcu_gp_cleanup(rsp);
319362c9 2203 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2204 }
b3dbec76
PM
2205}
2206
f41d911f 2207/*
8994515c
PM
2208 * Report a full set of quiescent states to the specified rcu_state data
2209 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2210 * kthread if another grace period is required. Whether we wake
2211 * the grace-period kthread or it awakens itself for the next round
2212 * of quiescent-state forcing, that kthread will clean up after the
2213 * just-completed grace period. Note that the caller must hold rnp->lock,
2214 * which is released before return.
f41d911f 2215 */
d3f6bad3 2216static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2217 __releases(rcu_get_root(rsp)->lock)
f41d911f 2218{
a32e01ee 2219 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
fc2219d4 2220 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2221 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2222 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2223 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2224}
2225
64db4cff 2226/*
d3f6bad3
PM
2227 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2228 * Allows quiescent states for a group of CPUs to be reported at one go
2229 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2230 * must be represented by the same rcu_node structure (which need not be a
2231 * leaf rcu_node structure, though it often will be). The gps parameter
2232 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 2233 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 2234 * must be held upon entry, and it is released before return.
64db4cff
PM
2235 */
2236static void
d3f6bad3 2237rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2238 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2239 __releases(rnp->lock)
2240{
654e9533 2241 unsigned long oldmask = 0;
28ecd580
PM
2242 struct rcu_node *rnp_c;
2243
a32e01ee 2244 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 2245
64db4cff
PM
2246 /* Walk up the rcu_node hierarchy. */
2247 for (;;) {
c9a24e2d 2248 if (!(rnp->qsmask & mask) || rnp->gp_seq != gps) {
64db4cff 2249
654e9533
PM
2250 /*
2251 * Our bit has already been cleared, or the
2252 * relevant grace period is already over, so done.
2253 */
67c583a7 2254 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2255 return;
2256 }
654e9533 2257 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 2258 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 2259 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 2260 rnp->qsmask &= ~mask;
db023296 2261 trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq,
d4c08f2a
PM
2262 mask, rnp->qsmask, rnp->level,
2263 rnp->grplo, rnp->grphi,
2264 !!rnp->gp_tasks);
27f4d280 2265 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2266
2267 /* Other bits still set at this level, so done. */
67c583a7 2268 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2269 return;
2270 }
d43a5d32 2271 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
2272 mask = rnp->grpmask;
2273 if (rnp->parent == NULL) {
2274
2275 /* No more levels. Exit loop holding root lock. */
2276
2277 break;
2278 }
67c583a7 2279 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2280 rnp_c = rnp;
64db4cff 2281 rnp = rnp->parent;
2a67e741 2282 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2283 oldmask = rnp_c->qsmask;
64db4cff
PM
2284 }
2285
2286 /*
2287 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2288 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2289 * to clean up and start the next grace period if one is needed.
64db4cff 2290 */
d3f6bad3 2291 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2292}
2293
cc99a310
PM
2294/*
2295 * Record a quiescent state for all tasks that were previously queued
2296 * on the specified rcu_node structure and that were blocking the current
2297 * RCU grace period. The caller must hold the specified rnp->lock with
2298 * irqs disabled, and this lock is released upon return, but irqs remain
2299 * disabled.
2300 */
0aa04b05 2301static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2302 struct rcu_node *rnp, unsigned long flags)
2303 __releases(rnp->lock)
2304{
654e9533 2305 unsigned long gps;
cc99a310
PM
2306 unsigned long mask;
2307 struct rcu_node *rnp_p;
2308
a32e01ee 2309 raw_lockdep_assert_held_rcu_node(rnp);
a77da14c
PM
2310 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2311 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2312 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2313 return; /* Still need more quiescent states! */
2314 }
2315
2316 rnp_p = rnp->parent;
2317 if (rnp_p == NULL) {
2318 /*
a77da14c
PM
2319 * Only one rcu_node structure in the tree, so don't
2320 * try to report up to its nonexistent parent!
cc99a310
PM
2321 */
2322 rcu_report_qs_rsp(rsp, flags);
2323 return;
2324 }
2325
c9a24e2d
PM
2326 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2327 gps = rnp->gp_seq;
cc99a310 2328 mask = rnp->grpmask;
67c583a7 2329 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2330 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2331 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2332}
2333
64db4cff 2334/*
d3f6bad3 2335 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2336 * structure. This must be called from the specified CPU.
64db4cff
PM
2337 */
2338static void
d7d6a11e 2339rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2340{
2341 unsigned long flags;
2342 unsigned long mask;
48a7639c 2343 bool needwake;
64db4cff
PM
2344 struct rcu_node *rnp;
2345
2346 rnp = rdp->mynode;
2a67e741 2347 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
2348 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2349 rdp->gpwrap) {
64db4cff
PM
2350
2351 /*
e4cc1f22
PM
2352 * The grace period in which this quiescent state was
2353 * recorded has ended, so don't report it upwards.
2354 * We will instead need a new quiescent state that lies
2355 * within the current grace period.
64db4cff 2356 */
5b74c458 2357 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2358 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2359 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2360 return;
2361 }
2362 mask = rdp->grpmask;
2363 if ((rnp->qsmask & mask) == 0) {
67c583a7 2364 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2365 } else {
bb53e416 2366 rdp->core_needs_qs = false;
64db4cff
PM
2367
2368 /*
2369 * This GP can't end until cpu checks in, so all of our
2370 * callbacks can be processed during the next GP.
2371 */
48a7639c 2372 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2373
c9a24e2d 2374 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
654e9533 2375 /* ^^^ Released rnp->lock */
48a7639c
PM
2376 if (needwake)
2377 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2378 }
2379}
2380
2381/*
2382 * Check to see if there is a new grace period of which this CPU
2383 * is not yet aware, and if so, set up local rcu_data state for it.
2384 * Otherwise, see if this CPU has just passed through its first
2385 * quiescent state for this grace period, and record that fact if so.
2386 */
2387static void
2388rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2389{
05eb552b
PM
2390 /* Check for grace-period ends and beginnings. */
2391 note_gp_changes(rsp, rdp);
64db4cff
PM
2392
2393 /*
2394 * Does this CPU still need to do its part for current grace period?
2395 * If no, return and let the other CPUs do their part as well.
2396 */
97c668b8 2397 if (!rdp->core_needs_qs)
64db4cff
PM
2398 return;
2399
2400 /*
2401 * Was there a quiescent state since the beginning of the grace
2402 * period? If no, then exit and wait for the next call.
2403 */
3a19b46a 2404 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2405 return;
2406
d3f6bad3
PM
2407 /*
2408 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2409 * judge of that).
2410 */
d7d6a11e 2411 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2412}
2413
b1420f1c
PM
2414/*
2415 * Trace the fact that this CPU is going offline.
2416 */
2417static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2418{
477351f7 2419 RCU_TRACE(bool blkd;)
88a4976d
PM
2420 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2421 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2422
ea46351c
PM
2423 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2424 return;
2425
477351f7
PM
2426 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2427 trace_rcu_grace_period(rsp->name, rnp->gp_seq,
2428 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
64db4cff
PM
2429}
2430
8af3a5e7
PM
2431/*
2432 * All CPUs for the specified rcu_node structure have gone offline,
2433 * and all tasks that were preempted within an RCU read-side critical
2434 * section while running on one of those CPUs have since exited their RCU
2435 * read-side critical section. Some other CPU is reporting this fact with
2436 * the specified rcu_node structure's ->lock held and interrupts disabled.
2437 * This function therefore goes up the tree of rcu_node structures,
2438 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2439 * the leaf rcu_node structure's ->qsmaskinit field has already been
2440 * updated
2441 *
2442 * This function does check that the specified rcu_node structure has
2443 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2444 * prematurely. That said, invoking it after the fact will cost you
2445 * a needless lock acquisition. So once it has done its work, don't
2446 * invoke it again.
