rcu: Use irq_work to get scheduler's attention in clean context
[linux-2.6-block.git] / kernel / rcu / tree.c
CommitLineData
22e40925 1// SPDX-License-Identifier: GPL-2.0+
64db4cff
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
64db4cff
PM
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
22e40925 9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
64db4cff 10 *
22e40925 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
64db4cff
PM
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 15 * Documentation/RCU
64db4cff 16 */
a7538352
JP
17
18#define pr_fmt(fmt) "rcu: " fmt
19
64db4cff
PM
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
f9411ebe 25#include <linux/rcupdate_wait.h>
64db4cff
PM
26#include <linux/interrupt.h>
27#include <linux/sched.h>
b17b0153 28#include <linux/sched/debug.h>
c1dc0b9c 29#include <linux/nmi.h>
8826f3b0 30#include <linux/atomic.h>
64db4cff 31#include <linux/bitops.h>
9984de1a 32#include <linux/export.h>
64db4cff
PM
33#include <linux/completion.h>
34#include <linux/moduleparam.h>
35#include <linux/percpu.h>
36#include <linux/notifier.h>
37#include <linux/cpu.h>
38#include <linux/mutex.h>
39#include <linux/time.h>
bbad9379 40#include <linux/kernel_stat.h>
a26ac245
PM
41#include <linux/wait.h>
42#include <linux/kthread.h>
ae7e81c0 43#include <uapi/linux/sched/types.h>
268bb0ce 44#include <linux/prefetch.h>
3d3b7db0
PM
45#include <linux/delay.h>
46#include <linux/stop_machine.h>
661a85dc 47#include <linux/random.h>
af658dca 48#include <linux/trace_events.h>
d1d74d14 49#include <linux/suspend.h>
a278d471 50#include <linux/ftrace.h>
d3052109 51#include <linux/tick.h>
2ccaff10 52#include <linux/sysrq.h>
c13324a5 53#include <linux/kprobes.h>
48d07c04
SAS
54#include <linux/gfp.h>
55#include <linux/oom.h>
56#include <linux/smpboot.h>
57#include <linux/jiffies.h>
58#include <linux/sched/isolation.h>
59#include "../time/tick-internal.h"
64db4cff 60
4102adab 61#include "tree.h"
29c00b4a 62#include "rcu.h"
9f77da9f 63
4102adab
PM
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f7f7bac9 71/*
dc5a4f29
PM
72 * Steal a bit from the bottom of ->dynticks for idle entry/exit
73 * control. Initially this is for TLB flushing.
f7f7bac9 74 */
dc5a4f29
PM
75#define RCU_DYNTICK_CTRL_MASK 0x1
76#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
77#ifndef rcu_eqs_special_exit
78#define rcu_eqs_special_exit() do { } while (0)
a8a29b3b
AB
79#endif
80
4c5273bf
PM
81static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
82 .dynticks_nesting = 1,
83 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
dc5a4f29 84 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4c5273bf 85};
358be2d3
PM
86struct rcu_state rcu_state = {
87 .level = { &rcu_state.node[0] },
358be2d3
PM
88 .gp_state = RCU_GP_IDLE,
89 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
90 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
894d45bb 95 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
358be2d3 96};
27f4d280 97
a3dc2948
PM
98/* Dump rcu_node combining tree at boot to verify correct setup. */
99static bool dump_tree;
100module_param(dump_tree, bool, 0444);
48d07c04
SAS
101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102static bool use_softirq = 1;
103module_param(use_softirq, bool, 0444);
7fa27001
PM
104/* Control rcu_node-tree auto-balancing at boot time. */
105static bool rcu_fanout_exact;
106module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
107/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 111/* Number of rcu_nodes at specified level. */
e95d68d2 112int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
113int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
114
b0d30417 115/*
52d7e48b
PM
116 * The rcu_scheduler_active variable is initialized to the value
117 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
118 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
119 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 120 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
121 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
122 * to detect real grace periods. This variable is also used to suppress
123 * boot-time false positives from lockdep-RCU error checking. Finally, it
124 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
125 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 126 */
bbad9379
PM
127int rcu_scheduler_active __read_mostly;
128EXPORT_SYMBOL_GPL(rcu_scheduler_active);
129
b0d30417
PM
130/*
131 * The rcu_scheduler_fully_active variable transitions from zero to one
132 * during the early_initcall() processing, which is after the scheduler
133 * is capable of creating new tasks. So RCU processing (for example,
134 * creating tasks for RCU priority boosting) must be delayed until after
135 * rcu_scheduler_fully_active transitions from zero to one. We also
136 * currently delay invocation of any RCU callbacks until after this point.
137 *
138 * It might later prove better for people registering RCU callbacks during
139 * early boot to take responsibility for these callbacks, but one step at
140 * a time.
141 */
142static int rcu_scheduler_fully_active __read_mostly;
143
b50912d0
PM
144static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
145 unsigned long gps, unsigned long flags);
0aa04b05
PM
146static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
147static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 148static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 149static void invoke_rcu_core(void);
aff4e9ed 150static void invoke_rcu_callbacks(struct rcu_data *rdp);
63d4c8c9 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 152static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 153
a94844b2 154/* rcuc/rcub kthread realtime priority */
26730f55 155static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
3ffe3d1a 156module_param(kthread_prio, int, 0444);
a94844b2 157
8d7dc928 158/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 159
90040c9e
PM
160static int gp_preinit_delay;
161module_param(gp_preinit_delay, int, 0444);
162static int gp_init_delay;
163module_param(gp_init_delay, int, 0444);
164static int gp_cleanup_delay;
165module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 166
4cf439a2 167/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
168int rcu_get_gp_kthreads_prio(void)
169{
170 return kthread_prio;
171}
172EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
173
eab128e8
PM
174/*
175 * Number of grace periods between delays, normalized by the duration of
bfd090be 176 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
177 * each delay. The reason for this normalization is that it means that,
178 * for non-zero delays, the overall slowdown of grace periods is constant
179 * regardless of the duration of the delay. This arrangement balances
180 * the need for long delays to increase some race probabilities with the
181 * need for fast grace periods to increase other race probabilities.
182 */
183#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 184
0aa04b05
PM
185/*
186 * Compute the mask of online CPUs for the specified rcu_node structure.
187 * This will not be stable unless the rcu_node structure's ->lock is
188 * held, but the bit corresponding to the current CPU will be stable
189 * in most contexts.
190 */
191unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
192{
7d0ae808 193 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
194}
195
fc2219d4 196/*
7d0ae808 197 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
198 * permit this function to be invoked without holding the root rcu_node
199 * structure's ->lock, but of course results can be subject to change.
200 */
de8e8730 201static int rcu_gp_in_progress(void)
fc2219d4 202{
de8e8730 203 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
b1f77b05
IM
204}
205
903ee83d
PM
206/*
207 * Return the number of callbacks queued on the specified CPU.
208 * Handles both the nocbs and normal cases.
209 */
210static long rcu_get_n_cbs_cpu(int cpu)
211{
212 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
213
214 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
215 return rcu_segcblist_n_cbs(&rdp->cblist);
216 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
217}
218
d28139c4 219void rcu_softirq_qs(void)
b1f77b05 220{
45975c7d 221 rcu_qs();
d28139c4 222 rcu_preempt_deferred_qs(current);
b1f77b05 223}
64db4cff 224
2625d469
PM
225/*
226 * Record entry into an extended quiescent state. This is only to be
227 * called when not already in an extended quiescent state.
228 */
229static void rcu_dynticks_eqs_enter(void)
230{
dc5a4f29 231 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 232 int seq;
2625d469
PM
233
234 /*
b8c17e66 235 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
236 * critical sections, and we also must force ordering with the
237 * next idle sojourn.
238 */
dc5a4f29 239 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
240 /* Better be in an extended quiescent state! */
241 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
242 (seq & RCU_DYNTICK_CTRL_CTR));
243 /* Better not have special action (TLB flush) pending! */
244 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
245 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
246}
247
248/*
249 * Record exit from an extended quiescent state. This is only to be
250 * called from an extended quiescent state.
251 */
252static void rcu_dynticks_eqs_exit(void)
253{
dc5a4f29 254 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 255 int seq;
2625d469
PM
256
257 /*
b8c17e66 258 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
259 * and we also must force ordering with the next RCU read-side
260 * critical section.
261 */
dc5a4f29 262 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
b8c17e66
PM
263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 !(seq & RCU_DYNTICK_CTRL_CTR));
265 if (seq & RCU_DYNTICK_CTRL_MASK) {
dc5a4f29 266 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
b8c17e66
PM
267 smp_mb__after_atomic(); /* _exit after clearing mask. */
268 /* Prefer duplicate flushes to losing a flush. */
269 rcu_eqs_special_exit();
270 }
2625d469
PM
271}
272
273/*
274 * Reset the current CPU's ->dynticks counter to indicate that the
275 * newly onlined CPU is no longer in an extended quiescent state.
276 * This will either leave the counter unchanged, or increment it
277 * to the next non-quiescent value.
278 *
279 * The non-atomic test/increment sequence works because the upper bits
280 * of the ->dynticks counter are manipulated only by the corresponding CPU,
281 * or when the corresponding CPU is offline.
282 */
283static void rcu_dynticks_eqs_online(void)
284{
dc5a4f29 285 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2625d469 286
dc5a4f29 287 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 288 return;
dc5a4f29 289 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
2625d469
PM
290}
291
02a5c550
PM
292/*
293 * Is the current CPU in an extended quiescent state?
294 *
295 * No ordering, as we are sampling CPU-local information.
296 */
297bool rcu_dynticks_curr_cpu_in_eqs(void)
298{
dc5a4f29 299 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
02a5c550 300
dc5a4f29 301 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
302}
303
8b2f63ab
PM
304/*
305 * Snapshot the ->dynticks counter with full ordering so as to allow
306 * stable comparison of this counter with past and future snapshots.
307 */
dc5a4f29 308int rcu_dynticks_snap(struct rcu_data *rdp)
8b2f63ab 309{
dc5a4f29 310 int snap = atomic_add_return(0, &rdp->dynticks);
8b2f63ab 311
b8c17e66 312 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
313}
314
02a5c550
PM
315/*
316 * Return true if the snapshot returned from rcu_dynticks_snap()
317 * indicates that RCU is in an extended quiescent state.
318 */
319static bool rcu_dynticks_in_eqs(int snap)
320{
b8c17e66 321 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
322}
323
324/*
dc5a4f29 325 * Return true if the CPU corresponding to the specified rcu_data
02a5c550
PM
326 * structure has spent some time in an extended quiescent state since
327 * rcu_dynticks_snap() returned the specified snapshot.
328 */
dc5a4f29 329static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
02a5c550 330{
dc5a4f29 331 return snap != rcu_dynticks_snap(rdp);
02a5c550
PM
332}
333
b8c17e66
PM
334/*
335 * Set the special (bottom) bit of the specified CPU so that it
336 * will take special action (such as flushing its TLB) on the
337 * next exit from an extended quiescent state. Returns true if
338 * the bit was successfully set, or false if the CPU was not in
339 * an extended quiescent state.
340 */
341bool rcu_eqs_special_set(int cpu)
342{
343 int old;
344 int new;
dc5a4f29 345 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
b8c17e66
PM
346
347 do {
dc5a4f29 348 old = atomic_read(&rdp->dynticks);
b8c17e66
PM
349 if (old & RCU_DYNTICK_CTRL_CTR)
350 return false;
351 new = old | RCU_DYNTICK_CTRL_MASK;
dc5a4f29 352 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
b8c17e66 353 return true;
6563de9d 354}
5cd37193 355
4a81e832
PM
356/*
357 * Let the RCU core know that this CPU has gone through the scheduler,
358 * which is a quiescent state. This is called when the need for a
359 * quiescent state is urgent, so we burn an atomic operation and full
360 * memory barriers to let the RCU core know about it, regardless of what
361 * this CPU might (or might not) do in the near future.
362 *
0f9be8ca 363 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 364 *
3b57a399 365 * The caller must have disabled interrupts and must not be idle.
4a81e832 366 */
395a2f09 367static void __maybe_unused rcu_momentary_dyntick_idle(void)
4a81e832 368{
3b57a399
PM
369 int special;
370
2dba13f0 371 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
dc5a4f29
PM
372 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
373 &this_cpu_ptr(&rcu_data)->dynticks);
3b57a399
PM
374 /* It is illegal to call this from idle state. */
375 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
3e310098 376 rcu_preempt_deferred_qs(current);
4a81e832
PM
377}
378
45975c7d
PM
379/**
380 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
bb73c52b 381 *
45975c7d
PM
382 * If the current CPU is idle or running at a first-level (not nested)
383 * interrupt from idle, return true. The caller must have at least
384 * disabled preemption.
5cd37193 385 */
45975c7d 386static int rcu_is_cpu_rrupt_from_idle(void)
5cd37193 387{
4c5273bf
PM
388 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
389 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
5cd37193 390}
5cd37193 391
17c7798b
PM
392#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
393static long blimit = DEFAULT_RCU_BLIMIT;
394#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
395static long qhimark = DEFAULT_RCU_QHIMARK;
396#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
397static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 398
878d7439
ED
399module_param(blimit, long, 0444);
400module_param(qhimark, long, 0444);
401module_param(qlowmark, long, 0444);
3d76c082 402
026ad283
PM
403static ulong jiffies_till_first_fqs = ULONG_MAX;
404static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 405static bool rcu_kick_kthreads;
d40011f6 406
c06aed0e
PM
407/*
408 * How long the grace period must be before we start recruiting
409 * quiescent-state help from rcu_note_context_switch().
410 */
411static ulong jiffies_till_sched_qs = ULONG_MAX;
412module_param(jiffies_till_sched_qs, ulong, 0444);
85f2b60c 413static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
c06aed0e
PM
414module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
415
416/*
417 * Make sure that we give the grace-period kthread time to detect any
418 * idle CPUs before taking active measures to force quiescent states.
419 * However, don't go below 100 milliseconds, adjusted upwards for really
420 * large systems.
421 */
422static void adjust_jiffies_till_sched_qs(void)
423{
424 unsigned long j;
425
426 /* If jiffies_till_sched_qs was specified, respect the request. */
427 if (jiffies_till_sched_qs != ULONG_MAX) {
428 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
429 return;
430 }
85f2b60c 431 /* Otherwise, set to third fqs scan, but bound below on large system. */
c06aed0e
PM
432 j = READ_ONCE(jiffies_till_first_fqs) +
433 2 * READ_ONCE(jiffies_till_next_fqs);
434 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
435 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
436 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
437 WRITE_ONCE(jiffies_to_sched_qs, j);
438}
439
67abb96c
BP
440static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
441{
442 ulong j;
443 int ret = kstrtoul(val, 0, &j);
444
c06aed0e 445 if (!ret) {
67abb96c 446 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
447 adjust_jiffies_till_sched_qs();
448 }
67abb96c
BP
449 return ret;
450}
451
452static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
453{
454 ulong j;
455 int ret = kstrtoul(val, 0, &j);
456
c06aed0e 457 if (!ret) {
67abb96c 458 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
459 adjust_jiffies_till_sched_qs();
460 }
67abb96c
BP
461 return ret;
462}
463
464static struct kernel_param_ops first_fqs_jiffies_ops = {
465 .set = param_set_first_fqs_jiffies,
466 .get = param_get_ulong,
467};
468
469static struct kernel_param_ops next_fqs_jiffies_ops = {
470 .set = param_set_next_fqs_jiffies,
471 .get = param_get_ulong,
472};
473
474module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
475module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 476module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 477
8ff0b907 478static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
e3950ecd 479static int rcu_pending(void);
64db4cff
PM
480
481/*
17ef2fe9 482 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 483 */
17ef2fe9 484unsigned long rcu_get_gp_seq(void)
917963d0 485{
16fc9c60 486 return READ_ONCE(rcu_state.gp_seq);
917963d0 487}
17ef2fe9 488EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 489
291783b8
PM
490/*
491 * Return the number of RCU expedited batches completed thus far for
492 * debug & stats. Odd numbers mean that a batch is in progress, even
493 * numbers mean idle. The value returned will thus be roughly double
494 * the cumulative batches since boot.
