sched: rt-group: reduce rescheduling
[linux-2.6-block.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
7#include <asm/uaccess.h>
8#include <linux/errno.h>
9
a924b04d 10static int check_clock(const clockid_t which_clock)
1da177e4
LT
11{
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
15
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
18
19 if (pid == 0)
20 return 0;
21
22 read_lock(&tasklist_lock);
23 p = find_task_by_pid(pid);
bac0abd6
PE
24 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
25 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
26 error = -EINVAL;
27 }
28 read_unlock(&tasklist_lock);
29
30 return error;
31}
32
33static inline union cpu_time_count
a924b04d 34timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
35{
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 39 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
42 }
43 return ret;
44}
45
a924b04d 46static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
47 union cpu_time_count cpu,
48 struct timespec *tp)
49{
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
55 }
56}
57
a924b04d 58static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
59 union cpu_time_count now,
60 union cpu_time_count then)
61{
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
66 }
67}
a924b04d 68static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
69 union cpu_time_count *acc,
70 union cpu_time_count val)
71{
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
76 }
77}
a924b04d 78static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
79 union cpu_time_count a,
80 union cpu_time_count b)
81{
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
86 }
87 return a;
88}
89
ac08c264
TG
90/*
91 * Divide and limit the result to res >= 1
92 *
93 * This is necessary to prevent signal delivery starvation, when the result of
94 * the division would be rounded down to 0.
95 */
96static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
97{
98 cputime_t res = cputime_div(time, div);
99
100 return max_t(cputime_t, res, 1);
101}
102
1da177e4
LT
103/*
104 * Update expiry time from increment, and increase overrun count,
105 * given the current clock sample.
106 */
7a4ed937 107static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
108 union cpu_time_count now)
109{
110 int i;
111
112 if (timer->it.cpu.incr.sched == 0)
113 return;
114
115 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
116 unsigned long long delta, incr;
117
118 if (now.sched < timer->it.cpu.expires.sched)
119 return;
120 incr = timer->it.cpu.incr.sched;
121 delta = now.sched + incr - timer->it.cpu.expires.sched;
122 /* Don't use (incr*2 < delta), incr*2 might overflow. */
123 for (i = 0; incr < delta - incr; i++)
124 incr = incr << 1;
125 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 126 if (delta < incr)
1da177e4
LT
127 continue;
128 timer->it.cpu.expires.sched += incr;
129 timer->it_overrun += 1 << i;
130 delta -= incr;
131 }
132 } else {
133 cputime_t delta, incr;
134
135 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
136 return;
137 incr = timer->it.cpu.incr.cpu;
138 delta = cputime_sub(cputime_add(now.cpu, incr),
139 timer->it.cpu.expires.cpu);
140 /* Don't use (incr*2 < delta), incr*2 might overflow. */
141 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
142 incr = cputime_add(incr, incr);
143 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 144 if (cputime_lt(delta, incr))
1da177e4
LT
145 continue;
146 timer->it.cpu.expires.cpu =
147 cputime_add(timer->it.cpu.expires.cpu, incr);
148 timer->it_overrun += 1 << i;
149 delta = cputime_sub(delta, incr);
150 }
151 }
152}
153
154static inline cputime_t prof_ticks(struct task_struct *p)
155{
156 return cputime_add(p->utime, p->stime);
157}
158static inline cputime_t virt_ticks(struct task_struct *p)
159{
160 return p->utime;
161}
162static inline unsigned long long sched_ns(struct task_struct *p)
163{
41b86e9c 164 return task_sched_runtime(p);
1da177e4
LT
165}
166
a924b04d 167int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
168{
169 int error = check_clock(which_clock);
170 if (!error) {
171 tp->tv_sec = 0;
172 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
173 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
174 /*
175 * If sched_clock is using a cycle counter, we
176 * don't have any idea of its true resolution
177 * exported, but it is much more than 1s/HZ.