2447 */
2448static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2449{
2450 long mask;
2451 struct rcu_node *rnp = rnp_leaf;
2452
a32e01ee 2453 raw_lockdep_assert_held_rcu_node(rnp);
ea46351c
PM
2454 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2455 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2456 return;
2457 for (;;) {
2458 mask = rnp->grpmask;
2459 rnp = rnp->parent;
2460 if (!rnp)
2461 break;
2a67e741 2462 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2463 rnp->qsmaskinit &= ~mask;
0aa04b05 2464 rnp->qsmask &= ~mask;
8af3a5e7 2465 if (rnp->qsmaskinit) {
67c583a7
BF
2466 raw_spin_unlock_rcu_node(rnp);
2467 /* irqs remain disabled. */
8af3a5e7
PM
2468 return;
2469 }
67c583a7 2470 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2471 }
2472}
2473
64db4cff 2474/*
e5601400 2475 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2476 * this fact from process context. Do the remainder of the cleanup.
2477 * There can only be one CPU hotplug operation at a time, so no need for
2478 * explicit locking.
64db4cff 2479 */
e5601400 2480static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2481{
e5601400 2482 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2483 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2484
ea46351c
PM
2485 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2486 return;
2487
2036d94a 2488 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2489 rcu_boost_kthread_setaffinity(rnp, -1);
64db4cff
PM
2490}
2491
64db4cff
PM
2492/*
2493 * Invoke any RCU callbacks that have made it to the end of their grace
2494 * period. Thottle as specified by rdp->blimit.
2495 */
37c72e56 2496static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2497{
2498 unsigned long flags;
15fecf89
PM
2499 struct rcu_head *rhp;
2500 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2501 long bl, count;
64db4cff 2502
dc35c893 2503 /* If no callbacks are ready, just return. */
15fecf89
PM
2504 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2505 trace_rcu_batch_start(rsp->name,
2506 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2507 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2508 trace_rcu_batch_end(rsp->name, 0,
2509 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2510 need_resched(), is_idle_task(current),
2511 rcu_is_callbacks_kthread());
64db4cff 2512 return;
29c00b4a 2513 }
64db4cff
PM
2514
2515 /*
2516 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2517 * races with call_rcu() from interrupt handlers. Leave the
2518 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2519 */
2520 local_irq_save(flags);
8146c4e2 2521 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2522 bl = rdp->blimit;
15fecf89
PM
2523 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2524 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2525 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2526 local_irq_restore(flags);
2527
2528 /* Invoke callbacks. */
15fecf89
PM
2529 rhp = rcu_cblist_dequeue(&rcl);
2530 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2531 debug_rcu_head_unqueue(rhp);
2532 if (__rcu_reclaim(rsp->name, rhp))
2533 rcu_cblist_dequeued_lazy(&rcl);
2534 /*
2535 * Stop only if limit reached and CPU has something to do.
2536 * Note: The rcl structure counts down from zero.
2537 */
4b27f20b 2538 if (-rcl.len >= bl &&
dff1672d
PM
2539 (need_resched() ||
2540 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2541 break;
2542 }
2543
2544 local_irq_save(flags);
4b27f20b 2545 count = -rcl.len;
8ef0f37e
PM
2546 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2547 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2548
15fecf89
PM
2549 /* Update counts and requeue any remaining callbacks. */
2550 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2551 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2552 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2553
2554 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2555 count = rcu_segcblist_n_cbs(&rdp->cblist);
2556 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2557 rdp->blimit = blimit;
2558
37c72e56 2559 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2560 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2561 rdp->qlen_last_fqs_check = 0;
2562 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2563 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2564 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2565
2566 /*
2567 * The following usually indicates a double call_rcu(). To track
2568 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2569 */
15fecf89 2570 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2571
64db4cff
PM
2572 local_irq_restore(flags);
2573
e0f23060 2574 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2575 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2576 invoke_rcu_core();
64db4cff
PM
2577}
2578
2579/*
2580 * Check to see if this CPU is in a non-context-switch quiescent state
2581 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2582 * Also schedule RCU core processing.
64db4cff 2583 *
9b2e4f18 2584 * This function must be called from hardirq context. It is normally
5403d367 2585 * invoked from the scheduling-clock interrupt.
64db4cff 2586 */
c3377c2d 2587void rcu_check_callbacks(int user)
64db4cff 2588{
f7f7bac9 2589 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2590 increment_cpu_stall_ticks();
9b2e4f18 2591 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2592
2593 /*
2594 * Get here if this CPU took its interrupt from user
2595 * mode or from the idle loop, and if this is not a
2596 * nested interrupt. In this case, the CPU is in
d6714c22 2597 * a quiescent state, so note it.
64db4cff
PM
2598 *
2599 * No memory barrier is required here because both
d6714c22
PM
2600 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2601 * variables that other CPUs neither access nor modify,
2602 * at least not while the corresponding CPU is online.
64db4cff
PM
2603 */
2604
284a8c93
PM
2605 rcu_sched_qs();
2606 rcu_bh_qs();
64db4cff
PM
2607
2608 } else if (!in_softirq()) {
2609
2610 /*
2611 * Get here if this CPU did not take its interrupt from
2612 * softirq, in other words, if it is not interrupting
2613 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2614 * critical section, so note it.
64db4cff
PM
2615 */
2616
284a8c93 2617 rcu_bh_qs();
64db4cff 2618 }
86aea0e6 2619 rcu_preempt_check_callbacks();
e3950ecd 2620 if (rcu_pending())
a46e0899 2621 invoke_rcu_core();
8315f422
PM
2622 if (user)
2623 rcu_note_voluntary_context_switch(current);
f7f7bac9 2624 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2625}
2626
64db4cff
PM
2627/*
2628 * Scan the leaf rcu_node structures, processing dyntick state for any that
2629 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2630 * Also initiate boosting for any threads blocked on the root rcu_node.
2631 *
ee47eb9f 2632 * The caller must have suppressed start of new grace periods.
64db4cff 2633 */
fe5ac724 2634static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2635{
64db4cff
PM
2636 int cpu;
2637 unsigned long flags;
2638 unsigned long mask;
a0b6c9a7 2639 struct rcu_node *rnp;
64db4cff 2640
a0b6c9a7 2641 rcu_for_each_leaf_node(rsp, rnp) {
cee43939 2642 cond_resched_tasks_rcu_qs();
64db4cff 2643 mask = 0;
2a67e741 2644 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2645 if (rnp->qsmask == 0) {
a77da14c
PM
2646 if (rcu_state_p == &rcu_sched_state ||
2647 rsp != rcu_state_p ||
2648 rcu_preempt_blocked_readers_cgp(rnp)) {
2649 /*
2650 * No point in scanning bits because they
2651 * are all zero. But we might need to
2652 * priority-boost blocked readers.
2653 */
2654 rcu_initiate_boost(rnp, flags);
2655 /* rcu_initiate_boost() releases rnp->lock */
2656 continue;
2657 }
2658 if (rnp->parent &&
2659 (rnp->parent->qsmask & rnp->grpmask)) {
2660 /*
2661 * Race between grace-period
2662 * initialization and task exiting RCU
2663 * read-side critical section: Report.
2664 */
2665 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2666 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2667 continue;
2668 }
64db4cff 2669 }
bc75e999
MR
2670 for_each_leaf_node_possible_cpu(rnp, cpu) {
2671 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2672 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2673 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2674 mask |= bit;
2675 }
64db4cff 2676 }
45f014c5 2677 if (mask != 0) {
c9a24e2d
PM
2678 /* Idle/offline CPUs, report (releases rnp->lock). */
2679 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2680 } else {
2681 /* Nothing to do here, so just drop the lock. */
67c583a7 2682 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2683 }
64db4cff 2684 }
64db4cff
PM
2685}
2686
2687/*
2688 * Force quiescent states on reluctant CPUs, and also detect which
2689 * CPUs are in dyntick-idle mode.