495 */
496unsigned long rcu_exp_batches_completed(void)
497{
16fc9c60 498 return rcu_state.expedited_sequence;
291783b8
PM
499}
500EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
501
fd897573
PM
502/*
503 * Return the root node of the rcu_state structure.
504 */
505static struct rcu_node *rcu_get_root(void)
506{
507 return &rcu_state.node[0];
508}
509
69196019
PM
510/*
511 * Convert a ->gp_state value to a character string.
512 */
513static const char *gp_state_getname(short gs)
514{
515 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
516 return "???";
517 return gp_state_names[gs];
518}
519
ad0dc7f9
PM
520/*
521 * Send along grace-period-related data for rcutorture diagnostics.
522 */
523void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 524 unsigned long *gp_seq)
ad0dc7f9 525{
ad0dc7f9
PM
526 switch (test_type) {
527 case RCU_FLAVOR:
f7dd7d44
PM
528 *flags = READ_ONCE(rcu_state.gp_flags);
529 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
530 break;
531 default:
532 break;
533 }
ad0dc7f9
PM
534}
535EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
536
9b2e4f18 537/*
215bba9f
PM
538 * Enter an RCU extended quiescent state, which can be either the
539 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 540 *
215bba9f
PM
541 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
542 * the possibility of usermode upcalls having messed up our count
543 * of interrupt nesting level during the prior busy period.
9b2e4f18 544 */
215bba9f 545static void rcu_eqs_enter(bool user)
9b2e4f18 546{
4c5273bf 547 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
96d3fd0d 548
4c5273bf
PM
549 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
550 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
215bba9f 551 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
4c5273bf
PM
552 rdp->dynticks_nesting == 0);
553 if (rdp->dynticks_nesting != 1) {
554 rdp->dynticks_nesting--;
215bba9f 555 return;
9b2e4f18 556 }
96d3fd0d 557
b04db8e1 558 lockdep_assert_irqs_disabled();
dc5a4f29 559 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
e68bbb26 560 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
b97d23c5
PM
561 rdp = this_cpu_ptr(&rcu_data);
562 do_nocb_deferred_wakeup(rdp);
198bbf81 563 rcu_prepare_for_idle();
3e310098 564 rcu_preempt_deferred_qs(current);
4c5273bf 565 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
844ccdd7 566 rcu_dynticks_eqs_enter();
176f8f7a 567 rcu_dynticks_task_enter();
64db4cff 568}
adf5091e
FW
569
570/**
571 * rcu_idle_enter - inform RCU that current CPU is entering idle
572 *
573 * Enter idle mode, in other words, -leave- the mode in which RCU
574 * read-side critical sections can occur. (Though RCU read-side
575 * critical sections can occur in irq handlers in idle, a possibility
576 * handled by irq_enter() and irq_exit().)
577 *
c0da313e
PM
578 * If you add or remove a call to rcu_idle_enter(), be sure to test with
579 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
580 */
581void rcu_idle_enter(void)
582{
b04db8e1 583 lockdep_assert_irqs_disabled();
cb349ca9 584 rcu_eqs_enter(false);
adf5091e 585}
64db4cff 586
d1ec4c34 587#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
588/**
589 * rcu_user_enter - inform RCU that we are resuming userspace.
590 *
591 * Enter RCU idle mode right before resuming userspace. No use of RCU
592 * is permitted between this call and rcu_user_exit(). This way the
593 * CPU doesn't need to maintain the tick for RCU maintenance purposes
594 * when the CPU runs in userspace.
c0da313e
PM
595 *
596 * If you add or remove a call to rcu_user_enter(), be sure to test with
597 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
598 */
599void rcu_user_enter(void)
600{
b04db8e1 601 lockdep_assert_irqs_disabled();
d4db30af 602 rcu_eqs_enter(true);
adf5091e 603}
d1ec4c34 604#endif /* CONFIG_NO_HZ_FULL */
19dd1591 605
cf7614e1 606/*
fd581a91 607 * If we are returning from the outermost NMI handler that interrupted an
dc5a4f29 608 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
fd581a91
PM
609 * to let the RCU grace-period handling know that the CPU is back to
610 * being RCU-idle.
611 *
cf7614e1 612 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
fd581a91
PM
613 * with CONFIG_RCU_EQS_DEBUG=y.
614 */
cf7614e1 615static __always_inline void rcu_nmi_exit_common(bool irq)
fd581a91 616{
4c5273bf 617 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
fd581a91
PM
618
619 /*
620 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
621 * (We are exiting an NMI handler, so RCU better be paying attention
622 * to us!)
623 */
4c5273bf 624 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
fd581a91
PM
625 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
626
627 /*
628 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
629 * leave it in non-RCU-idle state.
630 */
4c5273bf 631 if (rdp->dynticks_nmi_nesting != 1) {
dc5a4f29 632 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
4c5273bf
PM
633 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
634 rdp->dynticks_nmi_nesting - 2);
fd581a91
PM
635 return;
636 }
637
638 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
dc5a4f29 639 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
4c5273bf 640 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
cf7614e1
BP
641
642 if (irq)
643 rcu_prepare_for_idle();
644
fd581a91 645 rcu_dynticks_eqs_enter();
cf7614e1
BP
646
647 if (irq)
648 rcu_dynticks_task_enter();
649}
650
651/**
652 * rcu_nmi_exit - inform RCU of exit from NMI context
cf7614e1
BP
653 *
654 * If you add or remove a call to rcu_nmi_exit(), be sure to test
655 * with CONFIG_RCU_EQS_DEBUG=y.
656 */
657void rcu_nmi_exit(void)
658{
659 rcu_nmi_exit_common(false);
fd581a91
PM
660}
661
9b2e4f18
PM
662/**
663 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
664 *
665 * Exit from an interrupt handler, which might possibly result in entering
666 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 667 * sections can occur. The caller must have disabled interrupts.
64db4cff 668 *
9b2e4f18
PM
669 * This code assumes that the idle loop never does anything that might
670 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
671 * architecture's idle loop violates this assumption, RCU will give you what
672 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
673 *
674 * Use things like work queues to work around this limitation.
675 *
676 * You have been warned.
c0da313e
PM
677 *
678 * If you add or remove a call to rcu_irq_exit(), be sure to test with
679 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 680 */
9b2e4f18 681void rcu_irq_exit(void)
64db4cff 682{
b04db8e1 683 lockdep_assert_irqs_disabled();
cf7614e1 684 rcu_nmi_exit_common(true);
7c9906ca
PM
685}
686
687/*
688 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
689 *
690 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
691 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
692 */
693void rcu_irq_exit_irqson(void)
694{
695 unsigned long flags;
696
697 local_irq_save(flags);
698 rcu_irq_exit();
9b2e4f18
PM
699 local_irq_restore(flags);
700}
701
adf5091e
FW
702/*
703 * Exit an RCU extended quiescent state, which can be either the
704 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
705 *
706 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
707 * allow for the possibility of usermode upcalls messing up our count of
708 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 709 */
adf5091e 710static void rcu_eqs_exit(bool user)
9b2e4f18 711{
4c5273bf 712 struct rcu_data *rdp;
84585aa8 713 long oldval;
9b2e4f18 714
b04db8e1 715 lockdep_assert_irqs_disabled();
4c5273bf
PM
716 rdp = this_cpu_ptr(&rcu_data);
717 oldval = rdp->dynticks_nesting;
1ce46ee5 718 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30 719 if (oldval) {
4c5273bf 720 rdp->dynticks_nesting++;
9dd238e2 721 return;
3a592405 722 }
9dd238e2
PM
723 rcu_dynticks_task_exit();
724 rcu_dynticks_eqs_exit();
725 rcu_cleanup_after_idle();
dc5a4f29 726 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
e68bbb26 727 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
4c5273bf
PM
728 WRITE_ONCE(rdp->dynticks_nesting, 1);
729 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
730 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
9b2e4f18 731}
adf5091e
FW
732
733/**
734 * rcu_idle_exit - inform RCU that current CPU is leaving idle
735 *
736 * Exit idle mode, in other words, -enter- the mode in which RCU
737 * read-side critical sections can occur.
738 *
c0da313e
PM
739 * If you add or remove a call to rcu_idle_exit(), be sure to test with
740 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
741 */
742void rcu_idle_exit(void)
743{
c5d900bf
FW
744 unsigned long flags;
745
746 local_irq_save(flags);
cb349ca9 747 rcu_eqs_exit(false);
c5d900bf 748 local_irq_restore(flags);
adf5091e 749}
9b2e4f18 750
d1ec4c34 751#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
752/**
753 * rcu_user_exit - inform RCU that we are exiting userspace.
754 *
755 * Exit RCU idle mode while entering the kernel because it can
756 * run a RCU read side critical section anytime.
c0da313e
PM
757 *
758 * If you add or remove a call to rcu_user_exit(), be sure to test with
759 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
760 */
761void rcu_user_exit(void)
762{
91d1aa43 763 rcu_eqs_exit(1);
adf5091e 764}
d1ec4c34 765#endif /* CONFIG_NO_HZ_FULL */
19dd1591 766
64db4cff 767/**
cf7614e1
BP
768 * rcu_nmi_enter_common - inform RCU of entry to NMI context
769 * @irq: Is this call from rcu_irq_enter?
64db4cff 770 *
dc5a4f29 771 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
4c5273bf 772 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
734d1680
PM
773 * that the CPU is active. This implementation permits nested NMIs, as
774 * long as the nesting level does not overflow an int. (You will probably
775 * run out of stack space first.)
c0da313e 776 *
cf7614e1 777 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
c0da313e 778 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff 779 */
cf7614e1 780static __always_inline void rcu_nmi_enter_common(bool irq)
64db4cff 781{
4c5273bf 782 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
84585aa8 783 long incby = 2;
64db4cff 784
734d1680 785 /* Complain about underflow. */
4c5273bf 786 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
734d1680
PM
787
788 /*
789 * If idle from RCU viewpoint, atomically increment ->dynticks
790 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
791 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
792 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
793 * to be in the outermost NMI handler that interrupted an RCU-idle
794 * period (observation due to Andy Lutomirski).
795 */
02a5c550 796 if (rcu_dynticks_curr_cpu_in_eqs()) {
cf7614e1
BP
797
798 if (irq)
799 rcu_dynticks_task_exit();
800
2625d469 801 rcu_dynticks_eqs_exit();
cf7614e1
BP
802
803 if (irq)
804 rcu_cleanup_after_idle();
805
734d1680
PM
806 incby = 1;
807 }
bd2b879a 808 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
4c5273bf 809 rdp->dynticks_nmi_nesting,
dc5a4f29 810 rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
4c5273bf
PM
811 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
812 rdp->dynticks_nmi_nesting + incby);
734d1680 813 barrier();
64db4cff
PM
814}
815
cf7614e1
BP
816/**
817 * rcu_nmi_enter - inform RCU of entry to NMI context
818 */
819void rcu_nmi_enter(void)
820{
821 rcu_nmi_enter_common(false);
822}
c13324a5 823NOKPROBE_SYMBOL(rcu_nmi_enter);
cf7614e1 824
64db4cff 825/**
9b2e4f18 826 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 827 *
9b2e4f18
PM
828 * Enter an interrupt handler, which might possibly result in exiting
829 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 830 * sections can occur. The caller must have disabled interrupts.
c0da313e 831 *
9b2e4f18 832 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
833 * handler that it never exits, for example when doing upcalls to user mode!
834 * This code assumes that the idle loop never does upcalls to user mode.
835 * If your architecture's idle loop does do upcalls to user mode (or does
836 * anything else that results in unbalanced calls to the irq_enter() and
837 * irq_exit() functions), RCU will give you what you deserve, good and hard.
838 * But very infrequently and irreproducibly.
9b2e4f18
PM
839 *
840 * Use things like work queues to work around this limitation.
841 *
842 * You have been warned.
c0da313e
PM
843 *
844 * If you add or remove a call to rcu_irq_enter(), be sure to test with
845 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 846 */
9b2e4f18 847void rcu_irq_enter(void)
64db4cff 848{
b04db8e1 849 lockdep_assert_irqs_disabled();
cf7614e1 850 rcu_nmi_enter_common(true);
7c9906ca 851}
734d1680 852
7c9906ca
PM
853/*
854 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
855 *
856 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
857 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
858 */
859void rcu_irq_enter_irqson(void)
860{
861 unsigned long flags;
734d1680 862
7c9906ca
PM
863 local_irq_save(flags);
864 rcu_irq_enter();
64db4cff 865 local_irq_restore(flags);
64db4cff
PM
866}
867
5c173eb8 868/**
2320bda2 869 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
64db4cff 870 *
791875d1
PM
871 * Return true if RCU is watching the running CPU, which means that this
872 * CPU can safely enter RCU read-side critical sections. In other words,
2320bda2
ZZ
873 * if the current CPU is not in its idle loop or is in an interrupt or
874 * NMI handler, return true.
64db4cff 875 */
9418fb20 876bool notrace rcu_is_watching(void)
64db4cff 877{
f534ed1f 878 bool ret;
34240697 879
46f00d18 880 preempt_disable_notrace();
791875d1 881 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 882 preempt_enable_notrace();
34240697 883 return ret;
64db4cff 884}
5c173eb8 885EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 886
bcbfdd01
PM
887/*
888 * If a holdout task is actually running, request an urgent quiescent
889 * state from its CPU. This is unsynchronized, so migrations can cause
890 * the request to go to the wrong CPU. Which is OK, all that will happen
891 * is that the CPU's next context switch will be a bit slower and next
892 * time around this task will generate another request.
893 */
894void rcu_request_urgent_qs_task(struct task_struct *t)
895{
896 int cpu;
897
898 barrier();
899 cpu = task_cpu(t);
900 if (!task_curr(t))
901 return; /* This task is not running on that CPU. */
2dba13f0 902 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
903}
904
62fde6ed 905#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
906
907/*
5554788e 908 * Is the current CPU online as far as RCU is concerned?
