posix-timers: sys_timer_create: remove the buggy PF_EXITING check
[linux-2.6-block.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
200/*
becf8b5d 201 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 202 */
a924b04d 203static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
204{
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
1da177e4
LT
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
1da177e4
LT
213 return 1;
214}
215
becf8b5d
TG
216/*
217 * Get monotonic time for posix timers
218 */
219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220{
221 ktime_get_ts(tp);
222 return 0;
223}
1da177e4
LT
224
225/*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228static __init int init_posix_timers(void)
229{
becf8b5d
TG
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
1da177e4 232 };
becf8b5d
TG
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
1da177e4
LT
237 };
238
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
241
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
1da177e4
LT
245 idr_init(&posix_timers_id);
246 return 0;
247}
248
249__initcall(init_posix_timers);
250
1da177e4
LT
251static void schedule_next_timer(struct k_itimer *timr)
252{
44f21475
RZ
253 struct hrtimer *timer = &timr->it.real.timer;
254
becf8b5d 255 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
256 return;
257
4d672e7a
DL
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
44f21475 261
1da177e4
LT
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
44f21475 265 hrtimer_restart(timer);
1da177e4
LT
266}
267
268/*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279void do_schedule_next_timer(struct siginfo *info)
280{
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
becf8b5d
TG
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
1da177e4 291
54da1174 292 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
293 }
294
b6557fbc
TG
295 if (timr)
296 unlock_timer(timr, flags);
1da177e4
LT
297}
298
ba661292 299int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 300{
4aa73611 301 int shared, ret;
ba661292
ON
302 /*
303 * FIXME: if ->sigq is queued we can race with
304 * dequeue_signal()->do_schedule_next_timer().
305 *
306 * If dequeue_signal() sees the "right" value of
307 * si_sys_private it calls do_schedule_next_timer().
308 * We re-queue ->sigq and drop ->it_lock().
309 * do_schedule_next_timer() locks the timer
310 * and re-schedules it while ->sigq is pending.
311 * Not really bad, but not that we want.
312 */
1da177e4 313 timr->sigq->info.si_sys_private = si_private;
1da177e4
LT
314
315 timr->sigq->info.si_signo = timr->it_sigev_signo;
1da177e4
LT
316 timr->sigq->info.si_code = SI_TIMER;
317 timr->sigq->info.si_tid = timr->it_id;
318 timr->sigq->info.si_value = timr->it_sigev_value;
e752dd6c 319
4aa73611
ON
320 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
321 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
322 /* If we failed to send the signal the timer stops. */
323 return ret > 0;
1da177e4
LT
324}
325EXPORT_SYMBOL_GPL(posix_timer_event);
326
327/*
328 * This function gets called when a POSIX.1b interval timer expires. It
329 * is used as a callback from the kernel internal timer. The
330 * run_timer_list code ALWAYS calls with interrupts on.
331
332 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
333 */
c9cb2e3d 334static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 335{
05cfb614 336 struct k_itimer *timr;
1da177e4 337 unsigned long flags;
becf8b5d 338 int si_private = 0;
c9cb2e3d 339 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 340
05cfb614 341 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 342 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 343
becf8b5d
TG
344 if (timr->it.real.interval.tv64 != 0)
345 si_private = ++timr->it_requeue_pending;
1da177e4 346
becf8b5d
TG
347 if (posix_timer_event(timr, si_private)) {
348 /*
349 * signal was not sent because of sig_ignor
350 * we will not get a call back to restart it AND
351 * it should be restarted.
352 */
353 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
354 ktime_t now = hrtimer_cb_get_time(timer);
355
356 /*
357 * FIXME: What we really want, is to stop this
358 * timer completely and restart it in case the
359 * SIG_IGN is removed. This is a non trivial
360 * change which involves sighand locking
361 * (sigh !), which we don't want to do late in
362 * the release cycle.
