[PATCH] hrtimer: coding style and white space cleanup
[linux-2.6-block.git] / kernel / posix-timers.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/posix_timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/smp_lock.h>
35#include <linux/interrupt.h>
36#include <linux/slab.h>
37#include <linux/time.h>
67924be8 38#include <linux/calc64.h>
1da177e4
LT
39
40#include <asm/uaccess.h>
41#include <asm/semaphore.h>
42#include <linux/list.h>
43#include <linux/init.h>
44#include <linux/compiler.h>
45#include <linux/idr.h>
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
50#include <linux/module.h>
51
1da177e4
LT
52#define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
53
54static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
55{
56 return (u64)mpy1 * mpy2;
57}
58/*
59 * Management arrays for POSIX timers. Timers are kept in slab memory
60 * Timer ids are allocated by an external routine that keeps track of the
61 * id and the timer. The external interface is:
62 *
63 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
64 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
65 * related it to <ptr>
66 * void idr_remove(struct idr *idp, int id); to release <id>
67 * void idr_init(struct idr *idp); to initialize <idp>
68 * which we supply.
69 * The idr_get_new *may* call slab for more memory so it must not be
70 * called under a spin lock. Likewise idr_remore may release memory
71 * (but it may be ok to do this under a lock...).
72 * idr_find is just a memory look up and is quite fast. A -1 return
73 * indicates that the requested id does not exist.
74 */
75
76/*
77 * Lets keep our timers in a slab cache :-)
78 */
79static kmem_cache_t *posix_timers_cache;
80static struct idr posix_timers_id;
81static DEFINE_SPINLOCK(idr_lock);
82
1da177e4
LT
83/*
84 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
85 * SIGEV values. Here we put out an error if this assumption fails.
86 */
87#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
88 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
89#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
90#endif
91
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
127 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
128 * fields are not modified by timer code.
129 *
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
133 *
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
140 */
141
142static struct k_clock posix_clocks[MAX_CLOCKS];
143/*
144 * We only have one real clock that can be set so we need only one abs list,
145 * even if we should want to have several clocks with differing resolutions.
146 */
147static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
148 .lock = SPIN_LOCK_UNLOCKED};
149
150static void posix_timer_fn(unsigned long);
151static u64 do_posix_clock_monotonic_gettime_parts(
152 struct timespec *tp, struct timespec *mo);
153int do_posix_clock_monotonic_gettime(struct timespec *tp);
154static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp);
155
156static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
157
158static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
159{
160 spin_unlock_irqrestore(&timr->it_lock, flags);
161}
162
163/*
164 * Call the k_clock hook function if non-null, or the default function.
165 */
166#define CLOCK_DISPATCH(clock, call, arglist) \
167 ((clock) < 0 ? posix_cpu_##call arglist : \
168 (posix_clocks[clock].call != NULL \
169 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
170
171/*
172 * Default clock hook functions when the struct k_clock passed
173 * to register_posix_clock leaves a function pointer null.
174 *
175 * The function common_CALL is the default implementation for
176 * the function pointer CALL in struct k_clock.
177 */
178
179static inline int common_clock_getres(clockid_t which_clock,
180 struct timespec *tp)
181{
182 tp->tv_sec = 0;
183 tp->tv_nsec = posix_clocks[which_clock].res;
184 return 0;
185}
186
187static inline int common_clock_get(clockid_t which_clock, struct timespec *tp)
188{
189 getnstimeofday(tp);
190 return 0;
191}
192
193static inline int common_clock_set(clockid_t which_clock, struct timespec *tp)
194{
195 return do_sys_settimeofday(tp, NULL);
196}
197
198static inline int common_timer_create(struct k_itimer *new_timer)
199{
200 INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
201 init_timer(&new_timer->it.real.timer);
202 new_timer->it.real.timer.data = (unsigned long) new_timer;
203 new_timer->it.real.timer.function = posix_timer_fn;
1da177e4
LT
204 return 0;
205}
206
207/*
208 * These ones are defined below.
209 */
210static int common_nsleep(clockid_t, int flags, struct timespec *t);
211static void common_timer_get(struct k_itimer *, struct itimerspec *);
212static int common_timer_set(struct k_itimer *, int,
213 struct itimerspec *, struct itimerspec *);
214static int common_timer_del(struct k_itimer *timer);
215
216/*
217 * Return nonzero iff we know a priori this clockid_t value is bogus.
218 */
219static inline int invalid_clockid(clockid_t which_clock)
220{
221 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
222 return 0;
223 if ((unsigned) which_clock >= MAX_CLOCKS)
224 return 1;
225 if (posix_clocks[which_clock].clock_getres != NULL)
226 return 0;
227#ifndef CLOCK_DISPATCH_DIRECT
228 if (posix_clocks[which_clock].res != 0)
229 return 0;
230#endif
231 return 1;
232}
233
234
235/*
236 * Initialize everything, well, just everything in Posix clocks/timers ;)
237 */
238static __init int init_posix_timers(void)
239{
240 struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
241 .abs_struct = &abs_list
242 };
243 struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
244 .abs_struct = NULL,
245 .clock_get = do_posix_clock_monotonic_get,
246 .clock_set = do_posix_clock_nosettime
247 };
248
249 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
250 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
251
252 posix_timers_cache = kmem_cache_create("posix_timers_cache",
253 sizeof (struct k_itimer), 0, 0, NULL, NULL);
254 idr_init(&posix_timers_id);
255 return 0;
256}
257
258__initcall(init_posix_timers);
259
260static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
261{
262 long sec = tp->tv_sec;
263 long nsec = tp->tv_nsec + res - 1;
264
3f39894d 265 if (nsec >= NSEC_PER_SEC) {
1da177e4
LT
266 sec++;
267 nsec -= NSEC_PER_SEC;
268 }
269
270 /*
271 * The scaling constants are defined in <linux/time.h>
272 * The difference between there and here is that we do the
273 * res rounding and compute a 64-bit result (well so does that
274 * but it then throws away the high bits).