2036d94a 909 *
5554788e
PM
910 * Disable preemption to avoid false positives that could otherwise
911 * happen due to the current CPU number being sampled, this task being
912 * preempted, its old CPU being taken offline, resuming on some other CPU,
49918a54 913 * then determining that its old CPU is now offline.
c0d6d01b 914 *
5554788e
PM
915 * Disable checking if in an NMI handler because we cannot safely
916 * report errors from NMI handlers anyway. In addition, it is OK to use
917 * RCU on an offline processor during initial boot, hence the check for
918 * rcu_scheduler_fully_active.
c0d6d01b
PM
919 */
920bool rcu_lockdep_current_cpu_online(void)
921{
2036d94a
PM
922 struct rcu_data *rdp;
923 struct rcu_node *rnp;
b97d23c5 924 bool ret = false;
c0d6d01b 925
5554788e 926 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 927 return true;
c0d6d01b 928 preempt_disable();
b97d23c5
PM
929 rdp = this_cpu_ptr(&rcu_data);
930 rnp = rdp->mynode;
931 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
932 ret = true;
c0d6d01b 933 preempt_enable();
b97d23c5 934 return ret;
c0d6d01b
PM
935}
936EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
937
62fde6ed 938#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 939
9b9500da
PM
940/*
941 * We are reporting a quiescent state on behalf of some other CPU, so
942 * it is our responsibility to check for and handle potential overflow
a66ae8ae 943 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
944 * After all, the CPU might be in deep idle state, and thus executing no
945 * code whatsoever.
946 */
947static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
948{
a32e01ee 949 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
950 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
951 rnp->gp_seq))
9b9500da 952 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
953 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
954 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
955}
956
64db4cff
PM
957/*
958 * Snapshot the specified CPU's dynticks counter so that we can later
959 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 960 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 961 */
fe5ac724 962static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 963{
dc5a4f29 964 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
02a5c550 965 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 966 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 967 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 968 return 1;
7941dbde 969 }
23a9bacd 970 return 0;
64db4cff
PM
971}
972
973/*
974 * Return true if the specified CPU has passed through a quiescent
975 * state by virtue of being in or having passed through an dynticks
976 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 977 * for this same CPU, or by virtue of having been offline.
64db4cff 978 */
fe5ac724 979static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 980{
3a19b46a 981 unsigned long jtsq;
0f9be8ca 982 bool *rnhqp;
9226b10d 983 bool *ruqp;
9b9500da 984 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
985
986 /*
987 * If the CPU passed through or entered a dynticks idle phase with
988 * no active irq/NMI handlers, then we can safely pretend that the CPU
989 * already acknowledged the request to pass through a quiescent
990 * state. Either way, that CPU cannot possibly be in an RCU
991 * read-side critical section that started before the beginning
992 * of the current RCU grace period.
993 */
dc5a4f29 994 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
88d1bead 995 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 996 rcu_gpnum_ovf(rnp, rdp);
3a19b46a
PM
997 return 1;
998 }
999
f2e2df59
PM
1000 /* If waiting too long on an offline CPU, complain. */
1001 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
88d1bead 1002 time_after(jiffies, rcu_state.gp_start + HZ)) {
f2e2df59
PM
1003 bool onl;
1004 struct rcu_node *rnp1;
1005
1006 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1007 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1008 __func__, rnp->grplo, rnp->grphi, rnp->level,
1009 (long)rnp->gp_seq, (long)rnp->completedqs);
1010 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1011 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1012 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1013 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1014 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1015 __func__, rdp->cpu, ".o"[onl],
1016 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1017 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1018 return 1; /* Break things loose after complaining. */
1019 }
1020
65d798f0 1021 /*
4a81e832 1022 * A CPU running for an extended time within the kernel can
c06aed0e
PM
1023 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1024 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
1025 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1026 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1027 * variable are safe because the assignments are repeated if this
1028 * CPU failed to pass through a quiescent state. This code
c06aed0e 1029 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 1030 * is set way high.
6193c76a 1031 */
c06aed0e 1032 jtsq = READ_ONCE(jiffies_to_sched_qs);
2dba13f0
PM
1033 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1034 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
0f9be8ca 1035 if (!READ_ONCE(*rnhqp) &&
7e28c5af 1036 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
88d1bead 1037 time_after(jiffies, rcu_state.jiffies_resched))) {
0f9be8ca 1038 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1039 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1040 smp_store_release(ruqp, true);
7e28c5af
PM
1041 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1042 WRITE_ONCE(*ruqp, true);
6193c76a
PM
1043 }
1044
28053bc7 1045 /*
c98cac60 1046 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
d3052109
PM
1047 * The above code handles this, but only for straight cond_resched().
1048 * And some in-kernel loops check need_resched() before calling
1049 * cond_resched(), which defeats the above code for CPUs that are
1050 * running in-kernel with scheduling-clock interrupts disabled.
1051 * So hit them over the head with the resched_cpu() hammer!
28053bc7 1052 */
d3052109
PM
1053 if (tick_nohz_full_cpu(rdp->cpu) &&
1054 time_after(jiffies,
1055 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
28053bc7 1056 resched_cpu(rdp->cpu);
d3052109
PM
1057 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1058 }
1059
1060 /*
1061 * If more than halfway to RCU CPU stall-warning time, invoke
1062 * resched_cpu() more frequently to try to loosen things up a bit.
1063 * Also check to see if the CPU is getting hammered with interrupts,
1064 * but only once per grace period, just to keep the IPIs down to
1065 * a dull roar.
1066 */
1067 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1068 if (time_after(jiffies,
1069 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1070 resched_cpu(rdp->cpu);
1071 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1072 }
9b9500da 1073 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1074 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1075 (rnp->ffmask & rdp->grpmask)) {
1076 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1077 rdp->rcu_iw_pending = true;
8aa670cd 1078 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1079 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1080 }
1081 }
4914950a 1082
a82dcc76 1083 return 0;
64db4cff
PM
1084}
1085
41e80595
PM
1086/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1087static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1088 unsigned long gp_seq_req, const char *s)
0446be48 1089{
88d1bead 1090 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
abd13fdd 1091 rnp->level, rnp->grplo, rnp->grphi, s);
0446be48
PM
1092}
1093
1094/*
b73de91d 1095 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1096 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1097 * @rdp: The rcu_data corresponding to the CPU from which to start.
1098 * @gp_seq_req: The gp_seq of the grace period to start.
1099 *
41e80595 1100 * Start the specified grace period, as needed to handle newly arrived
0446be48 1101 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1102 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1103 * is reason to awaken the grace-period kthread.
0446be48 1104 *
d5cd9685
PM
1105 * The caller must hold the specified rcu_node structure's ->lock, which
1106 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1107 *
1108 * Returns true if the GP thread needs to be awakened else false.
0446be48 1109 */
df2bf8f7 1110static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1111 unsigned long gp_seq_req)
0446be48 1112{
48a7639c 1113 bool ret = false;
df2bf8f7 1114 struct rcu_node *rnp;
0446be48
PM
1115
1116 /*
360e0da6
PM
1117 * Use funnel locking to either acquire the root rcu_node
1118 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1119 * has already been recorded -- or if that grace period has in
1120 * fact already started. If there is already a grace period in
1121 * progress in a non-leaf node, no recording is needed because the
1122 * end of the grace period will scan the leaf rcu_node structures.
1123 * Note that rnp_start->lock must not be released.
0446be48 1124 */
df2bf8f7
JFG
1125 raw_lockdep_assert_held_rcu_node(rnp_start);
1126 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1127 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1128 if (rnp != rnp_start)
1129 raw_spin_lock_rcu_node(rnp);
1130 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1131 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1132 (rnp != rnp_start &&
1133 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1134 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1135 TPS("Prestarted"));
360e0da6
PM
1136 goto unlock_out;
1137 }
df2bf8f7 1138 rnp->gp_seq_needed = gp_seq_req;
226ca5e7 1139 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1140 /*
226ca5e7
JFG
1141 * We just marked the leaf or internal node, and a
1142 * grace period is in progress, which means that
1143 * rcu_gp_cleanup() will see the marking. Bail to
1144 * reduce contention.
a2165e41 1145 */
df2bf8f7 1146 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1147 TPS("Startedleaf"));
a2165e41
PM
1148 goto unlock_out;
1149 }
df2bf8f7
JFG
1150 if (rnp != rnp_start && rnp->parent != NULL)
1151 raw_spin_unlock_rcu_node(rnp);
1152 if (!rnp->parent)
360e0da6 1153 break; /* At root, and perhaps also leaf. */
0446be48
PM
1154 }
1155
360e0da6 1156 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 1157 if (rcu_gp_in_progress()) {
df2bf8f7 1158 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1159 goto unlock_out;
1160 }
df2bf8f7 1161 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97
PM
1162 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1163 rcu_state.gp_req_activity = jiffies;
1164 if (!rcu_state.gp_kthread) {
df2bf8f7 1165 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1166 goto unlock_out;
0446be48 1167 }
9cbc5b97 1168 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
360e0da6 1169 ret = true; /* Caller must wake GP kthread. */
0446be48 1170unlock_out:
ab5e869c 1171 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7
JFG
1172 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1173 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1174 rdp->gp_seq_needed = rnp->gp_seq_needed;
ab5e869c 1175 }
df2bf8f7
JFG
1176 if (rnp != rnp_start)
1177 raw_spin_unlock_rcu_node(rnp);
48a7639c 1178 return ret;
0446be48
PM
1179}
1180
1181/*
1182 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1183 * whether any additional grace periods have been requested.
0446be48 1184 */
3481f2ea 1185static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1186{
fb31340f 1187 bool needmore;
da1df50d 1188 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1189
7a1d0f23
PM
1190 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1191 if (!needmore)
1192 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1193 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1194 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1195 return needmore;
1196}
1197
48a7639c 1198/*
1d1f898d
ZJ
1199 * Awaken the grace-period kthread. Don't do a self-awaken (unless in
1200 * an interrupt or softirq handler), and don't bother awakening when there
1201 * is nothing for the grace-period kthread to do (as in several CPUs raced
1202 * to awaken, and we lost), and finally don't try to awaken a kthread that
1203 * has not yet been created. If all those checks are passed, track some
1204 * debug information and awaken.
1205 *
1206 * So why do the self-wakeup when in an interrupt or softirq handler
1207 * in the grace-period kthread's context? Because the kthread might have
1208 * been interrupted just as it was going to sleep, and just after the final
1209 * pre-sleep check of the awaken condition. In this case, a wakeup really
1210 * is required, and is therefore supplied.
48a7639c 1211 */
532c00c9 1212static void rcu_gp_kthread_wake(void)
48a7639c 1213{
1d1f898d 1214 if ((current == rcu_state.gp_kthread &&
0f58d2ac 1215 !in_irq() && !in_serving_softirq()) ||
532c00c9
PM
1216 !READ_ONCE(rcu_state.gp_flags) ||
1217 !rcu_state.gp_kthread)
48a7639c 1218 return;
fd897573
PM
1219 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1220 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
532c00c9 1221 swake_up_one(&rcu_state.gp_wq);
48a7639c
PM
1222}
1223
dc35c893 1224/*
29365e56
PM
1225 * If there is room, assign a ->gp_seq number to any callbacks on this
1226 * CPU that have not already been assigned. Also accelerate any callbacks
1227 * that were previously assigned a ->gp_seq number that has since proven
1228 * to be too conservative, which can happen if callbacks get assigned a
1229 * ->gp_seq number while RCU is idle, but with reference to a non-root
1230 * rcu_node structure. This function is idempotent, so it does not hurt
1231 * to call it repeatedly. Returns an flag saying that we should awaken
1232 * the RCU grace-period kthread.
dc35c893
PM
1233 *
1234 * The caller must hold rnp->lock with interrupts disabled.
1235 */
02f50142 1236static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1237{
b73de91d 1238 unsigned long gp_seq_req;
15fecf89 1239 bool ret = false;
dc35c893 1240
a32e01ee 1241 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1242
15fecf89
PM
1243 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1244 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1245 return false;
dc35c893
PM
1246
1247 /*
15fecf89
PM
1248 * Callbacks are often registered with incomplete grace-period
1249 * information. Something about the fact that getting exact
1250 * information requires acquiring a global lock... RCU therefore
1251 * makes a conservative estimate of the grace period number at which
1252 * a given callback will become ready to invoke. The following
1253 * code checks this estimate and improves it when possible, thus
1254 * accelerating callback invocation to an earlier grace-period
1255 * number.
dc35c893 1256 */
9cbc5b97 1257 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1258 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1259 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1260
1261 /* Trace depending on how much we were able to accelerate. */
15fecf89 1262 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
9cbc5b97 1263 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1264 else
9cbc5b97 1265 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1266 return ret;
dc35c893
PM
1267}
1268
e44e73ca
PM
1269/*
1270 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1271 * rcu_node structure's ->lock be held. It consults the cached value
1272 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1273 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1274 * while holding the leaf rcu_node structure's ->lock.
1275 */
c6e09b97 1276static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1277 struct rcu_data *rdp)
1278{
1279 unsigned long c;
1280 bool needwake;
1281
1282 lockdep_assert_irqs_disabled();
c6e09b97 1283 c = rcu_seq_snap(&rcu_state.gp_seq);
e44e73ca
PM
1284 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1285 /* Old request still live, so mark recent callbacks. */
1286 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1287 return;
1288 }
1289 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1290 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1291 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1292 if (needwake)
532c00c9 1293 rcu_gp_kthread_wake();
e44e73ca
PM
1294}
1295
dc35c893
PM
1296/*
1297 * Move any callbacks whose grace period has completed to the
1298 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1299 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1300 * sublist. This function is idempotent, so it does not hurt to
1301 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1302 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1303 *
1304 * The caller must hold rnp->lock with interrupts disabled.
1305 */
834f56bf 1306static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1307{
a32e01ee 1308 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1309
15fecf89
PM
1310 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1311 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1312 return false;
dc35c893
PM
1313
1314 /*
29365e56 1315 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1316 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1317 */
29365e56 1318 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1319
1320 /* Classify any remaining callbacks. */
02f50142 1321 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1322}
1323
d09b62df 1324/*
ba9fbe95
PM
1325 * Update CPU-local rcu_data state to record the beginnings and ends of
1326 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1327 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1328 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1329 */
c7e48f7b 1330static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1331{
48a7639c 1332 bool ret;
3563a438 1333 bool need_gp;
48a7639c 1334
a32e01ee 1335 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1336
67e14c1e
PM
1337 if (rdp->gp_seq == rnp->gp_seq)
1338 return false; /* Nothing to do. */
d09b62df 1339
67e14c1e
PM
1340 /* Handle the ends of any preceding grace periods first. */
1341 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1342 unlikely(READ_ONCE(rdp->gpwrap))) {
834f56bf 1343 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
9cbc5b97 1344 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1345 } else {
02f50142 1346 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
d09b62df 1347 }
398ebe60 1348
67e14c1e
PM
1349 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1350 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1351 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1352 /*
1353 * If the current grace period is waiting for this CPU,
1354 * set up to detect a quiescent state, otherwise don't
1355 * go looking for one.
