rcu: Advance callbacks after migration
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
15fecf89
PM
100 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
101 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
7be7f0be 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 103 .name = RCU_STATE_NAME(sname), \
a4889858 104 .abbr = sabbr, \
f6a12f34 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 107}
64db4cff 108
a41bfeb2
SRRH
109RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 111
b28a7c01 112static struct rcu_state *const rcu_state_p;
6ce75a23 113LIST_HEAD(rcu_struct_flavors);
27f4d280 114
a3dc2948
PM
115/* Dump rcu_node combining tree at boot to verify correct setup. */
116static bool dump_tree;
117module_param(dump_tree, bool, 0444);
7fa27001
PM
118/* Control rcu_node-tree auto-balancing at boot time. */
119static bool rcu_fanout_exact;
120module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
121/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 123module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 124int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 125/* Number of rcu_nodes at specified level. */
e95d68d2 126int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
128/* panic() on RCU Stall sysctl. */
129int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 130
b0d30417 131/*
52d7e48b
PM
132 * The rcu_scheduler_active variable is initialized to the value
133 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
134 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
135 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 136 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
137 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
138 * to detect real grace periods. This variable is also used to suppress
139 * boot-time false positives from lockdep-RCU error checking. Finally, it
140 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
141 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 142 */
bbad9379
PM
143int rcu_scheduler_active __read_mostly;
144EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145
b0d30417
PM
146/*
147 * The rcu_scheduler_fully_active variable transitions from zero to one
148 * during the early_initcall() processing, which is after the scheduler
149 * is capable of creating new tasks. So RCU processing (for example,
150 * creating tasks for RCU priority boosting) must be delayed until after
151 * rcu_scheduler_fully_active transitions from zero to one. We also
152 * currently delay invocation of any RCU callbacks until after this point.
153 *
154 * It might later prove better for people registering RCU callbacks during
155 * early boot to take responsibility for these callbacks, but one step at
156 * a time.
157 */
158static int rcu_scheduler_fully_active __read_mostly;
159
0aa04b05
PM
160static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 162static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
163static void invoke_rcu_core(void);
164static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
165static void rcu_report_exp_rdp(struct rcu_state *rsp,
166 struct rcu_data *rdp, bool wake);
3549c2bc 167static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 168
a94844b2 169/* rcuc/rcub kthread realtime priority */
26730f55 170static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
a94844b2
PM
171module_param(kthread_prio, int, 0644);
172
8d7dc928 173/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 174
90040c9e
PM
175static int gp_preinit_delay;
176module_param(gp_preinit_delay, int, 0444);
177static int gp_init_delay;
178module_param(gp_init_delay, int, 0444);
179static int gp_cleanup_delay;
180module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 181
eab128e8
PM
182/*
183 * Number of grace periods between delays, normalized by the duration of
bfd090be 184 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
185 * each delay. The reason for this normalization is that it means that,
186 * for non-zero delays, the overall slowdown of grace periods is constant
187 * regardless of the duration of the delay. This arrangement balances
188 * the need for long delays to increase some race probabilities with the
189 * need for fast grace periods to increase other race probabilities.
190 */
191#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 192
4a298656
PM
193/*
194 * Track the rcutorture test sequence number and the update version
195 * number within a given test. The rcutorture_testseq is incremented
196 * on every rcutorture module load and unload, so has an odd value
197 * when a test is running. The rcutorture_vernum is set to zero
198 * when rcutorture starts and is incremented on each rcutorture update.
199 * These variables enable correlating rcutorture output with the
200 * RCU tracing information.
201 */
202unsigned long rcutorture_testseq;
203unsigned long rcutorture_vernum;
204
0aa04b05
PM
205/*
206 * Compute the mask of online CPUs for the specified rcu_node structure.
207 * This will not be stable unless the rcu_node structure's ->lock is
208 * held, but the bit corresponding to the current CPU will be stable
209 * in most contexts.
210 */
211unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
212{
7d0ae808 213 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
214}
215
fc2219d4 216/*
7d0ae808 217 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
218 * permit this function to be invoked without holding the root rcu_node
219 * structure's ->lock, but of course results can be subject to change.
220 */
221static int rcu_gp_in_progress(struct rcu_state *rsp)
222{
7d0ae808 223 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
224}
225
b1f77b05 226/*
d6714c22 227 * Note a quiescent state. Because we do not need to know
b1f77b05 228 * how many quiescent states passed, just if there was at least
d6714c22 229 * one since the start of the grace period, this just sets a flag.
e4cc1f22 230 * The caller must have disabled preemption.
b1f77b05 231 */
284a8c93 232void rcu_sched_qs(void)
b1f77b05 233{
f4687d26 234 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
235 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
236 return;
237 trace_rcu_grace_period(TPS("rcu_sched"),
238 __this_cpu_read(rcu_sched_data.gpnum),
239 TPS("cpuqs"));
240 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
241 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
242 return;
46a5d164
PM
243 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
244 rcu_report_exp_rdp(&rcu_sched_state,
245 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
246}
247
284a8c93 248void rcu_bh_qs(void)
b1f77b05 249{
f4687d26 250 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 251 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
252 trace_rcu_grace_period(TPS("rcu_bh"),
253 __this_cpu_read(rcu_bh_data.gpnum),
254 TPS("cpuqs"));
5b74c458 255 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 256 }
b1f77b05 257}
64db4cff 258
b8c17e66
PM
259/*
260 * Steal a bit from the bottom of ->dynticks for idle entry/exit
261 * control. Initially this is for TLB flushing.
262 */
263#define RCU_DYNTICK_CTRL_MASK 0x1
264#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
265#ifndef rcu_eqs_special_exit
266#define rcu_eqs_special_exit() do { } while (0)
267#endif
4a81e832
PM
268
269static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
270 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 271 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
272};
273
03ecd3f4
SRV
274/*
275 * There's a few places, currently just in the tracing infrastructure,
276 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
277 * a small location where that will not even work. In those cases
278 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
279 * can be called.
280 */
281static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
282
283bool rcu_irq_enter_disabled(void)
284{
285 return this_cpu_read(disable_rcu_irq_enter);
286}
287
2625d469
PM
288/*
289 * Record entry into an extended quiescent state. This is only to be
290 * called when not already in an extended quiescent state.
291 */
292static void rcu_dynticks_eqs_enter(void)
293{
294 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 295 int seq;
2625d469
PM
296
297 /*
b8c17e66 298 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
299 * critical sections, and we also must force ordering with the
300 * next idle sojourn.
301 */
b8c17e66
PM
302 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
303 /* Better be in an extended quiescent state! */
304 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
305 (seq & RCU_DYNTICK_CTRL_CTR));
306 /* Better not have special action (TLB flush) pending! */
307 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
308 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
309}
310
311/*
312 * Record exit from an extended quiescent state. This is only to be
313 * called from an extended quiescent state.
314 */
315static void rcu_dynticks_eqs_exit(void)
316{
317 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 318 int seq;
2625d469
PM
319
320 /*
b8c17e66 321 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
322 * and we also must force ordering with the next RCU read-side
323 * critical section.
324 */
b8c17e66
PM
325 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
326 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
327 !(seq & RCU_DYNTICK_CTRL_CTR));
328 if (seq & RCU_DYNTICK_CTRL_MASK) {
329 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
330 smp_mb__after_atomic(); /* _exit after clearing mask. */
331 /* Prefer duplicate flushes to losing a flush. */
332 rcu_eqs_special_exit();
333 }
2625d469
PM
334}
335
336/*
337 * Reset the current CPU's ->dynticks counter to indicate that the
338 * newly onlined CPU is no longer in an extended quiescent state.
339 * This will either leave the counter unchanged, or increment it
340 * to the next non-quiescent value.
341 *
342 * The non-atomic test/increment sequence works because the upper bits
343 * of the ->dynticks counter are manipulated only by the corresponding CPU,
344 * or when the corresponding CPU is offline.
345 */
346static void rcu_dynticks_eqs_online(void)
347{
348 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
349
b8c17e66 350 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 351 return;
b8c17e66 352 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
353}
354
02a5c550
PM
355/*
356 * Is the current CPU in an extended quiescent state?
357 *
358 * No ordering, as we are sampling CPU-local information.
359 */
360bool rcu_dynticks_curr_cpu_in_eqs(void)
361{
362 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
363
b8c17e66 364 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
365}
366
8b2f63ab
PM
367/*
368 * Snapshot the ->dynticks counter with full ordering so as to allow
369 * stable comparison of this counter with past and future snapshots.
370 */
02a5c550 371int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
372{
373 int snap = atomic_add_return(0, &rdtp->dynticks);
374
b8c17e66 375 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
376}
377
02a5c550
PM
378/*
379 * Return true if the snapshot returned from rcu_dynticks_snap()
380 * indicates that RCU is in an extended quiescent state.
381 */
382static bool rcu_dynticks_in_eqs(int snap)
383{
b8c17e66 384 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
385}
386
387/*
388 * Return true if the CPU corresponding to the specified rcu_dynticks
389 * structure has spent some time in an extended quiescent state since
390 * rcu_dynticks_snap() returned the specified snapshot.
391 */
392static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
393{
394 return snap != rcu_dynticks_snap(rdtp);
395}
396
6563de9d
PM
397/*
398 * Do a double-increment of the ->dynticks counter to emulate a
399 * momentary idle-CPU quiescent state.
400 */
401static void rcu_dynticks_momentary_idle(void)
402{
403 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
404 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
405 &rdtp->dynticks);
6563de9d
PM
406
407 /* It is illegal to call this from idle state. */
b8c17e66 408 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
409}
410
b8c17e66
PM
411/*
412 * Set the special (bottom) bit of the specified CPU so that it
413 * will take special action (such as flushing its TLB) on the
414 * next exit from an extended quiescent state. Returns true if
415 * the bit was successfully set, or false if the CPU was not in
416 * an extended quiescent state.
417 */
418bool rcu_eqs_special_set(int cpu)
419{
420 int old;
421 int new;
422 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
423
424 do {
425 old = atomic_read(&rdtp->dynticks);
426 if (old & RCU_DYNTICK_CTRL_CTR)
427 return false;
428 new = old | RCU_DYNTICK_CTRL_MASK;
429 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
430 return true;
6563de9d 431}
5cd37193 432
4a81e832
PM
433/*
434 * Let the RCU core know that this CPU has gone through the scheduler,
435 * which is a quiescent state. This is called when the need for a
436 * quiescent state is urgent, so we burn an atomic operation and full
437 * memory barriers to let the RCU core know about it, regardless of what
438 * this CPU might (or might not) do in the near future.
439 *
0f9be8ca 440 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
441 *
442 * The caller must have disabled interrupts.
4a81e832
PM
443 */
444static void rcu_momentary_dyntick_idle(void)
445{
0f9be8ca
PM
446 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
447 rcu_dynticks_momentary_idle();
4a81e832
PM
448}
449
25502a6c
PM
450/*
451 * Note a context switch. This is a quiescent state for RCU-sched,
452 * and requires special handling for preemptible RCU.
46a5d164 453 * The caller must have disabled interrupts.
25502a6c 454 */
bcbfdd01 455void rcu_note_context_switch(bool preempt)
25502a6c 456{
bb73c52b 457 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 458 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 459 rcu_sched_qs();
5b72f964 460 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
461 /* Load rcu_urgent_qs before other flags. */
462 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
463 goto out;
464 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 465 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 466 rcu_momentary_dyntick_idle();
9226b10d 467 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
468 if (!preempt)
469 rcu_note_voluntary_context_switch_lite(current);
9226b10d 470out:
f7f7bac9 471 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 472 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 473}
29ce8310 474EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 475
5cd37193 476/*
1925d196 477 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
478 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
479 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 480 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
481 * be none of them). Either way, do a lightweight quiescent state for
482 * all RCU flavors.
bb73c52b
BF
483 *
484 * The barrier() calls are redundant in the common case when this is
485 * called externally, but just in case this is called from within this
486 * file.
487 *
5cd37193
PM
488 */
489void rcu_all_qs(void)
490{
46a5d164
PM
491 unsigned long flags;
492
9226b10d
PM
493 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
494 return;
495 preempt_disable();
496 /* Load rcu_urgent_qs before other flags. */
497 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
498 preempt_enable();
499 return;
500 }
501 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 502 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 503 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 504 local_irq_save(flags);
5cd37193 505 rcu_momentary_dyntick_idle();
46a5d164
PM
506 local_irq_restore(flags);
507 }
9226b10d 508 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 509 rcu_sched_qs();
9577df9a 510 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 511 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 512 preempt_enable();
5cd37193
PM
513}
514EXPORT_SYMBOL_GPL(rcu_all_qs);
515
17c7798b
PM
516#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
517static long blimit = DEFAULT_RCU_BLIMIT;
518#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
519static long qhimark = DEFAULT_RCU_QHIMARK;
520#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
521static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 522
878d7439
ED
523module_param(blimit, long, 0444);
524module_param(qhimark, long, 0444);
525module_param(qlowmark, long, 0444);
3d76c082 526
026ad283
PM
527static ulong jiffies_till_first_fqs = ULONG_MAX;
528static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 529static bool rcu_kick_kthreads;
d40011f6
PM
530
531module_param(jiffies_till_first_fqs, ulong, 0644);
532module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 533module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 534
4a81e832
PM
535/*
536 * How long the grace period must be before we start recruiting
537 * quiescent-state help from rcu_note_context_switch().
538 */
539static ulong jiffies_till_sched_qs = HZ / 20;
540module_param(jiffies_till_sched_qs, ulong, 0644);
541
48a7639c 542static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 543 struct rcu_data *rdp);
fe5ac724 544static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
4cdfc175 545static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 546static int rcu_pending(void);
64db4cff
PM
547
548/*
917963d0 549 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 550 */
917963d0
PM
551unsigned long rcu_batches_started(void)
552{
553 return rcu_state_p->gpnum;
554}
555EXPORT_SYMBOL_GPL(rcu_batches_started);
556
557/*
558 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 559 */
917963d0
PM
560unsigned long rcu_batches_started_sched(void)
561{
562 return rcu_sched_state.gpnum;
563}
564EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
565
566/*
567 * Return the number of RCU BH batches started thus far for debug & stats.
568 */
569unsigned long rcu_batches_started_bh(void)
570{
571 return rcu_bh_state.gpnum;
572}
573EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
574
575/*
576 * Return the number of RCU batches completed thus far for debug & stats.
577 */
578unsigned long rcu_batches_completed(void)
579{
580 return rcu_state_p->completed;
581}
582EXPORT_SYMBOL_GPL(rcu_batches_completed);
583
584/*
585 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 586 */
9733e4f0 587unsigned long rcu_batches_completed_sched(void)
64db4cff 588{
d6714c22 589 return rcu_sched_state.completed;
64db4cff 590}
d6714c22 591EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
592
593/*
917963d0 594 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 595 */
9733e4f0 596unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
597{
598 return rcu_bh_state.completed;
599}
600EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
601
291783b8
PM
602/*
603 * Return the number of RCU expedited batches completed thus far for
604 * debug & stats. Odd numbers mean that a batch is in progress, even
605 * numbers mean idle. The value returned will thus be roughly double
606 * the cumulative batches since boot.
607 */
608unsigned long rcu_exp_batches_completed(void)
609{
610 return rcu_state_p->expedited_sequence;
611}
612EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
613
614/*
615 * Return the number of RCU-sched expedited batches completed thus far
616 * for debug & stats. Similar to rcu_exp_batches_completed().
617 */
618unsigned long rcu_exp_batches_completed_sched(void)
619{
620 return rcu_sched_state.expedited_sequence;
621}
622EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
623
a381d757
ACB
624/*
625 * Force a quiescent state.
626 */
627void rcu_force_quiescent_state(void)
628{
e534165b 629 force_quiescent_state(rcu_state_p);
a381d757
ACB
630}
631EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
632
bf66f18e
PM
633/*
634 * Force a quiescent state for RCU BH.
635 */
636void rcu_bh_force_quiescent_state(void)
637{
4cdfc175 638 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
639}
640EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
641
e7580f33
PM
642/*
643 * Force a quiescent state for RCU-sched.
644 */
645void rcu_sched_force_quiescent_state(void)
646{
647 force_quiescent_state(&rcu_sched_state);
648}
649EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
650
afea227f
PM
651/*
652 * Show the state of the grace-period kthreads.