275 */
276 *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
277 (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
278 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
279}
280
281/*
282 * This function adjusts the timer as needed as a result of the clock
283 * being set. It should only be called for absolute timers, and then
284 * under the abs_list lock. It computes the time difference and sets
285 * the new jiffies value in the timer. It also updates the timers
286 * reference wall_to_monotonic value. It is complicated by the fact
287 * that tstojiffies() only handles positive times and it needs to work
288 * with both positive and negative times. Also, for negative offsets,
289 * we need to defeat the res round up.
290 *
291 * Return is true if there is a new time, else false.
292 */
293static long add_clockset_delta(struct k_itimer *timr,
294 struct timespec *new_wall_to)
295{
296 struct timespec delta;
297 int sign = 0;
298 u64 exp;
299
300 set_normalized_timespec(&delta,
301 new_wall_to->tv_sec -
302 timr->it.real.wall_to_prev.tv_sec,
303 new_wall_to->tv_nsec -
304 timr->it.real.wall_to_prev.tv_nsec);
305 if (likely(!(delta.tv_sec | delta.tv_nsec)))
306 return 0;
307 if (delta.tv_sec < 0) {
308 set_normalized_timespec(&delta,
309 -delta.tv_sec,
310 1 - delta.tv_nsec -
311 posix_clocks[timr->it_clock].res);
312 sign++;
313 }
314 tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
315 timr->it.real.wall_to_prev = *new_wall_to;
316 timr->it.real.timer.expires += (sign ? -exp : exp);
317 return 1;
318}
319
320static void remove_from_abslist(struct k_itimer *timr)
321{
322 if (!list_empty(&timr->it.real.abs_timer_entry)) {
323 spin_lock(&abs_list.lock);
324 list_del_init(&timr->it.real.abs_timer_entry);
325 spin_unlock(&abs_list.lock);
326 }
327}
328
329static void schedule_next_timer(struct k_itimer *timr)
330{
331 struct timespec new_wall_to;
332 struct now_struct now;
333 unsigned long seq;
334
335 /*
336 * Set up the timer for the next interval (if there is one).
337 * Note: this code uses the abs_timer_lock to protect
338 * it.real.wall_to_prev and must hold it until exp is set, not exactly
339 * obvious...
340
341 * This function is used for CLOCK_REALTIME* and
342 * CLOCK_MONOTONIC* timers. If we ever want to handle other
343 * CLOCKs, the calling code (do_schedule_next_timer) would need
344 * to pull the "clock" info from the timer and dispatch the
345 * "other" CLOCKs "next timer" code (which, I suppose should
346 * also be added to the k_clock structure).
347 */
348 if (!timr->it.real.incr)
349 return;
350
351 do {
352 seq = read_seqbegin(&xtime_lock);
353 new_wall_to = wall_to_monotonic;
354 posix_get_now(&now);
355 } while (read_seqretry(&xtime_lock, seq));
356
357 if (!list_empty(&timr->it.real.abs_timer_entry)) {
358 spin_lock(&abs_list.lock);
359 add_clockset_delta(timr, &new_wall_to);
360
361 posix_bump_timer(timr, now);
362
363 spin_unlock(&abs_list.lock);
364 } else {
365 posix_bump_timer(timr, now);
366 }
367 timr->it_overrun_last = timr->it_overrun;
368 timr->it_overrun = -1;
369 ++timr->it_requeue_pending;
370 add_timer(&timr->it.real.timer);
371}
372
373/*
374 * This function is exported for use by the signal deliver code. It is
375 * called just prior to the info block being released and passes that
376 * block to us. It's function is to update the overrun entry AND to
377 * restart the timer. It should only be called if the timer is to be
378 * restarted (i.e. we have flagged this in the sys_private entry of the
379 * info block).
380 *
381 * To protect aginst the timer going away while the interrupt is queued,
382 * we require that the it_requeue_pending flag be set.
383 */
384void do_schedule_next_timer(struct siginfo *info)
385{
386 struct k_itimer *timr;
387 unsigned long flags;
388
389 timr = lock_timer(info->si_tid, &flags);
390
391 if (!timr || timr->it_requeue_pending != info->si_sys_private)
392 goto exit;
393
394 if (timr->it_clock < 0) /* CPU clock */
395 posix_cpu_timer_schedule(timr);
396 else
397 schedule_next_timer(timr);
398 info->si_overrun = timr->it_overrun_last;
399exit:
400 if (timr)
401 unlock_timer(timr, flags);
402}
403
404int posix_timer_event(struct k_itimer *timr,int si_private)
405{
406 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
407 timr->sigq->info.si_sys_private = si_private;
408 /*
409 * Send signal to the process that owns this timer.
410
411 * This code assumes that all the possible abs_lists share the
412 * same lock (there is only one list at this time). If this is
413 * not the case, the CLOCK info would need to be used to find
414 * the proper abs list lock.