363 *
364 * For now we just let timers with an interval
365 * less than a jiffie expire every jiffie to
366 * avoid softirq starvation in case of SIG_IGN
367 * and a very small interval, which would put
368 * the timer right back on the softirq pending
369 * list. By moving now ahead of time we trick
370 * hrtimer_forward() to expire the timer
371 * later, while we still maintain the overrun
372 * accuracy, but have some inconsistency in
373 * the timer_gettime() case. This is at least
374 * better than a starved softirq. A more
375 * complex fix which solves also another related
376 * inconsistency is already in the pipeline.
377 */
378#ifdef CONFIG_HIGH_RES_TIMERS
379 {
380 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
381
382 if (timr->it.real.interval.tv64 < kj.tv64)
383 now = ktime_add(now, kj);
384 }
385#endif
4d672e7a 386 timr->it_overrun += (unsigned int)
58229a18 387 hrtimer_forward(timer, now,
becf8b5d
TG
388 timr->it.real.interval);
389 ret = HRTIMER_RESTART;
a0a0c28c 390 ++timr->it_requeue_pending;
1da177e4 391 }
1da177e4 392 }
1da177e4 393
becf8b5d
TG
394 unlock_timer(timr, flags);
395 return ret;
396}
1da177e4 397
858119e1 398static struct task_struct * good_sigevent(sigevent_t * event)
1da177e4
LT
399{
400 struct task_struct *rtn = current->group_leader;
401
402 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 403 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 404 !same_thread_group(rtn, current) ||
1da177e4
LT
405 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
406 return NULL;
407
408 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
409 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
410 return NULL;
411
412 return rtn;
413}
414
a924b04d 415void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
416{
417 if ((unsigned) clock_id >= MAX_CLOCKS) {
418 printk("POSIX clock register failed for clock_id %d\n",
419 clock_id);
420 return;
421 }
422
423 posix_clocks[clock_id] = *new_clock;
424}
425EXPORT_SYMBOL_GPL(register_posix_clock);
426
427static struct k_itimer * alloc_posix_timer(void)
428{
429 struct k_itimer *tmr;
c3762229 430 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
431 if (!tmr)
432 return tmr;
1da177e4
LT
433 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
434 kmem_cache_free(posix_timers_cache, tmr);
435 tmr = NULL;
436 }
ba661292 437 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
438 return tmr;
439}
440
441#define IT_ID_SET 1
442#define IT_ID_NOT_SET 0
443static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
444{
445 if (it_id_set) {
446 unsigned long flags;
447 spin_lock_irqsave(&idr_lock, flags);
448 idr_remove(&posix_timers_id, tmr->it_id);
449 spin_unlock_irqrestore(&idr_lock, flags);
450 }
451 sigqueue_free(tmr->sigq);
1da177e4
LT
452 kmem_cache_free(posix_timers_cache, tmr);
453}
454
455/* Create a POSIX.1b interval timer. */
456
457asmlinkage long
a924b04d 458sys_timer_create(const clockid_t which_clock,
1da177e4
LT
459 struct sigevent __user *timer_event_spec,
460 timer_t __user * created_timer_id)
461{
462 int error = 0;
2cd499e3 463 struct k_itimer *new_timer;
1da177e4 464 int new_timer_id;
2cd499e3 465 struct task_struct *process;
1da177e4
LT
466 unsigned long flags;
467 sigevent_t event;
468 int it_id_set = IT_ID_NOT_SET;
469
470 if (invalid_clockid(which_clock))
471 return -EINVAL;
472
473 new_timer = alloc_posix_timer();
474 if (unlikely(!new_timer))
475 return -EAGAIN;
476
477 spin_lock_init(&new_timer->it_lock);
478 retry:
479 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
480 error = -EAGAIN;
481 goto out;
482 }
483 spin_lock_irq(&idr_lock);
becf8b5d 484 error = idr_get_new(&posix_timers_id, (void *) new_timer,
1da177e4
LT
485 &new_timer_id);
486 spin_unlock_irq(&idr_lock);
487 if (error == -EAGAIN)
488 goto retry;
489 else if (error) {
490 /*
0b0a3e7b 491 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
492 * full (proper POSIX return value for this)
493 */
494 error = -EAGAIN;
495 goto out;
496 }
497
498 it_id_set = IT_ID_SET;
499 new_timer->it_id = (timer_t) new_timer_id;
500 new_timer->it_clock = which_clock;
501 new_timer->it_overrun = -1;
502 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
503 if (error)
504 goto out;
505
506 /*
507 * return the timer_id now. The next step is hard to
508 * back out if there is an error.
