[PATCH] posix-timers: remove false BUG_ON() from run_posix_cpu_timers()
[linux-2.6-block.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
7#include <asm/uaccess.h>
8#include <linux/errno.h>
9
10static int check_clock(clockid_t which_clock)
11{
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
15
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
18
19 if (pid == 0)
20 return 0;
21
22 read_lock(&tasklist_lock);
23 p = find_task_by_pid(pid);
24 if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
25 p->tgid != current->tgid : p->tgid != pid)) {
26 error = -EINVAL;
27 }
28 read_unlock(&tasklist_lock);
29
30 return error;
31}
32
33static inline union cpu_time_count
34timespec_to_sample(clockid_t which_clock, const struct timespec *tp)
35{
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39 ret.sched = tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
42 }
43 return ret;
44}
45
46static void sample_to_timespec(clockid_t which_clock,
47 union cpu_time_count cpu,
48 struct timespec *tp)
49{
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
55 }
56}
57
58static inline int cpu_time_before(clockid_t which_clock,
59 union cpu_time_count now,
60 union cpu_time_count then)
61{
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
66 }
67}
68static inline void cpu_time_add(clockid_t which_clock,
69 union cpu_time_count *acc,
70 union cpu_time_count val)
71{
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
76 }
77}
78static inline union cpu_time_count cpu_time_sub(clockid_t which_clock,
79 union cpu_time_count a,
80 union cpu_time_count b)
81{
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
86 }
87 return a;
88}
89
90/*
91 * Update expiry time from increment, and increase overrun count,
92 * given the current clock sample.
93 */
94static inline void bump_cpu_timer(struct k_itimer *timer,
95 union cpu_time_count now)
96{
97 int i;
98
99 if (timer->it.cpu.incr.sched == 0)
100 return;
101
102 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
103 unsigned long long delta, incr;
104
105 if (now.sched < timer->it.cpu.expires.sched)
106 return;
107 incr = timer->it.cpu.incr.sched;
108 delta = now.sched + incr - timer->it.cpu.expires.sched;
109 /* Don't use (incr*2 < delta), incr*2 might overflow. */
110 for (i = 0; incr < delta - incr; i++)
111 incr = incr << 1;
112 for (; i >= 0; incr >>= 1, i--) {
113 if (delta <= incr)
114 continue;
115 timer->it.cpu.expires.sched += incr;
116 timer->it_overrun += 1 << i;
117 delta -= incr;
118 }
119 } else {
120 cputime_t delta, incr;
121
122 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
123 return;
124 incr = timer->it.cpu.incr.cpu;
125 delta = cputime_sub(cputime_add(now.cpu, incr),
126 timer->it.cpu.expires.cpu);
127 /* Don't use (incr*2 < delta), incr*2 might overflow. */
128 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
129 incr = cputime_add(incr, incr);
130 for (; i >= 0; incr = cputime_halve(incr), i--) {
131 if (cputime_le(delta, incr))
132 continue;
133 timer->it.cpu.expires.cpu =
134 cputime_add(timer->it.cpu.expires.cpu, incr);
135 timer->it_overrun += 1 << i;
136 delta = cputime_sub(delta, incr);
137 }
138 }
139}
140
141static inline cputime_t prof_ticks(struct task_struct *p)
142{
143 return cputime_add(p->utime, p->stime);
144}
145static inline cputime_t virt_ticks(struct task_struct *p)
146{
147 return p->utime;
148}
149static inline unsigned long long sched_ns(struct task_struct *p)
150{
151 return (p == current) ? current_sched_time(p) : p->sched_time;
152}
153
154int posix_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
155{
156 int error = check_clock(which_clock);
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
161 /*
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
165 */
166 tp->tv_nsec = 1;
167 }
168 }
169 return error;
170}
171
172int posix_cpu_clock_set(clockid_t which_clock, const struct timespec *tp)
173{
174 /*
175 * You can never reset a CPU clock, but we check for other errors
176 * in the call before failing with EPERM.
177 */
178 int error = check_clock(which_clock);
179 if (error == 0) {
180 error = -EPERM;
181 }
182 return error;
183}
184
185
186/*
187 * Sample a per-thread clock for the given task.
188 */
189static int cpu_clock_sample(clockid_t which_clock, struct task_struct *p,
190 union cpu_time_count *cpu)
191{
192 switch (CPUCLOCK_WHICH(which_clock)) {
193 default:
194 return -EINVAL;
195 case CPUCLOCK_PROF:
196 cpu->cpu = prof_ticks(p);
197 break;
198 case CPUCLOCK_VIRT:
199 cpu->cpu = virt_ticks(p);
200 break;
201 case CPUCLOCK_SCHED:
202 cpu->sched = sched_ns(p);
203 break;
204 }
205 return 0;
206}
207
208/*
209 * Sample a process (thread group) clock for the given group_leader task.
210 * Must be called with tasklist_lock held for reading.
211 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
212 */
213static int cpu_clock_sample_group_locked(unsigned int clock_idx,
214 struct task_struct *p,
215 union cpu_time_count *cpu)
216{
217 struct task_struct *t = p;
218 switch (clock_idx) {
219 default:
220 return -EINVAL;
221 case CPUCLOCK_PROF:
222 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
223 do {
224 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
225 t = next_thread(t);
226 } while (t != p);
227 break;
228 case CPUCLOCK_VIRT:
229 cpu->cpu = p->signal->utime;
230 do {
231 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
232 t = next_thread(t);
233 } while (t != p);
234 break;
235 case CPUCLOCK_SCHED:
236 cpu->sched = p->signal->sched_time;
237 /* Add in each other live thread. */
238 while ((t = next_thread(t)) != p) {
239 cpu->sched += t->sched_time;
240 }
241 if (p->tgid == current->tgid) {
242 /*
243 * We're sampling ourselves, so include the
244 * cycles not yet banked. We still omit
245 * other threads running on other CPUs,
246 * so the total can always be behind as
247 * much as max(nthreads-1,ncpus) * (NSEC_PER_SEC/HZ).