415 */
416
417 timr->sigq->info.si_signo = timr->it_sigev_signo;
418 timr->sigq->info.si_errno = 0;
419 timr->sigq->info.si_code = SI_TIMER;
420 timr->sigq->info.si_tid = timr->it_id;
421 timr->sigq->info.si_value = timr->it_sigev_value;
e752dd6c 422
1da177e4 423 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
e752dd6c
ON
424 struct task_struct *leader;
425 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
426 timr->it_process);
427
428 if (likely(ret >= 0))
429 return ret;
430
431 timr->it_sigev_notify = SIGEV_SIGNAL;
432 leader = timr->it_process->group_leader;
433 put_task_struct(timr->it_process);
434 timr->it_process = leader;
1da177e4 435 }
e752dd6c
ON
436
437 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
438 timr->it_process);
1da177e4
LT
439}
440EXPORT_SYMBOL_GPL(posix_timer_event);
441
442/*
443 * This function gets called when a POSIX.1b interval timer expires. It
444 * is used as a callback from the kernel internal timer. The
445 * run_timer_list code ALWAYS calls with interrupts on.
446
447 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
448 */
449static void posix_timer_fn(unsigned long __data)
450{
451 struct k_itimer *timr = (struct k_itimer *) __data;
452 unsigned long flags;
453 unsigned long seq;
454 struct timespec delta, new_wall_to;
455 u64 exp = 0;
456 int do_notify = 1;
457
458 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4
LT
459 if (!list_empty(&timr->it.real.abs_timer_entry)) {
460 spin_lock(&abs_list.lock);
461 do {
462 seq = read_seqbegin(&xtime_lock);
463 new_wall_to = wall_to_monotonic;
464 } while (read_seqretry(&xtime_lock, seq));
465 set_normalized_timespec(&delta,
466 new_wall_to.tv_sec -
467 timr->it.real.wall_to_prev.tv_sec,
468 new_wall_to.tv_nsec -
469 timr->it.real.wall_to_prev.tv_nsec);
470 if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
471 /* do nothing, timer is on time */
472 } else if (delta.tv_sec < 0) {
473 /* do nothing, timer is already late */
474 } else {
475 /* timer is early due to a clock set */
476 tstojiffie(&delta,
477 posix_clocks[timr->it_clock].res,
478 &exp);
479 timr->it.real.wall_to_prev = new_wall_to;
480 timr->it.real.timer.expires += exp;
481 add_timer(&timr->it.real.timer);
482 do_notify = 0;
483 }
484 spin_unlock(&abs_list.lock);
485
486 }
487 if (do_notify) {
488 int si_private=0;
489
490 if (timr->it.real.incr)
491 si_private = ++timr->it_requeue_pending;
492 else {
493 remove_from_abslist(timr);
494 }
495
496 if (posix_timer_event(timr, si_private))
497 /*
498 * signal was not sent because of sig_ignor
499 * we will not get a call back to restart it AND
500 * it should be restarted.
501 */
502 schedule_next_timer(timr);
503 }
504 unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
505}
506
507
508static inline struct task_struct * good_sigevent(sigevent_t * event)
509{
510 struct task_struct *rtn = current->group_leader;
511
512 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
513 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
514 rtn->tgid != current->tgid ||
515 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
516 return NULL;
517
518 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
519 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
520 return NULL;
521
522 return rtn;
523}
524
525void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock)
526{
527 if ((unsigned) clock_id >= MAX_CLOCKS) {
528 printk("POSIX clock register failed for clock_id %d\n",
529 clock_id);
530 return;
531 }
532
533 posix_clocks[clock_id] = *new_clock;
534}
535EXPORT_SYMBOL_GPL(register_posix_clock);
536
537static struct k_itimer * alloc_posix_timer(void)
538{
539 struct k_itimer *tmr;
540 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
541 if (!tmr)
542 return tmr;
543 memset(tmr, 0, sizeof (struct k_itimer));
544 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
545 kmem_cache_free(posix_timers_cache, tmr);
546 tmr = NULL;
547 }
548 return tmr;
549}
550
551#define IT_ID_SET 1
552#define IT_ID_NOT_SET 0
553static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
554{
555 if (it_id_set) {
556 unsigned long flags;
557 spin_lock_irqsave(&idr_lock, flags);
558 idr_remove(&posix_timers_id, tmr->it_id);
559 spin_unlock_irqrestore(&idr_lock, flags);
560 }
561 sigqueue_free(tmr->sigq);
562 if (unlikely(tmr->it_process) &&
563 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
564 put_task_struct(tmr->it_process);
565 kmem_cache_free(posix_timers_cache, tmr);
566}
567
568/* Create a POSIX.1b interval timer. */
569
570asmlinkage long
571sys_timer_create(clockid_t which_clock,
572 struct sigevent __user *timer_event_spec,
573 timer_t __user * created_timer_id)
574{
575 int error = 0;
576 struct k_itimer *new_timer = NULL;
577 int new_timer_id;
578 struct task_struct *process = NULL;
579 unsigned long flags;
580 sigevent_t event;
581 int it_id_set = IT_ID_NOT_SET;
582
583 if (invalid_clockid(which_clock))
584 return -EINVAL;
585
586 new_timer = alloc_posix_timer();
587 if (unlikely(!new_timer))
588 return -EAGAIN;
589
590 spin_lock_init(&new_timer->it_lock);
591 retry:
592 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
593 error = -EAGAIN;
594 goto out;
595 }
596 spin_lock_irq(&idr_lock);
597 error = idr_get_new(&posix_timers_id,
598 (void *) new_timer,
599 &new_timer_id);
600 spin_unlock_irq(&idr_lock);
601 if (error == -EAGAIN)
602 goto retry;
603 else if (error) {
604 /*
605 * Wierd looking, but we return EAGAIN if the IDR is
606 * full (proper POSIX return value for this)
607 */
608 error = -EAGAIN;
609 goto out;
610 }
611
612 it_id_set = IT_ID_SET;
613 new_timer->it_id = (timer_t) new_timer_id;
614 new_timer->it_clock = which_clock;
615 new_timer->it_overrun = -1;
616 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
617 if (error)
618 goto out;
619
620 /*
621 * return the timer_id now. The next step is hard to
622 * back out if there is an error.