509 */
510 if (copy_to_user(created_timer_id,
511 &new_timer_id, sizeof (new_timer_id))) {
512 error = -EFAULT;
513 goto out;
514 }
515 if (timer_event_spec) {
516 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
517 error = -EFAULT;
518 goto out;
519 }
520 new_timer->it_sigev_notify = event.sigev_notify;
521 new_timer->it_sigev_signo = event.sigev_signo;
522 new_timer->it_sigev_value = event.sigev_value;
523
524 read_lock(&tasklist_lock);
525 if ((process = good_sigevent(&event))) {
2cd499e3 526 get_task_struct(process);
1da177e4 527 spin_lock_irqsave(&process->sighand->siglock, flags);
2cd499e3
ON
528 new_timer->it_process = process;
529 list_add(&new_timer->list,
530 &process->signal->posix_timers);
531 spin_unlock_irqrestore(&process->sighand->siglock, flags);
1da177e4
LT
532 }
533 read_unlock(&tasklist_lock);
534 if (!process) {
535 error = -EINVAL;
536 goto out;
537 }
538 } else {
539 new_timer->it_sigev_notify = SIGEV_SIGNAL;
540 new_timer->it_sigev_signo = SIGALRM;
541 new_timer->it_sigev_value.sival_int = new_timer->it_id;
542 process = current->group_leader;
918fc037 543 get_task_struct(process);
1da177e4
LT
544 spin_lock_irqsave(&process->sighand->siglock, flags);
545 new_timer->it_process = process;
546 list_add(&new_timer->list, &process->signal->posix_timers);
547 spin_unlock_irqrestore(&process->sighand->siglock, flags);
548 }
549
550 /*
551 * In the case of the timer belonging to another task, after
552 * the task is unlocked, the timer is owned by the other task
553 * and may cease to exist at any time. Don't use or modify
554 * new_timer after the unlock call.
555 */
556
557out:
558 if (error)
559 release_posix_timer(new_timer, it_id_set);
560
561 return error;
562}
563
1da177e4
LT
564/*
565 * Locking issues: We need to protect the result of the id look up until
566 * we get the timer locked down so it is not deleted under us. The
567 * removal is done under the idr spinlock so we use that here to bridge
568 * the find to the timer lock. To avoid a dead lock, the timer id MUST
569 * be release with out holding the timer lock.
570 */
571static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
572{
573 struct k_itimer *timr;
574 /*
575 * Watch out here. We do a irqsave on the idr_lock and pass the
576 * flags part over to the timer lock. Must not let interrupts in
577 * while we are moving the lock.
578 */
579
580 spin_lock_irqsave(&idr_lock, *flags);
581 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
582 if (timr) {
583 spin_lock(&timr->it_lock);
1da177e4
LT
584
585 if ((timr->it_id != timer_id) || !(timr->it_process) ||
bac0abd6 586 !same_thread_group(timr->it_process, current)) {
179394af
TG
587 spin_unlock(&timr->it_lock);
588 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 589 timr = NULL;
179394af
TG
590 } else
591 spin_unlock(&idr_lock);
1da177e4
LT
592 } else
593 spin_unlock_irqrestore(&idr_lock, *flags);
594
595 return timr;
596}
597
598/*
599 * Get the time remaining on a POSIX.1b interval timer. This function
600 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
601 * mess with irq.