1356 */
9cbc5b97 1357 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
3563a438
PM
1358 need_gp = !!(rnp->qsmask & rdp->grpmask);
1359 rdp->cpu_no_qs.b.norm = need_gp;
3563a438 1360 rdp->core_needs_qs = need_gp;
6eaef633
PM
1361 zero_cpu_stall_ticks(rdp);
1362 }
67e14c1e 1363 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
13dc7d0c 1364 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
3d18469a
PM
1365 rdp->gp_seq_needed = rnp->gp_seq_needed;
1366 WRITE_ONCE(rdp->gpwrap, false);
1367 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1368 return ret;
6eaef633
PM
1369}
1370
15cabdff 1371static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1372{
1373 unsigned long flags;
48a7639c 1374 bool needwake;
6eaef633
PM
1375 struct rcu_node *rnp;
1376
1377 local_irq_save(flags);
1378 rnp = rdp->mynode;
67e14c1e 1379 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1380 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1381 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1382 local_irq_restore(flags);
1383 return;
1384 }
c7e48f7b 1385 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1386 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c 1387 if (needwake)
532c00c9 1388 rcu_gp_kthread_wake();
6eaef633
PM
1389}
1390
22212332 1391static void rcu_gp_slow(int delay)
0f41c0dd
PM
1392{
1393 if (delay > 0 &&
22212332 1394 !(rcu_seq_ctr(rcu_state.gp_seq) %
dee4f422 1395 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1396 schedule_timeout_uninterruptible(delay);
1397}
1398
b3dbec76 1399/*
45fed3e7 1400 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1401 */
0854a05c 1402static bool rcu_gp_init(void)
b3dbec76 1403{
ec2c2976 1404 unsigned long flags;
0aa04b05 1405 unsigned long oldmask;
ec2c2976 1406 unsigned long mask;
b3dbec76 1407 struct rcu_data *rdp;
336a4f6c 1408 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1409
9cbc5b97 1410 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1411 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1412 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1413 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1414 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1415 return false;
f7be8209 1416 }
9cbc5b97 1417 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1418
de8e8730 1419 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1420 /*
1421 * Grace period already in progress, don't start another.
1422 * Not supposed to be able to happen.
1423 */
67c583a7 1424 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1425 return false;
7fdefc10
PM
1426 }
1427
7fdefc10 1428 /* Advance to a new grace period and initialize state. */
ad3832e9 1429 record_gp_stall_check_time();
ff3bb6f4 1430 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97
PM
1431 rcu_seq_start(&rcu_state.gp_seq);
1432 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
67c583a7 1433 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1434
0aa04b05
PM
1435 /*
1436 * Apply per-leaf buffered online and offline operations to the
1437 * rcu_node tree. Note that this new grace period need not wait
1438 * for subsequent online CPUs, and that quiescent-state forcing
1439 * will handle subsequent offline CPUs.
1440 */
9cbc5b97 1441 rcu_state.gp_state = RCU_GP_ONOFF;
aedf4ba9 1442 rcu_for_each_leaf_node(rnp) {
894d45bb 1443 raw_spin_lock(&rcu_state.ofl_lock);
2a67e741 1444 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1445 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1446 !rnp->wait_blkd_tasks) {
1447 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1448 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1449 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05
PM
1450 continue;
1451 }
1452
1453 /* Record old state, apply changes to ->qsmaskinit field. */
1454 oldmask = rnp->qsmaskinit;
1455 rnp->qsmaskinit = rnp->qsmaskinitnext;
1456
1457 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1458 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1459 if (!oldmask) { /* First online CPU for rcu_node. */
1460 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1461 rcu_init_new_rnp(rnp);
1462 } else if (rcu_preempt_has_tasks(rnp)) {
1463 rnp->wait_blkd_tasks = true; /* blocked tasks */
1464 } else { /* Last offline CPU and can propagate. */
0aa04b05 1465 rcu_cleanup_dead_rnp(rnp);
962aff03 1466 }
0aa04b05
PM
1467 }
1468
1469 /*
1470 * If all waited-on tasks from prior grace period are
1471 * done, and if all this rcu_node structure's CPUs are
1472 * still offline, propagate up the rcu_node tree and
1473 * clear ->wait_blkd_tasks. Otherwise, if one of this
1474 * rcu_node structure's CPUs has since come back online,
962aff03 1475 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1476 */
1477 if (rnp->wait_blkd_tasks &&
962aff03 1478 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1479 rnp->wait_blkd_tasks = false;
962aff03
PM
1480 if (!rnp->qsmaskinit)
1481 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1482 }
1483
67c583a7 1484 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1485 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05 1486 }
22212332 1487 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1488
1489 /*
1490 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1491 * structures for all currently online CPUs in breadth-first
1492 * order, starting from the root rcu_node structure, relying on the
1493 * layout of the tree within the rcu_state.node[] array. Note that
1494 * other CPUs will access only the leaves of the hierarchy, thus
1495 * seeing that no grace period is in progress, at least until the
1496 * corresponding leaf node has been initialized.
7fdefc10
PM
1497 *
1498 * The grace period cannot complete until the initialization
1499 * process finishes, because this kthread handles both.
1500 */
9cbc5b97 1501 rcu_state.gp_state = RCU_GP_INIT;
aedf4ba9 1502 rcu_for_each_node_breadth_first(rnp) {
22212332 1503 rcu_gp_slow(gp_init_delay);
ec2c2976 1504 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1505 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1506 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1507 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1508 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1509 if (rnp == rdp->mynode)
c7e48f7b 1510 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1511 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1512 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1513 rnp->level, rnp->grplo,
1514 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1515 /* Quiescent states for tasks on any now-offline CPUs. */
1516 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1517 rnp->rcu_gp_init_mask = mask;
ec2c2976 1518 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1519 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1520 else
1521 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1522 cond_resched_tasks_rcu_qs();
9cbc5b97 1523 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1524 }
b3dbec76 1525
45fed3e7 1526 return true;
7fdefc10 1527}
b3dbec76 1528
b9a425cf 1529/*
b3dae109 1530 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1531 * time.
b9a425cf 1532 */
0854a05c 1533static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1534{
336a4f6c 1535 struct rcu_node *rnp = rcu_get_root();
b9a425cf
PM
1536
1537 /* Someone like call_rcu() requested a force-quiescent-state scan. */
0854a05c 1538 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1539 if (*gfp & RCU_GP_FLAG_FQS)
1540 return true;
1541
1542 /* The current grace period has completed. */
1543 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1544 return true;
1545
1546 return false;
1547}
1548
4cdfc175
PM
1549/*
1550 * Do one round of quiescent-state forcing.
1551 */
0854a05c 1552static void rcu_gp_fqs(bool first_time)
4cdfc175 1553{
336a4f6c 1554 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1555
9cbc5b97
PM
1556 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1557 rcu_state.n_force_qs++;
77f81fe0 1558 if (first_time) {
4cdfc175 1559 /* Collect dyntick-idle snapshots. */
e9ecb780 1560 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1561 } else {
1562 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1563 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1564 }
1565 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1566 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1567 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1568 WRITE_ONCE(rcu_state.gp_flags,
1569 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1570 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1571 }
4cdfc175
PM
1572}
1573
c3854a05
PM
1574/*
1575 * Loop doing repeated quiescent-state forcing until the grace period ends.
1576 */
1577static void rcu_gp_fqs_loop(void)
1578{
1579 bool first_gp_fqs;
1580 int gf;
1581 unsigned long j;
1582 int ret;
1583 struct rcu_node *rnp = rcu_get_root();
1584
1585 first_gp_fqs = true;
c06aed0e 1586 j = READ_ONCE(jiffies_till_first_fqs);
c3854a05
PM
1587 ret = 0;
1588 for (;;) {
1589 if (!ret) {
1590 rcu_state.jiffies_force_qs = jiffies + j;
1591 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
9cf422a8 1592 jiffies + (j ? 3 * j : 2));
c3854a05
PM
1593 }
1594 trace_rcu_grace_period(rcu_state.name,
1595 READ_ONCE(rcu_state.gp_seq),
1596 TPS("fqswait"));
1597 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1598 ret = swait_event_idle_timeout_exclusive(
1599 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1600 rcu_state.gp_state = RCU_GP_DOING_FQS;
1601 /* Locking provides needed memory barriers. */
1602 /* If grace period done, leave loop. */
1603 if (!READ_ONCE(rnp->qsmask) &&
1604 !rcu_preempt_blocked_readers_cgp(rnp))
1605 break;
1606 /* If time for quiescent-state forcing, do it. */
1607 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1608 (gf & RCU_GP_FLAG_FQS)) {
1609 trace_rcu_grace_period(rcu_state.name,
1610 READ_ONCE(rcu_state.gp_seq),
1611 TPS("fqsstart"));
1612 rcu_gp_fqs(first_gp_fqs);
1613 first_gp_fqs = false;
1614 trace_rcu_grace_period(rcu_state.name,
1615 READ_ONCE(rcu_state.gp_seq),
1616 TPS("fqsend"));
1617 cond_resched_tasks_rcu_qs();
1618 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1619 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1620 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1621 } else {
1622 /* Deal with stray signal. */
1623 cond_resched_tasks_rcu_qs();
1624 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1625 WARN_ON(signal_pending(current));
1626 trace_rcu_grace_period(rcu_state.name,
1627 READ_ONCE(rcu_state.gp_seq),
1628 TPS("fqswaitsig"));
1629 ret = 1; /* Keep old FQS timing. */
1630 j = jiffies;
1631 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1632 j = 1;
1633 else
1634 j = rcu_state.jiffies_force_qs - j;
1635 }
1636 }
1637}
1638
7fdefc10
PM
1639/*
1640 * Clean up after the old grace period.
1641 */
0854a05c 1642static void rcu_gp_cleanup(void)
7fdefc10
PM
1643{
1644 unsigned long gp_duration;
48a7639c 1645 bool needgp = false;
de30ad51 1646 unsigned long new_gp_seq;
7fdefc10 1647 struct rcu_data *rdp;
336a4f6c 1648 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1649 struct swait_queue_head *sq;
b3dbec76 1650
9cbc5b97 1651 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1652 raw_spin_lock_irq_rcu_node(rnp);
c51d7b5e
PM
1653 rcu_state.gp_end = jiffies;
1654 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
9cbc5b97
PM
1655 if (gp_duration > rcu_state.gp_max)
1656 rcu_state.gp_max = gp_duration;
b3dbec76 1657
7fdefc10
PM
1658 /*
1659 * We know the grace period is complete, but to everyone else
1660 * it appears to still be ongoing. But it is also the case
1661 * that to everyone else it looks like there is nothing that
1662 * they can do to advance the grace period. It is therefore
1663 * safe for us to drop the lock in order to mark the grace
1664 * period as completed in all of the rcu_node structures.
7fdefc10 1665 */
67c583a7 1666 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 1667
5d4b8659 1668 /*
ff3bb6f4
PM
1669 * Propagate new ->gp_seq value to rcu_node structures so that
1670 * other CPUs don't have to wait until the start of the next grace
1671 * period to process their callbacks. This also avoids some nasty
1672 * RCU grace-period initialization races by forcing the end of
1673 * the current grace period to be completely recorded in all of
1674 * the rcu_node structures before the beginning of the next grace
1675 * period is recorded in any of the rcu_node structures.
5d4b8659 1676 */
9cbc5b97 1677 new_gp_seq = rcu_state.gp_seq;
de30ad51 1678 rcu_seq_end(&new_gp_seq);
aedf4ba9 1679 rcu_for_each_node_breadth_first(rnp) {
2a67e741 1680 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 1681 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 1682 dump_blkd_tasks(rnp, 10);
5c60d25f 1683 WARN_ON_ONCE(rnp->qsmask);
de30ad51 1684 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
da1df50d 1685 rdp = this_cpu_ptr(&rcu_data);
b11cc576 1686 if (rnp == rdp->mynode)
c7e48f7b 1687 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 1688 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 1689 needgp = rcu_future_gp_cleanup(rnp) || needgp;
065bb78c 1690 sq = rcu_nocb_gp_get(rnp);
67c583a7 1691 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 1692 rcu_nocb_gp_cleanup(sq);
cee43939 1693 cond_resched_tasks_rcu_qs();
9cbc5b97 1694 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 1695 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 1696 }
336a4f6c 1697 rnp = rcu_get_root();
9cbc5b97 1698 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 1699
0a89e5a4 1700 /* Declare grace period done, trace first to use old GP number. */
9cbc5b97 1701 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
0a89e5a4 1702 rcu_seq_end(&rcu_state.gp_seq);
9cbc5b97 1703 rcu_state.gp_state = RCU_GP_IDLE;
fb31340f 1704 /* Check for GP requests since above loop. */
da1df50d 1705 rdp = this_cpu_ptr(&rcu_data);
5b55072f 1706 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 1707 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 1708 TPS("CleanupMore"));
fb31340f
PM
1709 needgp = true;
1710 }
48a7639c 1711 /* Advance CBs to reduce false positives below. */
02f50142 1712 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
9cbc5b97
PM
1713 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1714 rcu_state.gp_req_activity = jiffies;
1715 trace_rcu_grace_period(rcu_state.name,
1716 READ_ONCE(rcu_state.gp_seq),
bb311ecc 1717 TPS("newreq"));
18390aea 1718 } else {
9cbc5b97
PM
1719 WRITE_ONCE(rcu_state.gp_flags,
1720 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 1721 }
67c583a7 1722 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
1723}
1724
1725/*
1726 * Body of kthread that handles grace periods.
1727 */
0854a05c 1728static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 1729{
5871968d 1730 rcu_bind_gp_kthread();
7fdefc10
PM
1731 for (;;) {
1732
1733 /* Handle grace-period start. */
1734 for (;;) {
9cbc5b97
PM
1735 trace_rcu_grace_period(rcu_state.name,
1736 READ_ONCE(rcu_state.gp_seq),
63c4db78 1737 TPS("reqwait"));
9cbc5b97
PM
1738 rcu_state.gp_state = RCU_GP_WAIT_GPS;
1739 swait_event_idle_exclusive(rcu_state.gp_wq,
1740 READ_ONCE(rcu_state.gp_flags) &
1741 RCU_GP_FLAG_INIT);
1742 rcu_state.gp_state = RCU_GP_DONE_GPS;
78e4bc34 1743 /* Locking provides needed memory barrier. */
0854a05c 1744 if (rcu_gp_init())
7fdefc10 1745 break;
cee43939 1746 cond_resched_tasks_rcu_qs();
9cbc5b97 1747 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 1748 WARN_ON(signal_pending(current));
9cbc5b97
PM
1749 trace_rcu_grace_period(rcu_state.name,
1750 READ_ONCE(rcu_state.gp_seq),
63c4db78 1751 TPS("reqwaitsig"));
7fdefc10 1752 }
cabc49c1 1753
4cdfc175 1754 /* Handle quiescent-state forcing. */
c3854a05 1755 rcu_gp_fqs_loop();
4cdfc175
PM
1756
1757 /* Handle grace-period end. */
9cbc5b97 1758 rcu_state.gp_state = RCU_GP_CLEANUP;
0854a05c 1759 rcu_gp_cleanup();
9cbc5b97 1760 rcu_state.gp_state = RCU_GP_CLEANED;
b3dbec76 1761 }
b3dbec76
PM
1762}
1763
f41d911f 1764/*
49918a54
PM
1765 * Report a full set of quiescent states to the rcu_state data structure.