653 */
654void show_rcu_gp_kthreads(void)
655{
656 struct rcu_state *rsp;
657
658 for_each_rcu_flavor(rsp) {
659 pr_info("%s: wait state: %d ->state: %#lx\n",
660 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
661 /* sched_show_task(rsp->gp_kthread); */
662 }
663}
664EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
665
4a298656
PM
666/*
667 * Record the number of times rcutorture tests have been initiated and
668 * terminated. This information allows the debugfs tracing stats to be
669 * correlated to the rcutorture messages, even when the rcutorture module
670 * is being repeatedly loaded and unloaded. In other words, we cannot
671 * store this state in rcutorture itself.
672 */
673void rcutorture_record_test_transition(void)
674{
675 rcutorture_testseq++;
676 rcutorture_vernum = 0;
677}
678EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
679
ad0dc7f9
PM
680/*
681 * Send along grace-period-related data for rcutorture diagnostics.
682 */
683void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
684 unsigned long *gpnum, unsigned long *completed)
685{
686 struct rcu_state *rsp = NULL;
687
688 switch (test_type) {
689 case RCU_FLAVOR:
e534165b 690 rsp = rcu_state_p;
ad0dc7f9
PM
691 break;
692 case RCU_BH_FLAVOR:
693 rsp = &rcu_bh_state;
694 break;
695 case RCU_SCHED_FLAVOR:
696 rsp = &rcu_sched_state;
697 break;
698 default:
699 break;
700 }
7f6733c3 701 if (rsp == NULL)
ad0dc7f9 702 return;
7f6733c3
PM
703 *flags = READ_ONCE(rsp->gp_flags);
704 *gpnum = READ_ONCE(rsp->gpnum);
705 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
706}
707EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
708
4a298656
PM
709/*
710 * Record the number of writer passes through the current rcutorture test.
711 * This is also used to correlate debugfs tracing stats with the rcutorture
712 * messages.
713 */
714void rcutorture_record_progress(unsigned long vernum)
715{
716 rcutorture_vernum++;
717}
718EXPORT_SYMBOL_GPL(rcutorture_record_progress);
719
365187fb
PM
720/*
721 * Return the root node of the specified rcu_state structure.
722 */
723static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
724{
725 return &rsp->node[0];
726}
727
728/*
729 * Is there any need for future grace periods?
730 * Interrupts must be disabled. If the caller does not hold the root
731 * rnp_node structure's ->lock, the results are advisory only.
732 */
733static int rcu_future_needs_gp(struct rcu_state *rsp)
734{
735 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 736 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
737 int *fp = &rnp->need_future_gp[idx];
738
c0b334c5 739 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
7d0ae808 740 return READ_ONCE(*fp);
365187fb
PM
741}
742
64db4cff 743/*
dc35c893
PM
744 * Does the current CPU require a not-yet-started grace period?
745 * The caller must have disabled interrupts to prevent races with
746 * normal callback registry.
64db4cff 747 */
d117c8aa 748static bool
64db4cff
PM
749cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
750{
c0b334c5 751 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
dc35c893 752 if (rcu_gp_in_progress(rsp))
d117c8aa 753 return false; /* No, a grace period is already in progress. */
365187fb 754 if (rcu_future_needs_gp(rsp))
d117c8aa 755 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 756 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 757 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 758 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 759 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
760 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
761 READ_ONCE(rsp->completed)))
762 return true; /* Yes, CBs for future grace period. */
d117c8aa 763 return false; /* No grace period needed. */
64db4cff
PM
764}
765
9b2e4f18 766/*
a278d471 767 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
9b2e4f18 768 *
a278d471
PM
769 * Enter idle, doing appropriate accounting. The caller must have
770 * disabled interrupts.
9b2e4f18 771 */
a278d471 772static void rcu_eqs_enter_common(bool user)
9b2e4f18 773{
96d3fd0d
PM
774 struct rcu_state *rsp;
775 struct rcu_data *rdp;
a278d471 776 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 777
c0b334c5 778 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
a278d471 779 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
1ce46ee5
PM
780 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
781 !user && !is_idle_task(current)) {
289828e6
PM
782 struct task_struct *idle __maybe_unused =
783 idle_task(smp_processor_id());
0989cb46 784
a278d471 785 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
274529ba 786 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
787 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
788 current->pid, current->comm,
789 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 790 }
96d3fd0d
PM
791 for_each_rcu_flavor(rsp) {
792 rdp = this_cpu_ptr(rsp->rda);
793 do_nocb_deferred_wakeup(rdp);
794 }
198bbf81 795 rcu_prepare_for_idle();
03ecd3f4 796 __this_cpu_inc(disable_rcu_irq_enter);
a278d471
PM
797 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
798 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
03ecd3f4 799 __this_cpu_dec(disable_rcu_irq_enter);
176f8f7a 800 rcu_dynticks_task_enter();
c44e2cdd
PM
801
802 /*
adf5091e 803 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
804 * in an RCU read-side critical section.
805 */
f78f5b90
PM
806 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
807 "Illegal idle entry in RCU read-side critical section.");
808 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
809 "Illegal idle entry in RCU-bh read-side critical section.");
810 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
811 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 812}
64db4cff 813
adf5091e
FW
814/*
815 * Enter an RCU extended quiescent state, which can be either the
816 * idle loop or adaptive-tickless usermode execution.
64db4cff 817 */
adf5091e 818static void rcu_eqs_enter(bool user)
64db4cff 819{
64db4cff
PM
820 struct rcu_dynticks *rdtp;
821
c9d4b0af 822 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 823 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
824 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
825 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
826 rcu_eqs_enter_common(user);
827 else
29e37d81 828 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
64db4cff 829}
adf5091e
FW
830
831/**
832 * rcu_idle_enter - inform RCU that current CPU is entering idle
833 *
834 * Enter idle mode, in other words, -leave- the mode in which RCU
835 * read-side critical sections can occur. (Though RCU read-side
836 * critical sections can occur in irq handlers in idle, a possibility
837 * handled by irq_enter() and irq_exit().)
838 *
839 * We crowbar the ->dynticks_nesting field to zero to allow for
840 * the possibility of usermode upcalls having messed up our count
841 * of interrupt nesting level during the prior busy period.
842 */
843void rcu_idle_enter(void)
844{
c5d900bf
FW
845 unsigned long flags;
846
847 local_irq_save(flags);
cb349ca9 848 rcu_eqs_enter(false);
c5d900bf 849 local_irq_restore(flags);
adf5091e 850}
8a2ecf47 851EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 852
d1ec4c34 853#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
854/**
855 * rcu_user_enter - inform RCU that we are resuming userspace.
856 *
857 * Enter RCU idle mode right before resuming userspace. No use of RCU
858 * is permitted between this call and rcu_user_exit(). This way the
859 * CPU doesn't need to maintain the tick for RCU maintenance purposes
860 * when the CPU runs in userspace.
861 */
862void rcu_user_enter(void)
863{
91d1aa43 864 rcu_eqs_enter(1);
adf5091e 865}
d1ec4c34 866#endif /* CONFIG_NO_HZ_FULL */
19dd1591 867
9b2e4f18
PM
868/**
869 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
870 *
871 * Exit from an interrupt handler, which might possibly result in entering
872 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 873 * sections can occur. The caller must have disabled interrupts.
64db4cff 874 *
9b2e4f18
PM
875 * This code assumes that the idle loop never does anything that might
876 * result in unbalanced calls to irq_enter() and irq_exit(). If your
877 * architecture violates this assumption, RCU will give you what you
878 * deserve, good and hard. But very infrequently and irreproducibly.
879 *
880 * Use things like work queues to work around this limitation.
881 *
882 * You have been warned.
64db4cff 883 */
9b2e4f18 884void rcu_irq_exit(void)
64db4cff 885{
64db4cff
PM
886 struct rcu_dynticks *rdtp;
887
7c9906ca 888 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 889 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 890 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
891 rdtp->dynticks_nesting < 1);
892 if (rdtp->dynticks_nesting <= 1) {
893 rcu_eqs_enter_common(true);
894 } else {
895 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
896 rdtp->dynticks_nesting--;
897 }
7c9906ca
PM
898}
899
900/*
901 * Wrapper for rcu_irq_exit() where interrupts are enabled.
902 */
903void rcu_irq_exit_irqson(void)
904{
905 unsigned long flags;
906
907 local_irq_save(flags);
908 rcu_irq_exit();
9b2e4f18
PM
909 local_irq_restore(flags);
910}
911
912/*
adf5091e 913 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
914 *
915 * If the new value of the ->dynticks_nesting counter was previously zero,
916 * we really have exited idle, and must do the appropriate accounting.
917 * The caller must have disabled interrupts.
918 */
28ced795 919static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 920{
2625d469 921 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 922
176f8f7a 923 rcu_dynticks_task_exit();
2625d469 924 rcu_dynticks_eqs_exit();
8fa7845d 925 rcu_cleanup_after_idle();
f7f7bac9 926 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
927 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
928 !user && !is_idle_task(current)) {
289828e6
PM
929 struct task_struct *idle __maybe_unused =
930 idle_task(smp_processor_id());
0989cb46 931
f7f7bac9 932 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 933 oldval, rdtp->dynticks_nesting);
274529ba 934 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
935 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
936 current->pid, current->comm,
937 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
938 }
939}
940
adf5091e
FW
941/*
942 * Exit an RCU extended quiescent state, which can be either the
943 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 944 */
adf5091e 945static void rcu_eqs_exit(bool user)
9b2e4f18 946{
9b2e4f18
PM
947 struct rcu_dynticks *rdtp;
948 long long oldval;
949
c0b334c5 950 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
c9d4b0af 951 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 952 oldval = rdtp->dynticks_nesting;
1ce46ee5 953 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 954 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 955 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 956 } else {
29e37d81 957 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 958 rcu_eqs_exit_common(oldval, user);
3a592405 959 }
9b2e4f18 960}
adf5091e
FW
961
962/**
963 * rcu_idle_exit - inform RCU that current CPU is leaving idle
964 *
965 * Exit idle mode, in other words, -enter- the mode in which RCU
966 * read-side critical sections can occur.
967 *
968 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
969 * allow for the possibility of usermode upcalls messing up our count
970 * of interrupt nesting level during the busy period that is just
971 * now starting.
972 */
973void rcu_idle_exit(void)
974{
c5d900bf
FW
975 unsigned long flags;
976
977 local_irq_save(flags);
cb349ca9 978 rcu_eqs_exit(false);
c5d900bf 979 local_irq_restore(flags);
adf5091e 980}
8a2ecf47 981EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 982
d1ec4c34 983#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
984/**
985 * rcu_user_exit - inform RCU that we are exiting userspace.
986 *
987 * Exit RCU idle mode while entering the kernel because it can
988 * run a RCU read side critical section anytime.
989 */
990void rcu_user_exit(void)
991{
91d1aa43 992 rcu_eqs_exit(1);
adf5091e 993}
d1ec4c34 994#endif /* CONFIG_NO_HZ_FULL */
19dd1591 995
9b2e4f18
PM
996/**
997 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
998 *
999 * Enter an interrupt handler, which might possibly result in exiting
1000 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1001 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1002 *
1003 * Note that the Linux kernel is fully capable of entering an interrupt
1004 * handler that it never exits, for example when doing upcalls to
1005 * user mode! This code assumes that the idle loop never does upcalls to
1006 * user mode. If your architecture does do upcalls from the idle loop (or
1007 * does anything else that results in unbalanced calls to the irq_enter()
1008 * and irq_exit() functions), RCU will give you what you deserve, good
1009 * and hard. But very infrequently and irreproducibly.
1010 *
1011 * Use things like work queues to work around this limitation.
1012 *
1013 * You have been warned.
1014 */
1015void rcu_irq_enter(void)
1016{
9b2e4f18
PM
1017 struct rcu_dynticks *rdtp;
1018 long long oldval;
1019
7c9906ca 1020 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1021 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1022 oldval = rdtp->dynticks_nesting;
1023 rdtp->dynticks_nesting++;
1ce46ee5
PM
1024 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1025 rdtp->dynticks_nesting == 0);
b6fc6020 1026 if (oldval)
f7f7bac9 1027 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1028 else
28ced795 1029 rcu_eqs_exit_common(oldval, true);
7c9906ca
PM
1030}
1031
1032/*
1033 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1034 */
1035void rcu_irq_enter_irqson(void)
1036{
1037 unsigned long flags;
1038
1039 local_irq_save(flags);
1040 rcu_irq_enter();
64db4cff 1041 local_irq_restore(flags);
64db4cff
PM
1042}
1043
1044/**
1045 * rcu_nmi_enter - inform RCU of entry to NMI context
1046 *
734d1680
PM
1047 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1048 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1049 * that the CPU is active. This implementation permits nested NMIs, as
1050 * long as the nesting level does not overflow an int. (You will probably
1051 * run out of stack space first.)
64db4cff
PM
1052 */
1053void rcu_nmi_enter(void)
1054{
c9d4b0af 1055 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1056 int incby = 2;
64db4cff 1057
734d1680
PM
1058 /* Complain about underflow. */
1059 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1060
1061 /*
1062 * If idle from RCU viewpoint, atomically increment ->dynticks
1063 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1064 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1065 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1066 * to be in the outermost NMI handler that interrupted an RCU-idle
1067 * period (observation due to Andy Lutomirski).
1068 */
02a5c550 1069 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1070 rcu_dynticks_eqs_exit();
734d1680
PM
1071 incby = 1;
1072 }
1073 rdtp->dynticks_nmi_nesting += incby;
1074 barrier();
64db4cff
PM
1075}
1076
1077/**
1078 * rcu_nmi_exit - inform RCU of exit from NMI context
1079 *
734d1680
PM
1080 * If we are returning from the outermost NMI handler that interrupted an
1081 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1082 * to let the RCU grace-period handling know that the CPU is back to
1083 * being RCU-idle.
64db4cff
PM
1084 */
1085void rcu_nmi_exit(void)
1086{
c9d4b0af 1087 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1088
734d1680
PM
1089 /*
1090 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1091 * (We are exiting an NMI handler, so RCU better be paying attention
1092 * to us!)
1093 */
1094 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1095 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1096
1097 /*
1098 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1099 * leave it in non-RCU-idle state.
1100 */
1101 if (rdtp->dynticks_nmi_nesting != 1) {
1102 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1103 return;
734d1680
PM
1104 }
1105
1106 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1107 rdtp->dynticks_nmi_nesting = 0;
2625d469 1108 rcu_dynticks_eqs_enter();
64db4cff
PM
1109}
1110
5c173eb8
PM
1111/**
1112 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1113 *
791875d1
PM
1114 * Return true if RCU is watching the running CPU, which means that this
1115 * CPU can safely enter RCU read-side critical sections. In other words,
1116 * if the current CPU is in its idle loop and is neither in an interrupt
34240697 1117 * or NMI handler, return true.
64db4cff 1118 */
9418fb20 1119bool notrace rcu_is_watching(void)
64db4cff 1120{
f534ed1f 1121 bool ret;
34240697 1122
46f00d18 1123 preempt_disable_notrace();
791875d1 1124 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1125 preempt_enable_notrace();
34240697 1126 return ret;
64db4cff 1127}
5c173eb8 1128EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1129
bcbfdd01
PM
1130/*
1131 * If a holdout task is actually running, request an urgent quiescent
1132 * state from its CPU. This is unsynchronized, so migrations can cause
1133 * the request to go to the wrong CPU. Which is OK, all that will happen
1134 * is that the CPU's next context switch will be a bit slower and next
1135 * time around this task will generate another request.
1136 */
1137void rcu_request_urgent_qs_task(struct task_struct *t)
1138{
1139 int cpu;
1140
1141 barrier();
1142 cpu = task_cpu(t);
1143 if (!task_curr(t))
1144 return; /* This task is not running on that CPU. */
1145 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1146}
1147
62fde6ed 1148#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1149
1150/*
1151 * Is the current CPU online? Disable preemption to avoid false positives
1152 * that could otherwise happen due to the current CPU number being sampled,
1153 * this task being preempted, its old CPU being taken offline, resuming
1154 * on some other CPU, then determining that its old CPU is now offline.
1155 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1156 * the check for rcu_scheduler_fully_active. Note also that it is OK
1157 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1158 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1159 * offline to continue to use RCU for one jiffy after marking itself
1160 * offline in the cpu_online_mask. This leniency is necessary given the
1161 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1162 * the fact that a CPU enters the scheduler after completing the teardown
1163 * of the CPU.
2036d94a 1164 *
4df83742
TG
1165 * This is also why RCU internally marks CPUs online during in the
1166 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1167 *
1168 * Disable checking if in an NMI handler because we cannot safely report
1169 * errors from NMI handlers anyway.