2690 */
4cdfc175 2691static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2692{
2693 unsigned long flags;
394f2769
PM
2694 bool ret;
2695 struct rcu_node *rnp;
2696 struct rcu_node *rnp_old = NULL;
2697
2698 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2699 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2700 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2701 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2702 !raw_spin_trylock(&rnp->fqslock);
2703 if (rnp_old != NULL)
2704 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2705 if (ret)
394f2769 2706 return;
394f2769
PM
2707 rnp_old = rnp;
2708 }
2709 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2710
394f2769 2711 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2712 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2713 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2714 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2715 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2716 return; /* Someone beat us to it. */
46a1e34e 2717 }
7d0ae808 2718 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2719 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2720 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2721}
2722
26d950a9
PM
2723/*
2724 * This function checks for grace-period requests that fail to motivate
2725 * RCU to come out of its idle mode.
2726 */
2727static void
2728rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp,
2729 struct rcu_data *rdp)
2730{
2731 unsigned long flags;
2732 unsigned long j;
2733 struct rcu_node *rnp_root = rcu_get_root(rsp);
2734 static atomic_t warned = ATOMIC_INIT(0);
2735
7a1d0f23
PM
2736 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) ||
2737 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
26d950a9
PM
2738 return;
2739 j = jiffies; /* Expensive access, and in common case don't get here. */
2740 if (time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) ||
2741 time_before(j, READ_ONCE(rsp->gp_activity) + HZ) ||
2742 atomic_read(&warned))
2743 return;
2744
2745 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2746 j = jiffies;
7a1d0f23
PM
2747 if (rcu_gp_in_progress(rsp) ||
2748 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
26d950a9
PM
2749 time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) ||
2750 time_before(j, READ_ONCE(rsp->gp_activity) + HZ) ||
2751 atomic_read(&warned)) {
2752 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2753 return;
2754 }
2755 /* Hold onto the leaf lock to make others see warned==1. */
2756
2757 if (rnp_root != rnp)
2758 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2759 j = jiffies;
7a1d0f23
PM
2760 if (rcu_gp_in_progress(rsp) ||
2761 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
26d950a9
PM
2762 time_before(j, rsp->gp_req_activity + HZ) ||
2763 time_before(j, rsp->gp_activity + HZ) ||
2764 atomic_xchg(&warned, 1)) {
2765 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2766 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2767 return;
2768 }
7a1d0f23
PM
2769 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x %s->state:%#lx\n",
2770 __func__, (long)READ_ONCE(rsp->gp_seq),
2771 (long)READ_ONCE(rnp_root->gp_seq_needed),
26d950a9
PM
2772 j - rsp->gp_req_activity, j - rsp->gp_activity,
2773 rsp->gp_flags, rsp->name,
2774 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL);
2775 WARN_ON(1);
2776 if (rnp_root != rnp)
2777 raw_spin_unlock_rcu_node(rnp_root);
2778 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2779}
2780
64db4cff 2781/*
e0f23060
PM
2782 * This does the RCU core processing work for the specified rcu_state
2783 * and rcu_data structures. This may be called only from the CPU to
2784 * whom the rdp belongs.
64db4cff
PM
2785 */
2786static void
1bca8cf1 2787__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2788{
2789 unsigned long flags;
fa07a58f 2790 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
26d950a9 2791 struct rcu_node *rnp = rdp->mynode;
64db4cff 2792
50dc7def 2793 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2794
64db4cff
PM
2795 /* Update RCU state based on any recent quiescent states. */
2796 rcu_check_quiescent_state(rsp, rdp);
2797
bd7af846
PM
2798 /* No grace period and unregistered callbacks? */
2799 if (!rcu_gp_in_progress(rsp) &&
2800 rcu_segcblist_is_enabled(&rdp->cblist)) {
2801 local_irq_save(flags);
e44e73ca
PM
2802 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2803 rcu_accelerate_cbs_unlocked(rsp, rnp, rdp);
2804 local_irq_restore(flags);
64db4cff
PM
2805 }
2806
26d950a9
PM
2807 rcu_check_gp_start_stall(rsp, rnp, rdp);
2808
64db4cff 2809 /* If there are callbacks ready, invoke them. */
15fecf89 2810 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2811 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2812
2813 /* Do any needed deferred wakeups of rcuo kthreads. */
2814 do_nocb_deferred_wakeup(rdp);
09223371
SL
2815}
2816
64db4cff 2817/*
e0f23060 2818 * Do RCU core processing for the current CPU.
64db4cff 2819 */
0766f788 2820static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2821{
6ce75a23
PM
2822 struct rcu_state *rsp;
2823
bfa00b4c
PM
2824 if (cpu_is_offline(smp_processor_id()))
2825 return;
f7f7bac9 2826 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2827 for_each_rcu_flavor(rsp)
2828 __rcu_process_callbacks(rsp);
f7f7bac9 2829 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2830}
2831
a26ac245 2832/*
e0f23060
PM
2833 * Schedule RCU callback invocation. If the specified type of RCU
2834 * does not support RCU priority boosting, just do a direct call,
2835 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2836 * are running on the current CPU with softirqs disabled, the
e0f23060 2837 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2838 */
a46e0899 2839static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2840{
7d0ae808 2841 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2842 return;
a46e0899
PM
2843 if (likely(!rsp->boost)) {
2844 rcu_do_batch(rsp, rdp);
a26ac245
PM
2845 return;
2846 }
a46e0899 2847 invoke_rcu_callbacks_kthread();
a26ac245
PM
2848}
2849
a46e0899 2850static void invoke_rcu_core(void)
09223371 2851{
b0f74036
PM
2852 if (cpu_online(smp_processor_id()))
2853 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2854}
2855
29154c57
PM
2856/*
2857 * Handle any core-RCU processing required by a call_rcu() invocation.
2858 */
2859static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2860 struct rcu_head *head, unsigned long flags)
64db4cff 2861{
62fde6ed
PM
2862 /*
2863 * If called from an extended quiescent state, invoke the RCU
2864 * core in order to force a re-evaluation of RCU's idleness.
2865 */
9910affa 2866 if (!rcu_is_watching())
62fde6ed
PM
2867 invoke_rcu_core();
2868
a16b7a69 2869 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2870 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2871 return;
64db4cff 2872
37c72e56
PM
2873 /*
2874 * Force the grace period if too many callbacks or too long waiting.
2875 * Enforce hysteresis, and don't invoke force_quiescent_state()
2876 * if some other CPU has recently done so. Also, don't bother
2877 * invoking force_quiescent_state() if the newly enqueued callback
2878 * is the only one waiting for a grace period to complete.
2879 */
15fecf89
PM
2880 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2881 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2882
2883 /* Are we ignoring a completed grace period? */
470716fc 2884 note_gp_changes(rsp, rdp);
b52573d2
PM
2885
2886 /* Start a new grace period if one not already started. */
2887 if (!rcu_gp_in_progress(rsp)) {
e44e73ca 2888 rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp);
b52573d2
PM
2889 } else {
2890 /* Give the grace period a kick. */
2891 rdp->blimit = LONG_MAX;
2892 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2893 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 2894 force_quiescent_state(rsp);
b52573d2 2895 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 2896 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2897 }
4cdfc175 2898 }
29154c57
PM
2899}
2900
ae150184
PM
2901/*
2902 * RCU callback function to leak a callback.
2903 */
2904static void rcu_leak_callback(struct rcu_head *rhp)
2905{
2906}
2907
3fbfbf7a
PM
2908/*
2909 * Helper function for call_rcu() and friends. The cpu argument will
2910 * normally be -1, indicating "currently running CPU". It may specify
2911 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2912 * is expected to specify a CPU.
2913 */
64db4cff 2914static void
b6a4ae76 2915__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 2916 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2917{
2918 unsigned long flags;
2919 struct rcu_data *rdp;
2920
b8f2ed53
PM
2921 /* Misaligned rcu_head! */
2922 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2923
ae150184 2924 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2925 /*
2926 * Probable double call_rcu(), so leak the callback.