178 */
179 tp->tv_nsec = 1;
180 }
181 }
182 return error;
183}
184
a924b04d 185int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
186{
187 /*
188 * You can never reset a CPU clock, but we check for other errors
189 * in the call before failing with EPERM.
190 */
191 int error = check_clock(which_clock);
192 if (error == 0) {
193 error = -EPERM;
194 }
195 return error;
196}
197
198
199/*
200 * Sample a per-thread clock for the given task.
201 */
a924b04d 202static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
203 union cpu_time_count *cpu)
204{
205 switch (CPUCLOCK_WHICH(which_clock)) {
206 default:
207 return -EINVAL;
208 case CPUCLOCK_PROF:
209 cpu->cpu = prof_ticks(p);
210 break;
211 case CPUCLOCK_VIRT:
212 cpu->cpu = virt_ticks(p);
213 break;
214 case CPUCLOCK_SCHED:
215 cpu->sched = sched_ns(p);
216 break;
217 }
218 return 0;
219}
220
221/*
222 * Sample a process (thread group) clock for the given group_leader task.
223 * Must be called with tasklist_lock held for reading.
224 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
225 */
226static int cpu_clock_sample_group_locked(unsigned int clock_idx,
227 struct task_struct *p,
228 union cpu_time_count *cpu)
229{
230 struct task_struct *t = p;
231 switch (clock_idx) {
232 default:
233 return -EINVAL;
234 case CPUCLOCK_PROF:
235 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
236 do {
237 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
238 t = next_thread(t);
239 } while (t != p);
240 break;
241 case CPUCLOCK_VIRT:
242 cpu->cpu = p->signal->utime;
243 do {
244 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
245 t = next_thread(t);
246 } while (t != p);
247 break;
248 case CPUCLOCK_SCHED:
41b86e9c 249 cpu->sched = p->signal->sum_sched_runtime;
1da177e4
LT
250 /* Add in each other live thread. */
251 while ((t = next_thread(t)) != p) {
41b86e9c 252 cpu->sched += t->se.sum_exec_runtime;
1da177e4 253 }
0aec63e6 254 cpu->sched += sched_ns(p);
1da177e4
LT
255 break;
256 }
257 return 0;
258}
259
260/*
261 * Sample a process (thread group) clock for the given group_leader task.
262 * Must be called with tasklist_lock held for reading.
263 */
a924b04d 264static int cpu_clock_sample_group(const clockid_t which_clock,
1da177e4
LT
265 struct task_struct *p,
266 union cpu_time_count *cpu)
267{
268 int ret;
269 unsigned long flags;
270 spin_lock_irqsave(&p->sighand->siglock, flags);
271 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
272 cpu);
273 spin_unlock_irqrestore(&p->sighand->siglock, flags);
274 return ret;
275}
276
277
a924b04d 278int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
279{
280 const pid_t pid = CPUCLOCK_PID(which_clock);
281 int error = -EINVAL;
282 union cpu_time_count rtn;
283
284 if (pid == 0) {
285 /*
286 * Special case constant value for our own clocks.
287 * We don't have to do any lookup to find ourselves.
288 */
289 if (CPUCLOCK_PERTHREAD(which_clock)) {
290 /*
291 * Sampling just ourselves we can do with no locking.
292 */
293 error = cpu_clock_sample(which_clock,
294 current, &rtn);
295 } else {
296 read_lock(&tasklist_lock);
297 error = cpu_clock_sample_group(which_clock,
298 current, &rtn);
299 read_unlock(&tasklist_lock);
300 }
301 } else {
302 /*
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
305 */
306 struct task_struct *p;
1f2ea083 307 rcu_read_lock();
1da177e4
LT
308 p = find_task_by_pid(pid);
309 if (p) {
310 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 311 if (same_thread_group(p, current)) {
1da177e4
LT
312 error = cpu_clock_sample(which_clock,
313 p, &rtn);
314 }
1f2ea083
PM
315 } else {
316 read_lock(&tasklist_lock);
bac0abd6 317 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
318 error =
319 cpu_clock_sample_group(which_clock,
320 p, &rtn);
321 }
322 read_unlock(&tasklist_lock);
1da177e4
LT
323 }
324 }
1f2ea083 325 rcu_read_unlock();
1da177e4
LT
326 }
327
328 if (error)
329 return error;
330 sample_to_timespec(which_clock, rtn, tp);
331 return 0;
332}
333
334
335/*
336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
337 * This is called from sys_timer_create with the new timer already locked.