248 */
249 cpu->sched += current_sched_time(current);
250 } else {
251 cpu->sched += p->sched_time;
252 }
253 break;
254 }
255 return 0;
256}
257
258/*
259 * Sample a process (thread group) clock for the given group_leader task.
260 * Must be called with tasklist_lock held for reading.
261 */
262static int cpu_clock_sample_group(clockid_t which_clock,
263 struct task_struct *p,
264 union cpu_time_count *cpu)
265{
266 int ret;
267 unsigned long flags;
268 spin_lock_irqsave(&p->sighand->siglock, flags);
269 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
270 cpu);
271 spin_unlock_irqrestore(&p->sighand->siglock, flags);
272 return ret;
273}
274
275
276int posix_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
277{
278 const pid_t pid = CPUCLOCK_PID(which_clock);
279 int error = -EINVAL;
280 union cpu_time_count rtn;
281
282 if (pid == 0) {
283 /*
284 * Special case constant value for our own clocks.
285 * We don't have to do any lookup to find ourselves.
286 */
287 if (CPUCLOCK_PERTHREAD(which_clock)) {
288 /*
289 * Sampling just ourselves we can do with no locking.
290 */
291 error = cpu_clock_sample(which_clock,
292 current, &rtn);
293 } else {
294 read_lock(&tasklist_lock);
295 error = cpu_clock_sample_group(which_clock,
296 current, &rtn);
297 read_unlock(&tasklist_lock);
298 }
299 } else {
300 /*
301 * Find the given PID, and validate that the caller
302 * should be able to see it.
303 */
304 struct task_struct *p;
305 read_lock(&tasklist_lock);
306 p = find_task_by_pid(pid);
307 if (p) {
308 if (CPUCLOCK_PERTHREAD(which_clock)) {
309 if (p->tgid == current->tgid) {
310 error = cpu_clock_sample(which_clock,
311 p, &rtn);
312 }
313 } else if (p->tgid == pid && p->signal) {
314 error = cpu_clock_sample_group(which_clock,
315 p, &rtn);
316 }
317 }
318 read_unlock(&tasklist_lock);
319 }
320
321 if (error)
322 return error;
323 sample_to_timespec(which_clock, rtn, tp);
324 return 0;
325}
326
327
328/*
329 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
330 * This is called from sys_timer_create with the new timer already locked.
331 */
332int posix_cpu_timer_create(struct k_itimer *new_timer)
333{
334 int ret = 0;
335 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
336 struct task_struct *p;
337
338 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
339 return -EINVAL;
340
341 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
342 new_timer->it.cpu.incr.sched = 0;
343 new_timer->it.cpu.expires.sched = 0;
344
345 read_lock(&tasklist_lock);
346 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
347 if (pid == 0) {
348 p = current;
349 } else {
350 p = find_task_by_pid(pid);
351 if (p && p->tgid != current->tgid)
352 p = NULL;
353 }
354 } else {
355 if (pid == 0) {
356 p = current->group_leader;
357 } else {
358 p = find_task_by_pid(pid);
359 if (p && p->tgid != pid)
360 p = NULL;
361 }
362 }
363 new_timer->it.cpu.task = p;
364 if (p) {
365 get_task_struct(p);
366 } else {
367 ret = -EINVAL;
368 }
369 read_unlock(&tasklist_lock);
370
371 return ret;
372}
373
374/*
375 * Clean up a CPU-clock timer that is about to be destroyed.
376 * This is called from timer deletion with the timer already locked.
377 * If we return TIMER_RETRY, it's necessary to release the timer's lock
378 * and try again. (This happens when the timer is in the middle of firing.)
379 */
380int posix_cpu_timer_del(struct k_itimer *timer)
381{
382 struct task_struct *p = timer->it.cpu.task;
108150ea 383 int ret = 0;
1da177e4 384
108150ea 385 if (likely(p != NULL)) {
9465bee8
LT
386 read_lock(&tasklist_lock);
387 if (unlikely(p->signal == NULL)) {
388 /*
389 * We raced with the reaping of the task.
390 * The deletion should have cleared us off the list.
391 */
392 BUG_ON(!list_empty(&timer->it.cpu.entry));
393 } else {
9465bee8 394 spin_lock(&p->sighand->siglock);
108150ea
ON
395 if (timer->it.cpu.firing)
396 ret = TIMER_RETRY;
397 else
398 list_del(&timer->it.cpu.entry);
9465bee8
LT
399 spin_unlock(&p->sighand->siglock);
400 }
401 read_unlock(&tasklist_lock);
108150ea
ON
402
403 if (!ret)
404 put_task_struct(p);
1da177e4 405 }
1da177e4 406
108150ea 407 return ret;
1da177e4
LT
408}
409
410/*
411 * Clean out CPU timers still ticking when a thread exited. The task
412 * pointer is cleared, and the expiry time is replaced with the residual
413 * time for later timer_gettime calls to return.
414 * This must be called with the siglock held.