2927 * Use rcu:rcu_callback trace event to find the previous
2928 * time callback was passed to __call_rcu().
2929 */
2930 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2931 head, head->func);
7d0ae808 2932 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2933 return;
2934 }
64db4cff
PM
2935 head->func = func;
2936 head->next = NULL;
64db4cff 2937 local_irq_save(flags);
394f99a9 2938 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2939
2940 /* Add the callback to our list. */
15fecf89 2941 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2942 int offline;
2943
2944 if (cpu != -1)
2945 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
2946 if (likely(rdp->mynode)) {
2947 /* Post-boot, so this should be for a no-CBs CPU. */
2948 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2949 WARN_ON_ONCE(offline);
2950 /* Offline CPU, _call_rcu() illegal, leak callback. */
2951 local_irq_restore(flags);
2952 return;
2953 }
2954 /*
2955 * Very early boot, before rcu_init(). Initialize if needed
2956 * and then drop through to queue the callback.
2957 */
2958 BUG_ON(cpu != -1);
34404ca8 2959 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
2960 if (rcu_segcblist_empty(&rdp->cblist))
2961 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2962 }
15fecf89
PM
2963 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2964 if (!lazy)
c57afe80 2965 rcu_idle_count_callbacks_posted();
2655d57e 2966
d4c08f2a
PM
2967 if (__is_kfree_rcu_offset((unsigned long)func))
2968 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
2969 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2970 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2971 else
15fecf89
PM
2972 trace_rcu_callback(rsp->name, head,
2973 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2974 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2975
29154c57
PM
2976 /* Go handle any RCU core processing required. */
2977 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2978 local_irq_restore(flags);
2979}
2980
a68a2bb2
PM
2981/**
2982 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
2983 * @head: structure to be used for queueing the RCU updates.
2984 * @func: actual callback function to be invoked after the grace period
2985 *
2986 * The callback function will be invoked some time after a full grace
2987 * period elapses, in other words after all currently executing RCU
2988 * read-side critical sections have completed. call_rcu_sched() assumes
2989 * that the read-side critical sections end on enabling of preemption
2990 * or on voluntary preemption.
27fdb35f
PM
2991 * RCU read-side critical sections are delimited by:
2992 *
2993 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
2994 * - anything that disables preemption.
a68a2bb2
PM
2995 *
2996 * These may be nested.
2997 *
2998 * See the description of call_rcu() for more detailed information on
2999 * memory ordering guarantees.
64db4cff 3000 */
b6a4ae76 3001void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3002{
3fbfbf7a 3003 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3004}
d6714c22 3005EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3006
a68a2bb2
PM
3007/**
3008 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3009 * @head: structure to be used for queueing the RCU updates.
3010 * @func: actual callback function to be invoked after the grace period
3011 *
3012 * The callback function will be invoked some time after a full grace
3013 * period elapses, in other words after all currently executing RCU
3014 * read-side critical sections have completed. call_rcu_bh() assumes
3015 * that the read-side critical sections end on completion of a softirq
3016 * handler. This means that read-side critical sections in process
3017 * context must not be interrupted by softirqs. This interface is to be
3018 * used when most of the read-side critical sections are in softirq context.
27fdb35f
PM
3019 * RCU read-side critical sections are delimited by:
3020 *
3021 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3022 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3023 *
3024 * These may be nested.
a68a2bb2
PM
3025 *
3026 * See the description of call_rcu() for more detailed information on
3027 * memory ordering guarantees.
64db4cff 3028 */
b6a4ae76 3029void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3030{
3fbfbf7a 3031 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3032}
3033EXPORT_SYMBOL_GPL(call_rcu_bh);
3034
495aa969
ACB
3035/*
3036 * Queue an RCU callback for lazy invocation after a grace period.
3037 * This will likely be later named something like "call_rcu_lazy()",
3038 * but this change will require some way of tagging the lazy RCU
3039 * callbacks in the list of pending callbacks. Until then, this
3040 * function may only be called from __kfree_rcu().
3041 */
3042void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3043 rcu_callback_t func)
495aa969 3044{
e534165b 3045 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3046}
3047EXPORT_SYMBOL_GPL(kfree_call_rcu);
3048
6d813391
PM
3049/*
3050 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3051 * any blocking grace-period wait automatically implies a grace period
3052 * if there is only one CPU online at any point time during execution
3053 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3054 * occasionally incorrectly indicate that there are multiple CPUs online
3055 * when there was in fact only one the whole time, as this just adds
3056 * some overhead: RCU still operates correctly.
6d813391
PM
3057 */
3058static inline int rcu_blocking_is_gp(void)
3059{
95f0c1de
PM
3060 int ret;
3061
6d813391 3062 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3063 preempt_disable();
3064 ret = num_online_cpus() <= 1;
3065 preempt_enable();
3066 return ret;
6d813391
PM
3067}
3068
6ebb237b
PM
3069/**
3070 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3071 *
3072 * Control will return to the caller some time after a full rcu-sched
3073 * grace period has elapsed, in other words after all currently executing
3074 * rcu-sched read-side critical sections have completed. These read-side
3075 * critical sections are delimited by rcu_read_lock_sched() and
3076 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3077 * local_irq_disable(), and so on may be used in place of
3078 * rcu_read_lock_sched().
3079 *
3080 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3081 * non-threaded hardware-interrupt handlers, in progress on entry will
3082 * have completed before this primitive returns. However, this does not
3083 * guarantee that softirq handlers will have completed, since in some
3084 * kernels, these handlers can run in process context, and can block.
3085 *
3086 * Note that this guarantee implies further memory-ordering guarantees.
3087 * On systems with more than one CPU, when synchronize_sched() returns,
3088 * each CPU is guaranteed to have executed a full memory barrier since the
3089 * end of its last RCU-sched read-side critical section whose beginning
3090 * preceded the call to synchronize_sched(). In addition, each CPU having
3091 * an RCU read-side critical section that extends beyond the return from
3092 * synchronize_sched() is guaranteed to have executed a full memory barrier
3093 * after the beginning of synchronize_sched() and before the beginning of
3094 * that RCU read-side critical section. Note that these guarantees include
3095 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3096 * that are executing in the kernel.
3097 *
3098 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3099 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3100 * to have executed a full memory barrier during the execution of
3101 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3102 * again only if the system has more than one CPU).
6ebb237b
PM
3103 */
3104void synchronize_sched(void)
3105{
f78f5b90
PM
3106 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3107 lock_is_held(&rcu_lock_map) ||
3108 lock_is_held(&rcu_sched_lock_map),
3109 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3110 if (rcu_blocking_is_gp())
3111 return;
5afff48b 3112 if (rcu_gp_is_expedited())
3705b88d
AM
3113 synchronize_sched_expedited();
3114 else
3115 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3116}
3117EXPORT_SYMBOL_GPL(synchronize_sched);
3118
3119/**
3120 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3121 *
3122 * Control will return to the caller some time after a full rcu_bh grace
3123 * period has elapsed, in other words after all currently executing rcu_bh
3124 * read-side critical sections have completed. RCU read-side critical
3125 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3126 * and may be nested.
f0a0e6f2
PM
3127 *
3128 * See the description of synchronize_sched() for more detailed information
3129 * on memory ordering guarantees.
6ebb237b
PM
3130 */
3131void synchronize_rcu_bh(void)
3132{
f78f5b90
PM
3133 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3134 lock_is_held(&rcu_lock_map) ||
3135 lock_is_held(&rcu_sched_lock_map),
3136 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3137 if (rcu_blocking_is_gp())
3138 return;
5afff48b 3139 if (rcu_gp_is_expedited())
3705b88d
AM
3140 synchronize_rcu_bh_expedited();
3141 else
3142 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3143}
3144EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3145
765a3f4f
PM
3146/**
3147 * get_state_synchronize_rcu - Snapshot current RCU state
3148 *
3149 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3150 * to determine whether or not a full grace period has elapsed in the
3151 * meantime.