338 */
339int posix_cpu_timer_create(struct k_itimer *new_timer)
340{
341 int ret = 0;
342 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
343 struct task_struct *p;
344
345 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
346 return -EINVAL;
347
348 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
349 new_timer->it.cpu.incr.sched = 0;
350 new_timer->it.cpu.expires.sched = 0;
351
352 read_lock(&tasklist_lock);
353 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
354 if (pid == 0) {
355 p = current;
356 } else {
357 p = find_task_by_pid(pid);
bac0abd6 358 if (p && !same_thread_group(p, current))
1da177e4
LT
359 p = NULL;
360 }
361 } else {
362 if (pid == 0) {
363 p = current->group_leader;
364 } else {
365 p = find_task_by_pid(pid);
bac0abd6 366 if (p && !thread_group_leader(p))
1da177e4
LT
367 p = NULL;
368 }
369 }
370 new_timer->it.cpu.task = p;
371 if (p) {
372 get_task_struct(p);
373 } else {
374 ret = -EINVAL;
375 }
376 read_unlock(&tasklist_lock);
377
378 return ret;
379}
380
381/*
382 * Clean up a CPU-clock timer that is about to be destroyed.
383 * This is called from timer deletion with the timer already locked.
384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
385 * and try again. (This happens when the timer is in the middle of firing.)
386 */
387int posix_cpu_timer_del(struct k_itimer *timer)
388{
389 struct task_struct *p = timer->it.cpu.task;
108150ea 390 int ret = 0;
1da177e4 391
108150ea 392 if (likely(p != NULL)) {
9465bee8
LT
393 read_lock(&tasklist_lock);
394 if (unlikely(p->signal == NULL)) {
395 /*
396 * We raced with the reaping of the task.
397 * The deletion should have cleared us off the list.
398 */
399 BUG_ON(!list_empty(&timer->it.cpu.entry));
400 } else {
9465bee8 401 spin_lock(&p->sighand->siglock);
108150ea
ON
402 if (timer->it.cpu.firing)
403 ret = TIMER_RETRY;
404 else
405 list_del(&timer->it.cpu.entry);
9465bee8
LT
406 spin_unlock(&p->sighand->siglock);
407 }
408 read_unlock(&tasklist_lock);
108150ea
ON
409
410 if (!ret)
411 put_task_struct(p);
1da177e4 412 }
1da177e4 413
108150ea 414 return ret;
1da177e4
LT
415}
416
417/*
418 * Clean out CPU timers still ticking when a thread exited. The task
419 * pointer is cleared, and the expiry time is replaced with the residual
420 * time for later timer_gettime calls to return.
421 * This must be called with the siglock held.