415 */
416static void cleanup_timers(struct list_head *head,
417 cputime_t utime, cputime_t stime,
418 unsigned long long sched_time)
419{
420 struct cpu_timer_list *timer, *next;
421 cputime_t ptime = cputime_add(utime, stime);
422
423 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
424 list_del_init(&timer->entry);
425 if (cputime_lt(timer->expires.cpu, ptime)) {
426 timer->expires.cpu = cputime_zero;
427 } else {
428 timer->expires.cpu = cputime_sub(timer->expires.cpu,
429 ptime);
430 }
431 }
432
433 ++head;
434 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
435 list_del_init(&timer->entry);
436 if (cputime_lt(timer->expires.cpu, utime)) {
437 timer->expires.cpu = cputime_zero;
438 } else {
439 timer->expires.cpu = cputime_sub(timer->expires.cpu,
440 utime);
441 }
442 }
443
444 ++head;
445 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
446 list_del_init(&timer->entry);
447 if (timer->expires.sched < sched_time) {
448 timer->expires.sched = 0;
449 } else {
450 timer->expires.sched -= sched_time;
451 }
452 }
453}
454
455/*
456 * These are both called with the siglock held, when the current thread
457 * is being reaped. When the final (leader) thread in the group is reaped,
458 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
459 */
460void posix_cpu_timers_exit(struct task_struct *tsk)
461{
462 cleanup_timers(tsk->cpu_timers,
463 tsk->utime, tsk->stime, tsk->sched_time);
464
465}
466void posix_cpu_timers_exit_group(struct task_struct *tsk)
467{
468 cleanup_timers(tsk->signal->cpu_timers,
469 cputime_add(tsk->utime, tsk->signal->utime),
470 cputime_add(tsk->stime, tsk->signal->stime),
471 tsk->sched_time + tsk->signal->sched_time);
472}
473
474
475/*
476 * Set the expiry times of all the threads in the process so one of them
477 * will go off before the process cumulative expiry total is reached.
478 */
479static void process_timer_rebalance(struct task_struct *p,
480 unsigned int clock_idx,
481 union cpu_time_count expires,
482 union cpu_time_count val)
483{
484 cputime_t ticks, left;
485 unsigned long long ns, nsleft;
486 struct task_struct *t = p;
487 unsigned int nthreads = atomic_read(&p->signal->live);
488
489 switch (clock_idx) {
490 default:
491 BUG();
492 break;
493 case CPUCLOCK_PROF:
494 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
495 nthreads);
496 do {
497 if (!unlikely(t->exit_state)) {
498 ticks = cputime_add(prof_ticks(t), left);
499 if (cputime_eq(t->it_prof_expires,
500 cputime_zero) ||
501 cputime_gt(t->it_prof_expires, ticks)) {
502 t->it_prof_expires = ticks;
503 }
504 }
505 t = next_thread(t);
506 } while (t != p);
507 break;
508 case CPUCLOCK_VIRT:
509 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
510 nthreads);
511 do {
512 if (!unlikely(t->exit_state)) {
513 ticks = cputime_add(virt_ticks(t), left);
514 if (cputime_eq(t->it_virt_expires,
515 cputime_zero) ||
516 cputime_gt(t->it_virt_expires, ticks)) {
517 t->it_virt_expires = ticks;
518 }
519 }
520 t = next_thread(t);
521 } while (t != p);
522 break;
523 case CPUCLOCK_SCHED:
524 nsleft = expires.sched - val.sched;
525 do_div(nsleft, nthreads);
526 do {
527 if (!unlikely(t->exit_state)) {
528 ns = t->sched_time + nsleft;
529 if (t->it_sched_expires == 0 ||
530 t->it_sched_expires > ns) {
531 t->it_sched_expires = ns;
532 }
533 }
534 t = next_thread(t);
535 } while (t != p);
536 break;
537 }
538}
539
540static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
541{
542 /*
543 * That's all for this thread or process.
544 * We leave our residual in expires to be reported.
545 */
546 put_task_struct(timer->it.cpu.task);
547 timer->it.cpu.task = NULL;
548 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
549 timer->it.cpu.expires,
550 now);
551}
552
553/*
554 * Insert the timer on the appropriate list before any timers that
555 * expire later. This must be called with the tasklist_lock held
556 * for reading, and interrupts disabled.
557 */
558static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
559{
560 struct task_struct *p = timer->it.cpu.task;
561 struct list_head *head, *listpos;
562 struct cpu_timer_list *const nt = &timer->it.cpu;
563 struct cpu_timer_list *next;
564 unsigned long i;
565
566 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
567 p->cpu_timers : p->signal->cpu_timers);
568 head += CPUCLOCK_WHICH(timer->it_clock);
569
570 BUG_ON(!irqs_disabled());
571 spin_lock(&p->sighand->siglock);
572
573 listpos = head;
574 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
575 list_for_each_entry(next, head, entry) {
576 if (next->expires.sched > nt->expires.sched) {
577 listpos = &next->entry;
578 break;
579 }
580 }
581 } else {
582 list_for_each_entry(next, head, entry) {
583 if (cputime_gt(next->expires.cpu, nt->expires.cpu)) {
584 listpos = &next->entry;
585 break;
586 }
587 }
588 }
589 list_add(&nt->entry, listpos);
590
591 if (listpos == head) {
592 /*
593 * We are the new earliest-expiring timer.
594 * If we are a thread timer, there can always
595 * be a process timer telling us to stop earlier.
596 */
597
598 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
599 switch (CPUCLOCK_WHICH(timer->it_clock)) {
600 default:
601 BUG();
602 case CPUCLOCK_PROF:
603 if (cputime_eq(p->it_prof_expires,
604 cputime_zero) ||
605 cputime_gt(p->it_prof_expires,
606 nt->expires.cpu))
607 p->it_prof_expires = nt->expires.cpu;
608 break;
609 case CPUCLOCK_VIRT:
610 if (cputime_eq(p->it_virt_expires,
611 cputime_zero) ||
612 cputime_gt(p->it_virt_expires,
613 nt->expires.cpu))
614 p->it_virt_expires = nt->expires.cpu;
615 break;
616 case CPUCLOCK_SCHED:
617 if (p->it_sched_expires == 0 ||
618 p->it_sched_expires > nt->expires.sched)
619 p->it_sched_expires = nt->expires.sched;
620 break;
621 }
622 } else {
623 /*
624 * For a process timer, we must balance
625 * all the live threads' expirations.