3152 */
3153unsigned long get_state_synchronize_rcu(void)
3154{
3155 /*
3156 * Any prior manipulation of RCU-protected data must happen
e4be81a2 3157 * before the load from ->gp_seq.
765a3f4f
PM
3158 */
3159 smp_mb(); /* ^^^ */
e4be81a2 3160 return rcu_seq_snap(&rcu_state_p->gp_seq);
765a3f4f
PM
3161}
3162EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3163
3164/**
3165 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3166 *
3167 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3168 *
3169 * If a full RCU grace period has elapsed since the earlier call to
3170 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3171 * synchronize_rcu() to wait for a full grace period.
3172 *
3173 * Yes, this function does not take counter wrap into account. But
3174 * counter wrap is harmless. If the counter wraps, we have waited for
3175 * more than 2 billion grace periods (and way more on a 64-bit system!),
3176 * so waiting for one additional grace period should be just fine.
3177 */
3178void cond_synchronize_rcu(unsigned long oldstate)
3179{
e4be81a2 3180 if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate))
765a3f4f 3181 synchronize_rcu();
e4be81a2
PM
3182 else
3183 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
3184}
3185EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3186
24560056
PM
3187/**
3188 * get_state_synchronize_sched - Snapshot current RCU-sched state
3189 *
3190 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3191 * to determine whether or not a full grace period has elapsed in the
3192 * meantime.
3193 */
3194unsigned long get_state_synchronize_sched(void)
3195{
3196 /*
3197 * Any prior manipulation of RCU-protected data must happen
e4be81a2 3198 * before the load from ->gp_seq.
24560056
PM
3199 */
3200 smp_mb(); /* ^^^ */
e4be81a2 3201 return rcu_seq_snap(&rcu_sched_state.gp_seq);
24560056
PM
3202}
3203EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3204
3205/**
3206 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3207 *
3208 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3209 *
3210 * If a full RCU-sched grace period has elapsed since the earlier call to
3211 * get_state_synchronize_sched(), just return. Otherwise, invoke
3212 * synchronize_sched() to wait for a full grace period.
3213 *
3214 * Yes, this function does not take counter wrap into account. But
3215 * counter wrap is harmless. If the counter wraps, we have waited for
3216 * more than 2 billion grace periods (and way more on a 64-bit system!),
3217 * so waiting for one additional grace period should be just fine.
3218 */
3219void cond_synchronize_sched(unsigned long oldstate)
3220{
e4be81a2 3221 if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate))
24560056 3222 synchronize_sched();
e4be81a2
PM
3223 else
3224 smp_mb(); /* Ensure GP ends before subsequent accesses. */
24560056
PM
3225}
3226EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3227
64db4cff
PM
3228/*
3229 * Check to see if there is any immediate RCU-related work to be done
3230 * by the current CPU, for the specified type of RCU, returning 1 if so.
3231 * The checks are in order of increasing expense: checks that can be
3232 * carried out against CPU-local state are performed first. However,
3233 * we must check for CPU stalls first, else we might not get a chance.
3234 */
3235static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3236{
2f51f988
PM
3237 struct rcu_node *rnp = rdp->mynode;
3238
64db4cff
PM
3239 /* Check for CPU stalls, if enabled. */
3240 check_cpu_stall(rsp, rdp);
3241
a096932f
PM
3242 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3243 if (rcu_nohz_full_cpu(rsp))
3244 return 0;
3245
64db4cff 3246 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 3247 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
3248 return 1;
3249
3250 /* Does this CPU have callbacks ready to invoke? */
01c495f7 3251 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
3252 return 1;
3253
3254 /* Has RCU gone idle with this CPU needing another grace period? */
c1935209
PM
3255 if (!rcu_gp_in_progress(rsp) &&
3256 rcu_segcblist_is_enabled(&rdp->cblist) &&
3257 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
3258 return 1;
3259
67e14c1e
PM
3260 /* Have RCU grace period completed or started? */
3261 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 3262 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
3263 return 1;
3264
96d3fd0d 3265 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 3266 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 3267 return 1;
96d3fd0d 3268
64db4cff
PM
3269 /* nothing to do */
3270 return 0;
3271}
3272
3273/*
3274 * Check to see if there is any immediate RCU-related work to be done
3275 * by the current CPU, returning 1 if so. This function is part of the
3276 * RCU implementation; it is -not- an exported member of the RCU API.
3277 */
e3950ecd 3278static int rcu_pending(void)
64db4cff 3279{
6ce75a23
PM
3280 struct rcu_state *rsp;
3281
3282 for_each_rcu_flavor(rsp)
e3950ecd 3283 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3284 return 1;
3285 return 0;
64db4cff
PM
3286}
3287
3288/*
c0f4dfd4
PM
3289 * Return true if the specified CPU has any callback. If all_lazy is
3290 * non-NULL, store an indication of whether all callbacks are lazy.
3291 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3292 */
82072c4f 3293static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3294{
c0f4dfd4
PM
3295 bool al = true;
3296 bool hc = false;
3297 struct rcu_data *rdp;
6ce75a23
PM
3298 struct rcu_state *rsp;
3299
c0f4dfd4 3300 for_each_rcu_flavor(rsp) {
aa6da514 3301 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3302 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3303 continue;
3304 hc = true;
15fecf89 3305 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3306 al = false;
69c8d28c
PM
3307 break;
3308 }
c0f4dfd4
PM
3309 }
3310 if (all_lazy)
3311 *all_lazy = al;
3312 return hc;
64db4cff
PM
3313}
3314
a83eff0a
PM
3315/*
3316 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3317 * the compiler is expected to optimize this away.
3318 */
e66c33d5 3319static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3320 int cpu, unsigned long done)
3321{
3322 trace_rcu_barrier(rsp->name, s, cpu,
3323 atomic_read(&rsp->barrier_cpu_count), done);
3324}
3325
b1420f1c
PM
3326/*
3327 * RCU callback function for _rcu_barrier(). If we are last, wake
3328 * up the task executing _rcu_barrier().
3329 */
24ebbca8 3330static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3331{
24ebbca8
PM
3332 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3333 struct rcu_state *rsp = rdp->rsp;
3334
a83eff0a 3335 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
d8db2e86
PM
3336 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3337 rsp->barrier_sequence);
7db74df8 3338 complete(&rsp->barrier_completion);
a83eff0a 3339 } else {
d8db2e86 3340 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
a83eff0a 3341 }
d0ec774c
PM
3342}
3343
3344/*
3345 * Called with preemption disabled, and from cross-cpu IRQ context.
3346 */
3347static void rcu_barrier_func(void *type)
3348{
037b64ed 3349 struct rcu_state *rsp = type;
fa07a58f 3350 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3351
d8db2e86 3352 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
f92c734f
PM
3353 rdp->barrier_head.func = rcu_barrier_callback;
3354 debug_rcu_head_queue(&rdp->barrier_head);
3355 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3356 atomic_inc(&rsp->barrier_cpu_count);
3357 } else {
3358 debug_rcu_head_unqueue(&rdp->barrier_head);
d8db2e86
PM
3359 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3360 rsp->barrier_sequence);
f92c734f 3361 }
d0ec774c
PM
3362}
3363
d0ec774c
PM
3364/*
3365 * Orchestrate the specified type of RCU barrier, waiting for all
3366 * RCU callbacks of the specified type to complete.