602 *
603 * We have a couple of messes to clean up here. First there is the case
604 * of a timer that has a requeue pending. These timers should appear to
605 * be in the timer list with an expiry as if we were to requeue them
606 * now.
607 *
608 * The second issue is the SIGEV_NONE timer which may be active but is
609 * not really ever put in the timer list (to save system resources).
610 * This timer may be expired, and if so, we will do it here. Otherwise
611 * it is the same as a requeue pending timer WRT to what we should
612 * report.
613 */
614static void
615common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
616{
3b98a532 617 ktime_t now, remaining, iv;
becf8b5d 618 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 619
becf8b5d 620 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 621
3b98a532
RZ
622 iv = timr->it.real.interval;
623
becf8b5d 624 /* interval timer ? */
3b98a532
RZ
625 if (iv.tv64)
626 cur_setting->it_interval = ktime_to_timespec(iv);
627 else if (!hrtimer_active(timer) &&
628 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 629 return;
3b98a532
RZ
630
631 now = timer->base->get_time();
632
becf8b5d 633 /*
3b98a532
RZ
634 * When a requeue is pending or this is a SIGEV_NONE
635 * timer move the expiry time forward by intervals, so
636 * expiry is > now.
becf8b5d 637 */
3b98a532
RZ
638 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
639 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 640 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532
RZ
641
642 remaining = ktime_sub(timer->expires, now);
becf8b5d 643 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
644 if (remaining.tv64 <= 0) {
645 /*
646 * A single shot SIGEV_NONE timer must return 0, when
647 * it is expired !
648 */
649 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
650 cur_setting->it_value.tv_nsec = 1;
651 } else
becf8b5d 652 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
653}
654
655/* Get the time remaining on a POSIX.1b interval timer. */
656asmlinkage long
657sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
658{
659 struct k_itimer *timr;
660 struct itimerspec cur_setting;
661 unsigned long flags;
662
663 timr = lock_timer(timer_id, &flags);
664 if (!timr)
665 return -EINVAL;
666
667 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
668
669 unlock_timer(timr, flags);
670
671 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
672 return -EFAULT;
673
674 return 0;
675}
becf8b5d 676
1da177e4
LT
677/*
678 * Get the number of overruns of a POSIX.1b interval timer. This is to
679 * be the overrun of the timer last delivered. At the same time we are
680 * accumulating overruns on the next timer. The overrun is frozen when
681 * the signal is delivered, either at the notify time (if the info block
682 * is not queued) or at the actual delivery time (as we are informed by
683 * the call back to do_schedule_next_timer(). So all we need to do is
684 * to pick up the frozen overrun.
685 */
1da177e4
LT
686asmlinkage long
687sys_timer_getoverrun(timer_t timer_id)
688{
689 struct k_itimer *timr;
690 int overrun;
5ba25331 691 unsigned long flags;
1da177e4
LT
692
693 timr = lock_timer(timer_id, &flags);
694 if (!timr)
695 return -EINVAL;
696
697 overrun = timr->it_overrun_last;
698 unlock_timer(timr, flags);
699
700 return overrun;
701}
1da177e4
LT
702
703/* Set a POSIX.1b interval timer. */
704/* timr->it_lock is taken. */
858119e1 705static int
1da177e4
LT
706common_timer_set(struct k_itimer *timr, int flags,
707 struct itimerspec *new_setting, struct itimerspec *old_setting)
708{
becf8b5d 709 struct hrtimer *timer = &timr->it.real.timer;
7978672c 710 enum hrtimer_mode mode;
1da177e4
LT
711
712 if (old_setting)
713 common_timer_get(timr, old_setting);
714
715 /* disable the timer */
becf8b5d 716 timr->it.real.interval.tv64 = 0;
1da177e4
LT
717 /*
718 * careful here. If smp we could be in the "fire" routine which will
719 * be spinning as we hold the lock. But this is ONLY an SMP issue.