626 */
627 switch (CPUCLOCK_WHICH(timer->it_clock)) {
628 default:
629 BUG();
630 case CPUCLOCK_VIRT:
631 if (!cputime_eq(p->signal->it_virt_expires,
632 cputime_zero) &&
633 cputime_lt(p->signal->it_virt_expires,
634 timer->it.cpu.expires.cpu))
635 break;
636 goto rebalance;
637 case CPUCLOCK_PROF:
638 if (!cputime_eq(p->signal->it_prof_expires,
639 cputime_zero) &&
640 cputime_lt(p->signal->it_prof_expires,
641 timer->it.cpu.expires.cpu))
642 break;
643 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
644 if (i != RLIM_INFINITY &&
645 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
646 break;
647 goto rebalance;
648 case CPUCLOCK_SCHED:
649 rebalance:
650 process_timer_rebalance(
651 timer->it.cpu.task,
652 CPUCLOCK_WHICH(timer->it_clock),
653 timer->it.cpu.expires, now);
654 break;
655 }
656 }
657 }
658
659 spin_unlock(&p->sighand->siglock);
660}
661
662/*
663 * The timer is locked, fire it and arrange for its reload.
664 */
665static void cpu_timer_fire(struct k_itimer *timer)
666{
667 if (unlikely(timer->sigq == NULL)) {
668 /*
669 * This a special case for clock_nanosleep,
670 * not a normal timer from sys_timer_create.
671 */
672 wake_up_process(timer->it_process);
673 timer->it.cpu.expires.sched = 0;
674 } else if (timer->it.cpu.incr.sched == 0) {
675 /*
676 * One-shot timer. Clear it as soon as it's fired.
677 */
678 posix_timer_event(timer, 0);
679 timer->it.cpu.expires.sched = 0;
680 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
681 /*
682 * The signal did not get queued because the signal
683 * was ignored, so we won't get any callback to
684 * reload the timer. But we need to keep it
685 * ticking in case the signal is deliverable next time.
686 */
687 posix_cpu_timer_schedule(timer);
688 }
689}
690
691/*
692 * Guts of sys_timer_settime for CPU timers.
693 * This is called with the timer locked and interrupts disabled.
694 * If we return TIMER_RETRY, it's necessary to release the timer's lock
695 * and try again. (This happens when the timer is in the middle of firing.)
696 */
697int posix_cpu_timer_set(struct k_itimer *timer, int flags,
698 struct itimerspec *new, struct itimerspec *old)
699{
700 struct task_struct *p = timer->it.cpu.task;
701 union cpu_time_count old_expires, new_expires, val;
702 int ret;
703
704 if (unlikely(p == NULL)) {
705 /*
706 * Timer refers to a dead task's clock.
707 */
708 return -ESRCH;
709 }
710
711 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
712
713 read_lock(&tasklist_lock);
714 /*
715 * We need the tasklist_lock to protect against reaping that
716 * clears p->signal. If p has just been reaped, we can no
717 * longer get any information about it at all.
718 */
719 if (unlikely(p->signal == NULL)) {
720 read_unlock(&tasklist_lock);
721 put_task_struct(p);
722 timer->it.cpu.task = NULL;
723 return -ESRCH;
724 }
725
726 /*
727 * Disarm any old timer after extracting its expiry time.
728 */
729 BUG_ON(!irqs_disabled());
730 spin_lock(&p->sighand->siglock);
731 old_expires = timer->it.cpu.expires;
732 list_del_init(&timer->it.cpu.entry);
733 spin_unlock(&p->sighand->siglock);
734
735 /*
736 * We need to sample the current value to convert the new
737 * value from to relative and absolute, and to convert the
738 * old value from absolute to relative. To set a process
739 * timer, we need a sample to balance the thread expiry
740 * times (in arm_timer). With an absolute time, we must
741 * check if it's already passed. In short, we need a sample.
742 */
743 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
744 cpu_clock_sample(timer->it_clock, p, &val);
745 } else {
746 cpu_clock_sample_group(timer->it_clock, p, &val);
747 }
748
749 if (old) {
750 if (old_expires.sched == 0) {
751 old->it_value.tv_sec = 0;
752 old->it_value.tv_nsec = 0;
753 } else {
754 /*
755 * Update the timer in case it has
756 * overrun already. If it has,
757 * we'll report it as having overrun
758 * and with the next reloaded timer
759 * already ticking, though we are
760 * swallowing that pending
761 * notification here to install the
762 * new setting.
763 */
764 bump_cpu_timer(timer, val);
765 if (cpu_time_before(timer->it_clock, val,
766 timer->it.cpu.expires)) {
767 old_expires = cpu_time_sub(
768 timer->it_clock,
769 timer->it.cpu.expires, val);
770 sample_to_timespec(timer->it_clock,
771 old_expires,
772 &old->it_value);
773 } else {
774 old->it_value.tv_nsec = 1;
775 old->it_value.tv_sec = 0;
776 }
777 }
778 }
779
780 if (unlikely(timer->it.cpu.firing)) {
781 /*
782 * We are colliding with the timer actually firing.
783 * Punt after filling in the timer's old value, and
784 * disable this firing since we are already reporting
785 * it as an overrun (thanks to bump_cpu_timer above).
786 */
787 read_unlock(&tasklist_lock);
788 timer->it.cpu.firing = -1;
789 ret = TIMER_RETRY;
790 goto out;
791 }
792
793 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
794 cpu_time_add(timer->it_clock, &new_expires, val);
795 }
796
797 /*
798 * Install the new expiry time (or zero).
799 * For a timer with no notification action, we don't actually
800 * arm the timer (we'll just fake it for timer_gettime).
801 */
802 timer->it.cpu.expires = new_expires;
803 if (new_expires.sched != 0 &&
804 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
805 cpu_time_before(timer->it_clock, val, new_expires)) {
806 arm_timer(timer, val);
807 }
808
809 read_unlock(&tasklist_lock);
810
811 /*
812 * Install the new reload setting, and
813 * set up the signal and overrun bookkeeping.
814 */
815 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
816 &new->it_interval);
817
818 /*
819 * This acts as a modification timestamp for the timer,
820 * so any automatic reload attempt will punt on seeing
821 * that we have reset the timer manually.