3367 */
037b64ed 3368static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3369{
b1420f1c 3370 int cpu;
b1420f1c 3371 struct rcu_data *rdp;
4f525a52 3372 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3373
d8db2e86 3374 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
b1420f1c 3375
e74f4c45 3376 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3377 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3378
4f525a52
PM
3379 /* Did someone else do our work for us? */
3380 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
d8db2e86
PM
3381 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3382 rsp->barrier_sequence);
cf3a9c48
PM
3383 smp_mb(); /* caller's subsequent code after above check. */
3384 mutex_unlock(&rsp->barrier_mutex);
3385 return;
3386 }
3387
4f525a52
PM
3388 /* Mark the start of the barrier operation. */
3389 rcu_seq_start(&rsp->barrier_sequence);
d8db2e86 3390 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
b1420f1c 3391
d0ec774c 3392 /*
b1420f1c
PM
3393 * Initialize the count to one rather than to zero in order to
3394 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3395 * (or preemption of this task). Exclude CPU-hotplug operations
3396 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3397 */
7db74df8 3398 init_completion(&rsp->barrier_completion);
24ebbca8 3399 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3400 get_online_cpus();
b1420f1c
PM
3401
3402 /*
1331e7a1
PM
3403 * Force each CPU with callbacks to register a new callback.
3404 * When that callback is invoked, we will know that all of the
3405 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3406 */
3fbfbf7a 3407 for_each_possible_cpu(cpu) {
d1e43fa5 3408 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3409 continue;
b1420f1c 3410 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3411 if (rcu_is_nocb_cpu(cpu)) {
d7e29933 3412 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
d8db2e86 3413 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
4f525a52 3414 rsp->barrier_sequence);
d7e29933 3415 } else {
d8db2e86 3416 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
4f525a52 3417 rsp->barrier_sequence);
41050a00 3418 smp_mb__before_atomic();
d7e29933
PM
3419 atomic_inc(&rsp->barrier_cpu_count);
3420 __call_rcu(&rdp->barrier_head,
3421 rcu_barrier_callback, rsp, cpu, 0);
3422 }
15fecf89 3423 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
d8db2e86 3424 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
4f525a52 3425 rsp->barrier_sequence);
037b64ed 3426 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3427 } else {
d8db2e86 3428 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
4f525a52 3429 rsp->barrier_sequence);
b1420f1c
PM
3430 }
3431 }
1331e7a1 3432 put_online_cpus();
b1420f1c
PM
3433
3434 /*
3435 * Now that we have an rcu_barrier_callback() callback on each
3436 * CPU, and thus each counted, remove the initial count.
3437 */
24ebbca8 3438 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3439 complete(&rsp->barrier_completion);
b1420f1c
PM
3440
3441 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3442 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3443
4f525a52 3444 /* Mark the end of the barrier operation. */
d8db2e86 3445 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
4f525a52
PM
3446 rcu_seq_end(&rsp->barrier_sequence);
3447
b1420f1c 3448 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3449 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3450}
d0ec774c
PM
3451
3452/**
3453 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3454 */
3455void rcu_barrier_bh(void)
3456{
037b64ed 3457 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3458}
3459EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3460
3461/**
3462 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3463 */
3464void rcu_barrier_sched(void)
3465{
037b64ed 3466 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3467}
3468EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3469
0aa04b05
PM
3470/*
3471 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3472 * first CPU in a given leaf rcu_node structure coming online. The caller
3473 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3474 * disabled.
3475 */
3476static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3477{
3478 long mask;
3479 struct rcu_node *rnp = rnp_leaf;
3480
a32e01ee 3481 raw_lockdep_assert_held_rcu_node(rnp);
0aa04b05
PM
3482 for (;;) {
3483 mask = rnp->grpmask;
3484 rnp = rnp->parent;
3485 if (rnp == NULL)
3486 return;
6cf10081 3487 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3488 rnp->qsmaskinit |= mask;
67c583a7 3489 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3490 }
3491}
3492
64db4cff 3493/*
27569620 3494 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3495 */
27569620
PM
3496static void __init
3497rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff 3498{
394f99a9 3499 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3500
3501 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3502 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3503 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
51a1fd30 3504 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
02a5c550 3505 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3506 rdp->cpu = cpu;
d4c08f2a 3507 rdp->rsp = rsp;
3fbfbf7a 3508 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3509}
3510
3511/*
3512 * Initialize a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
3513 * offline event can be happening at a given time. Note also that we can
3514 * accept some slop in the rsp->gp_seq access due to the fact that this
3515 * CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3516 */
49fb4c62 3517static void
9b67122a 3518rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3519{
3520 unsigned long flags;
394f99a9 3521 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3522 struct rcu_node *rnp = rcu_get_root(rsp);
3523
3524 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3525 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3526 rdp->qlen_last_fqs_check = 0;
3527 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3528 rdp->blimit = blimit;
15fecf89
PM
3529 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3530 !init_nocb_callback_list(rdp))
3531 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
2342172f 3532 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3533 rcu_dynticks_eqs_online();
67c583a7 3534 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3535
0aa04b05
PM
3536 /*
3537 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3538 * propagation up the rcu_node tree will happen at the beginning
3539 * of the next grace period.
3540 */
64db4cff 3541 rnp = rdp->mynode;
2a67e741 3542 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3543 rdp->beenonline = true; /* We have now been online. */
de30ad51 3544 rdp->gp_seq = rnp->gp_seq;
7a1d0f23 3545 rdp->gp_seq_needed = rnp->gp_seq;
5b74c458 3546 rdp->cpu_no_qs.b.norm = true;
9577df9a 3547 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3548 rdp->core_needs_qs = false;
9b9500da 3549 rdp->rcu_iw_pending = false;
8aa670cd 3550 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
477351f7 3551 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 3552 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3553}
3554
deb34f36
PM
3555/*
3556 * Invoked early in the CPU-online process, when pretty much all
3557 * services are available. The incoming CPU is not present.
3558 */
4df83742 3559int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3560{
6ce75a23
PM
3561 struct rcu_state *rsp;
3562
3563 for_each_rcu_flavor(rsp)
9b67122a 3564 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3565
3566 rcu_prepare_kthreads(cpu);
3567 rcu_spawn_all_nocb_kthreads(cpu);
3568
3569 return 0;
3570}
3571
deb34f36
PM
3572/*
3573 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3574 */
4df83742
TG
3575static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3576{
3577 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3578
3579 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3580}
3581
deb34f36
PM
3582/*
3583 * Near the end of the CPU-online process. Pretty much all services
3584 * enabled, and the CPU is now very much alive.
3585 */
4df83742
TG
3586int rcutree_online_cpu(unsigned int cpu)
3587{
9b9500da
PM
3588 unsigned long flags;
3589 struct rcu_data *rdp;
3590 struct rcu_node *rnp;
3591 struct rcu_state *rsp;
3592
3593 for_each_rcu_flavor(rsp) {
3594 rdp = per_cpu_ptr(rsp->rda, cpu);
3595 rnp = rdp->mynode;
3596 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3597 rnp->ffmask |= rdp->grpmask;
3598 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3599 }
da915ad5
PM
3600 if (IS_ENABLED(CONFIG_TREE_SRCU))
3601 srcu_online_cpu(cpu);
9b9500da
PM
3602 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3603 return 0; /* Too early in boot for scheduler work. */
3604 sync_sched_exp_online_cleanup(cpu);
3605 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3606 return 0;
3607}
3608
deb34f36
PM
3609/*
3610 * Near the beginning of the process. The CPU is still very much alive
3611 * with pretty much all services enabled.
3612 */
4df83742
TG
3613int rcutree_offline_cpu(unsigned int cpu)
3614{
9b9500da
PM
3615 unsigned long flags;
3616 struct rcu_data *rdp;
3617 struct rcu_node *rnp;
3618 struct rcu_state *rsp;
3619
3620 for_each_rcu_flavor(rsp) {
3621 rdp = per_cpu_ptr(rsp->rda, cpu);
3622 rnp = rdp->mynode;
3623 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3624 rnp->ffmask &= ~rdp->grpmask;
3625 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3626 }
3627
4df83742 3628 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3629 if (IS_ENABLED(CONFIG_TREE_SRCU))
3630 srcu_offline_cpu(cpu);
4df83742
TG
3631 return 0;
3632}
3633
deb34f36
PM
3634/*
3635 * Near the end of the offline process. We do only tracing here.