623 */
624 if (copy_to_user(created_timer_id,
625 &new_timer_id, sizeof (new_timer_id))) {
626 error = -EFAULT;
627 goto out;
628 }
629 if (timer_event_spec) {
630 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
631 error = -EFAULT;
632 goto out;
633 }
634 new_timer->it_sigev_notify = event.sigev_notify;
635 new_timer->it_sigev_signo = event.sigev_signo;
636 new_timer->it_sigev_value = event.sigev_value;
637
638 read_lock(&tasklist_lock);
639 if ((process = good_sigevent(&event))) {
640 /*
641 * We may be setting up this process for another
642 * thread. It may be exiting. To catch this
643 * case the we check the PF_EXITING flag. If
644 * the flag is not set, the siglock will catch
645 * him before it is too late (in exit_itimers).
646 *
647 * The exec case is a bit more invloved but easy
648 * to code. If the process is in our thread
649 * group (and it must be or we would not allow
650 * it here) and is doing an exec, it will cause
651 * us to be killed. In this case it will wait
652 * for us to die which means we can finish this
653 * linkage with our last gasp. I.e. no code :)
654 */
655 spin_lock_irqsave(&process->sighand->siglock, flags);
656 if (!(process->flags & PF_EXITING)) {
657 new_timer->it_process = process;
658 list_add(&new_timer->list,
659 &process->signal->posix_timers);
660 spin_unlock_irqrestore(&process->sighand->siglock, flags);
661 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
662 get_task_struct(process);
663 } else {
664 spin_unlock_irqrestore(&process->sighand->siglock, flags);
665 process = NULL;
666 }
667 }
668 read_unlock(&tasklist_lock);
669 if (!process) {
670 error = -EINVAL;
671 goto out;
672 }
673 } else {
674 new_timer->it_sigev_notify = SIGEV_SIGNAL;
675 new_timer->it_sigev_signo = SIGALRM;
676 new_timer->it_sigev_value.sival_int = new_timer->it_id;
677 process = current->group_leader;
678 spin_lock_irqsave(&process->sighand->siglock, flags);
679 new_timer->it_process = process;
680 list_add(&new_timer->list, &process->signal->posix_timers);
681 spin_unlock_irqrestore(&process->sighand->siglock, flags);
682 }
683
684 /*
685 * In the case of the timer belonging to another task, after
686 * the task is unlocked, the timer is owned by the other task
687 * and may cease to exist at any time. Don't use or modify
688 * new_timer after the unlock call.
689 */
690
691out:
692 if (error)
693 release_posix_timer(new_timer, it_id_set);
694
695 return error;
696}
697
698/*
699 * good_timespec
700 *
701 * This function checks the elements of a timespec structure.
702 *
703 * Arguments:
704 * ts : Pointer to the timespec structure to check
705 *
706 * Return value:
707 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
708 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
709 * this function returns 0. Otherwise it returns 1.
710 */
711static int good_timespec(const struct timespec *ts)
712{
713 if ((!ts) || (ts->tv_sec < 0) ||
714 ((unsigned) ts->tv_nsec >= NSEC_PER_SEC))
715 return 0;
716 return 1;
717}
718
719/*
720 * Locking issues: We need to protect the result of the id look up until
721 * we get the timer locked down so it is not deleted under us. The
722 * removal is done under the idr spinlock so we use that here to bridge
723 * the find to the timer lock. To avoid a dead lock, the timer id MUST
724 * be release with out holding the timer lock.
725 */
726static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
727{
728 struct k_itimer *timr;
729 /*
730 * Watch out here. We do a irqsave on the idr_lock and pass the
731 * flags part over to the timer lock. Must not let interrupts in
732 * while we are moving the lock.
733 */
734
735 spin_lock_irqsave(&idr_lock, *flags);
736 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
737 if (timr) {
738 spin_lock(&timr->it_lock);
739 spin_unlock(&idr_lock);
740
741 if ((timr->it_id != timer_id) || !(timr->it_process) ||
742 timr->it_process->tgid != current->tgid) {
743 unlock_timer(timr, *flags);
744 timr = NULL;
745 }
746 } else
747 spin_unlock_irqrestore(&idr_lock, *flags);
748
749 return timr;
750}
751
752/*
753 * Get the time remaining on a POSIX.1b interval timer. This function
754 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
755 * mess with irq.
756 *
757 * We have a couple of messes to clean up here. First there is the case
758 * of a timer that has a requeue pending. These timers should appear to
759 * be in the timer list with an expiry as if we were to requeue them
760 * now.
761 *
762 * The second issue is the SIGEV_NONE timer which may be active but is
763 * not really ever put in the timer list (to save system resources).
764 * This timer may be expired, and if so, we will do it here. Otherwise
765 * it is the same as a requeue pending timer WRT to what we should
766 * report.