822 */
823 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
824 ~REQUEUE_PENDING;
825 timer->it_overrun_last = 0;
826 timer->it_overrun = -1;
827
828 if (new_expires.sched != 0 &&
829 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
830 !cpu_time_before(timer->it_clock, val, new_expires)) {
831 /*
832 * The designated time already passed, so we notify
833 * immediately, even if the thread never runs to
834 * accumulate more time on this clock.
835 */
836 cpu_timer_fire(timer);
837 }
838
839 ret = 0;
840 out:
841 if (old) {
842 sample_to_timespec(timer->it_clock,
843 timer->it.cpu.incr, &old->it_interval);
844 }
845 return ret;
846}
847
848void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
849{
850 union cpu_time_count now;
851 struct task_struct *p = timer->it.cpu.task;
852 int clear_dead;
853
854 /*
855 * Easy part: convert the reload time.
856 */
857 sample_to_timespec(timer->it_clock,
858 timer->it.cpu.incr, &itp->it_interval);
859
860 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
861 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
862 return;
863 }
864
865 if (unlikely(p == NULL)) {
866 /*
867 * This task already died and the timer will never fire.
868 * In this case, expires is actually the dead value.
869 */
870 dead:
871 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
872 &itp->it_value);
873 return;
874 }
875
876 /*
877 * Sample the clock to take the difference with the expiry time.
878 */
879 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
880 cpu_clock_sample(timer->it_clock, p, &now);
881 clear_dead = p->exit_state;
882 } else {
883 read_lock(&tasklist_lock);
884 if (unlikely(p->signal == NULL)) {
885 /*
886 * The process has been reaped.
887 * We can't even collect a sample any more.
888 * Call the timer disarmed, nothing else to do.
889 */
890 put_task_struct(p);
891 timer->it.cpu.task = NULL;
892 timer->it.cpu.expires.sched = 0;
893 read_unlock(&tasklist_lock);
894 goto dead;
895 } else {
896 cpu_clock_sample_group(timer->it_clock, p, &now);
897 clear_dead = (unlikely(p->exit_state) &&
898 thread_group_empty(p));
899 }
900 read_unlock(&tasklist_lock);
901 }
902
903 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
904 if (timer->it.cpu.incr.sched == 0 &&
905 cpu_time_before(timer->it_clock,
906 timer->it.cpu.expires, now)) {
907 /*
908 * Do-nothing timer expired and has no reload,
909 * so it's as if it was never set.
910 */
911 timer->it.cpu.expires.sched = 0;
912 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
913 return;
914 }
915 /*
916 * Account for any expirations and reloads that should
917 * have happened.
918 */
919 bump_cpu_timer(timer, now);
920 }
921
922 if (unlikely(clear_dead)) {
923 /*
924 * We've noticed that the thread is dead, but
925 * not yet reaped. Take this opportunity to
926 * drop our task ref.
927 */
928 clear_dead_task(timer, now);
929 goto dead;
930 }
931
932 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
933 sample_to_timespec(timer->it_clock,
934 cpu_time_sub(timer->it_clock,
935 timer->it.cpu.expires, now),
936 &itp->it_value);
937 } else {
938 /*
939 * The timer should have expired already, but the firing
940 * hasn't taken place yet. Say it's just about to expire.
941 */
942 itp->it_value.tv_nsec = 1;
943 itp->it_value.tv_sec = 0;
944 }
945}
946
947/*
948 * Check for any per-thread CPU timers that have fired and move them off
949 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
950 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
951 */
952static void check_thread_timers(struct task_struct *tsk,
953 struct list_head *firing)
954{
e80eda94 955 int maxfire;
1da177e4
LT
956 struct list_head *timers = tsk->cpu_timers;
957
e80eda94 958 maxfire = 20;
1da177e4
LT
959 tsk->it_prof_expires = cputime_zero;
960 while (!list_empty(timers)) {
961 struct cpu_timer_list *t = list_entry(timers->next,
962 struct cpu_timer_list,
963 entry);
e80eda94 964 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
1da177e4
LT
965 tsk->it_prof_expires = t->expires.cpu;
966 break;
967 }
968 t->firing = 1;
969 list_move_tail(&t->entry, firing);
970 }
971
972 ++timers;
e80eda94 973 maxfire = 20;
1da177e4
LT
974 tsk->it_virt_expires = cputime_zero;
975 while (!list_empty(timers)) {
976 struct cpu_timer_list *t = list_entry(timers->next,
977 struct cpu_timer_list,
978 entry);
e80eda94 979 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1da177e4
LT
980 tsk->it_virt_expires = t->expires.cpu;
981 break;
982 }
983 t->firing = 1;
984 list_move_tail(&t->entry, firing);
985 }
986
987 ++timers;
e80eda94 988 maxfire = 20;
1da177e4
LT
989 tsk->it_sched_expires = 0;
990 while (!list_empty(timers)) {
991 struct cpu_timer_list *t = list_entry(timers->next,
992 struct cpu_timer_list,
993 entry);
e80eda94 994 if (!--maxfire || tsk->sched_time < t->expires.sched) {
1da177e4
LT
995 tsk->it_sched_expires = t->expires.sched;
996 break;
997 }
998 t->firing = 1;
999 list_move_tail(&t->entry, firing);
1000 }
1001}
1002
1003/*
1004 * Check for any per-thread CPU timers that have fired and move them
1005 * off the tsk->*_timers list onto the firing list. Per-thread timers
1006 * have already been taken off.
1007 */
1008static void check_process_timers(struct task_struct *tsk,
1009 struct list_head *firing)
1010{
e80eda94 1011 int maxfire;
1da177e4
LT
1012 struct signal_struct *const sig = tsk->signal;
1013 cputime_t utime, stime, ptime, virt_expires, prof_expires;
1014 unsigned long long sched_time, sched_expires;
1015 struct task_struct *t;
1016 struct list_head *timers = sig->cpu_timers;
1017
1018 /*
1019 * Don't sample the current process CPU clocks if there are no timers.