3636 */
4df83742
TG
3637int rcutree_dying_cpu(unsigned int cpu)
3638{
3639 struct rcu_state *rsp;
3640
3641 for_each_rcu_flavor(rsp)
3642 rcu_cleanup_dying_cpu(rsp);
3643 return 0;
3644}
3645
deb34f36
PM
3646/*
3647 * The outgoing CPU is gone and we are running elsewhere.
3648 */
4df83742
TG
3649int rcutree_dead_cpu(unsigned int cpu)
3650{
3651 struct rcu_state *rsp;
3652
3653 for_each_rcu_flavor(rsp) {
3654 rcu_cleanup_dead_cpu(cpu, rsp);
3655 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3656 }
3657 return 0;
64db4cff
PM
3658}
3659
f64c6013
PZ
3660static DEFINE_PER_CPU(int, rcu_cpu_started);
3661
7ec99de3
PM
3662/*
3663 * Mark the specified CPU as being online so that subsequent grace periods
3664 * (both expedited and normal) will wait on it. Note that this means that
3665 * incoming CPUs are not allowed to use RCU read-side critical sections
3666 * until this function is called. Failing to observe this restriction
3667 * will result in lockdep splats.
deb34f36
PM
3668 *
3669 * Note that this function is special in that it is invoked directly
3670 * from the incoming CPU rather than from the cpuhp_step mechanism.
3671 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3672 */
3673void rcu_cpu_starting(unsigned int cpu)
3674{
3675 unsigned long flags;
3676 unsigned long mask;
313517fc
PM
3677 int nbits;
3678 unsigned long oldmask;
7ec99de3
PM
3679 struct rcu_data *rdp;
3680 struct rcu_node *rnp;
3681 struct rcu_state *rsp;
3682
f64c6013
PZ
3683 if (per_cpu(rcu_cpu_started, cpu))
3684 return;
3685
3686 per_cpu(rcu_cpu_started, cpu) = 1;
3687
7ec99de3 3688 for_each_rcu_flavor(rsp) {
fdbb9b31 3689 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3690 rnp = rdp->mynode;
3691 mask = rdp->grpmask;
3692 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3693 rnp->qsmaskinitnext |= mask;
313517fc 3694 oldmask = rnp->expmaskinitnext;
7ec99de3 3695 rnp->expmaskinitnext |= mask;
313517fc
PM
3696 oldmask ^= rnp->expmaskinitnext;
3697 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3698 /* Allow lockless access for expedited grace periods. */
3699 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
7ec99de3
PM
3700 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3701 }
313517fc 3702 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3703}
3704
27d50c7e
TG
3705#ifdef CONFIG_HOTPLUG_CPU
3706/*
3707 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3708 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3709 * bit masks.
3710 */
3711static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3712{
3713 unsigned long flags;
3714 unsigned long mask;
3715 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3716 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3717
27d50c7e
TG
3718 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3719 mask = rdp->grpmask;
3720 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3721 rnp->qsmaskinitnext &= ~mask;
710d60cb 3722 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3723}
3724
deb34f36
PM
3725/*
3726 * The outgoing function has no further need of RCU, so remove it from
3727 * the list of CPUs that RCU must track.
3728 *
3729 * Note that this function is special in that it is invoked directly
3730 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3731 * This is because this function must be invoked at a precise location.
3732 */
27d50c7e
TG
3733void rcu_report_dead(unsigned int cpu)
3734{
3735 struct rcu_state *rsp;
3736
3737 /* QS for any half-done expedited RCU-sched GP. */
3738 preempt_disable();
3739 rcu_report_exp_rdp(&rcu_sched_state,
3740 this_cpu_ptr(rcu_sched_state.rda), true);
3741 preempt_enable();
3742 for_each_rcu_flavor(rsp)
3743 rcu_cleanup_dying_idle_cpu(cpu, rsp);
f64c6013
PZ
3744
3745 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3746}
a58163d8 3747
f2dbe4a5 3748/* Migrate the dead CPU's callbacks to the current CPU. */
a58163d8
PM
3749static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3750{
3751 unsigned long flags;
b1a2d79f 3752 struct rcu_data *my_rdp;
a58163d8 3753 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
9fa46fb8 3754 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
ec4eacce 3755 bool needwake;
a58163d8 3756
95335c03
PM
3757 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3758 return; /* No callbacks to migrate. */
3759
b1a2d79f
PM
3760 local_irq_save(flags);
3761 my_rdp = this_cpu_ptr(rsp->rda);
3762 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3763 local_irq_restore(flags);
3764 return;
3765 }
9fa46fb8 3766 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce
PM
3767 /* Leverage recent GPs and set GP for new callbacks. */
3768 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
3769 rcu_advance_cbs(rsp, rnp_root, my_rdp);
f2dbe4a5 3770 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3771 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3772 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3773 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce
PM
3774 if (needwake)
3775 rcu_gp_kthread_wake(rsp);
a58163d8
PM
3776 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3777 !rcu_segcblist_empty(&rdp->cblist),
3778 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3779 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3780 rcu_segcblist_first_cb(&rdp->cblist));
3781}
3782
3783/*
3784 * The outgoing CPU has just passed through the dying-idle state,
3785 * and we are being invoked from the CPU that was IPIed to continue the
3786 * offline operation. We need to migrate the outgoing CPU's callbacks.
3787 */
3788void rcutree_migrate_callbacks(int cpu)
3789{
3790 struct rcu_state *rsp;
3791
3792 for_each_rcu_flavor(rsp)
3793 rcu_migrate_callbacks(cpu, rsp);
3794}
27d50c7e
TG
3795#endif
3796
deb34f36
PM
3797/*
3798 * On non-huge systems, use expedited RCU grace periods to make suspend
3799 * and hibernation run faster.
3800 */
d1d74d14
BP
3801static int rcu_pm_notify(struct notifier_block *self,
3802 unsigned long action, void *hcpu)
3803{
3804 switch (action) {
3805 case PM_HIBERNATION_PREPARE:
3806 case PM_SUSPEND_PREPARE:
3807 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3808 rcu_expedite_gp();
d1d74d14
BP
3809 break;
3810 case PM_POST_HIBERNATION:
3811 case PM_POST_SUSPEND:
5afff48b
PM
3812 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3813 rcu_unexpedite_gp();
d1d74d14
BP
3814 break;
3815 default:
3816 break;
3817 }
3818 return NOTIFY_OK;
3819}
3820
b3dbec76 3821/*
9386c0b7 3822 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3823 */
3824static int __init rcu_spawn_gp_kthread(void)
3825{
3826 unsigned long flags;
a94844b2 3827 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3828 struct rcu_node *rnp;
3829 struct rcu_state *rsp;
a94844b2 3830 struct sched_param sp;
b3dbec76
PM
3831 struct task_struct *t;
3832
a94844b2
PM
3833 /* Force priority into range. */
3834 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3835 kthread_prio = 1;
3836 else if (kthread_prio < 0)
3837 kthread_prio = 0;
3838 else if (kthread_prio > 99)
3839 kthread_prio = 99;
3840 if (kthread_prio != kthread_prio_in)
3841 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3842 kthread_prio, kthread_prio_in);
3843
9386c0b7 3844 rcu_scheduler_fully_active = 1;
b3dbec76 3845 for_each_rcu_flavor(rsp) {
a94844b2 3846 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3847 BUG_ON(IS_ERR(t));
3848 rnp = rcu_get_root(rsp);
6cf10081 3849 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3850 rsp->gp_kthread = t;
a94844b2
PM
3851 if (kthread_prio) {
3852 sp.sched_priority = kthread_prio;
3853 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3854 }
67c583a7 3855 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3856 wake_up_process(t);
b3dbec76 3857 }
35ce7f29 3858 rcu_spawn_nocb_kthreads();
9386c0b7 3859 rcu_spawn_boost_kthreads();
b3dbec76
PM
3860 return 0;
3861}
3862early_initcall(rcu_spawn_gp_kthread);
3863
bbad9379 3864/*
52d7e48b
PM
3865 * This function is invoked towards the end of the scheduler's
3866 * initialization process. Before this is called, the idle task might
3867 * contain synchronous grace-period primitives (during which time, this idle
3868 * task is booting the system, and such primitives are no-ops). After this
3869 * function is called, any synchronous grace-period primitives are run as
3870 * expedited, with the requesting task driving the grace period forward.