1766 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1767 * another grace period is required. Whether we wake the grace-period
1768 * kthread or it awakens itself for the next round of quiescent-state
1769 * forcing, that kthread will clean up after the just-completed grace
1770 * period. Note that the caller must hold rnp->lock, which is released
1771 * before return.
f41d911f 1772 */
aff4e9ed 1773static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 1774 __releases(rcu_get_root()->lock)
f41d911f 1775{
336a4f6c 1776 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 1777 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
1778 WRITE_ONCE(rcu_state.gp_flags,
1779 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 1780 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 1781 rcu_gp_kthread_wake();
f41d911f
PM
1782}
1783
64db4cff 1784/*
d3f6bad3
PM
1785 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1786 * Allows quiescent states for a group of CPUs to be reported at one go
1787 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
1788 * must be represented by the same rcu_node structure (which need not be a
1789 * leaf rcu_node structure, though it often will be). The gps parameter
1790 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 1791 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 1792 * must be held upon entry, and it is released before return.
ec2c2976
PM
1793 *
1794 * As a special case, if mask is zero, the bit-already-cleared check is
1795 * disabled. This allows propagating quiescent state due to resumed tasks
1796 * during grace-period initialization.
64db4cff 1797 */
b50912d0
PM
1798static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1799 unsigned long gps, unsigned long flags)
64db4cff
PM
1800 __releases(rnp->lock)
1801{
654e9533 1802 unsigned long oldmask = 0;
28ecd580
PM
1803 struct rcu_node *rnp_c;
1804
a32e01ee 1805 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1806
64db4cff
PM
1807 /* Walk up the rcu_node hierarchy. */
1808 for (;;) {
ec2c2976 1809 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 1810
654e9533
PM
1811 /*
1812 * Our bit has already been cleared, or the
1813 * relevant grace period is already over, so done.
1814 */
67c583a7 1815 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1816 return;
1817 }
654e9533 1818 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 1819 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 1820 rcu_preempt_blocked_readers_cgp(rnp));
64db4cff 1821 rnp->qsmask &= ~mask;
67a0edbf 1822 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
1823 mask, rnp->qsmask, rnp->level,
1824 rnp->grplo, rnp->grphi,
1825 !!rnp->gp_tasks);
27f4d280 1826 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1827
1828 /* Other bits still set at this level, so done. */
67c583a7 1829 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1830 return;
1831 }
d43a5d32 1832 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
1833 mask = rnp->grpmask;
1834 if (rnp->parent == NULL) {
1835
1836 /* No more levels. Exit loop holding root lock. */
1837
1838 break;
1839 }
67c583a7 1840 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 1841 rnp_c = rnp;
64db4cff 1842 rnp = rnp->parent;
2a67e741 1843 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 1844 oldmask = rnp_c->qsmask;
64db4cff
PM
1845 }
1846
1847 /*
1848 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1849 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1850 * to clean up and start the next grace period if one is needed.
64db4cff 1851 */
aff4e9ed 1852 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
1853}
1854
cc99a310
PM
1855/*
1856 * Record a quiescent state for all tasks that were previously queued
1857 * on the specified rcu_node structure and that were blocking the current
49918a54 1858 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
1859 * irqs disabled, and this lock is released upon return, but irqs remain
1860 * disabled.
1861 */
17a8212b 1862static void __maybe_unused
139ad4da 1863rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
1864 __releases(rnp->lock)
1865{
654e9533 1866 unsigned long gps;
cc99a310
PM
1867 unsigned long mask;
1868 struct rcu_node *rnp_p;
1869
a32e01ee 1870 raw_lockdep_assert_held_rcu_node(rnp);
45975c7d 1871 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
c74859d1
PM
1872 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1873 rnp->qsmask != 0) {
67c583a7 1874 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
1875 return; /* Still need more quiescent states! */
1876 }
1877
77cfc7bf 1878 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
1879 rnp_p = rnp->parent;
1880 if (rnp_p == NULL) {
1881 /*
a77da14c
PM
1882 * Only one rcu_node structure in the tree, so don't
1883 * try to report up to its nonexistent parent!
cc99a310 1884 */
aff4e9ed 1885 rcu_report_qs_rsp(flags);
cc99a310
PM
1886 return;
1887 }
1888
c9a24e2d
PM
1889 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1890 gps = rnp->gp_seq;
cc99a310 1891 mask = rnp->grpmask;
67c583a7 1892 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 1893 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 1894 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
1895}
1896
64db4cff 1897/*
d3f6bad3 1898 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 1899 * structure. This must be called from the specified CPU.
64db4cff
PM
1900 */
1901static void
33085c46 1902rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
64db4cff
PM
1903{
1904 unsigned long flags;
1905 unsigned long mask;
48a7639c 1906 bool needwake;
64db4cff
PM
1907 struct rcu_node *rnp;
1908
1909 rnp = rdp->mynode;
2a67e741 1910 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
1911 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1912 rdp->gpwrap) {
64db4cff
PM
1913
1914 /*
e4cc1f22
PM
1915 * The grace period in which this quiescent state was
1916 * recorded has ended, so don't report it upwards.
1917 * We will instead need a new quiescent state that lies
1918 * within the current grace period.
64db4cff 1919 */
5b74c458 1920 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 1921 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1922 return;
1923 }
1924 mask = rdp->grpmask;
b2eb85b4 1925 rdp->core_needs_qs = false;
64db4cff 1926 if ((rnp->qsmask & mask) == 0) {
67c583a7 1927 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1928 } else {
64db4cff
PM
1929 /*
1930 * This GP can't end until cpu checks in, so all of our
1931 * callbacks can be processed during the next GP.
1932 */
02f50142 1933 needwake = rcu_accelerate_cbs(rnp, rdp);
64db4cff 1934
b50912d0 1935 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 1936 /* ^^^ Released rnp->lock */
48a7639c 1937 if (needwake)
532c00c9 1938 rcu_gp_kthread_wake();
64db4cff
PM
1939 }
1940}
1941
1942/*
1943 * Check to see if there is a new grace period of which this CPU
1944 * is not yet aware, and if so, set up local rcu_data state for it.
1945 * Otherwise, see if this CPU has just passed through its first
1946 * quiescent state for this grace period, and record that fact if so.
1947 */
1948static void
8087d3e3 1949rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 1950{
05eb552b 1951 /* Check for grace-period ends and beginnings. */
15cabdff 1952 note_gp_changes(rdp);
64db4cff
PM
1953
1954 /*
1955 * Does this CPU still need to do its part for current grace period?
1956 * If no, return and let the other CPUs do their part as well.
1957 */
97c668b8 1958 if (!rdp->core_needs_qs)
64db4cff
PM
1959 return;
1960
1961 /*
1962 * Was there a quiescent state since the beginning of the grace
1963 * period? If no, then exit and wait for the next call.
1964 */
3a19b46a 1965 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
1966 return;
1967
d3f6bad3
PM
1968 /*
1969 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1970 * judge of that).
1971 */
33085c46 1972 rcu_report_qs_rdp(rdp->cpu, rdp);
64db4cff
PM
1973}
1974
b1420f1c 1975/*
780cd590
PM
1976 * Near the end of the offline process. Trace the fact that this CPU
1977 * is going offline.
b1420f1c 1978 */
780cd590 1979int rcutree_dying_cpu(unsigned int cpu)
b1420f1c 1980{
4f5fbd78
YS
1981 bool blkd;
1982 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1983 struct rcu_node *rnp = rdp->mynode;
b1420f1c 1984
ea46351c 1985 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 1986 return 0;
ea46351c 1987
4f5fbd78 1988 blkd = !!(rnp->qsmask & rdp->grpmask);
780cd590 1989 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
477351f7 1990 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
780cd590 1991 return 0;
64db4cff
PM
1992}
1993
8af3a5e7
PM
1994/*
1995 * All CPUs for the specified rcu_node structure have gone offline,
1996 * and all tasks that were preempted within an RCU read-side critical
1997 * section while running on one of those CPUs have since exited their RCU
1998 * read-side critical section. Some other CPU is reporting this fact with
1999 * the specified rcu_node structure's ->lock held and interrupts disabled.
2000 * This function therefore goes up the tree of rcu_node structures,
2001 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2002 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2003 * updated.
8af3a5e7
PM
2004 *
2005 * This function does check that the specified rcu_node structure has
2006 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2007 * prematurely. That said, invoking it after the fact will cost you
2008 * a needless lock acquisition. So once it has done its work, don't
2009 * invoke it again.
2010 */
2011static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2012{
2013 long mask;
2014 struct rcu_node *rnp = rnp_leaf;
2015
962aff03 2016 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2017 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2018 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2019 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2020 return;
2021 for (;;) {
2022 mask = rnp->grpmask;
2023 rnp = rnp->parent;
2024 if (!rnp)
2025 break;
2a67e741 2026 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2027 rnp->qsmaskinit &= ~mask;
962aff03
PM
2028 /* Between grace periods, so better already be zero! */
2029 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2030 if (rnp->qsmaskinit) {
67c583a7
BF
2031 raw_spin_unlock_rcu_node(rnp);
2032 /* irqs remain disabled. */
8af3a5e7
PM
2033 return;
2034 }
67c583a7 2035 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2036 }
2037}
2038
64db4cff 2039/*
e5601400 2040 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2041 * this fact from process context. Do the remainder of the cleanup.
2042 * There can only be one CPU hotplug operation at a time, so no need for
2043 * explicit locking.
64db4cff 2044 */
780cd590 2045int rcutree_dead_cpu(unsigned int cpu)
64db4cff 2046{
da1df50d 2047 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
b1420f1c 2048 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2049
ea46351c 2050 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2051 return 0;
ea46351c 2052
2036d94a 2053 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2054 rcu_boost_kthread_setaffinity(rnp, -1);
780cd590
PM
2055 /* Do any needed no-CB deferred wakeups from this CPU. */
2056 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2057 return 0;
64db4cff
PM
2058}
2059
64db4cff
PM
2060/*
2061 * Invoke any RCU callbacks that have made it to the end of their grace
2062 * period. Thottle as specified by rdp->blimit.
2063 */
5bb5d09c 2064static void rcu_do_batch(struct rcu_data *rdp)
64db4cff
PM
2065{
2066 unsigned long flags;
15fecf89
PM
2067 struct rcu_head *rhp;
2068 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2069 long bl, count;
64db4cff 2070
dc35c893 2071 /* If no callbacks are ready, just return. */
15fecf89 2072 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2073 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2074 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2075 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2076 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2077 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2078 need_resched(), is_idle_task(current),
2079 rcu_is_callbacks_kthread());
64db4cff 2080 return;
29c00b4a 2081 }
64db4cff
PM
2082
2083 /*
2084 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2085 * races with call_rcu() from interrupt handlers. Leave the
2086 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2087 */
2088 local_irq_save(flags);
8146c4e2 2089 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2090 bl = rdp->blimit;
3c779dfe
PM
2091 trace_rcu_batch_start(rcu_state.name,
2092 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
15fecf89
PM
2093 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2094 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2095 local_irq_restore(flags);
2096
2097 /* Invoke callbacks. */
15fecf89
PM
2098 rhp = rcu_cblist_dequeue(&rcl);
2099 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2100 debug_rcu_head_unqueue(rhp);
3c779dfe 2101 if (__rcu_reclaim(rcu_state.name, rhp))
15fecf89
PM
2102 rcu_cblist_dequeued_lazy(&rcl);
2103 /*
2104 * Stop only if limit reached and CPU has something to do.
2105 * Note: The rcl structure counts down from zero.
2106 */
4b27f20b 2107 if (-rcl.len >= bl &&
dff1672d
PM
2108 (need_resched() ||
2109 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2110 break;
2111 }
2112
2113 local_irq_save(flags);
4b27f20b 2114 count = -rcl.len;
3c779dfe 2115 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
8ef0f37e 2116 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2117
15fecf89
PM
2118 /* Update counts and requeue any remaining callbacks. */
2119 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2120 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2121 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2122
2123 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2124 count = rcu_segcblist_n_cbs(&rdp->cblist);
2125 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2126 rdp->blimit = blimit;
2127
37c72e56 2128 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2129 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2130 rdp->qlen_last_fqs_check = 0;
3c779dfe 2131 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89
PM
2132 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2133 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2134
2135 /*
2136 * The following usually indicates a double call_rcu(). To track
2137 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2138 */
15fecf89 2139 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2140
64db4cff
PM
2141 local_irq_restore(flags);
2142
e0f23060 2143 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2144 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2145 invoke_rcu_core();
64db4cff
PM
2146}
2147
2148/*
c98cac60
PM
2149 * This function is invoked from each scheduling-clock interrupt,
2150 * and checks to see if this CPU is in a non-context-switch quiescent
2151 * state, for example, user mode or idle loop. It also schedules RCU
2152 * core processing. If the current grace period has gone on too long,
2153 * it will ask the scheduler to manufacture a context switch for the sole
2154 * purpose of providing a providing the needed quiescent state.
64db4cff 2155 */
c98cac60 2156void rcu_sched_clock_irq(int user)
64db4cff 2157{
f7f7bac9 2158 trace_rcu_utilization(TPS("Start scheduler-tick"));
4e95020c 2159 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2160 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2161 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2162 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2163 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2164 set_tsk_need_resched(current);
2165 set_preempt_need_resched();
2166 }
2dba13f0 2167 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
64db4cff 2168 }
c98cac60 2169 rcu_flavor_sched_clock_irq(user);
e3950ecd 2170 if (rcu_pending())
a46e0899 2171 invoke_rcu_core();
07f27570 2172
f7f7bac9 2173 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2174}
2175
64db4cff 2176/*
5d8a752e
ZZ
2177 * Scan the leaf rcu_node structures. For each structure on which all
2178 * CPUs have reported a quiescent state and on which there are tasks
2179 * blocking the current grace period, initiate RCU priority boosting.
2180 * Otherwise, invoke the specified function to check dyntick state for
2181 * each CPU that has not yet reported a quiescent state.
64db4cff 2182 */
8ff0b907 2183static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2184{
64db4cff
PM
2185 int cpu;
2186 unsigned long flags;
2187 unsigned long mask;
a0b6c9a7 2188 struct rcu_node *rnp;
64db4cff 2189
aedf4ba9 2190 rcu_for_each_leaf_node(rnp) {
cee43939 2191 cond_resched_tasks_rcu_qs();
64db4cff 2192 mask = 0;
2a67e741 2193 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2194 if (rnp->qsmask == 0) {
45975c7d 2195 if (!IS_ENABLED(CONFIG_PREEMPT) ||
a77da14c
PM
2196 rcu_preempt_blocked_readers_cgp(rnp)) {
2197 /*
2198 * No point in scanning bits because they
2199 * are all zero. But we might need to
2200 * priority-boost blocked readers.
2201 */
2202 rcu_initiate_boost(rnp, flags);
2203 /* rcu_initiate_boost() releases rnp->lock */
2204 continue;
2205 }
92816435
PM
2206 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2207 continue;
64db4cff 2208 }
bc75e999
MR
2209 for_each_leaf_node_possible_cpu(rnp, cpu) {
2210 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2211 if ((rnp->qsmask & bit) != 0) {
da1df50d 2212 if (f(per_cpu_ptr(&rcu_data, cpu)))
0edd1b17
PM
2213 mask |= bit;
2214 }
64db4cff 2215 }
45f014c5 2216 if (mask != 0) {
c9a24e2d 2217 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2218 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2219 } else {
2220 /* Nothing to do here, so just drop the lock. */
67c583a7 2221 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2222 }
64db4cff 2223 }
64db4cff
PM
2224}
2225
2226/*
2227 * Force quiescent states on reluctant CPUs, and also detect which
2228 * CPUs are in dyntick-idle mode.