1020 */
1021 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1022 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1023 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1024 list_empty(&timers[CPUCLOCK_VIRT]) &&
1025 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1026 list_empty(&timers[CPUCLOCK_SCHED]))
1027 return;
1028
1029 /*
1030 * Collect the current process totals.
1031 */
1032 utime = sig->utime;
1033 stime = sig->stime;
1034 sched_time = sig->sched_time;
1035 t = tsk;
1036 do {
1037 utime = cputime_add(utime, t->utime);
1038 stime = cputime_add(stime, t->stime);
1039 sched_time += t->sched_time;
1040 t = next_thread(t);
1041 } while (t != tsk);
1042 ptime = cputime_add(utime, stime);
1043
e80eda94 1044 maxfire = 20;
1da177e4
LT
1045 prof_expires = cputime_zero;
1046 while (!list_empty(timers)) {
1047 struct cpu_timer_list *t = list_entry(timers->next,
1048 struct cpu_timer_list,
1049 entry);
e80eda94 1050 if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1da177e4
LT
1051 prof_expires = t->expires.cpu;
1052 break;
1053 }
1054 t->firing = 1;
1055 list_move_tail(&t->entry, firing);
1056 }
1057
1058 ++timers;
e80eda94 1059 maxfire = 20;
1da177e4
LT
1060 virt_expires = cputime_zero;
1061 while (!list_empty(timers)) {
1062 struct cpu_timer_list *t = list_entry(timers->next,
1063 struct cpu_timer_list,
1064 entry);
e80eda94 1065 if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1da177e4
LT
1066 virt_expires = t->expires.cpu;
1067 break;
1068 }
1069 t->firing = 1;
1070 list_move_tail(&t->entry, firing);
1071 }
1072
1073 ++timers;
e80eda94 1074 maxfire = 20;
1da177e4
LT
1075 sched_expires = 0;
1076 while (!list_empty(timers)) {
1077 struct cpu_timer_list *t = list_entry(timers->next,
1078 struct cpu_timer_list,
1079 entry);
e80eda94 1080 if (!--maxfire || sched_time < t->expires.sched) {
1da177e4
LT
1081 sched_expires = t->expires.sched;
1082 break;
1083 }
1084 t->firing = 1;
1085 list_move_tail(&t->entry, firing);
1086 }
1087
1088 /*
1089 * Check for the special case process timers.
1090 */
1091 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1092 if (cputime_ge(ptime, sig->it_prof_expires)) {
1093 /* ITIMER_PROF fires and reloads. */
1094 sig->it_prof_expires = sig->it_prof_incr;
1095 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1096 sig->it_prof_expires = cputime_add(
1097 sig->it_prof_expires, ptime);
1098 }
1099 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1100 }
1101 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1102 (cputime_eq(prof_expires, cputime_zero) ||
1103 cputime_lt(sig->it_prof_expires, prof_expires))) {
1104 prof_expires = sig->it_prof_expires;
1105 }
1106 }
1107 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1108 if (cputime_ge(utime, sig->it_virt_expires)) {
1109 /* ITIMER_VIRTUAL fires and reloads. */
1110 sig->it_virt_expires = sig->it_virt_incr;
1111 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1112 sig->it_virt_expires = cputime_add(
1113 sig->it_virt_expires, utime);
1114 }
1115 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1116 }
1117 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1118 (cputime_eq(virt_expires, cputime_zero) ||
1119 cputime_lt(sig->it_virt_expires, virt_expires))) {
1120 virt_expires = sig->it_virt_expires;
1121 }
1122 }
1123 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1124 unsigned long psecs = cputime_to_secs(ptime);
1125 cputime_t x;
1126 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1127 /*
1128 * At the hard limit, we just die.
1129 * No need to calculate anything else now.
1130 */
1131 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1132 return;
1133 }
1134 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1135 /*
1136 * At the soft limit, send a SIGXCPU every second.
1137 */
1138 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1139 if (sig->rlim[RLIMIT_CPU].rlim_cur
1140 < sig->rlim[RLIMIT_CPU].rlim_max) {
1141 sig->rlim[RLIMIT_CPU].rlim_cur++;
1142 }
1143 }
1144 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1145 if (cputime_eq(prof_expires, cputime_zero) ||
1146 cputime_lt(x, prof_expires)) {
1147 prof_expires = x;
1148 }
1149 }
1150
1151 if (!cputime_eq(prof_expires, cputime_zero) ||
1152 !cputime_eq(virt_expires, cputime_zero) ||
1153 sched_expires != 0) {
1154 /*
1155 * Rebalance the threads' expiry times for the remaining
1156 * process CPU timers.
1157 */
1158
1159 cputime_t prof_left, virt_left, ticks;
1160 unsigned long long sched_left, sched;
1161 const unsigned int nthreads = atomic_read(&sig->live);
1162
1163 prof_left = cputime_sub(prof_expires, utime);
1164 prof_left = cputime_sub(prof_left, stime);
1165 prof_left = cputime_div(prof_left, nthreads);
1166 virt_left = cputime_sub(virt_expires, utime);
1167 virt_left = cputime_div(virt_left, nthreads);
1168 if (sched_expires) {
1169 sched_left = sched_expires - sched_time;
1170 do_div(sched_left, nthreads);
1171 } else {
1172 sched_left = 0;
1173 }
1174 t = tsk;
1175 do {
1176 ticks = cputime_add(cputime_add(t->utime, t->stime),
1177 prof_left);
1178 if (!cputime_eq(prof_expires, cputime_zero) &&
1179 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1180 cputime_gt(t->it_prof_expires, ticks))) {
1181 t->it_prof_expires = ticks;
1182 }
1183
1184 ticks = cputime_add(t->utime, virt_left);
1185 if (!cputime_eq(virt_expires, cputime_zero) &&
1186 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1187 cputime_gt(t->it_virt_expires, ticks))) {
1188 t->it_virt_expires = ticks;
1189 }
1190
1191 sched = t->sched_time + sched_left;
1192 if (sched_expires && (t->it_sched_expires == 0 ||
1193 t->it_sched_expires > sched)) {
1194 t->it_sched_expires = sched;
1195 }
1196
1197 do {
1198 t = next_thread(t);
1199 } while (unlikely(t->exit_state));
1200 } while (t != tsk);
1201 }
1202}
1203
1204/*
1205 * This is called from the signal code (via do_schedule_next_timer)
1206 * when the last timer signal was delivered and we have to reload the timer.