422 */
423static void cleanup_timers(struct list_head *head,
424 cputime_t utime, cputime_t stime,
41b86e9c 425 unsigned long long sum_exec_runtime)
1da177e4
LT
426{
427 struct cpu_timer_list *timer, *next;
428 cputime_t ptime = cputime_add(utime, stime);
429
430 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
431 list_del_init(&timer->entry);
432 if (cputime_lt(timer->expires.cpu, ptime)) {
433 timer->expires.cpu = cputime_zero;
434 } else {
435 timer->expires.cpu = cputime_sub(timer->expires.cpu,
436 ptime);
437 }
438 }
439
440 ++head;
441 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
442 list_del_init(&timer->entry);
443 if (cputime_lt(timer->expires.cpu, utime)) {
444 timer->expires.cpu = cputime_zero;
445 } else {
446 timer->expires.cpu = cputime_sub(timer->expires.cpu,
447 utime);
448 }
449 }
450
451 ++head;
452 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 453 list_del_init(&timer->entry);
41b86e9c 454 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
455 timer->expires.sched = 0;
456 } else {
41b86e9c 457 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
458 }
459 }
460}
461
462/*
463 * These are both called with the siglock held, when the current thread
464 * is being reaped. When the final (leader) thread in the group is reaped,
465 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
466 */
467void posix_cpu_timers_exit(struct task_struct *tsk)
468{
469 cleanup_timers(tsk->cpu_timers,
41b86e9c 470 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
471
472}
473void posix_cpu_timers_exit_group(struct task_struct *tsk)
474{
475 cleanup_timers(tsk->signal->cpu_timers,
476 cputime_add(tsk->utime, tsk->signal->utime),
477 cputime_add(tsk->stime, tsk->signal->stime),
41b86e9c 478 tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
1da177e4
LT
479}
480
481
482/*
483 * Set the expiry times of all the threads in the process so one of them
484 * will go off before the process cumulative expiry total is reached.
485 */
486static void process_timer_rebalance(struct task_struct *p,
487 unsigned int clock_idx,
488 union cpu_time_count expires,
489 union cpu_time_count val)
490{
491 cputime_t ticks, left;
492 unsigned long long ns, nsleft;
493 struct task_struct *t = p;
494 unsigned int nthreads = atomic_read(&p->signal->live);
495
ca531a0a
ON
496 if (!nthreads)
497 return;
498
1da177e4
LT
499 switch (clock_idx) {
500 default:
501 BUG();
502 break;
503 case CPUCLOCK_PROF:
ac08c264
TG
504 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
505 nthreads);
1da177e4 506 do {
7fd93cf3 507 if (likely(!(t->flags & PF_EXITING))) {
1da177e4
LT
508 ticks = cputime_add(prof_ticks(t), left);
509 if (cputime_eq(t->it_prof_expires,
510 cputime_zero) ||
511 cputime_gt(t->it_prof_expires, ticks)) {
512 t->it_prof_expires = ticks;
513 }
514 }
515 t = next_thread(t);
516 } while (t != p);
517 break;
518 case CPUCLOCK_VIRT:
ac08c264
TG
519 left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
520 nthreads);
1da177e4 521 do {
7fd93cf3 522 if (likely(!(t->flags & PF_EXITING))) {
1da177e4
LT
523 ticks = cputime_add(virt_ticks(t), left);
524 if (cputime_eq(t->it_virt_expires,
525 cputime_zero) ||
526 cputime_gt(t->it_virt_expires, ticks)) {
527 t->it_virt_expires = ticks;
528 }
529 }
530 t = next_thread(t);
531 } while (t != p);
532 break;
533 case CPUCLOCK_SCHED:
534 nsleft = expires.sched - val.sched;
535 do_div(nsleft, nthreads);
ac08c264 536 nsleft = max_t(unsigned long long, nsleft, 1);
1da177e4 537 do {
7fd93cf3 538 if (likely(!(t->flags & PF_EXITING))) {
41b86e9c 539 ns = t->se.sum_exec_runtime + nsleft;
1da177e4
LT
540 if (t->it_sched_expires == 0 ||
541 t->it_sched_expires > ns) {
542 t->it_sched_expires = ns;
543 }
544 }
545 t = next_thread(t);
546 } while (t != p);
547 break;
548 }
549}
550
551static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
552{
553 /*
554 * That's all for this thread or process.
555 * We leave our residual in expires to be reported.