2229 */
cd920e5a 2230void rcu_force_quiescent_state(void)
64db4cff
PM
2231{
2232 unsigned long flags;
394f2769
PM
2233 bool ret;
2234 struct rcu_node *rnp;
2235 struct rcu_node *rnp_old = NULL;
2236
2237 /* Funnel through hierarchy to reduce memory contention. */
da1df50d 2238 rnp = __this_cpu_read(rcu_data.mynode);
394f2769 2239 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2240 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2241 !raw_spin_trylock(&rnp->fqslock);
2242 if (rnp_old != NULL)
2243 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2244 if (ret)
394f2769 2245 return;
394f2769
PM
2246 rnp_old = rnp;
2247 }
336a4f6c 2248 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2249
394f2769 2250 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2251 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2252 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2253 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2254 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2255 return; /* Someone beat us to it. */
46a1e34e 2256 }
67a0edbf
PM
2257 WRITE_ONCE(rcu_state.gp_flags,
2258 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2259 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2260 rcu_gp_kthread_wake();
64db4cff 2261}
cd920e5a 2262EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
64db4cff 2263
fb60e533 2264/* Perform RCU core processing work for the current CPU. */
48d07c04 2265static __latent_entropy void rcu_core(void)
64db4cff
PM
2266{
2267 unsigned long flags;
da1df50d 2268 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2269 struct rcu_node *rnp = rdp->mynode;
64db4cff 2270
b049fdf8
PM
2271 if (cpu_is_offline(smp_processor_id()))
2272 return;
2273 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2274 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2275
3e310098 2276 /* Report any deferred quiescent states if preemption enabled. */
fced9c8c 2277 if (!(preempt_count() & PREEMPT_MASK)) {
3e310098 2278 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2279 } else if (rcu_preempt_need_deferred_qs(current)) {
2280 set_tsk_need_resched(current);
2281 set_preempt_need_resched();
2282 }
3e310098 2283
64db4cff 2284 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2285 rcu_check_quiescent_state(rdp);
64db4cff 2286
bd7af846 2287 /* No grace period and unregistered callbacks? */
de8e8730 2288 if (!rcu_gp_in_progress() &&
bd7af846
PM
2289 rcu_segcblist_is_enabled(&rdp->cblist)) {
2290 local_irq_save(flags);
e44e73ca 2291 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2292 rcu_accelerate_cbs_unlocked(rnp, rdp);
e44e73ca 2293 local_irq_restore(flags);
64db4cff
PM
2294 }
2295
791416c4 2296 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
26d950a9 2297
64db4cff 2298 /* If there are callbacks ready, invoke them. */
15fecf89 2299 if (rcu_segcblist_ready_cbs(&rdp->cblist))
aff4e9ed 2300 invoke_rcu_callbacks(rdp);
96d3fd0d
PM
2301
2302 /* Do any needed deferred wakeups of rcuo kthreads. */
2303 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2304 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2305}
2306
48d07c04
SAS
2307static void rcu_core_si(struct softirq_action *h)
2308{
2309 rcu_core();
2310}
2311
2312static void rcu_wake_cond(struct task_struct *t, int status)
2313{
2314 /*
2315 * If the thread is yielding, only wake it when this
2316 * is invoked from idle
2317 */
2318 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2319 wake_up_process(t);
2320}
2321
2322static void invoke_rcu_core_kthread(void)
2323{
2324 struct task_struct *t;
2325 unsigned long flags;
2326
2327 local_irq_save(flags);
2328 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2329 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2330 if (t != NULL && t != current)
2331 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2332 local_irq_restore(flags);
2333}
2334
a26ac245 2335/*
48d07c04
SAS
2336 * Do RCU callback invocation. Not that if we are running !use_softirq,
2337 * we are already in the rcuc kthread. If callbacks are offloaded, then
2338 * ->cblist is always empty, so we don't get here. Therefore, we only
2339 * ever need to check for the scheduler being operational (some callbacks
2340 * do wakeups, so we do need the scheduler).
a26ac245 2341 */
aff4e9ed 2342static void invoke_rcu_callbacks(struct rcu_data *rdp)
a26ac245 2343{
7d0ae808 2344 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2345 return;
48d07c04 2346 rcu_do_batch(rdp);
a26ac245
PM
2347}
2348
48d07c04
SAS
2349/*
2350 * Wake up this CPU's rcuc kthread to do RCU core processing.
2351 */
a46e0899 2352static void invoke_rcu_core(void)
09223371 2353{
48d07c04
SAS
2354 if (!cpu_online(smp_processor_id()))
2355 return;
2356 if (use_softirq)
b0f74036 2357 raise_softirq(RCU_SOFTIRQ);
48d07c04
SAS
2358 else
2359 invoke_rcu_core_kthread();
2360}
2361
2362static void rcu_cpu_kthread_park(unsigned int cpu)
2363{
2364 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2365}
2366
2367static int rcu_cpu_kthread_should_run(unsigned int cpu)
2368{
2369 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2370}
2371
2372/*
2373 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2374 * the RCU softirq used in configurations of RCU that do not support RCU
2375 * priority boosting.
2376 */
2377static void rcu_cpu_kthread(unsigned int cpu)
2378{
2379 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2380 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2381 int spincnt;
2382
2383 for (spincnt = 0; spincnt < 10; spincnt++) {
2384 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2385 local_bh_disable();
2386 *statusp = RCU_KTHREAD_RUNNING;
2387 local_irq_disable();
2388 work = *workp;
2389 *workp = 0;
2390 local_irq_enable();
2391 if (work)
2392 rcu_core();
2393 local_bh_enable();
2394 if (*workp == 0) {
2395 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2396 *statusp = RCU_KTHREAD_WAITING;
2397 return;
2398 }
2399 }
2400 *statusp = RCU_KTHREAD_YIELDING;
2401 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2402 schedule_timeout_interruptible(2);
2403 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2404 *statusp = RCU_KTHREAD_WAITING;
2405}
2406
2407static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2408 .store = &rcu_data.rcu_cpu_kthread_task,
2409 .thread_should_run = rcu_cpu_kthread_should_run,
2410 .thread_fn = rcu_cpu_kthread,
2411 .thread_comm = "rcuc/%u",
2412 .setup = rcu_cpu_kthread_setup,
2413 .park = rcu_cpu_kthread_park,
2414};
2415
2416/*
2417 * Spawn per-CPU RCU core processing kthreads.
2418 */
2419static int __init rcu_spawn_core_kthreads(void)
2420{
2421 int cpu;
2422
2423 for_each_possible_cpu(cpu)
2424 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2425 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2426 return 0;
2427 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2428 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2429 return 0;
09223371 2430}
48d07c04 2431early_initcall(rcu_spawn_core_kthreads);
09223371 2432
29154c57
PM
2433/*
2434 * Handle any core-RCU processing required by a call_rcu() invocation.
2435 */
5c7d8967
PM
2436static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2437 unsigned long flags)
64db4cff 2438{
62fde6ed
PM
2439 /*
2440 * If called from an extended quiescent state, invoke the RCU
2441 * core in order to force a re-evaluation of RCU's idleness.
2442 */
9910affa 2443 if (!rcu_is_watching())
62fde6ed
PM
2444 invoke_rcu_core();
2445
a16b7a69 2446 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2447 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2448 return;
64db4cff 2449
37c72e56
PM
2450 /*
2451 * Force the grace period if too many callbacks or too long waiting.
cd920e5a 2452 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
37c72e56 2453 * if some other CPU has recently done so. Also, don't bother
cd920e5a 2454 * invoking rcu_force_quiescent_state() if the newly enqueued callback
37c72e56
PM
2455 * is the only one waiting for a grace period to complete.
2456 */
15fecf89
PM
2457 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2458 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2459
2460 /* Are we ignoring a completed grace period? */
15cabdff 2461 note_gp_changes(rdp);
b52573d2
PM
2462
2463 /* Start a new grace period if one not already started. */
de8e8730 2464 if (!rcu_gp_in_progress()) {
c6e09b97 2465 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2466 } else {
2467 /* Give the grace period a kick. */
2468 rdp->blimit = LONG_MAX;
5c7d8967 2469 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2470 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
cd920e5a 2471 rcu_force_quiescent_state();
5c7d8967 2472 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89 2473 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2474 }
4cdfc175 2475 }
29154c57
PM
2476}
2477
ae150184
PM
2478/*
2479 * RCU callback function to leak a callback.
2480 */
2481static void rcu_leak_callback(struct rcu_head *rhp)
2482{
2483}
2484
3fbfbf7a
PM
2485/*
2486 * Helper function for call_rcu() and friends. The cpu argument will
2487 * normally be -1, indicating "currently running CPU". It may specify
dd46a788 2488 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
3fbfbf7a
PM
2489 * is expected to specify a CPU.
2490 */
64db4cff 2491static void
5c7d8967 2492__call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
64db4cff
PM
2493{
2494 unsigned long flags;
2495 struct rcu_data *rdp;
2496
b8f2ed53
PM
2497 /* Misaligned rcu_head! */
2498 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2499
ae150184 2500 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2501 /*
2502 * Probable double call_rcu(), so leak the callback.
2503 * Use rcu:rcu_callback trace event to find the previous
2504 * time callback was passed to __call_rcu().
2505 */
d75f773c 2506 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
fa3c6647 2507 head, head->func);
7d0ae808 2508 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2509 return;
2510 }
64db4cff
PM
2511 head->func = func;
2512 head->next = NULL;
64db4cff 2513 local_irq_save(flags);
da1df50d 2514 rdp = this_cpu_ptr(&rcu_data);
64db4cff
PM
2515
2516 /* Add the callback to our list. */
15fecf89 2517 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
2518 int offline;
2519
2520 if (cpu != -1)
da1df50d 2521 rdp = per_cpu_ptr(&rcu_data, cpu);
143da9c2
PM
2522 if (likely(rdp->mynode)) {
2523 /* Post-boot, so this should be for a no-CBs CPU. */
2524 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2525 WARN_ON_ONCE(offline);
2526 /* Offline CPU, _call_rcu() illegal, leak callback. */
2527 local_irq_restore(flags);
2528 return;
2529 }
2530 /*
2531 * Very early boot, before rcu_init(). Initialize if needed
2532 * and then drop through to queue the callback.
2533 */
08543bda 2534 WARN_ON_ONCE(cpu != -1);
34404ca8 2535 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
2536 if (rcu_segcblist_empty(&rdp->cblist))
2537 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2538 }
15fecf89 2539 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
d4c08f2a 2540 if (__is_kfree_rcu_offset((unsigned long)func))
3c779dfe
PM
2541 trace_rcu_kfree_callback(rcu_state.name, head,
2542 (unsigned long)func,
15fecf89
PM
2543 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2544 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2545 else
3c779dfe 2546 trace_rcu_callback(rcu_state.name, head,
15fecf89
PM
2547 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2548 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2549
29154c57 2550 /* Go handle any RCU core processing required. */
5c7d8967 2551 __call_rcu_core(rdp, head, flags);
64db4cff
PM
2552 local_irq_restore(flags);
2553}
2554
a68a2bb2 2555/**
45975c7d 2556 * call_rcu() - Queue an RCU callback for invocation after a grace period.
a68a2bb2
PM
2557 * @head: structure to be used for queueing the RCU updates.
2558 * @func: actual callback function to be invoked after the grace period
2559 *
2560 * The callback function will be invoked some time after a full grace
45975c7d
PM
2561 * period elapses, in other words after all pre-existing RCU read-side
2562 * critical sections have completed. However, the callback function
2563 * might well execute concurrently with RCU read-side critical sections
2564 * that started after call_rcu() was invoked. RCU read-side critical
2565 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2566 * may be nested. In addition, regions of code across which interrupts,
2567 * preemption, or softirqs have been disabled also serve as RCU read-side
2568 * critical sections. This includes hardware interrupt handlers, softirq
2569 * handlers, and NMI handlers.
2570 *
2571 * Note that all CPUs must agree that the grace period extended beyond
2572 * all pre-existing RCU read-side critical section. On systems with more
2573 * than one CPU, this means that when "func()" is invoked, each CPU is
2574 * guaranteed to have executed a full memory barrier since the end of its
2575 * last RCU read-side critical section whose beginning preceded the call
2576 * to call_rcu(). It also means that each CPU executing an RCU read-side
2577 * critical section that continues beyond the start of "func()" must have
2578 * executed a memory barrier after the call_rcu() but before the beginning
2579 * of that RCU read-side critical section. Note that these guarantees
2580 * include CPUs that are offline, idle, or executing in user mode, as
2581 * well as CPUs that are executing in the kernel.
2582 *
2583 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2584 * resulting RCU callback function "func()", then both CPU A and CPU B are
2585 * guaranteed to execute a full memory barrier during the time interval
2586 * between the call to call_rcu() and the invocation of "func()" -- even
2587 * if CPU A and CPU B are the same CPU (but again only if the system has
2588 * more than one CPU).
2589 */
2590void call_rcu(struct rcu_head *head, rcu_callback_t func)
2591{
5c7d8967 2592 __call_rcu(head, func, -1, 0);
45975c7d
PM
2593}
2594EXPORT_SYMBOL_GPL(call_rcu);
64db4cff 2595
495aa969
ACB
2596/*
2597 * Queue an RCU callback for lazy invocation after a grace period.
2598 * This will likely be later named something like "call_rcu_lazy()",
2599 * but this change will require some way of tagging the lazy RCU
2600 * callbacks in the list of pending callbacks. Until then, this
2601 * function may only be called from __kfree_rcu().
2602 */
98ece508 2603void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
495aa969 2604{
5c7d8967 2605 __call_rcu(head, func, -1, 1);
495aa969
ACB
2606}
2607EXPORT_SYMBOL_GPL(kfree_call_rcu);
2608
e5bc3af7
PM
2609/*
2610 * During early boot, any blocking grace-period wait automatically
2611 * implies a grace period. Later on, this is never the case for PREEMPT.
2612 *
2613 * Howevr, because a context switch is a grace period for !PREEMPT, any
2614 * blocking grace-period wait automatically implies a grace period if
2615 * there is only one CPU online at any point time during execution of
2616 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
2617 * occasionally incorrectly indicate that there are multiple CPUs online
2618 * when there was in fact only one the whole time, as this just adds some
2619 * overhead: RCU still operates correctly.
2620 */
2621static int rcu_blocking_is_gp(void)
2622{
2623 int ret;
2624
2625 if (IS_ENABLED(CONFIG_PREEMPT))
2626 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2627 might_sleep(); /* Check for RCU read-side critical section. */
2628 preempt_disable();
2629 ret = num_online_cpus() <= 1;
2630 preempt_enable();
2631 return ret;
2632}
2633
2634/**
2635 * synchronize_rcu - wait until a grace period has elapsed.
2636 *
2637 * Control will return to the caller some time after a full grace
2638 * period has elapsed, in other words after all currently executing RCU
2639 * read-side critical sections have completed. Note, however, that
2640 * upon return from synchronize_rcu(), the caller might well be executing
2641 * concurrently with new RCU read-side critical sections that began while
2642 * synchronize_rcu() was waiting. RCU read-side critical sections are
2643 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2644 * In addition, regions of code across which interrupts, preemption, or
2645 * softirqs have been disabled also serve as RCU read-side critical
2646 * sections. This includes hardware interrupt handlers, softirq handlers,
2647 * and NMI handlers.