1207 */
1208void posix_cpu_timer_schedule(struct k_itimer *timer)
1209{
1210 struct task_struct *p = timer->it.cpu.task;
1211 union cpu_time_count now;
1212
1213 if (unlikely(p == NULL))
1214 /*
1215 * The task was cleaned up already, no future firings.
1216 */
1217 return;
1218
1219 /*
1220 * Fetch the current sample and update the timer's expiry time.
1221 */
1222 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1223 cpu_clock_sample(timer->it_clock, p, &now);
1224 bump_cpu_timer(timer, now);
1225 if (unlikely(p->exit_state)) {
1226 clear_dead_task(timer, now);
1227 return;
1228 }
1229 read_lock(&tasklist_lock); /* arm_timer needs it. */
1230 } else {
1231 read_lock(&tasklist_lock);
1232 if (unlikely(p->signal == NULL)) {
1233 /*
1234 * The process has been reaped.
1235 * We can't even collect a sample any more.
1236 */
1237 put_task_struct(p);
1238 timer->it.cpu.task = p = NULL;
1239 timer->it.cpu.expires.sched = 0;
1240 read_unlock(&tasklist_lock);
1241 return;
1242 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1243 /*
1244 * We've noticed that the thread is dead, but
1245 * not yet reaped. Take this opportunity to
1246 * drop our task ref.
1247 */
1248 clear_dead_task(timer, now);
1249 read_unlock(&tasklist_lock);
1250 return;
1251 }
1252 cpu_clock_sample_group(timer->it_clock, p, &now);
1253 bump_cpu_timer(timer, now);
1254 /* Leave the tasklist_lock locked for the call below. */
1255 }
1256
1257 /*
1258 * Now re-arm for the new expiry time.
1259 */
1260 arm_timer(timer, now);
1261
1262 read_unlock(&tasklist_lock);
1263}
1264
1265/*
1266 * This is called from the timer interrupt handler. The irq handler has
1267 * already updated our counts. We need to check if any timers fire now.
1268 * Interrupts are disabled.
1269 */
1270void run_posix_cpu_timers(struct task_struct *tsk)
1271{
1272 LIST_HEAD(firing);
1273 struct k_itimer *timer, *next;
1274
1275 BUG_ON(!irqs_disabled());
1276
1277#define UNEXPIRED(clock) \
1278 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1279 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1280
1281 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1282 (tsk->it_sched_expires == 0 ||
1283 tsk->sched_time < tsk->it_sched_expires))
1284 return;
1285
1286#undef UNEXPIRED
1287
1da177e4
LT
1288 /*
1289 * Double-check with locks held.
1290 */
1291 read_lock(&tasklist_lock);
3de463c7
ON
1292 if (likely(tsk->signal != NULL)) {
1293 spin_lock(&tsk->sighand->siglock);
1da177e4 1294
3de463c7
ON
1295 /*
1296 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1297 * all the timers that are firing, and put them on the firing list.
1298 */
1299 check_thread_timers(tsk, &firing);
1300 check_process_timers(tsk, &firing);
1da177e4 1301
3de463c7
ON
1302 /*
1303 * We must release these locks before taking any timer's lock.
1304 * There is a potential race with timer deletion here, as the
1305 * siglock now protects our private firing list. We have set
1306 * the firing flag in each timer, so that a deletion attempt
1307 * that gets the timer lock before we do will give it up and
1308 * spin until we've taken care of that timer below.
1309 */
1310 spin_unlock(&tsk->sighand->siglock);
1311 }
1da177e4
LT
1312 read_unlock(&tasklist_lock);
1313
1314 /*
1315 * Now that all the timers on our list have the firing flag,
1316 * noone will touch their list entries but us. We'll take
1317 * each timer's lock before clearing its firing flag, so no
1318 * timer call will interfere.
1319 */
1320 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1321 int firing;
1322 spin_lock(&timer->it_lock);
1323 list_del_init(&timer->it.cpu.entry);
1324 firing = timer->it.cpu.firing;
1325 timer->it.cpu.firing = 0;
1326 /*
1327 * The firing flag is -1 if we collided with a reset
1328 * of the timer, which already reported this
1329 * almost-firing as an overrun. So don't generate an event.
1330 */
1331 if (likely(firing >= 0)) {
1332 cpu_timer_fire(timer);
1333 }
1334 spin_unlock(&timer->it_lock);
1335 }
1336}
1337
1338/*
1339 * Set one of the process-wide special case CPU timers.
1340 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1341 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1342 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1343 * it to be absolute, *oldval is absolute and we update it to be relative.
1344 */
1345void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1346 cputime_t *newval, cputime_t *oldval)
1347{
1348 union cpu_time_count now;
1349 struct list_head *head;
1350
1351 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1352 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1353
1354 if (oldval) {
1355 if (!cputime_eq(*oldval, cputime_zero)) {
1356 if (cputime_le(*oldval, now.cpu)) {
1357 /* Just about to fire. */
1358 *oldval = jiffies_to_cputime(1);
1359 } else {
1360 *oldval = cputime_sub(*oldval, now.cpu);
1361 }
1362 }
1363
1364 if (cputime_eq(*newval, cputime_zero))
1365 return;
1366 *newval = cputime_add(*newval, now.cpu);
1367
1368 /*
1369 * If the RLIMIT_CPU timer will expire before the
1370 * ITIMER_PROF timer, we have nothing else to do.