767 */
768static void
769common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
770{
771 unsigned long expires;
772 struct now_struct now;
773
774 do
775 expires = timr->it.real.timer.expires;
776 while ((volatile long) (timr->it.real.timer.expires) != expires);
777
778 posix_get_now(&now);
779
780 if (expires &&
781 ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
782 !timr->it.real.incr &&
783 posix_time_before(&timr->it.real.timer, &now))
784 timr->it.real.timer.expires = expires = 0;
785 if (expires) {
786 if (timr->it_requeue_pending & REQUEUE_PENDING ||
787 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
788 posix_bump_timer(timr, now);
789 expires = timr->it.real.timer.expires;
790 }
791 else
792 if (!timer_pending(&timr->it.real.timer))
793 expires = 0;
794 if (expires)
795 expires -= now.jiffies;
796 }
797 jiffies_to_timespec(expires, &cur_setting->it_value);
798 jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
799
800 if (cur_setting->it_value.tv_sec < 0) {
801 cur_setting->it_value.tv_nsec = 1;
802 cur_setting->it_value.tv_sec = 0;
803 }
804}
805
806/* Get the time remaining on a POSIX.1b interval timer. */
807asmlinkage long
808sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
809{
810 struct k_itimer *timr;
811 struct itimerspec cur_setting;
812 unsigned long flags;
813
814 timr = lock_timer(timer_id, &flags);
815 if (!timr)
816 return -EINVAL;
817
818 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
819
820 unlock_timer(timr, flags);
821
822 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
823 return -EFAULT;
824
825 return 0;
826}
827/*
828 * Get the number of overruns of a POSIX.1b interval timer. This is to
829 * be the overrun of the timer last delivered. At the same time we are
830 * accumulating overruns on the next timer. The overrun is frozen when
831 * the signal is delivered, either at the notify time (if the info block
832 * is not queued) or at the actual delivery time (as we are informed by
833 * the call back to do_schedule_next_timer(). So all we need to do is
834 * to pick up the frozen overrun.
835 */
836
837asmlinkage long
838sys_timer_getoverrun(timer_t timer_id)
839{
840 struct k_itimer *timr;
841 int overrun;
842 long flags;
843
844 timr = lock_timer(timer_id, &flags);
845 if (!timr)
846 return -EINVAL;
847
848 overrun = timr->it_overrun_last;
849 unlock_timer(timr, flags);
850
851 return overrun;
852}
853/*
854 * Adjust for absolute time
855 *
856 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
857 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
858 * what ever clock he is using.
859 *
860 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
861 * time to it to get the proper time for the timer.
862 */
863static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
864 int abs, u64 *exp, struct timespec *wall_to)
865{
866 struct timespec now;
867 struct timespec oc = *tp;
868 u64 jiffies_64_f;
869 int rtn =0;
870
871 if (abs) {
872 /*
873 * The mask pick up the 4 basic clocks
874 */
875 if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
876 jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
877 &now, wall_to);
878 /*
879 * If we are doing a MONOTONIC clock
880 */
881 if((clock - &posix_clocks[0]) & CLOCKS_MONO){
882 now.tv_sec += wall_to->tv_sec;
883 now.tv_nsec += wall_to->tv_nsec;
884 }
885 } else {
886 /*
887 * Not one of the basic clocks
888 */
889 clock->clock_get(clock - posix_clocks, &now);
890 jiffies_64_f = get_jiffies_64();
891 }
892 /*
78fa74a2 893 * Take away now to get delta and normalize
1da177e4 894 */
78fa74a2
GA
895 set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
896 oc.tv_nsec - now.tv_nsec);
1da177e4
LT
897 }else{
898 jiffies_64_f = get_jiffies_64();
899 }
900 /*
901 * Check if the requested time is prior to now (if so set now)
902 */
903 if (oc.tv_sec < 0)
904 oc.tv_sec = oc.tv_nsec = 0;
905
906 if (oc.tv_sec | oc.tv_nsec)
907 set_normalized_timespec(&oc, oc.tv_sec,
908 oc.tv_nsec + clock->res);
909 tstojiffie(&oc, clock->res, exp);
910
911 /*
912 * Check if the requested time is more than the timer code
913 * can handle (if so we error out but return the value too).
914 */
915 if (*exp > ((u64)MAX_JIFFY_OFFSET))
916 /*
917 * This is a considered response, not exactly in
918 * line with the standard (in fact it is silent on
919 * possible overflows). We assume such a large
920 * value is ALMOST always a programming error and
921 * try not to compound it by setting a really dumb
922 * value.
923 */
924 rtn = -EINVAL;
925 /*
926 * return the actual jiffies expire time, full 64 bits
927 */
928 *exp += jiffies_64_f;
929 return rtn;
930}
931
932/* Set a POSIX.1b interval timer. */
933/* timr->it_lock is taken. */
934static inline int
935common_timer_set(struct k_itimer *timr, int flags,
936 struct itimerspec *new_setting, struct itimerspec *old_setting)
937{
938 struct k_clock *clock = &posix_clocks[timr->it_clock];
939 u64 expire_64;
940
941 if (old_setting)
942 common_timer_get(timr, old_setting);
943
944 /* disable the timer */
945 timr->it.real.incr = 0;
946 /*
947 * careful here. If smp we could be in the "fire" routine which will
948 * be spinning as we hold the lock. But this is ONLY an SMP issue.
949 */
f972be33 950 if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
1da177e4 951#ifdef CONFIG_SMP
1da177e4
LT
952 /*
953 * It can only be active if on an other cpu. Since
954 * we have cleared the interval stuff above, it should
955 * clear once we release the spin lock. Of course once
956 * we do that anything could happen, including the
957 * complete melt down of the timer. So return with
958 * a "retry" exit status.
959 */
960 return TIMER_RETRY;
1da177e4 961#endif
f972be33
ON
962 }
963
1da177e4
LT
964 remove_from_abslist(timr);
965
966 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
967 ~REQUEUE_PENDING;
968 timr->it_overrun_last = 0;
969 timr->it_overrun = -1;
970 /*
971 *switch off the timer when it_value is zero
972 */
973 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
974 timr->it.real.timer.expires = 0;
975 return 0;
976 }
977
978 if (adjust_abs_time(clock,
979 &new_setting->it_value, flags & TIMER_ABSTIME,
980 &expire_64, &(timr->it.real.wall_to_prev))) {
981 return -EINVAL;
982 }
983 timr->it.real.timer.expires = (unsigned long)expire_64;
984 tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
985 timr->it.real.incr = (unsigned long)expire_64;
986
987 /*
988 * We do not even queue SIGEV_NONE timers! But we do put them
989 * in the abs list so we can do that right.