2648 *
2649 * Note that this guarantee implies further memory-ordering guarantees.
2650 * On systems with more than one CPU, when synchronize_rcu() returns,
2651 * each CPU is guaranteed to have executed a full memory barrier since
2652 * the end of its last RCU read-side critical section whose beginning
2653 * preceded the call to synchronize_rcu(). In addition, each CPU having
2654 * an RCU read-side critical section that extends beyond the return from
2655 * synchronize_rcu() is guaranteed to have executed a full memory barrier
2656 * after the beginning of synchronize_rcu() and before the beginning of
2657 * that RCU read-side critical section. Note that these guarantees include
2658 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2659 * that are executing in the kernel.
2660 *
2661 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2662 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2663 * to have executed a full memory barrier during the execution of
2664 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2665 * again only if the system has more than one CPU).
2666 */
2667void synchronize_rcu(void)
2668{
2669 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2670 lock_is_held(&rcu_lock_map) ||
2671 lock_is_held(&rcu_sched_lock_map),
2672 "Illegal synchronize_rcu() in RCU read-side critical section");
2673 if (rcu_blocking_is_gp())
2674 return;
2675 if (rcu_gp_is_expedited())
2676 synchronize_rcu_expedited();
2677 else
2678 wait_rcu_gp(call_rcu);
2679}
2680EXPORT_SYMBOL_GPL(synchronize_rcu);
2681
765a3f4f
PM
2682/**
2683 * get_state_synchronize_rcu - Snapshot current RCU state
2684 *
2685 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2686 * to determine whether or not a full grace period has elapsed in the
2687 * meantime.
2688 */
2689unsigned long get_state_synchronize_rcu(void)
2690{
2691 /*
2692 * Any prior manipulation of RCU-protected data must happen
e4be81a2 2693 * before the load from ->gp_seq.
765a3f4f
PM
2694 */
2695 smp_mb(); /* ^^^ */
16fc9c60 2696 return rcu_seq_snap(&rcu_state.gp_seq);
765a3f4f
PM
2697}
2698EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2699
2700/**
2701 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2702 *
2703 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2704 *
2705 * If a full RCU grace period has elapsed since the earlier call to
2706 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2707 * synchronize_rcu() to wait for a full grace period.
2708 *
2709 * Yes, this function does not take counter wrap into account. But
2710 * counter wrap is harmless. If the counter wraps, we have waited for
2711 * more than 2 billion grace periods (and way more on a 64-bit system!),
2712 * so waiting for one additional grace period should be just fine.
2713 */
2714void cond_synchronize_rcu(unsigned long oldstate)
2715{
16fc9c60 2716 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
765a3f4f 2717 synchronize_rcu();
e4be81a2
PM
2718 else
2719 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
2720}
2721EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2722
64db4cff 2723/*
98ece508 2724 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
2725 * the current CPU, returning 1 if so and zero otherwise. The checks are
2726 * in order of increasing expense: checks that can be carried out against
2727 * CPU-local state are performed first. However, we must check for CPU
2728 * stalls first, else we might not get a chance.
64db4cff 2729 */
98ece508 2730static int rcu_pending(void)
64db4cff 2731{
98ece508 2732 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
2733 struct rcu_node *rnp = rdp->mynode;
2734
64db4cff 2735 /* Check for CPU stalls, if enabled. */
ea12ff2b 2736 check_cpu_stall(rdp);
64db4cff 2737
a096932f 2738 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
4580b054 2739 if (rcu_nohz_full_cpu())
a096932f
PM
2740 return 0;
2741
64db4cff 2742 /* Is the RCU core waiting for a quiescent state from this CPU? */
01c495f7 2743 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
64db4cff
PM
2744 return 1;
2745
2746 /* Does this CPU have callbacks ready to invoke? */
01c495f7 2747 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
2748 return 1;
2749
2750 /* Has RCU gone idle with this CPU needing another grace period? */
de8e8730 2751 if (!rcu_gp_in_progress() &&
c1935209
PM
2752 rcu_segcblist_is_enabled(&rdp->cblist) &&
2753 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
2754 return 1;
2755
67e14c1e
PM
2756 /* Have RCU grace period completed or started? */
2757 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 2758 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
2759 return 1;
2760
96d3fd0d 2761 /* Does this CPU need a deferred NOCB wakeup? */
01c495f7 2762 if (rcu_nocb_need_deferred_wakeup(rdp))
96d3fd0d 2763 return 1;
96d3fd0d 2764
64db4cff
PM
2765 /* nothing to do */
2766 return 0;
2767}
2768
a83eff0a 2769/*
dd46a788 2770 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
2771 * the compiler is expected to optimize this away.
2772 */
dd46a788 2773static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 2774{
8344b871
PM
2775 trace_rcu_barrier(rcu_state.name, s, cpu,
2776 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
2777}
2778
b1420f1c 2779/*
dd46a788
PM
2780 * RCU callback function for rcu_barrier(). If we are last, wake
2781 * up the task executing rcu_barrier().
b1420f1c 2782 */
24ebbca8 2783static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2784{
ec9f5835 2785 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
dd46a788 2786 rcu_barrier_trace(TPS("LastCB"), -1,
ec9f5835
PM
2787 rcu_state.barrier_sequence);
2788 complete(&rcu_state.barrier_completion);
a83eff0a 2789 } else {
dd46a788 2790 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
a83eff0a 2791 }
d0ec774c
PM
2792}
2793
2794/*
2795 * Called with preemption disabled, and from cross-cpu IRQ context.
2796 */
ec9f5835 2797static void rcu_barrier_func(void *unused)
d0ec774c 2798{
da1df50d 2799 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
d0ec774c 2800
dd46a788 2801 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
2802 rdp->barrier_head.func = rcu_barrier_callback;
2803 debug_rcu_head_queue(&rdp->barrier_head);
2804 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
ec9f5835 2805 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
2806 } else {
2807 debug_rcu_head_unqueue(&rdp->barrier_head);
dd46a788 2808 rcu_barrier_trace(TPS("IRQNQ"), -1,
ec9f5835 2809 rcu_state.barrier_sequence);
f92c734f 2810 }
d0ec774c
PM
2811}
2812
dd46a788
PM
2813/**
2814 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2815 *
2816 * Note that this primitive does not necessarily wait for an RCU grace period
2817 * to complete. For example, if there are no RCU callbacks queued anywhere
2818 * in the system, then rcu_barrier() is within its rights to return
2819 * immediately, without waiting for anything, much less an RCU grace period.
d0ec774c 2820 */
dd46a788 2821void rcu_barrier(void)
d0ec774c 2822{
b1420f1c 2823 int cpu;
b1420f1c 2824 struct rcu_data *rdp;
ec9f5835 2825 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 2826
dd46a788 2827 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 2828
e74f4c45 2829 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 2830 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 2831
4f525a52 2832 /* Did someone else do our work for us? */
ec9f5835 2833 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
dd46a788 2834 rcu_barrier_trace(TPS("EarlyExit"), -1,
ec9f5835 2835 rcu_state.barrier_sequence);
cf3a9c48 2836 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 2837 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
2838 return;
2839 }
2840
4f525a52 2841 /* Mark the start of the barrier operation. */
ec9f5835 2842 rcu_seq_start(&rcu_state.barrier_sequence);
dd46a788 2843 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 2844
d0ec774c 2845 /*
b1420f1c
PM
2846 * Initialize the count to one rather than to zero in order to
2847 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2848 * (or preemption of this task). Exclude CPU-hotplug operations
2849 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2850 */
ec9f5835
PM
2851 init_completion(&rcu_state.barrier_completion);
2852 atomic_set(&rcu_state.barrier_cpu_count, 1);
1331e7a1 2853 get_online_cpus();
b1420f1c
PM
2854
2855 /*
1331e7a1
PM
2856 * Force each CPU with callbacks to register a new callback.
2857 * When that callback is invoked, we will know that all of the
2858 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2859 */
3fbfbf7a 2860 for_each_possible_cpu(cpu) {
d1e43fa5 2861 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2862 continue;
da1df50d 2863 rdp = per_cpu_ptr(&rcu_data, cpu);
d1e43fa5 2864 if (rcu_is_nocb_cpu(cpu)) {
4580b054 2865 if (!rcu_nocb_cpu_needs_barrier(cpu)) {
dd46a788 2866 rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
ec9f5835 2867 rcu_state.barrier_sequence);
d7e29933 2868 } else {
dd46a788 2869 rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
ec9f5835 2870 rcu_state.barrier_sequence);
41050a00 2871 smp_mb__before_atomic();
ec9f5835 2872 atomic_inc(&rcu_state.barrier_cpu_count);
d7e29933 2873 __call_rcu(&rdp->barrier_head,
5c7d8967 2874 rcu_barrier_callback, cpu, 0);
d7e29933 2875 }
15fecf89 2876 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
dd46a788 2877 rcu_barrier_trace(TPS("OnlineQ"), cpu,
ec9f5835
PM
2878 rcu_state.barrier_sequence);
2879 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
b1420f1c 2880 } else {
dd46a788 2881 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
ec9f5835 2882 rcu_state.barrier_sequence);
b1420f1c
PM
2883 }
2884 }
1331e7a1 2885 put_online_cpus();
b1420f1c
PM
2886
2887 /*
2888 * Now that we have an rcu_barrier_callback() callback on each
2889 * CPU, and thus each counted, remove the initial count.
2890 */
ec9f5835
PM
2891 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2892 complete(&rcu_state.barrier_completion);
b1420f1c
PM
2893
2894 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 2895 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 2896
4f525a52 2897 /* Mark the end of the barrier operation. */
dd46a788 2898 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 2899 rcu_seq_end(&rcu_state.barrier_sequence);
4f525a52 2900
b1420f1c 2901 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 2902 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 2903}
45975c7d 2904EXPORT_SYMBOL_GPL(rcu_barrier);
d0ec774c 2905
0aa04b05
PM
2906/*
2907 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2908 * first CPU in a given leaf rcu_node structure coming online. The caller
2909 * must hold the corresponding leaf rcu_node ->lock with interrrupts
2910 * disabled.
2911 */
2912static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2913{
2914 long mask;
8d672fa6 2915 long oldmask;
0aa04b05
PM
2916 struct rcu_node *rnp = rnp_leaf;
2917
8d672fa6 2918 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 2919 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
2920 for (;;) {
2921 mask = rnp->grpmask;
2922 rnp = rnp->parent;
2923 if (rnp == NULL)
2924 return;
6cf10081 2925 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 2926 oldmask = rnp->qsmaskinit;
0aa04b05 2927 rnp->qsmaskinit |= mask;
67c583a7 2928 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
2929 if (oldmask)
2930 return;
0aa04b05
PM
2931 }
2932}
2933
64db4cff 2934/*
27569620 2935 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2936 */
27569620 2937static void __init
53b46303 2938rcu_boot_init_percpu_data(int cpu)
64db4cff 2939{
da1df50d 2940 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
2941
2942 /* Set up local state, ensuring consistent view of global state. */
bc75e999 2943 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4c5273bf 2944 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
dc5a4f29 2945 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
53b46303 2946 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 2947 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 2948 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 2949 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
27569620 2950 rdp->cpu = cpu;
3fbfbf7a 2951 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
2952}
2953
2954/*
53b46303
PM
2955 * Invoked early in the CPU-online process, when pretty much all services
2956 * are available. The incoming CPU is not present.
2957 *
2958 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
2959 * offline event can be happening at a given time. Note also that we can
2960 * accept some slop in the rsp->gp_seq access due to the fact that this
2961 * CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2962 */
53b46303 2963int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
2964{
2965 unsigned long flags;
da1df50d 2966 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 2967 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
2968
2969 /* Set up local state, ensuring consistent view of global state. */
6cf10081 2970 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 2971 rdp->qlen_last_fqs_check = 0;
53b46303 2972 rdp->n_force_qs_snap = rcu_state.n_force_qs;
64db4cff 2973 rdp->blimit = blimit;
15fecf89
PM
2974 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
2975 !init_nocb_callback_list(rdp))
2976 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4c5273bf 2977 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 2978 rcu_dynticks_eqs_online();
67c583a7 2979 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 2980
0aa04b05
PM
2981 /*
2982 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
2983 * propagation up the rcu_node tree will happen at the beginning
2984 * of the next grace period.
2985 */
64db4cff 2986 rnp = rdp->mynode;
2a67e741 2987 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 2988 rdp->beenonline = true; /* We have now been online. */
de30ad51 2989 rdp->gp_seq = rnp->gp_seq;
7a1d0f23 2990 rdp->gp_seq_needed = rnp->gp_seq;
5b74c458 2991 rdp->cpu_no_qs.b.norm = true;
97c668b8 2992 rdp->core_needs_qs = false;
9b9500da 2993 rdp->rcu_iw_pending = false;
8aa670cd 2994 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
53b46303 2995 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 2996 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4df83742 2997 rcu_prepare_kthreads(cpu);
ad368d15 2998 rcu_spawn_cpu_nocb_kthread(cpu);
4df83742
TG
2999
3000 return 0;
3001}
3002
deb34f36
PM
3003/*
3004 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3005 */
4df83742
TG
3006static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3007{
da1df50d 3008 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
3009
3010 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3011}
3012
deb34f36
PM
3013/*
3014 * Near the end of the CPU-online process. Pretty much all services
3015 * enabled, and the CPU is now very much alive.
3016 */
4df83742
TG
3017int rcutree_online_cpu(unsigned int cpu)
3018{
9b9500da
PM
3019 unsigned long flags;
3020 struct rcu_data *rdp;
3021 struct rcu_node *rnp;
9b9500da 3022
b97d23c5
PM
3023 rdp = per_cpu_ptr(&rcu_data, cpu);
3024 rnp = rdp->mynode;
3025 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3026 rnp->ffmask |= rdp->grpmask;
3027 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da
PM
3028 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3029 return 0; /* Too early in boot for scheduler work. */
3030 sync_sched_exp_online_cleanup(cpu);
3031 rcutree_affinity_setting(cpu, -1);
4df83742
TG
3032 return 0;
3033}
3034
deb34f36
PM
3035/*
3036 * Near the beginning of the process. The CPU is still very much alive
3037 * with pretty much all services enabled.
3038 */
4df83742
TG
3039int rcutree_offline_cpu(unsigned int cpu)
3040{
9b9500da
PM
3041 unsigned long flags;
3042 struct rcu_data *rdp;
3043 struct rcu_node *rnp;
9b9500da 3044
b97d23c5
PM
3045 rdp = per_cpu_ptr(&rcu_data, cpu);
3046 rnp = rdp->mynode;
3047 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3048 rnp->ffmask &= ~rdp->grpmask;
3049 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da 3050
4df83742
TG
3051 rcutree_affinity_setting(cpu, cpu);
3052 return 0;
3053}
3054
f64c6013
PZ
3055static DEFINE_PER_CPU(int, rcu_cpu_started);
3056
7ec99de3
PM
3057/*
3058 * Mark the specified CPU as being online so that subsequent grace periods
3059 * (both expedited and normal) will wait on it. Note that this means that
3060 * incoming CPUs are not allowed to use RCU read-side critical sections
3061 * until this function is called. Failing to observe this restriction
3062 * will result in lockdep splats.
deb34f36
PM
3063 *
3064 * Note that this function is special in that it is invoked directly
3065 * from the incoming CPU rather than from the cpuhp_step mechanism.