1170 */
1171bool rcu_lockdep_current_cpu_online(void)
1172{
2036d94a
PM
1173 struct rcu_data *rdp;
1174 struct rcu_node *rnp;
c0d6d01b
PM
1175 bool ret;
1176
1177 if (in_nmi())
f6f7ee9a 1178 return true;
c0d6d01b 1179 preempt_disable();
c9d4b0af 1180 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1181 rnp = rdp->mynode;
0aa04b05 1182 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1183 !rcu_scheduler_fully_active;
1184 preempt_enable();
1185 return ret;
1186}
1187EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1188
62fde6ed 1189#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1190
64db4cff 1191/**
9b2e4f18 1192 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1193 *
9b2e4f18
PM
1194 * If the current CPU is idle or running at a first-level (not nested)
1195 * interrupt from idle, return true. The caller must have at least
1196 * disabled preemption.
64db4cff 1197 */
62e3cb14 1198static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1199{
c9d4b0af 1200 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1201}
1202
64db4cff
PM
1203/*
1204 * Snapshot the specified CPU's dynticks counter so that we can later
1205 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1206 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1207 */
fe5ac724 1208static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1209{
8b2f63ab 1210 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
02a5c550 1211 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1212 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1213 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1214 rdp->mynode->gpnum))
7d0ae808 1215 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1216 return 1;
7941dbde 1217 }
23a9bacd 1218 return 0;
64db4cff
PM
1219}
1220
1221/*
1222 * Return true if the specified CPU has passed through a quiescent
1223 * state by virtue of being in or having passed through an dynticks
1224 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1225 * for this same CPU, or by virtue of having been offline.
64db4cff 1226 */
fe5ac724 1227static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1228{
3a19b46a 1229 unsigned long jtsq;
0f9be8ca 1230 bool *rnhqp;
9226b10d 1231 bool *ruqp;
3a19b46a
PM
1232 unsigned long rjtsc;
1233 struct rcu_node *rnp;
64db4cff
PM
1234
1235 /*
1236 * If the CPU passed through or entered a dynticks idle phase with
1237 * no active irq/NMI handlers, then we can safely pretend that the CPU
1238 * already acknowledged the request to pass through a quiescent
1239 * state. Either way, that CPU cannot possibly be in an RCU
1240 * read-side critical section that started before the beginning
1241 * of the current RCU grace period.
1242 */
02a5c550 1243 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1244 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1245 rdp->dynticks_fqs++;
1246 return 1;
1247 }
1248
3a19b46a
PM
1249 /* Compute and saturate jiffies_till_sched_qs. */
1250 jtsq = jiffies_till_sched_qs;
1251 rjtsc = rcu_jiffies_till_stall_check();
1252 if (jtsq > rjtsc / 2) {
1253 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1254 jtsq = rjtsc / 2;
1255 } else if (jtsq < 1) {
1256 WRITE_ONCE(jiffies_till_sched_qs, 1);
1257 jtsq = 1;
1258 }
1259
a82dcc76 1260 /*
3a19b46a
PM
1261 * Has this CPU encountered a cond_resched_rcu_qs() since the
1262 * beginning of the grace period? For this to be the case,
1263 * the CPU has to have noticed the current grace period. This
1264 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1265 */
3a19b46a 1266 rnp = rdp->mynode;
9226b10d 1267 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1268 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1269 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1270 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1271 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1272 return 1;
9226b10d
PM
1273 } else {
1274 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1275 smp_store_release(ruqp, true);
3a19b46a
PM
1276 }
1277
38d30b33
PM
1278 /* Check for the CPU being offline. */
1279 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1280 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1281 rdp->offline_fqs++;
1282 return 1;
1283 }
65d798f0
PM
1284
1285 /*
4a81e832
PM
1286 * A CPU running for an extended time within the kernel can
1287 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1288 * even context-switching back and forth between a pair of
1289 * in-kernel CPU-bound tasks cannot advance grace periods.
1290 * So if the grace period is old enough, make the CPU pay attention.
1291 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1292 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1293 * bits can be lost, but they will be set again on the next
1294 * force-quiescent-state pass. So lost bit sets do not result
1295 * in incorrect behavior, merely in a grace period lasting
1296 * a few jiffies longer than it might otherwise. Because
1297 * there are at most four threads involved, and because the
1298 * updates are only once every few jiffies, the probability of
1299 * lossage (and thus of slight grace-period extension) is
1300 * quite low.
1301 *
1302 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1303 * is set too high, we override with half of the RCU CPU stall
1304 * warning delay.
6193c76a 1305 */
0f9be8ca
PM
1306 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1307 if (!READ_ONCE(*rnhqp) &&
1308 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1309 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1310 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1311 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1312 smp_store_release(ruqp, true);
4914950a 1313 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1314 }
1315
28053bc7
PM
1316 /*
1317 * If more than halfway to RCU CPU stall-warning time, do
1318 * a resched_cpu() to try to loosen things up a bit.
1319 */
1320 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1321 resched_cpu(rdp->cpu);
4914950a 1322
a82dcc76 1323 return 0;
64db4cff
PM
1324}
1325
64db4cff
PM
1326static void record_gp_stall_check_time(struct rcu_state *rsp)
1327{
cb1e78cf 1328 unsigned long j = jiffies;
6193c76a 1329 unsigned long j1;
26cdfedf
PM
1330
1331 rsp->gp_start = j;
1332 smp_wmb(); /* Record start time before stall time. */
6193c76a 1333 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1334 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1335 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1336 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1337}
1338
6b50e119
PM
1339/*
1340 * Convert a ->gp_state value to a character string.
1341 */
1342static const char *gp_state_getname(short gs)
1343{
1344 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1345 return "???";
1346 return gp_state_names[gs];
1347}
1348
fb81a44b
PM
1349/*
1350 * Complain about starvation of grace-period kthread.
1351 */
1352static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1353{
1354 unsigned long gpa;
1355 unsigned long j;
1356
1357 j = jiffies;
7d0ae808 1358 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1359 if (j - gpa > 2 * HZ) {
6b50e119 1360 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1361 rsp->name, j - gpa,
319362c9 1362 rsp->gpnum, rsp->completed,
6b50e119
PM
1363 rsp->gp_flags,
1364 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1365 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1366 if (rsp->gp_kthread) {
b1adb3e2 1367 sched_show_task(rsp->gp_kthread);
86057b80
PM
1368 wake_up_process(rsp->gp_kthread);
1369 }
b1adb3e2 1370 }
64db4cff
PM
1371}
1372
b637a328 1373/*
7aa92230
PM
1374 * Dump stacks of all tasks running on stalled CPUs. First try using
1375 * NMIs, but fall back to manual remote stack tracing on architectures
1376 * that don't support NMI-based stack dumps. The NMI-triggered stack
1377 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1378 */
1379static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1380{
1381 int cpu;
1382 unsigned long flags;
1383 struct rcu_node *rnp;
1384
1385 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1386 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1387 for_each_leaf_node_possible_cpu(rnp, cpu)
1388 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1389 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1390 dump_cpu_task(cpu);
67c583a7 1391 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1392 }
1393}
1394
8c7c4829
PM
1395/*
1396 * If too much time has passed in the current grace period, and if
1397 * so configured, go kick the relevant kthreads.
1398 */
1399static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1400{
1401 unsigned long j;
1402
1403 if (!rcu_kick_kthreads)
1404 return;
1405 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1406 if (time_after(jiffies, j) && rsp->gp_kthread &&
1407 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1408 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1409 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1410 wake_up_process(rsp->gp_kthread);
1411 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1412 }
1413}
1414
088e9d25
DBO
1415static inline void panic_on_rcu_stall(void)
1416{
1417 if (sysctl_panic_on_rcu_stall)
1418 panic("RCU Stall\n");
1419}
1420
6ccd2ecd 1421static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1422{
1423 int cpu;
1424 long delta;
1425 unsigned long flags;
6ccd2ecd
PM
1426 unsigned long gpa;
1427 unsigned long j;
285fe294 1428 int ndetected = 0;
64db4cff 1429 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1430 long totqlen = 0;
64db4cff 1431
8c7c4829
PM
1432 /* Kick and suppress, if so configured. */
1433 rcu_stall_kick_kthreads(rsp);
1434 if (rcu_cpu_stall_suppress)
1435 return;
1436
64db4cff
PM
1437 /* Only let one CPU complain about others per time interval. */
1438
6cf10081 1439 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1440 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1441 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1442 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1443 return;
1444 }
7d0ae808
PM
1445 WRITE_ONCE(rsp->jiffies_stall,
1446 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1447 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1448
8cdd32a9
PM
1449 /*
1450 * OK, time to rat on our buddy...
1451 * See Documentation/RCU/stallwarn.txt for info on how to debug
1452 * RCU CPU stall warnings.
1453 */
d7f3e207 1454 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1455 rsp->name);
a858af28 1456 print_cpu_stall_info_begin();
a0b6c9a7 1457 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1458 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1459 ndetected += rcu_print_task_stall(rnp);
c8020a67 1460 if (rnp->qsmask != 0) {
bc75e999
MR
1461 for_each_leaf_node_possible_cpu(rnp, cpu)
1462 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1463 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1464 ndetected++;
1465 }
1466 }
67c583a7 1467 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1468 }
a858af28 1469
a858af28 1470 print_cpu_stall_info_end();
53bb857c 1471 for_each_possible_cpu(cpu)
15fecf89
PM
1472 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1473 cpu)->cblist);
83ebe63e 1474 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1475 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1476 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1477 if (ndetected) {
b637a328 1478 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1479
1480 /* Complain about tasks blocking the grace period. */
1481 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1482 } else {
7d0ae808
PM
1483 if (READ_ONCE(rsp->gpnum) != gpnum ||
1484 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1485 pr_err("INFO: Stall ended before state dump start\n");
1486 } else {
1487 j = jiffies;
7d0ae808 1488 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1489 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1490 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1491 jiffies_till_next_fqs,
1492 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1493 /* In this case, the current CPU might be at fault. */
1494 sched_show_task(current);
1495 }
1496 }
c1dc0b9c 1497
fb81a44b
PM
1498 rcu_check_gp_kthread_starvation(rsp);
1499
088e9d25
DBO
1500 panic_on_rcu_stall();
1501
4cdfc175 1502 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1503}
1504
1505static void print_cpu_stall(struct rcu_state *rsp)
1506{
53bb857c 1507 int cpu;
64db4cff
PM
1508 unsigned long flags;
1509 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1510 long totqlen = 0;
64db4cff 1511
8c7c4829
PM
1512 /* Kick and suppress, if so configured. */
1513 rcu_stall_kick_kthreads(rsp);
1514 if (rcu_cpu_stall_suppress)
1515 return;
1516
8cdd32a9
PM
1517 /*
1518 * OK, time to rat on ourselves...
1519 * See Documentation/RCU/stallwarn.txt for info on how to debug
1520 * RCU CPU stall warnings.
1521 */
d7f3e207 1522 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1523 print_cpu_stall_info_begin();
1524 print_cpu_stall_info(rsp, smp_processor_id());
1525 print_cpu_stall_info_end();
53bb857c 1526 for_each_possible_cpu(cpu)
15fecf89
PM
1527 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1528 cpu)->cblist);
83ebe63e
PM
1529 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1530 jiffies - rsp->gp_start,
1531 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1532
1533 rcu_check_gp_kthread_starvation(rsp);
1534
bc1dce51 1535 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1536
6cf10081 1537 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1538 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1539 WRITE_ONCE(rsp->jiffies_stall,
1540 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1541 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1542
088e9d25
DBO
1543 panic_on_rcu_stall();
1544
b021fe3e
PZ
1545 /*
1546 * Attempt to revive the RCU machinery by forcing a context switch.
1547 *
1548 * A context switch would normally allow the RCU state machine to make
1549 * progress and it could be we're stuck in kernel space without context
1550 * switches for an entirely unreasonable amount of time.
1551 */
1552 resched_cpu(smp_processor_id());
64db4cff
PM
1553}
1554
1555static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1556{
26cdfedf
PM
1557 unsigned long completed;
1558 unsigned long gpnum;
1559 unsigned long gps;
bad6e139
PM
1560 unsigned long j;
1561 unsigned long js;
64db4cff
PM
1562 struct rcu_node *rnp;
1563
8c7c4829
PM
1564 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1565 !rcu_gp_in_progress(rsp))
c68de209 1566 return;
8c7c4829 1567 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1568 j = jiffies;
26cdfedf
PM
1569
1570 /*
1571 * Lots of memory barriers to reject false positives.
1572 *
1573 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1574 * then rsp->gp_start, and finally rsp->completed. These values
1575 * are updated in the opposite order with memory barriers (or
1576 * equivalent) during grace-period initialization and cleanup.
1577 * Now, a false positive can occur if we get an new value of
1578 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1579 * the memory barriers, the only way that this can happen is if one
1580 * grace period ends and another starts between these two fetches.
1581 * Detect this by comparing rsp->completed with the previous fetch
1582 * from rsp->gpnum.
1583 *
1584 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1585 * and rsp->gp_start suffice to forestall false positives.
1586 */
7d0ae808 1587 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1588 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1589 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1590 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1591 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1592 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1593 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1594 if (ULONG_CMP_GE(completed, gpnum) ||
1595 ULONG_CMP_LT(j, js) ||
1596 ULONG_CMP_GE(gps, js))
1597 return; /* No stall or GP completed since entering function. */
64db4cff 1598 rnp = rdp->mynode;
c96ea7cf 1599 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1600 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1601
1602 /* We haven't checked in, so go dump stack. */
1603 print_cpu_stall(rsp);
1604
bad6e139
PM
1605 } else if (rcu_gp_in_progress(rsp) &&
1606 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1607
bad6e139 1608 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1609 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1610 }
1611}
1612
53d84e00
PM
1613/**
1614 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1615 *
1616 * Set the stall-warning timeout way off into the future, thus preventing
1617 * any RCU CPU stall-warning messages from appearing in the current set of
1618 * RCU grace periods.
1619 *
1620 * The caller must disable hard irqs.
1621 */
1622void rcu_cpu_stall_reset(void)
1623{
6ce75a23
PM
1624 struct rcu_state *rsp;
1625
1626 for_each_rcu_flavor(rsp)
7d0ae808 1627 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1628}
1629
dc35c893
PM
1630/*
1631 * Determine the value that ->completed will have at the end of the
1632 * next subsequent grace period. This is used to tag callbacks so that
1633 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1634 * been dyntick-idle for an extended period with callbacks under the
1635 * influence of RCU_FAST_NO_HZ.
1636 *
1637 * The caller must hold rnp->lock with interrupts disabled.
1638 */
1639static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1640 struct rcu_node *rnp)
1641{
c0b334c5
PM
1642 lockdep_assert_held(&rnp->lock);
1643
dc35c893
PM
1644 /*
1645 * If RCU is idle, we just wait for the next grace period.
1646 * But we can only be sure that RCU is idle if we are looking
1647 * at the root rcu_node structure -- otherwise, a new grace
1648 * period might have started, but just not yet gotten around
1649 * to initializing the current non-root rcu_node structure.
1650 */
1651 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1652 return rnp->completed + 1;
1653
1654 /*
1655 * Otherwise, wait for a possible partial grace period and
1656 * then the subsequent full grace period.
1657 */
1658 return rnp->completed + 2;
1659}
1660
0446be48
PM
1661/*
1662 * Trace-event helper function for rcu_start_future_gp() and
1663 * rcu_nocb_wait_gp().
1664 */
1665static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1666 unsigned long c, const char *s)
0446be48
PM
1667{
1668 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1669 rnp->completed, c, rnp->level,
1670 rnp->grplo, rnp->grphi, s);
1671}
1672
1673/*
1674 * Start some future grace period, as needed to handle newly arrived
1675 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1676 * rcu_node structure's ->need_future_gp field. Returns true if there
1677 * is reason to awaken the grace-period kthread.
0446be48
PM
1678 *
1679 * The caller must hold the specified rcu_node structure's ->lock.
1680 */
48a7639c
PM
1681static bool __maybe_unused
1682rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1683 unsigned long *c_out)
0446be48
PM
1684{
1685 unsigned long c;
48a7639c 1686 bool ret = false;
0446be48
PM
1687 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1688
c0b334c5
PM
1689 lockdep_assert_held(&rnp->lock);
1690
0446be48
PM
1691 /*
1692 * Pick up grace-period number for new callbacks. If this
1693 * grace period is already marked as needed, return to the caller.