990 */
991 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
992 add_timer(&timr->it.real.timer);
993
994 if (flags & TIMER_ABSTIME && clock->abs_struct) {
995 spin_lock(&clock->abs_struct->lock);
996 list_add_tail(&(timr->it.real.abs_timer_entry),
997 &(clock->abs_struct->list));
998 spin_unlock(&clock->abs_struct->lock);
999 }
1000 return 0;
1001}
1002
1003/* Set a POSIX.1b interval timer */
1004asmlinkage long
1005sys_timer_settime(timer_t timer_id, int flags,
1006 const struct itimerspec __user *new_setting,
1007 struct itimerspec __user *old_setting)
1008{
1009 struct k_itimer *timr;
1010 struct itimerspec new_spec, old_spec;
1011 int error = 0;
1012 long flag;
1013 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
1014
1015 if (!new_setting)
1016 return -EINVAL;
1017
1018 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
1019 return -EFAULT;
1020
1021 if ((!good_timespec(&new_spec.it_interval)) ||
1022 (!good_timespec(&new_spec.it_value)))
1023 return -EINVAL;
1024retry:
1025 timr = lock_timer(timer_id, &flag);
1026 if (!timr)
1027 return -EINVAL;
1028
1029 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
1030 (timr, flags, &new_spec, rtn));
1031
1032 unlock_timer(timr, flag);
1033 if (error == TIMER_RETRY) {
1034 rtn = NULL; // We already got the old time...
1035 goto retry;
1036 }
1037
1038 if (old_setting && !error && copy_to_user(old_setting,
1039 &old_spec, sizeof (old_spec)))
1040 error = -EFAULT;
1041
1042 return error;
1043}
1044
1045static inline int common_timer_del(struct k_itimer *timer)
1046{
1047 timer->it.real.incr = 0;
f972be33
ON
1048
1049 if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
1da177e4 1050#ifdef CONFIG_SMP
1da177e4
LT
1051 /*
1052 * It can only be active if on an other cpu. Since
1053 * we have cleared the interval stuff above, it should
1054 * clear once we release the spin lock. Of course once
1055 * we do that anything could happen, including the
1056 * complete melt down of the timer. So return with
1057 * a "retry" exit status.
1058 */
1059 return TIMER_RETRY;
1da177e4 1060#endif
f972be33
ON
1061 }
1062
1da177e4
LT
1063 remove_from_abslist(timer);
1064
1065 return 0;
1066}
1067
1068static inline int timer_delete_hook(struct k_itimer *timer)
1069{
1070 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
1071}
1072
1073/* Delete a POSIX.1b interval timer. */
1074asmlinkage long
1075sys_timer_delete(timer_t timer_id)
1076{
1077 struct k_itimer *timer;
1078 long flags;
1079
1080#ifdef CONFIG_SMP
1081 int error;
1082retry_delete:
1083#endif
1084 timer = lock_timer(timer_id, &flags);
1085 if (!timer)
1086 return -EINVAL;
1087
1088#ifdef CONFIG_SMP
1089 error = timer_delete_hook(timer);
1090
1091 if (error == TIMER_RETRY) {
1092 unlock_timer(timer, flags);
1093 goto retry_delete;
1094 }
1095#else
1096 timer_delete_hook(timer);
1097#endif
1098 spin_lock(&current->sighand->siglock);
1099 list_del(&timer->list);
1100 spin_unlock(&current->sighand->siglock);
1101 /*
1102 * This keeps any tasks waiting on the spin lock from thinking
1103 * they got something (see the lock code above).
1104 */
1105 if (timer->it_process) {
1106 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1107 put_task_struct(timer->it_process);
1108 timer->it_process = NULL;
1109 }
1110 unlock_timer(timer, flags);
1111 release_posix_timer(timer, IT_ID_SET);
1112 return 0;
1113}
1114/*
1115 * return timer owned by the process, used by exit_itimers
1116 */
1117static inline void itimer_delete(struct k_itimer *timer)
1118{
1119 unsigned long flags;
1120
1121#ifdef CONFIG_SMP
1122 int error;
1123retry_delete:
1124#endif
1125 spin_lock_irqsave(&timer->it_lock, flags);
1126
1127#ifdef CONFIG_SMP
1128 error = timer_delete_hook(timer);
1129
1130 if (error == TIMER_RETRY) {
1131 unlock_timer(timer, flags);
1132 goto retry_delete;
1133 }
1134#else
1135 timer_delete_hook(timer);
1136#endif
1137 list_del(&timer->list);
1138 /*
1139 * This keeps any tasks waiting on the spin lock from thinking
1140 * they got something (see the lock code above).
1141 */
1142 if (timer->it_process) {
1143 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1144 put_task_struct(timer->it_process);
1145 timer->it_process = NULL;
1146 }
1147 unlock_timer(timer, flags);
1148 release_posix_timer(timer, IT_ID_SET);
1149}
1150
1151/*
25f407f0 1152 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
1153 * references to the shared signal_struct.
1154 */
1155void exit_itimers(struct signal_struct *sig)
1156{
1157 struct k_itimer *tmr;
1158
1159 while (!list_empty(&sig->posix_timers)) {
1160 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1161 itimer_delete(tmr);
1162 }
1163}
1164
1165/*
1166 * And now for the "clock" calls
1167 *
1168 * These functions are called both from timer functions (with the timer
1169 * spin_lock_irq() held and from clock calls with no locking. They must
1170 * use the save flags versions of locks.
1171 */
1172
1173/*
1174 * We do ticks here to avoid the irq lock ( they take sooo long).