1371 */
1372 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1373 < cputime_to_secs(*newval))
1374 return;
1375 }
1376
1377 /*
1378 * Check whether there are any process timers already set to fire
1379 * before this one. If so, we don't have anything more to do.
1380 */
1381 head = &tsk->signal->cpu_timers[clock_idx];
1382 if (list_empty(head) ||
1383 cputime_ge(list_entry(head->next,
1384 struct cpu_timer_list, entry)->expires.cpu,
1385 *newval)) {
1386 /*
1387 * Rejigger each thread's expiry time so that one will
1388 * notice before we hit the process-cumulative expiry time.
1389 */
1390 union cpu_time_count expires = { .sched = 0 };
1391 expires.cpu = *newval;
1392 process_timer_rebalance(tsk, clock_idx, expires, now);
1393 }
1394}
1395
1396static long posix_cpu_clock_nanosleep_restart(struct restart_block *);
1397
1398int posix_cpu_nsleep(clockid_t which_clock, int flags,
1399 struct timespec *rqtp)
1400{
1401 struct restart_block *restart_block =
1402 &current_thread_info()->restart_block;
1403 struct k_itimer timer;
1404 int error;
1405
1406 /*
1407 * Diagnose required errors first.
1408 */
1409 if (CPUCLOCK_PERTHREAD(which_clock) &&
1410 (CPUCLOCK_PID(which_clock) == 0 ||
1411 CPUCLOCK_PID(which_clock) == current->pid))
1412 return -EINVAL;
1413
1414 /*
1415 * Set up a temporary timer and then wait for it to go off.
1416 */
1417 memset(&timer, 0, sizeof timer);
1418 spin_lock_init(&timer.it_lock);
1419 timer.it_clock = which_clock;
1420 timer.it_overrun = -1;
1421 error = posix_cpu_timer_create(&timer);
1422 timer.it_process = current;
1423 if (!error) {
1424 struct timespec __user *rmtp;
1425 static struct itimerspec zero_it;
1426 struct itimerspec it = { .it_value = *rqtp,
1427 .it_interval = {} };
1428
1429 spin_lock_irq(&timer.it_lock);
1430 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1431 if (error) {
1432 spin_unlock_irq(&timer.it_lock);
1433 return error;
1434 }
1435
1436 while (!signal_pending(current)) {
1437 if (timer.it.cpu.expires.sched == 0) {
1438 /*
1439 * Our timer fired and was reset.
1440 */
1441 spin_unlock_irq(&timer.it_lock);
1442 return 0;
1443 }
1444
1445 /*
1446 * Block until cpu_timer_fire (or a signal) wakes us.
1447 */
1448 __set_current_state(TASK_INTERRUPTIBLE);
1449 spin_unlock_irq(&timer.it_lock);
1450 schedule();
1451 spin_lock_irq(&timer.it_lock);
1452 }
1453
1454 /*
1455 * We were interrupted by a signal.
1456 */
1457 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1458 posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1459 spin_unlock_irq(&timer.it_lock);
1460
1461 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1462 /*
1463 * It actually did fire already.
1464 */
1465 return 0;
1466 }
1467
1468 /*
1469 * Report back to the user the time still remaining.
1470 */
1471 rmtp = (struct timespec __user *) restart_block->arg1;
1472 if (rmtp != NULL && !(flags & TIMER_ABSTIME) &&
1473 copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1474 return -EFAULT;
1475
1476 restart_block->fn = posix_cpu_clock_nanosleep_restart;
1477 /* Caller already set restart_block->arg1 */
1478 restart_block->arg0 = which_clock;
1479 restart_block->arg2 = rqtp->tv_sec;
1480 restart_block->arg3 = rqtp->tv_nsec;
1481
1482 error = -ERESTART_RESTARTBLOCK;
1483 }
1484
1485 return error;
1486}
1487
1488static long
1489posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block)
1490{
1491 clockid_t which_clock = restart_block->arg0;
1492 struct timespec t = { .tv_sec = restart_block->arg2,
1493 .tv_nsec = restart_block->arg3 };
1494 restart_block->fn = do_no_restart_syscall;
1495 return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t);
1496}
1497
1498
1499#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1500#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1501
1502static int process_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1503{
1504 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1505}
1506static int process_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1507{
1508 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1509}
1510static int process_cpu_timer_create(struct k_itimer *timer)
1511{
1512 timer->it_clock = PROCESS_CLOCK;
1513 return posix_cpu_timer_create(timer);
1514}
1515static int process_cpu_nsleep(clockid_t which_clock, int flags,
1516 struct timespec *rqtp)
1517{
1518 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1519}
1520static int thread_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1521{
1522 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1523}
1524static int thread_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1525{
1526 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1527}
1528static int thread_cpu_timer_create(struct k_itimer *timer)
1529{
1530 timer->it_clock = THREAD_CLOCK;
1531 return posix_cpu_timer_create(timer);
1532}
1533static int thread_cpu_nsleep(clockid_t which_clock, int flags,
1534 struct timespec *rqtp)
1535{
1536 return -EINVAL;
1537}
1538
1539static __init int init_posix_cpu_timers(void)
1540{
1541 struct k_clock process = {
1542 .clock_getres = process_cpu_clock_getres,
1543 .clock_get = process_cpu_clock_get,
1544 .clock_set = do_posix_clock_nosettime,
1545 .timer_create = process_cpu_timer_create,
1546 .nsleep = process_cpu_nsleep,
1547 };
1548 struct k_clock thread = {
1549 .clock_getres = thread_cpu_clock_getres,
1550 .clock_get = thread_cpu_clock_get,
1551 .clock_set = do_posix_clock_nosettime,
1552 .timer_create = thread_cpu_timer_create,
1553 .nsleep = thread_cpu_nsleep,
1554 };
1555
1556 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1557 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1558
1559 return 0;
1560}
1561__initcall(init_posix_cpu_timers);