1694 */
1695 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1696 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1697 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1698 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1699 goto out;
0446be48
PM
1700 }
1701
1702 /*
1703 * If either this rcu_node structure or the root rcu_node structure
1704 * believe that a grace period is in progress, then we must wait
1705 * for the one following, which is in "c". Because our request
1706 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1707 * need to explicitly start one. We only do the lockless check
1708 * of rnp_root's fields if the current rcu_node structure thinks
1709 * there is no grace period in flight, and because we hold rnp->lock,
1710 * the only possible change is when rnp_root's two fields are
1711 * equal, in which case rnp_root->gpnum might be concurrently
1712 * incremented. But that is OK, as it will just result in our
1713 * doing some extra useless work.
0446be48
PM
1714 */
1715 if (rnp->gpnum != rnp->completed ||
7d0ae808 1716 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1717 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1718 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1719 goto out;
0446be48
PM
1720 }
1721
1722 /*
1723 * There might be no grace period in progress. If we don't already
1724 * hold it, acquire the root rcu_node structure's lock in order to
1725 * start one (if needed).
1726 */
2a67e741
PZ
1727 if (rnp != rnp_root)
1728 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1729
1730 /*
1731 * Get a new grace-period number. If there really is no grace
1732 * period in progress, it will be smaller than the one we obtained
15fecf89 1733 * earlier. Adjust callbacks as needed.
0446be48
PM
1734 */
1735 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1736 if (!rcu_is_nocb_cpu(rdp->cpu))
1737 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1738
1739 /*
1740 * If the needed for the required grace period is already
1741 * recorded, trace and leave.
1742 */
1743 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1744 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1745 goto unlock_out;
1746 }
1747
1748 /* Record the need for the future grace period. */
1749 rnp_root->need_future_gp[c & 0x1]++;
1750
1751 /* If a grace period is not already in progress, start one. */
1752 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1753 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1754 } else {
f7f7bac9 1755 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1756 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1757 }
1758unlock_out:
1759 if (rnp != rnp_root)
67c583a7 1760 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1761out:
1762 if (c_out != NULL)
1763 *c_out = c;
1764 return ret;
0446be48
PM
1765}
1766
1767/*
1768 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1769 * whether any additional grace periods have been requested.
0446be48
PM
1770 */
1771static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1772{
1773 int c = rnp->completed;
1774 int needmore;
1775 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1776
0446be48
PM
1777 rnp->need_future_gp[c & 0x1] = 0;
1778 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1779 trace_rcu_future_gp(rnp, rdp, c,
1780 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1781 return needmore;
1782}
1783
48a7639c
PM
1784/*
1785 * Awaken the grace-period kthread for the specified flavor of RCU.
1786 * Don't do a self-awaken, and don't bother awakening when there is
1787 * nothing for the grace-period kthread to do (as in several CPUs
1788 * raced to awaken, and we lost), and finally don't try to awaken
1789 * a kthread that has not yet been created.
1790 */
1791static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1792{
1793 if (current == rsp->gp_kthread ||
7d0ae808 1794 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1795 !rsp->gp_kthread)
1796 return;
abedf8e2 1797 swake_up(&rsp->gp_wq);
48a7639c
PM
1798}
1799
dc35c893
PM
1800/*
1801 * If there is room, assign a ->completed number to any callbacks on
1802 * this CPU that have not already been assigned. Also accelerate any
1803 * callbacks that were previously assigned a ->completed number that has
1804 * since proven to be too conservative, which can happen if callbacks get
1805 * assigned a ->completed number while RCU is idle, but with reference to
1806 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1807 * not hurt to call it repeatedly. Returns an flag saying that we should
1808 * awaken the RCU grace-period kthread.
dc35c893
PM
1809 *
1810 * The caller must hold rnp->lock with interrupts disabled.
1811 */
48a7639c 1812static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1813 struct rcu_data *rdp)
1814{
15fecf89 1815 bool ret = false;
dc35c893 1816
c0b334c5
PM
1817 lockdep_assert_held(&rnp->lock);
1818
15fecf89
PM
1819 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1820 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1821 return false;
dc35c893
PM
1822
1823 /*
15fecf89
PM
1824 * Callbacks are often registered with incomplete grace-period
1825 * information. Something about the fact that getting exact
1826 * information requires acquiring a global lock... RCU therefore
1827 * makes a conservative estimate of the grace period number at which
1828 * a given callback will become ready to invoke. The following
1829 * code checks this estimate and improves it when possible, thus
1830 * accelerating callback invocation to an earlier grace-period
1831 * number.
dc35c893 1832 */
15fecf89
PM
1833 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1834 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1835
1836 /* Trace depending on how much we were able to accelerate. */
15fecf89 1837 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1838 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1839 else
f7f7bac9 1840 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1841 return ret;
dc35c893
PM
1842}
1843
1844/*
1845 * Move any callbacks whose grace period has completed to the
1846 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1847 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1848 * sublist. This function is idempotent, so it does not hurt to
1849 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1850 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1851 *
1852 * The caller must hold rnp->lock with interrupts disabled.
1853 */
48a7639c 1854static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1855 struct rcu_data *rdp)
1856{
c0b334c5
PM
1857 lockdep_assert_held(&rnp->lock);
1858
15fecf89
PM
1859 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1860 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1861 return false;
dc35c893
PM
1862
1863 /*
1864 * Find all callbacks whose ->completed numbers indicate that they
1865 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1866 */
15fecf89 1867 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1868
1869 /* Classify any remaining callbacks. */
48a7639c 1870 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1871}
1872
d09b62df 1873/*
ba9fbe95
PM
1874 * Update CPU-local rcu_data state to record the beginnings and ends of
1875 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1876 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1877 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1878 */
48a7639c
PM
1879static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1880 struct rcu_data *rdp)
d09b62df 1881{
48a7639c 1882 bool ret;
3563a438 1883 bool need_gp;
48a7639c 1884
c0b334c5
PM
1885 lockdep_assert_held(&rnp->lock);
1886
ba9fbe95 1887 /* Handle the ends of any preceding grace periods first. */
e3663b10 1888 if (rdp->completed == rnp->completed &&
7d0ae808 1889 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1890
ba9fbe95 1891 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1892 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1893
dc35c893
PM
1894 } else {
1895
1896 /* Advance callbacks. */
48a7639c 1897 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1898
1899 /* Remember that we saw this grace-period completion. */
1900 rdp->completed = rnp->completed;
f7f7bac9 1901 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1902 }
398ebe60 1903
7d0ae808 1904 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1905 /*
1906 * If the current grace period is waiting for this CPU,
1907 * set up to detect a quiescent state, otherwise don't
1908 * go looking for one.
1909 */
1910 rdp->gpnum = rnp->gpnum;
f7f7bac9 1911 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1912 need_gp = !!(rnp->qsmask & rdp->grpmask);
1913 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1914 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1915 rdp->core_needs_qs = need_gp;
6eaef633 1916 zero_cpu_stall_ticks(rdp);
7d0ae808 1917 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1918 }
48a7639c 1919 return ret;
6eaef633
PM
1920}
1921
d34ea322 1922static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1923{
1924 unsigned long flags;
48a7639c 1925 bool needwake;
6eaef633
PM
1926 struct rcu_node *rnp;
1927
1928 local_irq_save(flags);
1929 rnp = rdp->mynode;
7d0ae808
PM
1930 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1931 rdp->completed == READ_ONCE(rnp->completed) &&
1932 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1933 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1934 local_irq_restore(flags);
1935 return;
1936 }
48a7639c 1937 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1938 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1939 if (needwake)
1940 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1941}
1942
0f41c0dd
PM
1943static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1944{
1945 if (delay > 0 &&
1946 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1947 schedule_timeout_uninterruptible(delay);
1948}
1949
b3dbec76 1950/*
45fed3e7 1951 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1952 */
45fed3e7 1953static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1954{
0aa04b05 1955 unsigned long oldmask;
b3dbec76 1956 struct rcu_data *rdp;
7fdefc10 1957 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1958
7d0ae808 1959 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1960 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1961 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1962 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1963 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1964 return false;
f7be8209 1965 }
7d0ae808 1966 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1967
f7be8209
PM
1968 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1969 /*
1970 * Grace period already in progress, don't start another.
1971 * Not supposed to be able to happen.
1972 */
67c583a7 1973 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1974 return false;
7fdefc10
PM
1975 }
1976
7fdefc10 1977 /* Advance to a new grace period and initialize state. */
26cdfedf 1978 record_gp_stall_check_time(rsp);
765a3f4f
PM
1979 /* Record GP times before starting GP, hence smp_store_release(). */
1980 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1981 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1982 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1983
0aa04b05
PM
1984 /*
1985 * Apply per-leaf buffered online and offline operations to the
1986 * rcu_node tree. Note that this new grace period need not wait
1987 * for subsequent online CPUs, and that quiescent-state forcing
1988 * will handle subsequent offline CPUs.
1989 */
1990 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1991 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1992 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1993 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1994 !rnp->wait_blkd_tasks) {
1995 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1996 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
1997 continue;
1998 }
1999
2000 /* Record old state, apply changes to ->qsmaskinit field. */
2001 oldmask = rnp->qsmaskinit;
2002 rnp->qsmaskinit = rnp->qsmaskinitnext;
2003
2004 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2005 if (!oldmask != !rnp->qsmaskinit) {
2006 if (!oldmask) /* First online CPU for this rcu_node. */
2007 rcu_init_new_rnp(rnp);
2008 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2009 rnp->wait_blkd_tasks = true;
2010 else /* Last offline CPU and can propagate. */
2011 rcu_cleanup_dead_rnp(rnp);
2012 }
2013
2014 /*
2015 * If all waited-on tasks from prior grace period are
2016 * done, and if all this rcu_node structure's CPUs are
2017 * still offline, propagate up the rcu_node tree and
2018 * clear ->wait_blkd_tasks. Otherwise, if one of this
2019 * rcu_node structure's CPUs has since come back online,
2020 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2021 * checks for this, so just call it unconditionally).
2022 */
2023 if (rnp->wait_blkd_tasks &&
2024 (!rcu_preempt_has_tasks(rnp) ||
2025 rnp->qsmaskinit)) {
2026 rnp->wait_blkd_tasks = false;
2027 rcu_cleanup_dead_rnp(rnp);
2028 }
2029
67c583a7 2030 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2031 }
7fdefc10
PM
2032
2033 /*
2034 * Set the quiescent-state-needed bits in all the rcu_node
2035 * structures for all currently online CPUs in breadth-first order,
2036 * starting from the root rcu_node structure, relying on the layout
2037 * of the tree within the rsp->node[] array. Note that other CPUs
2038 * will access only the leaves of the hierarchy, thus seeing that no
2039 * grace period is in progress, at least until the corresponding
590d1757 2040 * leaf node has been initialized.
7fdefc10
PM
2041 *
2042 * The grace period cannot complete until the initialization
2043 * process finishes, because this kthread handles both.
2044 */
2045 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2046 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2047 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2048 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2049 rcu_preempt_check_blocked_tasks(rnp);
2050 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2051 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2052 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2053 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2054 if (rnp == rdp->mynode)
48a7639c 2055 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2056 rcu_preempt_boost_start_gp(rnp);
2057 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2058 rnp->level, rnp->grplo,
2059 rnp->grphi, rnp->qsmask);
67c583a7 2060 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2061 cond_resched_rcu_qs();
7d0ae808 2062 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2063 }
b3dbec76 2064
45fed3e7 2065 return true;
7fdefc10 2066}
b3dbec76 2067
b9a425cf
PM
2068/*
2069 * Helper function for wait_event_interruptible_timeout() wakeup
2070 * at force-quiescent-state time.
2071 */
2072static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2073{
2074 struct rcu_node *rnp = rcu_get_root(rsp);
2075
2076 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2077 *gfp = READ_ONCE(rsp->gp_flags);
2078 if (*gfp & RCU_GP_FLAG_FQS)
2079 return true;
2080
2081 /* The current grace period has completed. */
2082 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2083 return true;
2084
2085 return false;
2086}
2087
4cdfc175
PM
2088/*
2089 * Do one round of quiescent-state forcing.
2090 */
77f81fe0 2091static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2092{
4cdfc175
PM
2093 struct rcu_node *rnp = rcu_get_root(rsp);
2094
7d0ae808 2095 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2096 rsp->n_force_qs++;
77f81fe0 2097 if (first_time) {
4cdfc175 2098 /* Collect dyntick-idle snapshots. */
fe5ac724 2099 force_qs_rnp(rsp, dyntick_save_progress_counter);
4cdfc175
PM
2100 } else {
2101 /* Handle dyntick-idle and offline CPUs. */
fe5ac724 2102 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
4cdfc175
PM
2103 }
2104 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2105 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2106 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2107 WRITE_ONCE(rsp->gp_flags,
2108 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2109 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2110 }
4cdfc175
PM
2111}
2112
7fdefc10
PM
2113/*
2114 * Clean up after the old grace period.
2115 */
4cdfc175 2116static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2117{
2118 unsigned long gp_duration;
48a7639c 2119 bool needgp = false;
dae6e64d 2120 int nocb = 0;
7fdefc10
PM
2121 struct rcu_data *rdp;
2122 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2123 struct swait_queue_head *sq;
b3dbec76 2124
7d0ae808 2125 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2126 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2127 gp_duration = jiffies - rsp->gp_start;
2128 if (gp_duration > rsp->gp_max)
2129 rsp->gp_max = gp_duration;
b3dbec76 2130
7fdefc10
PM
2131 /*
2132 * We know the grace period is complete, but to everyone else
2133 * it appears to still be ongoing. But it is also the case
2134 * that to everyone else it looks like there is nothing that
2135 * they can do to advance the grace period. It is therefore
2136 * safe for us to drop the lock in order to mark the grace
2137 * period as completed in all of the rcu_node structures.
7fdefc10 2138 */
67c583a7 2139 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2140
5d4b8659
PM
2141 /*
2142 * Propagate new ->completed value to rcu_node structures so
2143 * that other CPUs don't have to wait until the start of the next
2144 * grace period to process their callbacks. This also avoids
2145 * some nasty RCU grace-period initialization races by forcing
2146 * the end of the current grace period to be completely recorded in
2147 * all of the rcu_node structures before the beginning of the next
2148 * grace period is recorded in any of the rcu_node structures.
2149 */
2150 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2151 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2152 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2153 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2154 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2155 rdp = this_cpu_ptr(rsp->rda);
2156 if (rnp == rdp->mynode)
48a7639c 2157 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2158 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2159 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2160 sq = rcu_nocb_gp_get(rnp);
67c583a7 2161 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2162 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2163 cond_resched_rcu_qs();
7d0ae808 2164 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2165 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2166 }
5d4b8659 2167 rnp = rcu_get_root(rsp);
2a67e741 2168 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2169 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2170
765a3f4f 2171 /* Declare grace period done. */
7d0ae808 2172 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2173 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2174 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2175 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2176 /* Advance CBs to reduce false positives below. */
2177 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2178 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2179 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2180 trace_rcu_grace_period(rsp->name,
7d0ae808 2181 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2182 TPS("newreq"));
2183 }
67c583a7 2184 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2185}
2186
2187/*
2188 * Body of kthread that handles grace periods.