1175 * The seqlock is great here. Since we a reader, we don't really care
1176 * if we are interrupted since we don't take lock that will stall us or
1177 * any other cpu. Voila, no irq lock is needed.
1178 *
1179 */
1180
1181static u64 do_posix_clock_monotonic_gettime_parts(
1182 struct timespec *tp, struct timespec *mo)
1183{
1184 u64 jiff;
1185 unsigned int seq;
1186
1187 do {
1188 seq = read_seqbegin(&xtime_lock);
1189 getnstimeofday(tp);
1190 *mo = wall_to_monotonic;
1191 jiff = jiffies_64;
1192
1193 } while(read_seqretry(&xtime_lock, seq));
1194
1195 return jiff;
1196}
1197
1198static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp)
1199{
1200 struct timespec wall_to_mono;
1201
1202 do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
1203
3f39894d
GA
1204 set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec,
1205 tp->tv_nsec + wall_to_mono.tv_nsec);
1da177e4 1206
1da177e4
LT
1207 return 0;
1208}
1209
1210int do_posix_clock_monotonic_gettime(struct timespec *tp)
1211{
1212 return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
1213}
1214
1215int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp)
1216{
1217 return -EINVAL;
1218}
1219EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
1220
1221int do_posix_clock_notimer_create(struct k_itimer *timer)
1222{
1223 return -EINVAL;
1224}
1225EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
1226
1227int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t)
1228{
1229#ifndef ENOTSUP
1230 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
1231#else /* parisc does define it separately. */
1232 return -ENOTSUP;
1233#endif
1234}
1235EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
1236
1237asmlinkage long
1238sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp)
1239{
1240 struct timespec new_tp;
1241
1242 if (invalid_clockid(which_clock))
1243 return -EINVAL;
1244 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1245 return -EFAULT;
1246
1247 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
1248}
1249
1250asmlinkage long
1251sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp)
1252{
1253 struct timespec kernel_tp;
1254 int error;
1255
1256 if (invalid_clockid(which_clock))
1257 return -EINVAL;
1258 error = CLOCK_DISPATCH(which_clock, clock_get,
1259 (which_clock, &kernel_tp));
1260 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1261 error = -EFAULT;
1262
1263 return error;
1264
1265}
1266
1267asmlinkage long
1268sys_clock_getres(clockid_t which_clock, struct timespec __user *tp)
1269{
1270 struct timespec rtn_tp;
1271 int error;
1272
1273 if (invalid_clockid(which_clock))
1274 return -EINVAL;
1275
1276 error = CLOCK_DISPATCH(which_clock, clock_getres,
1277 (which_clock, &rtn_tp));
1278
1279 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
1280 error = -EFAULT;
1281 }
1282
1283 return error;
1284}
1285
1da177e4
LT
1286/*
1287 * The standard says that an absolute nanosleep call MUST wake up at
1288 * the requested time in spite of clock settings. Here is what we do:
1289 * For each nanosleep call that needs it (only absolute and not on
1290 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1291 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1292 * When ever the clock is set we just wake up all those tasks. The rest
1293 * is done by the while loop in clock_nanosleep().
1294 *
1295 * On locking, clock_was_set() is called from update_wall_clock which
1296 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1297 * called from the timer bh code. Thus we need the irq save locks.
1298 *
1299 * Also, on the call from update_wall_clock, that is done as part of a
1300 * softirq thing. We don't want to delay the system that much (possibly
1301 * long list of timers to fix), so we defer that work to keventd.
1302 */
1303
1304static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
1305static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
1306
1307static DECLARE_MUTEX(clock_was_set_lock);
1308
1309void clock_was_set(void)
1310{
1311 struct k_itimer *timr;
1312 struct timespec new_wall_to;
1313 LIST_HEAD(cws_list);
1314 unsigned long seq;
1315
1316
1317 if (unlikely(in_interrupt())) {
1318 schedule_work(&clock_was_set_work);
1319 return;
1320 }
1321 wake_up_all(&nanosleep_abs_wqueue);
1322
1323 /*
1324 * Check if there exist TIMER_ABSTIME timers to correct.
1325 *
1326 * Notes on locking: This code is run in task context with irq
1327 * on. We CAN be interrupted! All other usage of the abs list
1328 * lock is under the timer lock which holds the irq lock as
1329 * well. We REALLY don't want to scan the whole list with the
1330 * interrupt system off, AND we would like a sequence lock on
1331 * this code as well. Since we assume that the clock will not
1332 * be set often, it seems ok to take and release the irq lock
1333 * for each timer. In fact add_timer will do this, so this is
1334 * not an issue. So we know when we are done, we will move the
1335 * whole list to a new location. Then as we process each entry,
1336 * we will move it to the actual list again. This way, when our
1337 * copy is empty, we are done. We are not all that concerned
1338 * about preemption so we will use a semaphore lock to protect
1339 * aginst reentry. This way we will not stall another
1340 * processor. It is possible that this may delay some timers
1341 * that should have expired, given the new clock, but even this
1342 * will be minimal as we will always update to the current time,
1343 * even if it was set by a task that is waiting for entry to
1344 * this code. Timers that expire too early will be caught by
1345 * the expire code and restarted.
1346
1347 * Absolute timers that repeat are left in the abs list while
1348 * waiting for the task to pick up the signal. This means we
1349 * may find timers that are not in the "add_timer" list, but are
1350 * in the abs list. We do the same thing for these, save
1351 * putting them back in the "add_timer" list. (Note, these are
1352 * left in the abs list mainly to indicate that they are
1353 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1354 * for which we have no other flag.)