720 */
becf8b5d 721 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 722 return TIMER_RETRY;
1da177e4
LT
723
724 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
725 ~REQUEUE_PENDING;
726 timr->it_overrun_last = 0;
1da177e4 727
becf8b5d
TG
728 /* switch off the timer when it_value is zero */
729 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
730 return 0;
1da177e4 731
c9cb2e3d 732 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 733 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 734 timr->it.real.timer.function = posix_timer_fn;
becf8b5d
TG
735
736 timer->expires = timespec_to_ktime(new_setting->it_value);
737
738 /* Convert interval */
739 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
740
741 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
742 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
743 /* Setup correct expiry time for relative timers */
5a7780e7
TG
744 if (mode == HRTIMER_MODE_REL) {
745 timer->expires =
746 ktime_add_safe(timer->expires,
747 timer->base->get_time());
748 }
becf8b5d 749 return 0;
952bbc87 750 }
becf8b5d 751
7978672c 752 hrtimer_start(timer, timer->expires, mode);
1da177e4
LT
753 return 0;
754}
755
756/* Set a POSIX.1b interval timer */
757asmlinkage long
758sys_timer_settime(timer_t timer_id, int flags,
759 const struct itimerspec __user *new_setting,
760 struct itimerspec __user *old_setting)
761{
762 struct k_itimer *timr;
763 struct itimerspec new_spec, old_spec;
764 int error = 0;
5ba25331 765 unsigned long flag;
1da177e4
LT
766 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
767
768 if (!new_setting)
769 return -EINVAL;
770
771 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
772 return -EFAULT;
773
becf8b5d
TG
774 if (!timespec_valid(&new_spec.it_interval) ||
775 !timespec_valid(&new_spec.it_value))
1da177e4
LT
776 return -EINVAL;
777retry:
778 timr = lock_timer(timer_id, &flag);
779 if (!timr)
780 return -EINVAL;
781
782 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
783 (timr, flags, &new_spec, rtn));
784
785 unlock_timer(timr, flag);
786 if (error == TIMER_RETRY) {
787 rtn = NULL; // We already got the old time...
788 goto retry;
789 }
790
becf8b5d
TG
791 if (old_setting && !error &&
792 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
793 error = -EFAULT;
794
795 return error;
796}
797
798static inline int common_timer_del(struct k_itimer *timer)
799{
becf8b5d 800 timer->it.real.interval.tv64 = 0;
f972be33 801
becf8b5d 802 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 803 return TIMER_RETRY;
1da177e4
LT
804 return 0;
805}
806
807static inline int timer_delete_hook(struct k_itimer *timer)
808{
809 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
810}
811
812/* Delete a POSIX.1b interval timer. */
813asmlinkage long
814sys_timer_delete(timer_t timer_id)
815{
816 struct k_itimer *timer;
5ba25331 817 unsigned long flags;
1da177e4 818
1da177e4 819retry_delete:
1da177e4
LT
820 timer = lock_timer(timer_id, &flags);
821 if (!timer)
822 return -EINVAL;
823
becf8b5d 824 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
825 unlock_timer(timer, flags);
826 goto retry_delete;
827 }
becf8b5d 828
1da177e4
LT
829 spin_lock(&current->sighand->siglock);
830 list_del(&timer->list);
831 spin_unlock(&current->sighand->siglock);
832 /*
833 * This keeps any tasks waiting on the spin lock from thinking
834 * they got something (see the lock code above).
835 */
918fc037 836 put_task_struct(timer->it_process);
4b7a1304
ON
837 timer->it_process = NULL;
838
1da177e4
LT
839 unlock_timer(timer, flags);
840 release_posix_timer(timer, IT_ID_SET);
841 return 0;
842}
becf8b5d 843
1da177e4
LT
844/*
845 * return timer owned by the process, used by exit_itimers
846 */
858119e1 847static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
848{
849 unsigned long flags;
850
1da177e4 851retry_delete:
1da177e4
LT
852 spin_lock_irqsave(&timer->it_lock, flags);
853
becf8b5d 854 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
855 unlock_timer(timer, flags);
856 goto retry_delete;
857 }
1da177e4
LT
858 list_del(&timer->list);
859 /*
860 * This keeps any tasks waiting on the spin lock from thinking
861 * they got something (see the lock code above).