2189 */
2190static int __noreturn rcu_gp_kthread(void *arg)
2191{
77f81fe0 2192 bool first_gp_fqs;
88d6df61 2193 int gf;
d40011f6 2194 unsigned long j;
4cdfc175 2195 int ret;
7fdefc10
PM
2196 struct rcu_state *rsp = arg;
2197 struct rcu_node *rnp = rcu_get_root(rsp);
2198
5871968d 2199 rcu_bind_gp_kthread();
7fdefc10
PM
2200 for (;;) {
2201
2202 /* Handle grace-period start. */
2203 for (;;) {
63c4db78 2204 trace_rcu_grace_period(rsp->name,
7d0ae808 2205 READ_ONCE(rsp->gpnum),
63c4db78 2206 TPS("reqwait"));
afea227f 2207 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2208 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2209 READ_ONCE(rsp->gp_flags) &
4cdfc175 2210 RCU_GP_FLAG_INIT);
319362c9 2211 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2212 /* Locking provides needed memory barrier. */
f7be8209 2213 if (rcu_gp_init(rsp))
7fdefc10 2214 break;
bde6c3aa 2215 cond_resched_rcu_qs();
7d0ae808 2216 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2217 WARN_ON(signal_pending(current));
63c4db78 2218 trace_rcu_grace_period(rsp->name,
7d0ae808 2219 READ_ONCE(rsp->gpnum),
63c4db78 2220 TPS("reqwaitsig"));
7fdefc10 2221 }
cabc49c1 2222
4cdfc175 2223 /* Handle quiescent-state forcing. */
77f81fe0 2224 first_gp_fqs = true;
d40011f6
PM
2225 j = jiffies_till_first_fqs;
2226 if (j > HZ) {
2227 j = HZ;
2228 jiffies_till_first_fqs = HZ;
2229 }
88d6df61 2230 ret = 0;
cabc49c1 2231 for (;;) {
8c7c4829 2232 if (!ret) {
88d6df61 2233 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2234 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2235 jiffies + 3 * j);
2236 }
63c4db78 2237 trace_rcu_grace_period(rsp->name,
7d0ae808 2238 READ_ONCE(rsp->gpnum),
63c4db78 2239 TPS("fqswait"));
afea227f 2240 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2241 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2242 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2243 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2244 /* Locking provides needed memory barriers. */
4cdfc175 2245 /* If grace period done, leave loop. */
7d0ae808 2246 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2247 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2248 break;
4cdfc175 2249 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2250 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2251 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2252 trace_rcu_grace_period(rsp->name,
7d0ae808 2253 READ_ONCE(rsp->gpnum),
63c4db78 2254 TPS("fqsstart"));
77f81fe0
PM
2255 rcu_gp_fqs(rsp, first_gp_fqs);
2256 first_gp_fqs = false;
63c4db78 2257 trace_rcu_grace_period(rsp->name,
7d0ae808 2258 READ_ONCE(rsp->gpnum),
63c4db78 2259 TPS("fqsend"));
bde6c3aa 2260 cond_resched_rcu_qs();
7d0ae808 2261 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2262 ret = 0; /* Force full wait till next FQS. */
2263 j = jiffies_till_next_fqs;
2264 if (j > HZ) {
2265 j = HZ;
2266 jiffies_till_next_fqs = HZ;
2267 } else if (j < 1) {
2268 j = 1;
2269 jiffies_till_next_fqs = 1;
2270 }
4cdfc175
PM
2271 } else {
2272 /* Deal with stray signal. */
bde6c3aa 2273 cond_resched_rcu_qs();
7d0ae808 2274 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2275 WARN_ON(signal_pending(current));
63c4db78 2276 trace_rcu_grace_period(rsp->name,
7d0ae808 2277 READ_ONCE(rsp->gpnum),
63c4db78 2278 TPS("fqswaitsig"));
fcfd0a23
PM
2279 ret = 1; /* Keep old FQS timing. */
2280 j = jiffies;
2281 if (time_after(jiffies, rsp->jiffies_force_qs))
2282 j = 1;
2283 else
2284 j = rsp->jiffies_force_qs - j;
d40011f6 2285 }
cabc49c1 2286 }
4cdfc175
PM
2287
2288 /* Handle grace-period end. */
319362c9 2289 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2290 rcu_gp_cleanup(rsp);
319362c9 2291 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2292 }
b3dbec76
PM
2293}
2294
64db4cff
PM
2295/*
2296 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2297 * in preparation for detecting the next grace period. The caller must hold
b8462084 2298 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2299 *
2300 * Note that it is legal for a dying CPU (which is marked as offline) to
2301 * invoke this function. This can happen when the dying CPU reports its
2302 * quiescent state.
48a7639c
PM
2303 *
2304 * Returns true if the grace-period kthread must be awakened.
64db4cff 2305 */
48a7639c 2306static bool
910ee45d
PM
2307rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2308 struct rcu_data *rdp)
64db4cff 2309{
c0b334c5 2310 lockdep_assert_held(&rnp->lock);
b8462084 2311 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2312 /*
b3dbec76 2313 * Either we have not yet spawned the grace-period
62da1921
PM
2314 * task, this CPU does not need another grace period,
2315 * or a grace period is already in progress.
b3dbec76 2316 * Either way, don't start a new grace period.
afe24b12 2317 */
48a7639c 2318 return false;
afe24b12 2319 }
7d0ae808
PM
2320 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2321 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2322 TPS("newreq"));
62da1921 2323
016a8d5b
SR
2324 /*
2325 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2326 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2327 * the wakeup to our caller.
016a8d5b 2328 */
48a7639c 2329 return true;
64db4cff
PM
2330}
2331
910ee45d
PM
2332/*
2333 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2334 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2335 * is invoked indirectly from rcu_advance_cbs(), which would result in
2336 * endless recursion -- or would do so if it wasn't for the self-deadlock
2337 * that is encountered beforehand.
48a7639c
PM
2338 *
2339 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2340 */
48a7639c 2341static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2342{
2343 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2344 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2345 bool ret = false;
910ee45d
PM
2346
2347 /*
2348 * If there is no grace period in progress right now, any
2349 * callbacks we have up to this point will be satisfied by the
2350 * next grace period. Also, advancing the callbacks reduces the
2351 * probability of false positives from cpu_needs_another_gp()
2352 * resulting in pointless grace periods. So, advance callbacks
2353 * then start the grace period!
2354 */
48a7639c
PM
2355 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2356 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2357 return ret;
910ee45d
PM
2358}
2359
f41d911f 2360/*
8994515c
PM
2361 * Report a full set of quiescent states to the specified rcu_state data
2362 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2363 * kthread if another grace period is required. Whether we wake
2364 * the grace-period kthread or it awakens itself for the next round
2365 * of quiescent-state forcing, that kthread will clean up after the
2366 * just-completed grace period. Note that the caller must hold rnp->lock,
2367 * which is released before return.
f41d911f 2368 */
d3f6bad3 2369static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2370 __releases(rcu_get_root(rsp)->lock)
f41d911f 2371{
c0b334c5 2372 lockdep_assert_held(&rcu_get_root(rsp)->lock);
fc2219d4 2373 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2374 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2375 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2376 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2377}
2378
64db4cff 2379/*
d3f6bad3
PM
2380 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2381 * Allows quiescent states for a group of CPUs to be reported at one go
2382 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2383 * must be represented by the same rcu_node structure (which need not be a
2384 * leaf rcu_node structure, though it often will be). The gps parameter
2385 * is the grace-period snapshot, which means that the quiescent states
2386 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2387 * must be held upon entry, and it is released before return.
64db4cff
PM
2388 */
2389static void
d3f6bad3 2390rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2391 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2392 __releases(rnp->lock)
2393{
654e9533 2394 unsigned long oldmask = 0;
28ecd580
PM
2395 struct rcu_node *rnp_c;
2396
c0b334c5
PM
2397 lockdep_assert_held(&rnp->lock);
2398
64db4cff
PM
2399 /* Walk up the rcu_node hierarchy. */
2400 for (;;) {
654e9533 2401 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2402
654e9533
PM
2403 /*
2404 * Our bit has already been cleared, or the
2405 * relevant grace period is already over, so done.
2406 */
67c583a7 2407 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2408 return;
2409 }
654e9533 2410 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2411 rnp->qsmask &= ~mask;
d4c08f2a
PM
2412 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2413 mask, rnp->qsmask, rnp->level,
2414 rnp->grplo, rnp->grphi,
2415 !!rnp->gp_tasks);
27f4d280 2416 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2417
2418 /* Other bits still set at this level, so done. */
67c583a7 2419 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2420 return;
2421 }
2422 mask = rnp->grpmask;
2423 if (rnp->parent == NULL) {
2424
2425 /* No more levels. Exit loop holding root lock. */
2426
2427 break;
2428 }
67c583a7 2429 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2430 rnp_c = rnp;
64db4cff 2431 rnp = rnp->parent;
2a67e741 2432 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2433 oldmask = rnp_c->qsmask;
64db4cff
PM
2434 }
2435
2436 /*
2437 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2438 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2439 * to clean up and start the next grace period if one is needed.
64db4cff 2440 */
d3f6bad3 2441 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2442}
2443
cc99a310
PM
2444/*
2445 * Record a quiescent state for all tasks that were previously queued
2446 * on the specified rcu_node structure and that were blocking the current
2447 * RCU grace period. The caller must hold the specified rnp->lock with
2448 * irqs disabled, and this lock is released upon return, but irqs remain
2449 * disabled.
2450 */
0aa04b05 2451static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2452 struct rcu_node *rnp, unsigned long flags)
2453 __releases(rnp->lock)
2454{
654e9533 2455 unsigned long gps;
cc99a310
PM
2456 unsigned long mask;
2457 struct rcu_node *rnp_p;
2458
c0b334c5 2459 lockdep_assert_held(&rnp->lock);
a77da14c
PM
2460 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2461 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2462 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2463 return; /* Still need more quiescent states! */
2464 }
2465
2466 rnp_p = rnp->parent;
2467 if (rnp_p == NULL) {
2468 /*
a77da14c
PM
2469 * Only one rcu_node structure in the tree, so don't
2470 * try to report up to its nonexistent parent!
cc99a310
PM
2471 */
2472 rcu_report_qs_rsp(rsp, flags);
2473 return;
2474 }
2475
654e9533
PM
2476 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2477 gps = rnp->gpnum;
cc99a310 2478 mask = rnp->grpmask;
67c583a7 2479 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2480 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2481 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2482}
2483
64db4cff 2484/*
d3f6bad3 2485 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2486 * structure. This must be called from the specified CPU.
64db4cff
PM
2487 */
2488static void
d7d6a11e 2489rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2490{
2491 unsigned long flags;
2492 unsigned long mask;
48a7639c 2493 bool needwake;
64db4cff
PM
2494 struct rcu_node *rnp;
2495
2496 rnp = rdp->mynode;
2a67e741 2497 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2498 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2499 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2500
2501 /*
e4cc1f22
PM
2502 * The grace period in which this quiescent state was
2503 * recorded has ended, so don't report it upwards.
2504 * We will instead need a new quiescent state that lies
2505 * within the current grace period.
64db4cff 2506 */
5b74c458 2507 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2508 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2509 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2510 return;
2511 }
2512 mask = rdp->grpmask;
2513 if ((rnp->qsmask & mask) == 0) {
67c583a7 2514 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2515 } else {
bb53e416 2516 rdp->core_needs_qs = false;
64db4cff
PM
2517
2518 /*
2519 * This GP can't end until cpu checks in, so all of our
2520 * callbacks can be processed during the next GP.
2521 */
48a7639c 2522 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2523
654e9533
PM
2524 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2525 /* ^^^ Released rnp->lock */
48a7639c
PM
2526 if (needwake)
2527 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2528 }
2529}
2530
2531/*
2532 * Check to see if there is a new grace period of which this CPU
2533 * is not yet aware, and if so, set up local rcu_data state for it.
2534 * Otherwise, see if this CPU has just passed through its first
2535 * quiescent state for this grace period, and record that fact if so.
2536 */
2537static void
2538rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2539{
05eb552b
PM
2540 /* Check for grace-period ends and beginnings. */
2541 note_gp_changes(rsp, rdp);
64db4cff
PM
2542
2543 /*
2544 * Does this CPU still need to do its part for current grace period?
2545 * If no, return and let the other CPUs do their part as well.
2546 */
97c668b8 2547 if (!rdp->core_needs_qs)
64db4cff
PM
2548 return;
2549
2550 /*
2551 * Was there a quiescent state since the beginning of the grace
2552 * period? If no, then exit and wait for the next call.
2553 */
3a19b46a 2554 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2555 return;
2556
d3f6bad3
PM
2557 /*
2558 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2559 * judge of that).
2560 */
d7d6a11e 2561 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2562}
2563
b1420f1c
PM
2564/*
2565 * Trace the fact that this CPU is going offline.
2566 */
2567static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2568{
88a4976d
PM
2569 RCU_TRACE(unsigned long mask;)
2570 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2571 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2572
ea46351c
PM
2573 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2574 return;
2575
88a4976d 2576 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2577 trace_rcu_grace_period(rsp->name,
2578 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2579 TPS("cpuofl"));
64db4cff
PM
2580}
2581
8af3a5e7
PM
2582/*
2583 * All CPUs for the specified rcu_node structure have gone offline,
2584 * and all tasks that were preempted within an RCU read-side critical
2585 * section while running on one of those CPUs have since exited their RCU
2586 * read-side critical section. Some other CPU is reporting this fact with
2587 * the specified rcu_node structure's ->lock held and interrupts disabled.
2588 * This function therefore goes up the tree of rcu_node structures,
2589 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2590 * the leaf rcu_node structure's ->qsmaskinit field has already been
2591 * updated
2592 *
2593 * This function does check that the specified rcu_node structure has
2594 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2595 * prematurely. That said, invoking it after the fact will cost you
2596 * a needless lock acquisition. So once it has done its work, don't
2597 * invoke it again.
2598 */
2599static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2600{
2601 long mask;
2602 struct rcu_node *rnp = rnp_leaf;
2603
c0b334c5 2604 lockdep_assert_held(&rnp->lock);
ea46351c
PM
2605 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2606 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2607 return;
2608 for (;;) {
2609 mask = rnp->grpmask;
2610 rnp = rnp->parent;
2611 if (!rnp)
2612 break;
2a67e741 2613 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2614 rnp->qsmaskinit &= ~mask;
0aa04b05 2615 rnp->qsmask &= ~mask;
8af3a5e7 2616 if (rnp->qsmaskinit) {
67c583a7
BF
2617 raw_spin_unlock_rcu_node(rnp);
2618 /* irqs remain disabled. */
8af3a5e7
PM
2619 return;
2620 }
67c583a7 2621 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2622 }
2623}
2624
64db4cff 2625/*
e5601400 2626 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2627 * this fact from process context. Do the remainder of the cleanup.
2628 * There can only be one CPU hotplug operation at a time, so no need for
2629 * explicit locking.
64db4cff 2630 */
e5601400 2631static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2632{
e5601400 2633 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2634 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2635
ea46351c
PM
2636 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2637 return;
2638
2036d94a 2639 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2640 rcu_boost_kthread_setaffinity(rnp, -1);
64db4cff
PM
2641}
2642
64db4cff
PM
2643/*
2644 * Invoke any RCU callbacks that have made it to the end of their grace
2645 * period. Thottle as specified by rdp->blimit.
2646 */
37c72e56 2647static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2648{
2649 unsigned long flags;
15fecf89
PM
2650 struct rcu_head *rhp;
2651 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2652 long bl, count;
64db4cff 2653
dc35c893 2654 /* If no callbacks are ready, just return. */
15fecf89
PM
2655 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2656 trace_rcu_batch_start(rsp->name,
2657 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2658 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2659 trace_rcu_batch_end(rsp->name, 0,
2660 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2661 need_resched(), is_idle_task(current),
2662 rcu_is_callbacks_kthread());
64db4cff 2663 return;
29c00b4a 2664 }
64db4cff
PM
2665
2666 /*
2667 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2668 * races with call_rcu() from interrupt handlers. Leave the
2669 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2670 */
2671 local_irq_save(flags);
8146c4e2 2672 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2673 bl = rdp->blimit;
15fecf89
PM
2674 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2675 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2676 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2677 local_irq_restore(flags);
2678
2679 /* Invoke callbacks. */
15fecf89
PM
2680 rhp = rcu_cblist_dequeue(&rcl);
2681 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2682 debug_rcu_head_unqueue(rhp);
2683 if (__rcu_reclaim(rsp->name, rhp))
2684 rcu_cblist_dequeued_lazy(&rcl);
2685 /*
2686 * Stop only if limit reached and CPU has something to do.
2687 * Note: The rcl structure counts down from zero.
2688 */
4b27f20b 2689 if (-rcl.len >= bl &&
dff1672d
PM
2690 (need_resched() ||
2691 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2692 break;
2693 }
2694
2695 local_irq_save(flags);
4b27f20b 2696 count = -rcl.len;
8ef0f37e
PM
2697 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2698 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2699
15fecf89
PM
2700 /* Update counts and requeue any remaining callbacks. */
2701 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2702 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2703 rdp->n_cbs_invoked += count;
15fecf89 2704 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2705
2706 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2707 count = rcu_segcblist_n_cbs(&rdp->cblist);
2708 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2709 rdp->blimit = blimit;
2710
37c72e56 2711 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2712 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2713 rdp->qlen_last_fqs_check = 0;
2714 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2715 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2716 rdp->qlen_last_fqs_check = count;
2717 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2718
64db4cff
PM
2719 local_irq_restore(flags);
2720
e0f23060 2721 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2722 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2723 invoke_rcu_core();
64db4cff
PM
2724}
2725
2726/*
2727 * Check to see if this CPU is in a non-context-switch quiescent state
2728 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2729 * Also schedule RCU core processing.