1355
1356 */
1357
1358 down(&clock_was_set_lock);
1359 spin_lock_irq(&abs_list.lock);
1360 list_splice_init(&abs_list.list, &cws_list);
1361 spin_unlock_irq(&abs_list.lock);
1362 do {
1363 do {
1364 seq = read_seqbegin(&xtime_lock);
1365 new_wall_to = wall_to_monotonic;
1366 } while (read_seqretry(&xtime_lock, seq));
1367
1368 spin_lock_irq(&abs_list.lock);
1369 if (list_empty(&cws_list)) {
1370 spin_unlock_irq(&abs_list.lock);
1371 break;
1372 }
1373 timr = list_entry(cws_list.next, struct k_itimer,
1374 it.real.abs_timer_entry);
1375
1376 list_del_init(&timr->it.real.abs_timer_entry);
1377 if (add_clockset_delta(timr, &new_wall_to) &&
1378 del_timer(&timr->it.real.timer)) /* timer run yet? */
1379 add_timer(&timr->it.real.timer);
1380 list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
1381 spin_unlock_irq(&abs_list.lock);
1382 } while (1);
1383
1384 up(&clock_was_set_lock);
1385}
1386
1387long clock_nanosleep_restart(struct restart_block *restart_block);
1388
1389asmlinkage long
1390sys_clock_nanosleep(clockid_t which_clock, int flags,
1391 const struct timespec __user *rqtp,
1392 struct timespec __user *rmtp)
1393{
1394 struct timespec t;
1395 struct restart_block *restart_block =
1396 &(current_thread_info()->restart_block);
1397 int ret;
1398
1399 if (invalid_clockid(which_clock))
1400 return -EINVAL;
1401
1402 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1403 return -EFAULT;
1404
1405 if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0)
1406 return -EINVAL;
1407
1408 /*
1409 * Do this here as nsleep function does not have the real address.
1410 */
1411 restart_block->arg1 = (unsigned long)rmtp;
1412
1413 ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t));
1414
1415 if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
1416 copy_to_user(rmtp, &t, sizeof (t)))
1417 return -EFAULT;
1418 return ret;
1419}
1420
1421
1422static int common_nsleep(clockid_t which_clock,
1423 int flags, struct timespec *tsave)
1424{
1425 struct timespec t, dum;
1da177e4
LT
1426 DECLARE_WAITQUEUE(abs_wqueue, current);
1427 u64 rq_time = (u64)0;
1428 s64 left;
1429 int abs;
1430 struct restart_block *restart_block =
1431 &current_thread_info()->restart_block;
1432
1433 abs_wqueue.flags = 0;
1da177e4
LT
1434 abs = flags & TIMER_ABSTIME;
1435
1436 if (restart_block->fn == clock_nanosleep_restart) {
1437 /*
1438 * Interrupted by a non-delivered signal, pick up remaining
1439 * time and continue. Remaining time is in arg2 & 3.
1440 */
1441 restart_block->fn = do_no_restart_syscall;
1442
1443 rq_time = restart_block->arg3;
1444 rq_time = (rq_time << 32) + restart_block->arg2;
1445 if (!rq_time)
1446 return -EINTR;
1447 left = rq_time - get_jiffies_64();
1448 if (left <= (s64)0)
1449 return 0; /* Already passed */
1450 }
1451
1452 if (abs && (posix_clocks[which_clock].clock_get !=
1453 posix_clocks[CLOCK_MONOTONIC].clock_get))
1454 add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
1455
1456 do {
1457 t = *tsave;
1458 if (abs || !rq_time) {
1459 adjust_abs_time(&posix_clocks[which_clock], &t, abs,
1460 &rq_time, &dum);
1461 }
1462
1463 left = rq_time - get_jiffies_64();
1464 if (left >= (s64)MAX_JIFFY_OFFSET)
1465 left = (s64)MAX_JIFFY_OFFSET;
1466 if (left < (s64)0)
1467 break;
1468
4eb9af2a 1469 schedule_timeout_interruptible(left);
1da177e4 1470
1da177e4
LT
1471 left = rq_time - get_jiffies_64();
1472 } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
1473
1474 if (abs_wqueue.task_list.next)
1475 finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
1476
1477 if (left > (s64)0) {
1478
1479 /*
1480 * Always restart abs calls from scratch to pick up any
1481 * clock shifting that happened while we are away.
1482 */
1483 if (abs)
1484 return -ERESTARTNOHAND;
1485
1486 left *= TICK_NSEC;
1487 tsave->tv_sec = div_long_long_rem(left,
1488 NSEC_PER_SEC,
1489 &tsave->tv_nsec);
1490 /*
1491 * Restart works by saving the time remaing in
1492 * arg2 & 3 (it is 64-bits of jiffies). The other
1493 * info we need is the clock_id (saved in arg0).
1494 * The sys_call interface needs the users
1495 * timespec return address which _it_ saves in arg1.
1496 * Since we have cast the nanosleep call to a clock_nanosleep
1497 * both can be restarted with the same code.
1498 */
1499 restart_block->fn = clock_nanosleep_restart;
1500 restart_block->arg0 = which_clock;
1501 /*
1502 * Caller sets arg1
1503 */
1504 restart_block->arg2 = rq_time & 0xffffffffLL;
1505 restart_block->arg3 = rq_time >> 32;
1506
1507 return -ERESTART_RESTARTBLOCK;
1508 }
1509
1510 return 0;
1511}
1512/*
1513 * This will restart clock_nanosleep.
1514 */
1515long
1516clock_nanosleep_restart(struct restart_block *restart_block)
1517{
1518 struct timespec t;
1519 int ret = common_nsleep(restart_block->arg0, 0, &t);
1520
1521 if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
1522 copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
1523 sizeof (t)))
1524 return -EFAULT;
1525 return ret;
1526}