3066 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3067 */
3068void rcu_cpu_starting(unsigned int cpu)
3069{
3070 unsigned long flags;
3071 unsigned long mask;
313517fc
PM
3072 int nbits;
3073 unsigned long oldmask;
7ec99de3
PM
3074 struct rcu_data *rdp;
3075 struct rcu_node *rnp;
7ec99de3 3076
f64c6013
PZ
3077 if (per_cpu(rcu_cpu_started, cpu))
3078 return;
3079
3080 per_cpu(rcu_cpu_started, cpu) = 1;
3081
b97d23c5
PM
3082 rdp = per_cpu_ptr(&rcu_data, cpu);
3083 rnp = rdp->mynode;
3084 mask = rdp->grpmask;
3085 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3086 rnp->qsmaskinitnext |= mask;
3087 oldmask = rnp->expmaskinitnext;
3088 rnp->expmaskinitnext |= mask;
3089 oldmask ^= rnp->expmaskinitnext;
3090 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3091 /* Allow lockless access for expedited grace periods. */
eb7a6653 3092 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
b97d23c5 3093 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
3094 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3095 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
b97d23c5
PM
3096 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3097 /* Report QS -after- changing ->qsmaskinitnext! */
3098 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3099 } else {
3100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7ec99de3 3101 }
313517fc 3102 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3103}
3104
27d50c7e
TG
3105#ifdef CONFIG_HOTPLUG_CPU
3106/*
53b46303
PM
3107 * The outgoing function has no further need of RCU, so remove it from
3108 * the rcu_node tree's ->qsmaskinitnext bit masks.
3109 *
3110 * Note that this function is special in that it is invoked directly
3111 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3112 * This is because this function must be invoked at a precise location.
27d50c7e 3113 */
53b46303 3114void rcu_report_dead(unsigned int cpu)
27d50c7e
TG
3115{
3116 unsigned long flags;
3117 unsigned long mask;
da1df50d 3118 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27d50c7e
TG
3119 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3120
49918a54 3121 /* QS for any half-done expedited grace period. */
53b46303 3122 preempt_disable();
63d4c8c9 3123 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
53b46303
PM
3124 preempt_enable();
3125 rcu_preempt_deferred_qs(current);
3126
27d50c7e
TG
3127 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3128 mask = rdp->grpmask;
894d45bb 3129 raw_spin_lock(&rcu_state.ofl_lock);
27d50c7e 3130 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
3131 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3132 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
3133 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3134 /* Report quiescent state -before- changing ->qsmaskinitnext! */
b50912d0 3135 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
3136 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3137 }
27d50c7e 3138 rnp->qsmaskinitnext &= ~mask;
710d60cb 3139 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
894d45bb 3140 raw_spin_unlock(&rcu_state.ofl_lock);
f64c6013
PZ
3141
3142 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3143}
a58163d8 3144
53b46303
PM
3145/*
3146 * The outgoing CPU has just passed through the dying-idle state, and we
3147 * are being invoked from the CPU that was IPIed to continue the offline
3148 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3149 */
3150void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
3151{
3152 unsigned long flags;
b1a2d79f 3153 struct rcu_data *my_rdp;
da1df50d 3154 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3155 struct rcu_node *rnp_root = rcu_get_root();
ec4eacce 3156 bool needwake;
a58163d8 3157
95335c03
PM
3158 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3159 return; /* No callbacks to migrate. */
3160
b1a2d79f 3161 local_irq_save(flags);
da1df50d 3162 my_rdp = this_cpu_ptr(&rcu_data);
b1a2d79f
PM
3163 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3164 local_irq_restore(flags);
3165 return;
3166 }
9fa46fb8 3167 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
ec4eacce 3168 /* Leverage recent GPs and set GP for new callbacks. */
834f56bf
PM
3169 needwake = rcu_advance_cbs(rnp_root, rdp) ||
3170 rcu_advance_cbs(rnp_root, my_rdp);
f2dbe4a5 3171 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
09efeeee
PM
3172 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3173 !rcu_segcblist_n_cbs(&my_rdp->cblist));
537b85c8 3174 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
ec4eacce 3175 if (needwake)
532c00c9 3176 rcu_gp_kthread_wake();
a58163d8
PM
3177 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3178 !rcu_segcblist_empty(&rdp->cblist),
3179 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3180 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3181 rcu_segcblist_first_cb(&rdp->cblist));
3182}
27d50c7e
TG
3183#endif
3184
deb34f36
PM
3185/*
3186 * On non-huge systems, use expedited RCU grace periods to make suspend
3187 * and hibernation run faster.
3188 */
d1d74d14
BP
3189static int rcu_pm_notify(struct notifier_block *self,
3190 unsigned long action, void *hcpu)
3191{
3192 switch (action) {
3193 case PM_HIBERNATION_PREPARE:
3194 case PM_SUSPEND_PREPARE:
e85e6a21 3195 rcu_expedite_gp();
d1d74d14
BP
3196 break;
3197 case PM_POST_HIBERNATION:
3198 case PM_POST_SUSPEND:
e85e6a21 3199 rcu_unexpedite_gp();
d1d74d14
BP
3200 break;
3201 default:
3202 break;
3203 }
3204 return NOTIFY_OK;
3205}
3206
b3dbec76 3207/*
49918a54 3208 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
3209 */
3210static int __init rcu_spawn_gp_kthread(void)
3211{
3212 unsigned long flags;
a94844b2 3213 int kthread_prio_in = kthread_prio;
b3dbec76 3214 struct rcu_node *rnp;
a94844b2 3215 struct sched_param sp;
b3dbec76
PM
3216 struct task_struct *t;
3217
a94844b2 3218 /* Force priority into range. */
c7cd161e
JFG
3219 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3220 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3221 kthread_prio = 2;
3222 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
a94844b2
PM
3223 kthread_prio = 1;
3224 else if (kthread_prio < 0)
3225 kthread_prio = 0;
3226 else if (kthread_prio > 99)
3227 kthread_prio = 99;
c7cd161e 3228
a94844b2
PM
3229 if (kthread_prio != kthread_prio_in)
3230 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3231 kthread_prio, kthread_prio_in);
3232
9386c0b7 3233 rcu_scheduler_fully_active = 1;
b97d23c5 3234 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
08543bda
PM
3235 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3236 return 0;
b97d23c5
PM
3237 rnp = rcu_get_root();
3238 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3239 rcu_state.gp_kthread = t;
3240 if (kthread_prio) {
3241 sp.sched_priority = kthread_prio;
3242 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 3243 }
b97d23c5
PM
3244 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3245 wake_up_process(t);
35ce7f29 3246 rcu_spawn_nocb_kthreads();
9386c0b7 3247 rcu_spawn_boost_kthreads();
b3dbec76
PM
3248 return 0;
3249}
3250early_initcall(rcu_spawn_gp_kthread);
3251
bbad9379 3252/*
52d7e48b
PM
3253 * This function is invoked towards the end of the scheduler's
3254 * initialization process. Before this is called, the idle task might
3255 * contain synchronous grace-period primitives (during which time, this idle
3256 * task is booting the system, and such primitives are no-ops). After this
3257 * function is called, any synchronous grace-period primitives are run as
3258 * expedited, with the requesting task driving the grace period forward.
900b1028 3259 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 3260 * runtime RCU functionality.
bbad9379
PM
3261 */
3262void rcu_scheduler_starting(void)
3263{
3264 WARN_ON(num_online_cpus() != 1);
3265 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
3266 rcu_test_sync_prims();
3267 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3268 rcu_test_sync_prims();
bbad9379
PM
3269}
3270
64db4cff 3271/*
49918a54 3272 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 3273 */
b8bb1f63 3274static void __init rcu_init_one(void)
64db4cff 3275{
cb007102
AG
3276 static const char * const buf[] = RCU_NODE_NAME_INIT;
3277 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
3278 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3279 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 3280
199977bf 3281 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
3282 int cpustride = 1;
3283 int i;
3284 int j;
3285 struct rcu_node *rnp;
3286
05b84aec 3287 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 3288
3eaaaf6c
PM
3289 /* Silence gcc 4.8 false positive about array index out of range. */
3290 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3291 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 3292
64db4cff
PM
3293 /* Initialize the level-tracking arrays. */
3294
f885b7f2 3295 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
3296 rcu_state.level[i] =
3297 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 3298 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
3299
3300 /* Initialize the elements themselves, starting from the leaves. */
3301
f885b7f2 3302 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 3303 cpustride *= levelspread[i];
eb7a6653 3304 rnp = rcu_state.level[i];
41f5c631 3305 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
3306 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3307 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 3308 &rcu_node_class[i], buf[i]);
394f2769
PM
3309 raw_spin_lock_init(&rnp->fqslock);
3310 lockdep_set_class_and_name(&rnp->fqslock,
3311 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
3312 rnp->gp_seq = rcu_state.gp_seq;
3313 rnp->gp_seq_needed = rcu_state.gp_seq;
3314 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
3315 rnp->qsmask = 0;
3316 rnp->qsmaskinit = 0;
3317 rnp->grplo = j * cpustride;
3318 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3319 if (rnp->grphi >= nr_cpu_ids)
3320 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3321 if (i == 0) {
3322 rnp->grpnum = 0;
3323 rnp->grpmask = 0;
3324 rnp->parent = NULL;
3325 } else {
199977bf 3326 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 3327 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 3328 rnp->parent = rcu_state.level[i - 1] +
199977bf 3329 j / levelspread[i - 1];
64db4cff
PM
3330 }
3331 rnp->level = i;
12f5f524 3332 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3333 rcu_init_one_nocb(rnp);
f6a12f34
PM
3334 init_waitqueue_head(&rnp->exp_wq[0]);
3335 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
3336 init_waitqueue_head(&rnp->exp_wq[2]);
3337 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 3338 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
3339 }
3340 }
0c34029a 3341
eb7a6653
PM
3342 init_swait_queue_head(&rcu_state.gp_wq);
3343 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 3344 rnp = rcu_first_leaf_node();
0c34029a 3345 for_each_possible_cpu(i) {
4a90a068 3346 while (i > rnp->grphi)
0c34029a 3347 rnp++;
da1df50d 3348 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 3349 rcu_boot_init_percpu_data(i);
0c34029a 3350 }
64db4cff
PM
3351}
3352
f885b7f2
PM
3353/*
3354 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3355 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3356 * the ->node array in the rcu_state structure.
3357 */
3358static void __init rcu_init_geometry(void)
3359{
026ad283 3360 ulong d;
f885b7f2 3361 int i;
05b84aec 3362 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 3363
026ad283
PM
3364 /*
3365 * Initialize any unspecified boot parameters.
3366 * The default values of jiffies_till_first_fqs and
3367 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3368 * value, which is a function of HZ, then adding one for each
3369 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3370 */
3371 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3372 if (jiffies_till_first_fqs == ULONG_MAX)
3373 jiffies_till_first_fqs = d;
3374 if (jiffies_till_next_fqs == ULONG_MAX)
3375 jiffies_till_next_fqs = d;
6973032a 3376 adjust_jiffies_till_sched_qs();
026ad283 3377
f885b7f2 3378 /* If the compile-time values are accurate, just leave. */
47d631af 3379 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 3380 nr_cpu_ids == NR_CPUS)
f885b7f2 3381 return;
a7538352 3382 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 3383 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 3384
f885b7f2 3385 /*
ee968ac6
PM
3386 * The boot-time rcu_fanout_leaf parameter must be at least two
3387 * and cannot exceed the number of bits in the rcu_node masks.
3388 * Complain and fall back to the compile-time values if this
3389 * limit is exceeded.
f885b7f2 3390 */
ee968ac6 3391 if (rcu_fanout_leaf < 2 ||
75cf15a4 3392 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 3393 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
3394 WARN_ON(1);
3395 return;
3396 }
3397
f885b7f2
PM
3398 /*
3399 * Compute number of nodes that can be handled an rcu_node tree
9618138b 3400 * with the given number of levels.
f885b7f2 3401 */
9618138b 3402 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 3403 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 3404 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
3405
3406 /*
75cf15a4 3407 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 3408 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 3409 */
ee968ac6
PM
3410 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3411 rcu_fanout_leaf = RCU_FANOUT_LEAF;
3412 WARN_ON(1);
3413 return;
3414 }
f885b7f2 3415
679f9858 3416 /* Calculate the number of levels in the tree. */
9618138b 3417 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 3418 }
9618138b 3419 rcu_num_lvls = i + 1;
679f9858 3420
f885b7f2 3421 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 3422 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 3423 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
3424 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3425 }
f885b7f2
PM
3426
3427 /* Calculate the total number of rcu_node structures. */
3428 rcu_num_nodes = 0;
679f9858 3429 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 3430 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
3431}
3432
a3dc2948
PM
3433/*
3434 * Dump out the structure of the rcu_node combining tree associated
49918a54 3435 * with the rcu_state structure.
a3dc2948 3436 */
b8bb1f63 3437static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
3438{
3439 int level = 0;
3440 struct rcu_node *rnp;
3441
3442 pr_info("rcu_node tree layout dump\n");
3443 pr_info(" ");
aedf4ba9 3444 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
3445 if (rnp->level != level) {
3446 pr_cont("\n");
3447 pr_info(" ");
3448 level = rnp->level;
3449 }
3450 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
3451 }
3452 pr_cont("\n");
3453}
3454
ad7c946b 3455struct workqueue_struct *rcu_gp_wq;
25f3d7ef 3456struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 3457
9f680ab4 3458void __init rcu_init(void)
64db4cff 3459{
017c4261 3460 int cpu;
9f680ab4 3461
47627678
PM
3462 rcu_early_boot_tests();
3463
f41d911f 3464 rcu_bootup_announce();
f885b7f2 3465 rcu_init_geometry();
b8bb1f63 3466 rcu_init_one();
a3dc2948 3467 if (dump_tree)
b8bb1f63 3468 rcu_dump_rcu_node_tree();
48d07c04
SAS
3469 if (use_softirq)
3470 open_softirq(RCU_SOFTIRQ, rcu_core_si);
9f680ab4
PM
3471
3472 /*
3473 * We don't need protection against CPU-hotplug here because
3474 * this is called early in boot, before either interrupts
3475 * or the scheduler are operational.
3476 */
d1d74d14 3477 pm_notifier(rcu_pm_notify, 0);
7ec99de3 3478 for_each_online_cpu(cpu) {
4df83742 3479 rcutree_prepare_cpu(cpu);
7ec99de3 3480 rcu_cpu_starting(cpu);
9b9500da 3481 rcutree_online_cpu(cpu);
7ec99de3 3482 }
ad7c946b
PM
3483
3484 /* Create workqueue for expedited GPs and for Tree SRCU. */
3485 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3486 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
3487 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3488 WARN_ON(!rcu_par_gp_wq);
e0fcba9a 3489 srcu_init();
64db4cff
PM
3490}
3491
10462d6f 3492#include "tree_stall.h"
3549c2bc 3493#include "tree_exp.h"
4102adab 3494#include "tree_plugin.h"