64db4cff 2730 *
9b2e4f18 2731 * This function must be called from hardirq context. It is normally
5403d367 2732 * invoked from the scheduling-clock interrupt.
64db4cff 2733 */
c3377c2d 2734void rcu_check_callbacks(int user)
64db4cff 2735{
f7f7bac9 2736 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2737 increment_cpu_stall_ticks();
9b2e4f18 2738 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2739
2740 /*
2741 * Get here if this CPU took its interrupt from user
2742 * mode or from the idle loop, and if this is not a
2743 * nested interrupt. In this case, the CPU is in
d6714c22 2744 * a quiescent state, so note it.
64db4cff
PM
2745 *
2746 * No memory barrier is required here because both
d6714c22
PM
2747 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2748 * variables that other CPUs neither access nor modify,
2749 * at least not while the corresponding CPU is online.
64db4cff
PM
2750 */
2751
284a8c93
PM
2752 rcu_sched_qs();
2753 rcu_bh_qs();
64db4cff
PM
2754
2755 } else if (!in_softirq()) {
2756
2757 /*
2758 * Get here if this CPU did not take its interrupt from
2759 * softirq, in other words, if it is not interrupting
2760 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2761 * critical section, so note it.
64db4cff
PM
2762 */
2763
284a8c93 2764 rcu_bh_qs();
64db4cff 2765 }
86aea0e6 2766 rcu_preempt_check_callbacks();
e3950ecd 2767 if (rcu_pending())
a46e0899 2768 invoke_rcu_core();
8315f422
PM
2769 if (user)
2770 rcu_note_voluntary_context_switch(current);
f7f7bac9 2771 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2772}
2773
64db4cff
PM
2774/*
2775 * Scan the leaf rcu_node structures, processing dyntick state for any that
2776 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2777 * Also initiate boosting for any threads blocked on the root rcu_node.
2778 *
ee47eb9f 2779 * The caller must have suppressed start of new grace periods.
64db4cff 2780 */
fe5ac724 2781static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
64db4cff 2782{
64db4cff
PM
2783 int cpu;
2784 unsigned long flags;
2785 unsigned long mask;
a0b6c9a7 2786 struct rcu_node *rnp;
64db4cff 2787
a0b6c9a7 2788 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2789 cond_resched_rcu_qs();
64db4cff 2790 mask = 0;
2a67e741 2791 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2792 if (rnp->qsmask == 0) {
a77da14c
PM
2793 if (rcu_state_p == &rcu_sched_state ||
2794 rsp != rcu_state_p ||
2795 rcu_preempt_blocked_readers_cgp(rnp)) {
2796 /*
2797 * No point in scanning bits because they
2798 * are all zero. But we might need to
2799 * priority-boost blocked readers.
2800 */
2801 rcu_initiate_boost(rnp, flags);
2802 /* rcu_initiate_boost() releases rnp->lock */
2803 continue;
2804 }
2805 if (rnp->parent &&
2806 (rnp->parent->qsmask & rnp->grpmask)) {
2807 /*
2808 * Race between grace-period
2809 * initialization and task exiting RCU
2810 * read-side critical section: Report.
2811 */
2812 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2813 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2814 continue;
2815 }
64db4cff 2816 }
bc75e999
MR
2817 for_each_leaf_node_possible_cpu(rnp, cpu) {
2818 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2819 if ((rnp->qsmask & bit) != 0) {
fe5ac724 2820 if (f(per_cpu_ptr(rsp->rda, cpu)))
0edd1b17
PM
2821 mask |= bit;
2822 }
64db4cff 2823 }
45f014c5 2824 if (mask != 0) {
654e9533
PM
2825 /* Idle/offline CPUs, report (releases rnp->lock. */
2826 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2827 } else {
2828 /* Nothing to do here, so just drop the lock. */
67c583a7 2829 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2830 }
64db4cff 2831 }
64db4cff
PM
2832}
2833
2834/*
2835 * Force quiescent states on reluctant CPUs, and also detect which
2836 * CPUs are in dyntick-idle mode.
2837 */
4cdfc175 2838static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2839{
2840 unsigned long flags;
394f2769
PM
2841 bool ret;
2842 struct rcu_node *rnp;
2843 struct rcu_node *rnp_old = NULL;
2844
2845 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2846 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2847 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2848 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2849 !raw_spin_trylock(&rnp->fqslock);
2850 if (rnp_old != NULL)
2851 raw_spin_unlock(&rnp_old->fqslock);
2852 if (ret) {
a792563b 2853 rsp->n_force_qs_lh++;
394f2769
PM
2854 return;
2855 }
2856 rnp_old = rnp;
2857 }
2858 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2859
394f2769 2860 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2861 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2862 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2863 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2864 rsp->n_force_qs_lh++;
67c583a7 2865 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2866 return; /* Someone beat us to it. */
46a1e34e 2867 }
7d0ae808 2868 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2869 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2870 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2871}
2872
64db4cff 2873/*
e0f23060
PM
2874 * This does the RCU core processing work for the specified rcu_state
2875 * and rcu_data structures. This may be called only from the CPU to
2876 * whom the rdp belongs.
64db4cff
PM
2877 */
2878static void
1bca8cf1 2879__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2880{
2881 unsigned long flags;
48a7639c 2882 bool needwake;
fa07a58f 2883 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2884
50dc7def 2885 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2886
64db4cff
PM
2887 /* Update RCU state based on any recent quiescent states. */
2888 rcu_check_quiescent_state(rsp, rdp);
2889
2890 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2891 local_irq_save(flags);
64db4cff 2892 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2893 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2894 needwake = rcu_start_gp(rsp);
67c583a7 2895 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
2896 if (needwake)
2897 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2898 } else {
2899 local_irq_restore(flags);
64db4cff
PM
2900 }
2901
2902 /* If there are callbacks ready, invoke them. */
15fecf89 2903 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2904 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2905
2906 /* Do any needed deferred wakeups of rcuo kthreads. */
2907 do_nocb_deferred_wakeup(rdp);
09223371
SL
2908}
2909
64db4cff 2910/*
e0f23060 2911 * Do RCU core processing for the current CPU.
64db4cff 2912 */
0766f788 2913static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2914{
6ce75a23
PM
2915 struct rcu_state *rsp;
2916
bfa00b4c
PM
2917 if (cpu_is_offline(smp_processor_id()))
2918 return;
f7f7bac9 2919 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2920 for_each_rcu_flavor(rsp)
2921 __rcu_process_callbacks(rsp);
f7f7bac9 2922 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2923}
2924
a26ac245 2925/*
e0f23060
PM
2926 * Schedule RCU callback invocation. If the specified type of RCU
2927 * does not support RCU priority boosting, just do a direct call,
2928 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2929 * are running on the current CPU with softirqs disabled, the
e0f23060 2930 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2931 */
a46e0899 2932static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2933{
7d0ae808 2934 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2935 return;
a46e0899
PM
2936 if (likely(!rsp->boost)) {
2937 rcu_do_batch(rsp, rdp);
a26ac245
PM
2938 return;
2939 }
a46e0899 2940 invoke_rcu_callbacks_kthread();
a26ac245
PM
2941}
2942
a46e0899 2943static void invoke_rcu_core(void)
09223371 2944{
b0f74036
PM
2945 if (cpu_online(smp_processor_id()))
2946 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2947}
2948
29154c57
PM
2949/*
2950 * Handle any core-RCU processing required by a call_rcu() invocation.
2951 */
2952static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2953 struct rcu_head *head, unsigned long flags)
64db4cff 2954{
48a7639c
PM
2955 bool needwake;
2956
62fde6ed
PM
2957 /*
2958 * If called from an extended quiescent state, invoke the RCU
2959 * core in order to force a re-evaluation of RCU's idleness.
2960 */
9910affa 2961 if (!rcu_is_watching())
62fde6ed
PM
2962 invoke_rcu_core();
2963
a16b7a69 2964 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2965 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2966 return;
64db4cff 2967
37c72e56
PM
2968 /*
2969 * Force the grace period if too many callbacks or too long waiting.
2970 * Enforce hysteresis, and don't invoke force_quiescent_state()
2971 * if some other CPU has recently done so. Also, don't bother
2972 * invoking force_quiescent_state() if the newly enqueued callback
2973 * is the only one waiting for a grace period to complete.
2974 */
15fecf89
PM
2975 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2976 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2977
2978 /* Are we ignoring a completed grace period? */
470716fc 2979 note_gp_changes(rsp, rdp);
b52573d2
PM
2980
2981 /* Start a new grace period if one not already started. */
2982 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2983 struct rcu_node *rnp_root = rcu_get_root(rsp);
2984
2a67e741 2985 raw_spin_lock_rcu_node(rnp_root);
48a7639c 2986 needwake = rcu_start_gp(rsp);
67c583a7 2987 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
2988 if (needwake)
2989 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2990 } else {
2991 /* Give the grace period a kick. */
2992 rdp->blimit = LONG_MAX;
2993 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2994 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 2995 force_quiescent_state(rsp);
b52573d2 2996 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 2997 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2998 }
4cdfc175 2999 }
29154c57
PM
3000}
3001
ae150184
PM
3002/*
3003 * RCU callback function to leak a callback.
3004 */
3005static void rcu_leak_callback(struct rcu_head *rhp)
3006{
3007}
3008
3fbfbf7a
PM
3009/*
3010 * Helper function for call_rcu() and friends. The cpu argument will
3011 * normally be -1, indicating "currently running CPU". It may specify
3012 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3013 * is expected to specify a CPU.
3014 */
64db4cff 3015static void
b6a4ae76 3016__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3017 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3018{
3019 unsigned long flags;
3020 struct rcu_data *rdp;
3021
b8f2ed53
PM
3022 /* Misaligned rcu_head! */
3023 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3024
ae150184 3025 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
3026 /*
3027 * Probable double call_rcu(), so leak the callback.
3028 * Use rcu:rcu_callback trace event to find the previous
3029 * time callback was passed to __call_rcu().
3030 */
3031 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3032 head, head->func);
7d0ae808 3033 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3034 return;
3035 }
64db4cff
PM
3036 head->func = func;
3037 head->next = NULL;
64db4cff 3038 local_irq_save(flags);
394f99a9 3039 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3040
3041 /* Add the callback to our list. */
15fecf89 3042 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3043 int offline;
3044
3045 if (cpu != -1)
3046 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3047 if (likely(rdp->mynode)) {
3048 /* Post-boot, so this should be for a no-CBs CPU. */
3049 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3050 WARN_ON_ONCE(offline);
3051 /* Offline CPU, _call_rcu() illegal, leak callback. */
3052 local_irq_restore(flags);
3053 return;
3054 }
3055 /*
3056 * Very early boot, before rcu_init(). Initialize if needed
3057 * and then drop through to queue the callback.
3058 */
3059 BUG_ON(cpu != -1);
34404ca8 3060 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3061 if (rcu_segcblist_empty(&rdp->cblist))
3062 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3063 }
15fecf89
PM
3064 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3065 if (!lazy)
c57afe80 3066 rcu_idle_count_callbacks_posted();
2655d57e 3067
d4c08f2a
PM
3068 if (__is_kfree_rcu_offset((unsigned long)func))
3069 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3070 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3071 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3072 else
15fecf89
PM
3073 trace_rcu_callback(rsp->name, head,
3074 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3075 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3076
29154c57
PM
3077 /* Go handle any RCU core processing required. */
3078 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3079 local_irq_restore(flags);
3080}
3081
a68a2bb2
PM
3082/**
3083 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3084 * @head: structure to be used for queueing the RCU updates.
3085 * @func: actual callback function to be invoked after the grace period
3086 *
3087 * The callback function will be invoked some time after a full grace
3088 * period elapses, in other words after all currently executing RCU
3089 * read-side critical sections have completed. call_rcu_sched() assumes
3090 * that the read-side critical sections end on enabling of preemption
3091 * or on voluntary preemption.
3092 * RCU read-side critical sections are delimited by :
3093 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3094 * - anything that disables preemption.
3095 *
3096 * These may be nested.
3097 *
3098 * See the description of call_rcu() for more detailed information on
3099 * memory ordering guarantees.
64db4cff 3100 */
b6a4ae76 3101void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3102{
3fbfbf7a 3103 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3104}
d6714c22 3105EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3106
a68a2bb2
PM
3107/**
3108 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3109 * @head: structure to be used for queueing the RCU updates.
3110 * @func: actual callback function to be invoked after the grace period
3111 *
3112 * The callback function will be invoked some time after a full grace
3113 * period elapses, in other words after all currently executing RCU
3114 * read-side critical sections have completed. call_rcu_bh() assumes
3115 * that the read-side critical sections end on completion of a softirq
3116 * handler. This means that read-side critical sections in process
3117 * context must not be interrupted by softirqs. This interface is to be
3118 * used when most of the read-side critical sections are in softirq context.
3119 * RCU read-side critical sections are delimited by :
3120 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
3121 * OR
3122 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3123 * These may be nested.
3124 *
3125 * See the description of call_rcu() for more detailed information on
3126 * memory ordering guarantees.
64db4cff 3127 */
b6a4ae76 3128void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3129{
3fbfbf7a 3130 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3131}
3132EXPORT_SYMBOL_GPL(call_rcu_bh);
3133
495aa969
ACB
3134/*
3135 * Queue an RCU callback for lazy invocation after a grace period.
3136 * This will likely be later named something like "call_rcu_lazy()",
3137 * but this change will require some way of tagging the lazy RCU
3138 * callbacks in the list of pending callbacks. Until then, this
3139 * function may only be called from __kfree_rcu().
3140 */
3141void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3142 rcu_callback_t func)
495aa969 3143{
e534165b 3144 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3145}
3146EXPORT_SYMBOL_GPL(kfree_call_rcu);
3147
6d813391
PM
3148/*
3149 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3150 * any blocking grace-period wait automatically implies a grace period
3151 * if there is only one CPU online at any point time during execution
3152 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3153 * occasionally incorrectly indicate that there are multiple CPUs online
3154 * when there was in fact only one the whole time, as this just adds
3155 * some overhead: RCU still operates correctly.
6d813391
PM
3156 */
3157static inline int rcu_blocking_is_gp(void)
3158{
95f0c1de
PM
3159 int ret;
3160
6d813391 3161 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3162 preempt_disable();
3163 ret = num_online_cpus() <= 1;
3164 preempt_enable();
3165 return ret;
6d813391
PM
3166}
3167
6ebb237b
PM
3168/**
3169 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3170 *
3171 * Control will return to the caller some time after a full rcu-sched
3172 * grace period has elapsed, in other words after all currently executing
3173 * rcu-sched read-side critical sections have completed. These read-side
3174 * critical sections are delimited by rcu_read_lock_sched() and
3175 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3176 * local_irq_disable(), and so on may be used in place of
3177 * rcu_read_lock_sched().
3178 *
3179 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3180 * non-threaded hardware-interrupt handlers, in progress on entry will
3181 * have completed before this primitive returns. However, this does not
3182 * guarantee that softirq handlers will have completed, since in some
3183 * kernels, these handlers can run in process context, and can block.
3184 *
3185 * Note that this guarantee implies further memory-ordering guarantees.
3186 * On systems with more than one CPU, when synchronize_sched() returns,
3187 * each CPU is guaranteed to have executed a full memory barrier since the
3188 * end of its last RCU-sched read-side critical section whose beginning
3189 * preceded the call to synchronize_sched(). In addition, each CPU having
3190 * an RCU read-side critical section that extends beyond the return from
3191 * synchronize_sched() is guaranteed to have executed a full memory barrier
3192 * after the beginning of synchronize_sched() and before the beginning of
3193 * that RCU read-side critical section. Note that these guarantees include
3194 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3195 * that are executing in the kernel.
3196 *
3197 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3198 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3199 * to have executed a full memory barrier during the execution of
3200 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3201 * again only if the system has more than one CPU).
6ebb237b
PM
3202 */
3203void synchronize_sched(void)
3204{
f78f5b90
PM
3205 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3206 lock_is_held(&rcu_lock_map) ||
3207 lock_is_held(&rcu_sched_lock_map),
3208 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3209 if (rcu_blocking_is_gp())
3210 return;
5afff48b 3211 if (rcu_gp_is_expedited())
3705b88d
AM
3212 synchronize_sched_expedited();
3213 else
3214 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3215}
3216EXPORT_SYMBOL_GPL(synchronize_sched);
3217
3218/**
3219 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3220 *
3221 * Control will return to the caller some time after a full rcu_bh grace
3222 * period has elapsed, in other words after all currently executing rcu_bh
3223 * read-side critical sections have completed. RCU read-side critical
3224 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3225 * and may be nested.
f0a0e6f2
PM
3226 *
3227 * See the description of synchronize_sched() for more detailed information
3228 * on memory ordering guarantees.