862 */
918fc037 863 put_task_struct(timer->it_process);
4b7a1304
ON
864 timer->it_process = NULL;
865
1da177e4
LT
866 unlock_timer(timer, flags);
867 release_posix_timer(timer, IT_ID_SET);
868}
869
870/*
25f407f0 871 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
872 * references to the shared signal_struct.
873 */
874void exit_itimers(struct signal_struct *sig)
875{
876 struct k_itimer *tmr;
877
878 while (!list_empty(&sig->posix_timers)) {
879 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
880 itimer_delete(tmr);
881 }
882}
883
becf8b5d 884/* Not available / possible... functions */
a924b04d 885int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
886{
887 return -EINVAL;
888}
889EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
890
a924b04d 891int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 892 struct timespec *t, struct timespec __user *r)
1da177e4
LT
893{
894#ifndef ENOTSUP
895 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
896#else /* parisc does define it separately. */
897 return -ENOTSUP;
898#endif
899}
900EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
901
a924b04d
TG
902asmlinkage long sys_clock_settime(const clockid_t which_clock,
903 const struct timespec __user *tp)
1da177e4
LT
904{
905 struct timespec new_tp;
906
907 if (invalid_clockid(which_clock))
908 return -EINVAL;
909 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
910 return -EFAULT;
911
912 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
913}
914
915asmlinkage long
a924b04d 916sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
917{
918 struct timespec kernel_tp;
919 int error;
920
921 if (invalid_clockid(which_clock))
922 return -EINVAL;
923 error = CLOCK_DISPATCH(which_clock, clock_get,
924 (which_clock, &kernel_tp));
925 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
926 error = -EFAULT;
927
928 return error;
929
930}
931
932asmlinkage long
a924b04d 933sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
934{
935 struct timespec rtn_tp;
936 int error;
937
938 if (invalid_clockid(which_clock))
939 return -EINVAL;
940
941 error = CLOCK_DISPATCH(which_clock, clock_getres,
942 (which_clock, &rtn_tp));
943
944 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
945 error = -EFAULT;
946 }
947
948 return error;
949}
950
97735f25
TG
951/*
952 * nanosleep for monotonic and realtime clocks
953 */
954static int common_nsleep(const clockid_t which_clock, int flags,
955 struct timespec *tsave, struct timespec __user *rmtp)
956{
080344b9
ON
957 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
958 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
959 which_clock);
97735f25 960}
1da177e4
LT
961
962asmlinkage long
a924b04d 963sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
964 const struct timespec __user *rqtp,
965 struct timespec __user *rmtp)
966{
967 struct timespec t;
1da177e4
LT
968
969 if (invalid_clockid(which_clock))
970 return -EINVAL;
971
972 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
973 return -EFAULT;
974
5f82b2b7 975 if (!timespec_valid(&t))
1da177e4
LT
976 return -EINVAL;
977
97735f25
TG
978 return CLOCK_DISPATCH(which_clock, nsleep,
979 (which_clock, flags, &t, rmtp));
1da177e4 980}
1711ef38
TA
981
982/*
983 * nanosleep_restart for monotonic and realtime clocks
984 */
985static int common_nsleep_restart(struct restart_block *restart_block)
986{
987 return hrtimer_nanosleep_restart(restart_block);
988}
989
990/*
991 * This will restart clock_nanosleep. This is required only by
992 * compat_clock_nanosleep_restart for now.
993 */
994long
995clock_nanosleep_restart(struct restart_block *restart_block)
996{
997 clockid_t which_clock = restart_block->arg0;
998
999 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1000 (restart_block));
1001}