900b1028 3871 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3872 * runtime RCU functionality.
bbad9379
PM
3873 */
3874void rcu_scheduler_starting(void)
3875{
3876 WARN_ON(num_online_cpus() != 1);
3877 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3878 rcu_test_sync_prims();
3879 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3880 rcu_test_sync_prims();
bbad9379
PM
3881}
3882
64db4cff
PM
3883/*
3884 * Helper function for rcu_init() that initializes one rcu_state structure.
3885 */
a87f203e 3886static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 3887{
cb007102
AG
3888 static const char * const buf[] = RCU_NODE_NAME_INIT;
3889 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3890 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3891 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3892
199977bf 3893 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3894 int cpustride = 1;
3895 int i;
3896 int j;
3897 struct rcu_node *rnp;
3898
05b84aec 3899 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3900
3eaaaf6c
PM
3901 /* Silence gcc 4.8 false positive about array index out of range. */
3902 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3903 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3904
64db4cff
PM
3905 /* Initialize the level-tracking arrays. */
3906
f885b7f2 3907 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
3908 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
3909 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3910
3911 /* Initialize the elements themselves, starting from the leaves. */
3912
f885b7f2 3913 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3914 cpustride *= levelspread[i];
64db4cff 3915 rnp = rsp->level[i];
41f5c631 3916 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3917 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3918 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3919 &rcu_node_class[i], buf[i]);
394f2769
PM
3920 raw_spin_lock_init(&rnp->fqslock);
3921 lockdep_set_class_and_name(&rnp->fqslock,
3922 &rcu_fqs_class[i], fqs[i]);
de30ad51 3923 rnp->gp_seq = rsp->gp_seq;
7a1d0f23 3924 rnp->gp_seq_needed = rsp->gp_seq;
d43a5d32 3925 rnp->completedqs = rsp->gp_seq;
64db4cff
PM
3926 rnp->qsmask = 0;
3927 rnp->qsmaskinit = 0;
3928 rnp->grplo = j * cpustride;
3929 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3930 if (rnp->grphi >= nr_cpu_ids)
3931 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3932 if (i == 0) {
3933 rnp->grpnum = 0;
3934 rnp->grpmask = 0;
3935 rnp->parent = NULL;
3936 } else {
199977bf 3937 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
3938 rnp->grpmask = 1UL << rnp->grpnum;
3939 rnp->parent = rsp->level[i - 1] +
199977bf 3940 j / levelspread[i - 1];
64db4cff
PM
3941 }
3942 rnp->level = i;
12f5f524 3943 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3944 rcu_init_one_nocb(rnp);
f6a12f34
PM
3945 init_waitqueue_head(&rnp->exp_wq[0]);
3946 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
3947 init_waitqueue_head(&rnp->exp_wq[2]);
3948 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 3949 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
3950 }
3951 }
0c34029a 3952
abedf8e2
PG
3953 init_swait_queue_head(&rsp->gp_wq);
3954 init_swait_queue_head(&rsp->expedited_wq);
5b4c11d5 3955 rnp = rcu_first_leaf_node(rsp);
0c34029a 3956 for_each_possible_cpu(i) {
4a90a068 3957 while (i > rnp->grphi)
0c34029a 3958 rnp++;
394f99a9 3959 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3960 rcu_boot_init_percpu_data(i, rsp);
3961 }
6ce75a23 3962 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3963}
3964
f885b7f2
PM
3965/*
3966 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3967 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3968 * the ->node array in the rcu_state structure.
3969 */
3970static void __init rcu_init_geometry(void)
3971{
026ad283 3972 ulong d;
f885b7f2 3973 int i;
05b84aec 3974 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 3975
026ad283
PM
3976 /*
3977 * Initialize any unspecified boot parameters.
3978 * The default values of jiffies_till_first_fqs and
3979 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3980 * value, which is a function of HZ, then adding one for each
3981 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3982 */
3983 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3984 if (jiffies_till_first_fqs == ULONG_MAX)
3985 jiffies_till_first_fqs = d;
3986 if (jiffies_till_next_fqs == ULONG_MAX)
3987 jiffies_till_next_fqs = d;
3988
f885b7f2 3989 /* If the compile-time values are accurate, just leave. */
47d631af 3990 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 3991 nr_cpu_ids == NR_CPUS)
f885b7f2 3992 return;
9b130ad5 3993 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 3994 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 3995
f885b7f2 3996 /*
ee968ac6
PM
3997 * The boot-time rcu_fanout_leaf parameter must be at least two
3998 * and cannot exceed the number of bits in the rcu_node masks.
3999 * Complain and fall back to the compile-time values if this
4000 * limit is exceeded.
f885b7f2 4001 */
ee968ac6 4002 if (rcu_fanout_leaf < 2 ||
75cf15a4 4003 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4004 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4005 WARN_ON(1);
4006 return;
4007 }
4008
f885b7f2
PM
4009 /*
4010 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4011 * with the given number of levels.
f885b7f2 4012 */
9618138b 4013 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4014 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4015 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4016
4017 /*
75cf15a4 4018 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4019 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4020 */
ee968ac6
PM
4021 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4022 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4023 WARN_ON(1);
4024 return;
4025 }
f885b7f2 4026
679f9858 4027 /* Calculate the number of levels in the tree. */
9618138b 4028 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4029 }
9618138b 4030 rcu_num_lvls = i + 1;
679f9858 4031
f885b7f2 4032 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4033 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4034 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4035 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4036 }
f885b7f2
PM
4037
4038 /* Calculate the total number of rcu_node structures. */
4039 rcu_num_nodes = 0;
679f9858 4040 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4041 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4042}
4043
a3dc2948
PM
4044/*
4045 * Dump out the structure of the rcu_node combining tree associated
4046 * with the rcu_state structure referenced by rsp.
4047 */
4048static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4049{
4050 int level = 0;
4051 struct rcu_node *rnp;
4052
4053 pr_info("rcu_node tree layout dump\n");
4054 pr_info(" ");
4055 rcu_for_each_node_breadth_first(rsp, rnp) {
4056 if (rnp->level != level) {
4057 pr_cont("\n");
4058 pr_info(" ");
4059 level = rnp->level;
4060 }
4061 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4062 }
4063 pr_cont("\n");
4064}
4065
ad7c946b 4066struct workqueue_struct *rcu_gp_wq;
25f3d7ef 4067struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 4068
9f680ab4 4069void __init rcu_init(void)
64db4cff 4070{
017c4261 4071 int cpu;
9f680ab4 4072
47627678
PM
4073 rcu_early_boot_tests();
4074
f41d911f 4075 rcu_bootup_announce();
f885b7f2 4076 rcu_init_geometry();
a87f203e
PM
4077 rcu_init_one(&rcu_bh_state);
4078 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4079 if (dump_tree)
4080 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4081 __rcu_init_preempt();
b5b39360 4082 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4083
4084 /*
4085 * We don't need protection against CPU-hotplug here because
4086 * this is called early in boot, before either interrupts
4087 * or the scheduler are operational.
4088 */
d1d74d14 4089 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4090 for_each_online_cpu(cpu) {
4df83742 4091 rcutree_prepare_cpu(cpu);
7ec99de3 4092 rcu_cpu_starting(cpu);
9b9500da 4093 rcutree_online_cpu(cpu);
7ec99de3 4094 }
ad7c946b
PM
4095
4096 /* Create workqueue for expedited GPs and for Tree SRCU. */
4097 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4098 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
4099 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4100 WARN_ON(!rcu_par_gp_wq);
64db4cff
PM
4101}
4102
3549c2bc 4103#include "tree_exp.h"
4102adab 4104#include "tree_plugin.h"