6ebb237b
PM
3229 */
3230void synchronize_rcu_bh(void)
3231{
f78f5b90
PM
3232 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3233 lock_is_held(&rcu_lock_map) ||
3234 lock_is_held(&rcu_sched_lock_map),
3235 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3236 if (rcu_blocking_is_gp())
3237 return;
5afff48b 3238 if (rcu_gp_is_expedited())
3705b88d
AM
3239 synchronize_rcu_bh_expedited();
3240 else
3241 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3242}
3243EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3244
765a3f4f
PM
3245/**
3246 * get_state_synchronize_rcu - Snapshot current RCU state
3247 *
3248 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3249 * to determine whether or not a full grace period has elapsed in the
3250 * meantime.
3251 */
3252unsigned long get_state_synchronize_rcu(void)
3253{
3254 /*
3255 * Any prior manipulation of RCU-protected data must happen
3256 * before the load from ->gpnum.
3257 */
3258 smp_mb(); /* ^^^ */
3259
3260 /*
3261 * Make sure this load happens before the purportedly
3262 * time-consuming work between get_state_synchronize_rcu()
3263 * and cond_synchronize_rcu().
3264 */
e534165b 3265 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3266}
3267EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3268
3269/**
3270 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3271 *
3272 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3273 *
3274 * If a full RCU grace period has elapsed since the earlier call to
3275 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3276 * synchronize_rcu() to wait for a full grace period.
3277 *
3278 * Yes, this function does not take counter wrap into account. But
3279 * counter wrap is harmless. If the counter wraps, we have waited for
3280 * more than 2 billion grace periods (and way more on a 64-bit system!),
3281 * so waiting for one additional grace period should be just fine.
3282 */
3283void cond_synchronize_rcu(unsigned long oldstate)
3284{
3285 unsigned long newstate;
3286
3287 /*
3288 * Ensure that this load happens before any RCU-destructive
3289 * actions the caller might carry out after we return.
3290 */
e534165b 3291 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3292 if (ULONG_CMP_GE(oldstate, newstate))
3293 synchronize_rcu();
3294}
3295EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3296
24560056
PM
3297/**
3298 * get_state_synchronize_sched - Snapshot current RCU-sched state
3299 *
3300 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3301 * to determine whether or not a full grace period has elapsed in the
3302 * meantime.
3303 */
3304unsigned long get_state_synchronize_sched(void)
3305{
3306 /*
3307 * Any prior manipulation of RCU-protected data must happen
3308 * before the load from ->gpnum.
3309 */
3310 smp_mb(); /* ^^^ */
3311
3312 /*
3313 * Make sure this load happens before the purportedly
3314 * time-consuming work between get_state_synchronize_sched()
3315 * and cond_synchronize_sched().
3316 */
3317 return smp_load_acquire(&rcu_sched_state.gpnum);
3318}
3319EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3320
3321/**
3322 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3323 *
3324 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3325 *
3326 * If a full RCU-sched grace period has elapsed since the earlier call to
3327 * get_state_synchronize_sched(), just return. Otherwise, invoke
3328 * synchronize_sched() to wait for a full grace period.
3329 *
3330 * Yes, this function does not take counter wrap into account. But
3331 * counter wrap is harmless. If the counter wraps, we have waited for
3332 * more than 2 billion grace periods (and way more on a 64-bit system!),
3333 * so waiting for one additional grace period should be just fine.
3334 */
3335void cond_synchronize_sched(unsigned long oldstate)
3336{
3337 unsigned long newstate;
3338
3339 /*
3340 * Ensure that this load happens before any RCU-destructive
3341 * actions the caller might carry out after we return.
3342 */
3343 newstate = smp_load_acquire(&rcu_sched_state.completed);
3344 if (ULONG_CMP_GE(oldstate, newstate))
3345 synchronize_sched();
3346}
3347EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3348
64db4cff
PM
3349/*
3350 * Check to see if there is any immediate RCU-related work to be done
3351 * by the current CPU, for the specified type of RCU, returning 1 if so.
3352 * The checks are in order of increasing expense: checks that can be
3353 * carried out against CPU-local state are performed first. However,
3354 * we must check for CPU stalls first, else we might not get a chance.
3355 */
3356static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3357{
2f51f988
PM
3358 struct rcu_node *rnp = rdp->mynode;
3359
64db4cff
PM
3360 rdp->n_rcu_pending++;
3361
3362 /* Check for CPU stalls, if enabled. */
3363 check_cpu_stall(rsp, rdp);
3364
a096932f
PM
3365 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3366 if (rcu_nohz_full_cpu(rsp))
3367 return 0;
3368
64db4cff 3369 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3370 if (rcu_scheduler_fully_active &&
5b74c458 3371 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3372 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3373 rdp->n_rp_core_needs_qs++;
3a19b46a 3374 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3375 rdp->n_rp_report_qs++;
64db4cff 3376 return 1;
7ba5c840 3377 }
64db4cff
PM
3378
3379 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3380 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3381 rdp->n_rp_cb_ready++;
64db4cff 3382 return 1;
7ba5c840 3383 }
64db4cff
PM
3384
3385 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3386 if (cpu_needs_another_gp(rsp, rdp)) {
3387 rdp->n_rp_cpu_needs_gp++;
64db4cff 3388 return 1;
7ba5c840 3389 }
64db4cff
PM
3390
3391 /* Has another RCU grace period completed? */
7d0ae808 3392 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3393 rdp->n_rp_gp_completed++;
64db4cff 3394 return 1;
7ba5c840 3395 }
64db4cff
PM
3396
3397 /* Has a new RCU grace period started? */
7d0ae808
PM
3398 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3399 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3400 rdp->n_rp_gp_started++;
64db4cff 3401 return 1;
7ba5c840 3402 }
64db4cff 3403
96d3fd0d
PM
3404 /* Does this CPU need a deferred NOCB wakeup? */
3405 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3406 rdp->n_rp_nocb_defer_wakeup++;
3407 return 1;
3408 }
3409
64db4cff 3410 /* nothing to do */
7ba5c840 3411 rdp->n_rp_need_nothing++;
64db4cff
PM
3412 return 0;
3413}
3414
3415/*
3416 * Check to see if there is any immediate RCU-related work to be done
3417 * by the current CPU, returning 1 if so. This function is part of the
3418 * RCU implementation; it is -not- an exported member of the RCU API.
3419 */
e3950ecd 3420static int rcu_pending(void)
64db4cff 3421{
6ce75a23
PM
3422 struct rcu_state *rsp;
3423
3424 for_each_rcu_flavor(rsp)
e3950ecd 3425 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3426 return 1;
3427 return 0;
64db4cff
PM
3428}
3429
3430/*
c0f4dfd4
PM
3431 * Return true if the specified CPU has any callback. If all_lazy is
3432 * non-NULL, store an indication of whether all callbacks are lazy.
3433 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3434 */
82072c4f 3435static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3436{
c0f4dfd4
PM
3437 bool al = true;
3438 bool hc = false;
3439 struct rcu_data *rdp;
6ce75a23
PM
3440 struct rcu_state *rsp;
3441
c0f4dfd4 3442 for_each_rcu_flavor(rsp) {
aa6da514 3443 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3444 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3445 continue;
3446 hc = true;
15fecf89 3447 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3448 al = false;
69c8d28c
PM
3449 break;
3450 }
c0f4dfd4
PM
3451 }
3452 if (all_lazy)
3453 *all_lazy = al;
3454 return hc;
64db4cff
PM
3455}
3456
a83eff0a
PM
3457/*
3458 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3459 * the compiler is expected to optimize this away.
3460 */
e66c33d5 3461static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3462 int cpu, unsigned long done)
3463{
3464 trace_rcu_barrier(rsp->name, s, cpu,
3465 atomic_read(&rsp->barrier_cpu_count), done);
3466}
3467
b1420f1c
PM
3468/*
3469 * RCU callback function for _rcu_barrier(). If we are last, wake
3470 * up the task executing _rcu_barrier().
3471 */
24ebbca8 3472static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3473{
24ebbca8
PM
3474 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3475 struct rcu_state *rsp = rdp->rsp;
3476
a83eff0a 3477 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3478 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3479 complete(&rsp->barrier_completion);
a83eff0a 3480 } else {
4f525a52 3481 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3482 }
d0ec774c
PM
3483}
3484
3485/*
3486 * Called with preemption disabled, and from cross-cpu IRQ context.
3487 */
3488static void rcu_barrier_func(void *type)
3489{
037b64ed 3490 struct rcu_state *rsp = type;
fa07a58f 3491 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3492
4f525a52 3493 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
f92c734f
PM
3494 rdp->barrier_head.func = rcu_barrier_callback;
3495 debug_rcu_head_queue(&rdp->barrier_head);
3496 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3497 atomic_inc(&rsp->barrier_cpu_count);
3498 } else {
3499 debug_rcu_head_unqueue(&rdp->barrier_head);
3500 _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3501 }
d0ec774c
PM
3502}
3503
d0ec774c
PM
3504/*
3505 * Orchestrate the specified type of RCU barrier, waiting for all
3506 * RCU callbacks of the specified type to complete.
3507 */
037b64ed 3508static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3509{
b1420f1c 3510 int cpu;
b1420f1c 3511 struct rcu_data *rdp;
4f525a52 3512 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3513
4f525a52 3514 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3515
e74f4c45 3516 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3517 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3518
4f525a52
PM
3519 /* Did someone else do our work for us? */
3520 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3521 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3522 smp_mb(); /* caller's subsequent code after above check. */
3523 mutex_unlock(&rsp->barrier_mutex);
3524 return;
3525 }
3526
4f525a52
PM
3527 /* Mark the start of the barrier operation. */
3528 rcu_seq_start(&rsp->barrier_sequence);
3529 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3530
d0ec774c 3531 /*
b1420f1c
PM
3532 * Initialize the count to one rather than to zero in order to
3533 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3534 * (or preemption of this task). Exclude CPU-hotplug operations
3535 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3536 */
7db74df8 3537 init_completion(&rsp->barrier_completion);
24ebbca8 3538 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3539 get_online_cpus();
b1420f1c
PM
3540
3541 /*
1331e7a1
PM
3542 * Force each CPU with callbacks to register a new callback.
3543 * When that callback is invoked, we will know that all of the
3544 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3545 */
3fbfbf7a 3546 for_each_possible_cpu(cpu) {
d1e43fa5 3547 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3548 continue;
b1420f1c 3549 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3550 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3551 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3552 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3553 rsp->barrier_sequence);
d7e29933
PM
3554 } else {
3555 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3556 rsp->barrier_sequence);
41050a00 3557 smp_mb__before_atomic();
d7e29933
PM
3558 atomic_inc(&rsp->barrier_cpu_count);
3559 __call_rcu(&rdp->barrier_head,
3560 rcu_barrier_callback, rsp, cpu, 0);
3561 }
15fecf89 3562 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
a83eff0a 3563 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3564 rsp->barrier_sequence);
037b64ed 3565 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3566 } else {
a83eff0a 3567 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3568 rsp->barrier_sequence);
b1420f1c
PM
3569 }
3570 }
1331e7a1 3571 put_online_cpus();
b1420f1c
PM
3572
3573 /*
3574 * Now that we have an rcu_barrier_callback() callback on each
3575 * CPU, and thus each counted, remove the initial count.
3576 */
24ebbca8 3577 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3578 complete(&rsp->barrier_completion);
b1420f1c
PM
3579
3580 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3581 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3582
4f525a52
PM
3583 /* Mark the end of the barrier operation. */
3584 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3585 rcu_seq_end(&rsp->barrier_sequence);
3586
b1420f1c 3587 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3588 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3589}
d0ec774c
PM
3590
3591/**
3592 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3593 */
3594void rcu_barrier_bh(void)
3595{
037b64ed 3596 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3597}
3598EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3599
3600/**
3601 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3602 */
3603void rcu_barrier_sched(void)
3604{
037b64ed 3605 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3606}
3607EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3608
0aa04b05
PM
3609/*
3610 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3611 * first CPU in a given leaf rcu_node structure coming online. The caller
3612 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3613 * disabled.
3614 */
3615static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3616{
3617 long mask;
3618 struct rcu_node *rnp = rnp_leaf;
3619
c0b334c5 3620 lockdep_assert_held(&rnp->lock);
0aa04b05
PM
3621 for (;;) {
3622 mask = rnp->grpmask;
3623 rnp = rnp->parent;
3624 if (rnp == NULL)
3625 return;
6cf10081 3626 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3627 rnp->qsmaskinit |= mask;
67c583a7 3628 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3629 }
3630}
3631
64db4cff 3632/*
27569620 3633 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3634 */
27569620
PM
3635static void __init
3636rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3637{
3638 unsigned long flags;
394f99a9 3639 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3640 struct rcu_node *rnp = rcu_get_root(rsp);
3641
3642 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3643 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3644 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3645 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3646 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3647 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3648 rdp->cpu = cpu;
d4c08f2a 3649 rdp->rsp = rsp;
3fbfbf7a 3650 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3651 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3652}
3653
3654/*
3655 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3656 * offline event can be happening at a given time. Note also that we
3657 * can accept some slop in the rsp->completed access due to the fact
3658 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3659 */
49fb4c62 3660static void
9b67122a 3661rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3662{
3663 unsigned long flags;
394f99a9 3664 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3665 struct rcu_node *rnp = rcu_get_root(rsp);
3666
3667 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3668 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3669 rdp->qlen_last_fqs_check = 0;
3670 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3671 rdp->blimit = blimit;
15fecf89
PM
3672 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3673 !init_nocb_callback_list(rdp))
3674 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
29e37d81 3675 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2625d469 3676 rcu_dynticks_eqs_online();
67c583a7 3677 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3678
0aa04b05
PM
3679 /*
3680 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3681 * propagation up the rcu_node tree will happen at the beginning
3682 * of the next grace period.
3683 */
64db4cff 3684 rnp = rdp->mynode;
2a67e741 3685 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3686 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3687 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3688 rdp->completed = rnp->completed;
5b74c458 3689 rdp->cpu_no_qs.b.norm = true;
9577df9a 3690 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3691 rdp->core_needs_qs = false;
0aa04b05 3692 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3693 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3694}
3695
deb34f36
PM
3696/*
3697 * Invoked early in the CPU-online process, when pretty much all
3698 * services are available. The incoming CPU is not present.
3699 */
4df83742 3700int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3701{
6ce75a23
PM
3702 struct rcu_state *rsp;
3703
3704 for_each_rcu_flavor(rsp)
9b67122a 3705 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3706
3707 rcu_prepare_kthreads(cpu);
3708 rcu_spawn_all_nocb_kthreads(cpu);
3709
3710 return 0;
3711}
3712
deb34f36
PM
3713/*
3714 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3715 */
4df83742
TG
3716static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3717{
3718 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3719
3720 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3721}
3722
deb34f36
PM
3723/*
3724 * Near the end of the CPU-online process. Pretty much all services
3725 * enabled, and the CPU is now very much alive.
3726 */
4df83742
TG
3727int rcutree_online_cpu(unsigned int cpu)
3728{
3729 sync_sched_exp_online_cleanup(cpu);
3730 rcutree_affinity_setting(cpu, -1);
da915ad5
PM
3731 if (IS_ENABLED(CONFIG_TREE_SRCU))
3732 srcu_online_cpu(cpu);
4df83742
TG
3733 return 0;
3734}
3735
deb34f36
PM
3736/*
3737 * Near the beginning of the process. The CPU is still very much alive
3738 * with pretty much all services enabled.
3739 */
4df83742
TG
3740int rcutree_offline_cpu(unsigned int cpu)
3741{
3742 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3743 if (IS_ENABLED(CONFIG_TREE_SRCU))
3744 srcu_offline_cpu(cpu);
4df83742
TG
3745 return 0;
3746}
3747
deb34f36
PM
3748/*
3749 * Near the end of the offline process. We do only tracing here.
3750 */
4df83742
TG
3751int rcutree_dying_cpu(unsigned int cpu)
3752{
3753 struct rcu_state *rsp;
3754
3755 for_each_rcu_flavor(rsp)
3756 rcu_cleanup_dying_cpu(rsp);
3757 return 0;
3758}
3759
deb34f36
PM
3760/*
3761 * The outgoing CPU is gone and we are running elsewhere.
3762 */
4df83742
TG
3763int rcutree_dead_cpu(unsigned int cpu)
3764{
3765 struct rcu_state *rsp;
3766
3767 for_each_rcu_flavor(rsp) {
3768 rcu_cleanup_dead_cpu(cpu, rsp);
3769 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3770 }
3771 return 0;
64db4cff
PM
3772}
3773
7ec99de3
PM
3774/*
3775 * Mark the specified CPU as being online so that subsequent grace periods
3776 * (both expedited and normal) will wait on it. Note that this means that
3777 * incoming CPUs are not allowed to use RCU read-side critical sections
3778 * until this function is called. Failing to observe this restriction
3779 * will result in lockdep splats.
deb34f36
PM
3780 *
3781 * Note that this function is special in that it is invoked directly
3782 * from the incoming CPU rather than from the cpuhp_step mechanism.
3783 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3784 */
3785void rcu_cpu_starting(unsigned int cpu)
3786{
3787 unsigned long flags;
3788 unsigned long mask;
313517fc
PM
3789 int nbits;
3790 unsigned long oldmask;
7ec99de3
PM
3791 struct rcu_data *rdp;
3792 struct rcu_node *rnp;
3793 struct rcu_state *rsp;
3794
3795 for_each_rcu_flavor(rsp) {
fdbb9b31 3796 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3797 rnp = rdp->mynode;
3798 mask = rdp->grpmask;
3799 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3800 rnp->qsmaskinitnext |= mask;
313517fc 3801 oldmask = rnp->expmaskinitnext;
7ec99de3 3802 rnp->expmaskinitnext |= mask;
313517fc
PM
3803 oldmask ^= rnp->expmaskinitnext;
3804 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3805 /* Allow lockless access for expedited grace periods. */
3806 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
7ec99de3
PM
3807 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3808 }
313517fc 3809 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3810}
3811
27d50c7e
TG
3812#ifdef CONFIG_HOTPLUG_CPU
3813/*
3814 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3815 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3816 * bit masks.
3817 */
3818static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3819{
3820 unsigned long flags;
3821 unsigned long mask;
3822 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3823 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3824
27d50c7e
TG
3825 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3826 mask = rdp->grpmask;
3827 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3828 rnp->qsmaskinitnext &= ~mask;
710d60cb 3829 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3830}
3831
deb34f36
PM
3832/*
3833 * The outgoing function has no further need of RCU, so remove it from
3834 * the list of CPUs that RCU must track.
3835 *
3836 * Note that this function is special in that it is invoked directly
3837 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3838 * This is because this function must be invoked at a precise location.
3839 */
27d50c7e
TG
3840void rcu_report_dead(unsigned int cpu)
3841{
3842 struct rcu_state *rsp;
3843
3844 /* QS for any half-done expedited RCU-sched GP. */
3845 preempt_disable();
3846 rcu_report_exp_rdp(&rcu_sched_state,
3847 this_cpu_ptr(rcu_sched_state.rda), true);
3848 preempt_enable();
3849 for_each_rcu_flavor(rsp)
3850 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3851}
a58163d8
PM
3852
3853/*
3854 * Send the specified CPU's RCU callbacks to the orphanage. The
537b85c8 3855 * specified CPU must be offline.
a58163d8
PM
3856 */
3857static void
3858rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
3859 struct rcu_node *rnp, struct rcu_data *rdp)
3860{
a58163d8
PM
3861 /*
3862 * Orphan the callbacks. First adjust the counts. This is safe
3863 * because _rcu_barrier() excludes CPU-hotplug operations, so it
3864 * cannot be running now. Thus no memory barrier is required.
3865 */
a58163d8
PM
3866 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
3867
3868 /*
3869 * Next, move those callbacks still needing a grace period to
3870 * the orphanage, where some other CPU will pick them up.
3871 * Some of the callbacks might have gone partway through a grace
3872 * period, but that is too bad. They get to start over because we
3873 * cannot assume that grace periods are synchronized across CPUs.
3874 */
3875 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
3876
3877 /*
3878 * Then move the ready-to-invoke callbacks to the orphanage,
3879 * where some other CPU will pick them up. These will not be
3880 * required to pass though another grace period: They are done.
3881 */
3882 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
3883
3884 /* Finally, disallow further callbacks on this CPU. */
3885 rcu_segcblist_disable(&rdp->cblist);
3886}
3887
3888/*
3889 * Adopt the RCU callbacks from the specified rcu_state structure's
537b85c8 3890 * orphanage.
a58163d8
PM
3891 */
3892static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
3893{
3894 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3895
a58163d8 3896 /* Do the accounting first. */
a58163d8
PM
3897 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
3898 rcu_idle_count_callbacks_posted();
3899 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
3900
3901 /*
3902 * We do not need a memory barrier here because the only way we
3903 * can get here if there is an rcu_barrier() in flight is if
3904 * we are the task doing the rcu_barrier().
3905 */
3906
3907 /* First adopt the ready-to-invoke callbacks, then the done ones. */
3908 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
3909 WARN_ON_ONCE(rsp->orphan_done.head);
3910 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
3911 WARN_ON_ONCE(rsp->orphan_pend.head);
3912 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
3913 !rcu_segcblist_n_cbs(&rdp->cblist));
3914}
3915
3916/* Orphan the dead CPU's callbacks, and then adopt them. */
3917static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3918{
3919 unsigned long flags;
b1a2d79f 3920 struct rcu_data *my_rdp;
a58163d8
PM
3921 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3922 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
9fa46fb8 3923 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
a58163d8 3924
95335c03
PM
3925 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3926 return; /* No callbacks to migrate. */
3927
b1a2d79f
PM
3928 local_irq_save(flags);
3929 my_rdp = this_cpu_ptr(rsp->rda);
3930 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3931 local_irq_restore(flags);
3932 return;
3933 }
9fa46fb8
PM
3934 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3935 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
a58163d8
PM
3936 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
3937 rcu_adopt_orphan_cbs(rsp, flags);
21cc2483 3938 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
537b85c8 3939 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
a58163d8
PM
3940 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3941 !rcu_segcblist_empty(&rdp->cblist),
3942 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3943 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3944 rcu_segcblist_first_cb(&rdp->cblist));
3945}
3946
3947/*
3948 * The outgoing CPU has just passed through the dying-idle state,
3949 * and we are being invoked from the CPU that was IPIed to continue the
3950 * offline operation. We need to migrate the outgoing CPU's callbacks.
3951 */
3952void rcutree_migrate_callbacks(int cpu)
3953{
3954 struct rcu_state *rsp;
3955
3956 for_each_rcu_flavor(rsp)
3957 rcu_migrate_callbacks(cpu, rsp);
3958}
27d50c7e
TG
3959#endif
3960
deb34f36
PM
3961/*
3962 * On non-huge systems, use expedited RCU grace periods to make suspend
3963 * and hibernation run faster.
3964 */
d1d74d14
BP
3965static int rcu_pm_notify(struct notifier_block *self,
3966 unsigned long action, void *hcpu)
3967{
3968 switch (action) {
3969 case PM_HIBERNATION_PREPARE:
3970 case PM_SUSPEND_PREPARE:
3971 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3972 rcu_expedite_gp();
d1d74d14
BP
3973 break;
3974 case PM_POST_HIBERNATION:
3975 case PM_POST_SUSPEND:
5afff48b
PM
3976 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3977 rcu_unexpedite_gp();
d1d74d14
BP
3978 break;
3979 default:
3980 break;
3981 }
3982 return NOTIFY_OK;
3983}
3984
b3dbec76 3985/*
9386c0b7 3986 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3987 */
3988static int __init rcu_spawn_gp_kthread(void)
3989{
3990 unsigned long flags;
a94844b2 3991 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3992 struct rcu_node *rnp;
3993 struct rcu_state *rsp;
a94844b2 3994 struct sched_param sp;
b3dbec76
PM
3995 struct task_struct *t;
3996
a94844b2
PM
3997 /* Force priority into range. */
3998 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3999 kthread_prio = 1;
4000 else if (kthread_prio < 0)
4001 kthread_prio = 0;
4002 else if (kthread_prio > 99)
4003 kthread_prio = 99;
4004 if (kthread_prio != kthread_prio_in)
4005 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4006 kthread_prio, kthread_prio_in);
4007
9386c0b7 4008 rcu_scheduler_fully_active = 1;
b3dbec76 4009 for_each_rcu_flavor(rsp) {
a94844b2 4010 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4011 BUG_ON(IS_ERR(t));
4012 rnp = rcu_get_root(rsp);
6cf10081 4013 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4014 rsp->gp_kthread = t;
a94844b2
PM
4015 if (kthread_prio) {
4016 sp.sched_priority = kthread_prio;
4017 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4018 }
67c583a7 4019 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4020 wake_up_process(t);
b3dbec76 4021 }
35ce7f29 4022 rcu_spawn_nocb_kthreads();
9386c0b7 4023 rcu_spawn_boost_kthreads();
b3dbec76
PM
4024 return 0;
4025}
4026early_initcall(rcu_spawn_gp_kthread);
4027
bbad9379 4028/*
52d7e48b
PM
4029 * This function is invoked towards the end of the scheduler's
4030 * initialization process. Before this is called, the idle task might
4031 * contain synchronous grace-period primitives (during which time, this idle
4032 * task is booting the system, and such primitives are no-ops). After this
4033 * function is called, any synchronous grace-period primitives are run as
4034 * expedited, with the requesting task driving the grace period forward.
900b1028 4035 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4036 * runtime RCU functionality.
bbad9379
PM
4037 */
4038void rcu_scheduler_starting(void)
4039{
4040 WARN_ON(num_online_cpus() != 1);
4041 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4042 rcu_test_sync_prims();
4043 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4044 rcu_test_sync_prims();
bbad9379
PM
4045}
4046
64db4cff
PM
4047/*
4048 * Helper function for rcu_init() that initializes one rcu_state structure.
4049 */
a87f203e 4050static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4051{
cb007102
AG
4052 static const char * const buf[] = RCU_NODE_NAME_INIT;
4053 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4054 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4055 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4056
199977bf 4057 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4058 int cpustride = 1;
4059 int i;
4060 int j;
4061 struct rcu_node *rnp;
4062
05b84aec 4063 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4064
3eaaaf6c
PM
4065 /* Silence gcc 4.8 false positive about array index out of range. */
4066 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4067 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4068
64db4cff
PM
4069 /* Initialize the level-tracking arrays. */
4070
f885b7f2 4071 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4072 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4073 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4074
4075 /* Initialize the elements themselves, starting from the leaves. */
4076
f885b7f2 4077 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4078 cpustride *= levelspread[i];
64db4cff 4079 rnp = rsp->level[i];
41f5c631 4080 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4081 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4082 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4083 &rcu_node_class[i], buf[i]);
394f2769
PM
4084 raw_spin_lock_init(&rnp->fqslock);
4085 lockdep_set_class_and_name(&rnp->fqslock,
4086 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4087 rnp->gpnum = rsp->gpnum;
4088 rnp->completed = rsp->completed;
64db4cff
PM
4089 rnp->qsmask = 0;
4090 rnp->qsmaskinit = 0;
4091 rnp->grplo = j * cpustride;
4092 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4093 if (rnp->grphi >= nr_cpu_ids)
4094 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4095 if (i == 0) {
4096 rnp->grpnum = 0;
4097 rnp->grpmask = 0;
4098 rnp->parent = NULL;
4099 } else {
199977bf 4100 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4101 rnp->grpmask = 1UL << rnp->grpnum;
4102 rnp->parent = rsp->level[i - 1] +
199977bf 4103 j / levelspread[i - 1];
64db4cff
PM
4104 }
4105 rnp->level = i;
12f5f524 4106 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4107 rcu_init_one_nocb(rnp);
f6a12f34
PM
4108 init_waitqueue_head(&rnp->exp_wq[0]);
4109 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4110 init_waitqueue_head(&rnp->exp_wq[2]);
4111 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4112 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4113 }
4114 }
0c34029a 4115
abedf8e2
PG
4116 init_swait_queue_head(&rsp->gp_wq);
4117 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4118 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4119 for_each_possible_cpu(i) {
4a90a068 4120 while (i > rnp->grphi)
0c34029a 4121 rnp++;
394f99a9 4122 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4123 rcu_boot_init_percpu_data(i, rsp);
4124 }
6ce75a23 4125 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4126}
4127
f885b7f2
PM
4128/*
4129 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4130 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4131 * the ->node array in the rcu_state structure.
4132 */
4133static void __init rcu_init_geometry(void)
4134{
026ad283 4135 ulong d;
f885b7f2 4136 int i;
05b84aec 4137 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4138
026ad283
PM
4139 /*
4140 * Initialize any unspecified boot parameters.
4141 * The default values of jiffies_till_first_fqs and
4142 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4143 * value, which is a function of HZ, then adding one for each
4144 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4145 */
4146 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4147 if (jiffies_till_first_fqs == ULONG_MAX)
4148 jiffies_till_first_fqs = d;
4149 if (jiffies_till_next_fqs == ULONG_MAX)
4150 jiffies_till_next_fqs = d;
4151
f885b7f2 4152 /* If the compile-time values are accurate, just leave. */
47d631af 4153 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4154 nr_cpu_ids == NR_CPUS)
f885b7f2 4155 return;
39479098
PM
4156 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4157 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4158
f885b7f2 4159 /*
ee968ac6
PM
4160 * The boot-time rcu_fanout_leaf parameter must be at least two
4161 * and cannot exceed the number of bits in the rcu_node masks.
4162 * Complain and fall back to the compile-time values if this
4163 * limit is exceeded.
f885b7f2 4164 */
ee968ac6 4165 if (rcu_fanout_leaf < 2 ||
75cf15a4 4166 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4167 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4168 WARN_ON(1);
4169 return;
4170 }
4171
f885b7f2
PM
4172 /*
4173 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4174 * with the given number of levels.
f885b7f2 4175 */
9618138b 4176 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4177 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4178 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4179
4180 /*
75cf15a4 4181 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4182 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4183 */
ee968ac6
PM
4184 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4185 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4186 WARN_ON(1);
4187 return;
4188 }
f885b7f2 4189
679f9858 4190 /* Calculate the number of levels in the tree. */
9618138b 4191 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4192 }
9618138b 4193 rcu_num_lvls = i + 1;
679f9858 4194
f885b7f2 4195 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4196 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4197 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4198 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4199 }
f885b7f2
PM
4200
4201 /* Calculate the total number of rcu_node structures. */
4202 rcu_num_nodes = 0;
679f9858 4203 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4204 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4205}
4206
a3dc2948
PM
4207/*
4208 * Dump out the structure of the rcu_node combining tree associated
4209 * with the rcu_state structure referenced by rsp.
4210 */
4211static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4212{
4213 int level = 0;
4214 struct rcu_node *rnp;
4215
4216 pr_info("rcu_node tree layout dump\n");
4217 pr_info(" ");
4218 rcu_for_each_node_breadth_first(rsp, rnp) {
4219 if (rnp->level != level) {
4220 pr_cont("\n");
4221 pr_info(" ");
4222 level = rnp->level;
4223 }
4224 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4225 }
4226 pr_cont("\n");
4227}
4228
9f680ab4 4229void __init rcu_init(void)
64db4cff 4230{
017c4261 4231 int cpu;
9f680ab4 4232
47627678
PM
4233 rcu_early_boot_tests();
4234
f41d911f 4235 rcu_bootup_announce();
f885b7f2 4236 rcu_init_geometry();
a87f203e
PM
4237 rcu_init_one(&rcu_bh_state);
4238 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4239 if (dump_tree)
4240 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4241 __rcu_init_preempt();
b5b39360 4242 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4243
4244 /*
4245 * We don't need protection against CPU-hotplug here because
4246 * this is called early in boot, before either interrupts
4247 * or the scheduler are operational.
4248 */
d1d74d14 4249 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4250 for_each_online_cpu(cpu) {
4df83742 4251 rcutree_prepare_cpu(cpu);
7ec99de3 4252 rcu_cpu_starting(cpu);
da915ad5
PM
4253 if (IS_ENABLED(CONFIG_TREE_SRCU))
4254 srcu_online_cpu(cpu);
7ec99de3 4255 }
64db4cff
PM
4256}
4257
3549c2bc 4258#include "tree_exp.h"
4102adab 4259#include "tree_plugin.h"