556 */
557 put_task_struct(timer->it.cpu.task);
558 timer->it.cpu.task = NULL;
559 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
560 timer->it.cpu.expires,
561 now);
562}
563
564/*
565 * Insert the timer on the appropriate list before any timers that
566 * expire later. This must be called with the tasklist_lock held
567 * for reading, and interrupts disabled.
568 */
569static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
570{
571 struct task_struct *p = timer->it.cpu.task;
572 struct list_head *head, *listpos;
573 struct cpu_timer_list *const nt = &timer->it.cpu;
574 struct cpu_timer_list *next;
575 unsigned long i;
576
577 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
578 p->cpu_timers : p->signal->cpu_timers);
579 head += CPUCLOCK_WHICH(timer->it_clock);
580
581 BUG_ON(!irqs_disabled());
582 spin_lock(&p->sighand->siglock);
583
584 listpos = head;
585 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
586 list_for_each_entry(next, head, entry) {
70ab81c2 587 if (next->expires.sched > nt->expires.sched)
1da177e4 588 break;
70ab81c2 589 listpos = &next->entry;
1da177e4
LT
590 }
591 } else {
592 list_for_each_entry(next, head, entry) {
70ab81c2 593 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
1da177e4 594 break;
70ab81c2 595 listpos = &next->entry;
1da177e4
LT
596 }
597 }
598 list_add(&nt->entry, listpos);
599
600 if (listpos == head) {
601 /*
602 * We are the new earliest-expiring timer.
603 * If we are a thread timer, there can always
604 * be a process timer telling us to stop earlier.
605 */
606
607 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
608 switch (CPUCLOCK_WHICH(timer->it_clock)) {
609 default:
610 BUG();
611 case CPUCLOCK_PROF:
612 if (cputime_eq(p->it_prof_expires,
613 cputime_zero) ||
614 cputime_gt(p->it_prof_expires,
615 nt->expires.cpu))
616 p->it_prof_expires = nt->expires.cpu;
617 break;
618 case CPUCLOCK_VIRT:
619 if (cputime_eq(p->it_virt_expires,
620 cputime_zero) ||
621 cputime_gt(p->it_virt_expires,
622 nt->expires.cpu))
623 p->it_virt_expires = nt->expires.cpu;
624 break;
625 case CPUCLOCK_SCHED:
626 if (p->it_sched_expires == 0 ||
627 p->it_sched_expires > nt->expires.sched)
628 p->it_sched_expires = nt->expires.sched;
629 break;
630 }
631 } else {
632 /*
633 * For a process timer, we must balance
634 * all the live threads' expirations.
635 */
636 switch (CPUCLOCK_WHICH(timer->it_clock)) {
637 default:
638 BUG();
639 case CPUCLOCK_VIRT:
640 if (!cputime_eq(p->signal->it_virt_expires,
641 cputime_zero) &&
642 cputime_lt(p->signal->it_virt_expires,
643 timer->it.cpu.expires.cpu))
644 break;
645 goto rebalance;
646 case CPUCLOCK_PROF:
647 if (!cputime_eq(p->signal->it_prof_expires,
648 cputime_zero) &&
649 cputime_lt(p->signal->it_prof_expires,
650 timer->it.cpu.expires.cpu))
651 break;
652 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
653 if (i != RLIM_INFINITY &&
654 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
655 break;
656 goto rebalance;
657 case CPUCLOCK_SCHED:
658 rebalance:
659 process_timer_rebalance(
660 timer->it.cpu.task,
661 CPUCLOCK_WHICH(timer->it_clock),
662 timer->it.cpu.expires, now);
663 break;
664 }
665 }
666 }
667
668 spin_unlock(&p->sighand->siglock);
669}
670
671/*
672 * The timer is locked, fire it and arrange for its reload.
673 */
674static void cpu_timer_fire(struct k_itimer *timer)
675{
676 if (unlikely(timer->sigq == NULL)) {
677 /*
678 * This a special case for clock_nanosleep,
679 * not a normal timer from sys_timer_create.
680 */
681 wake_up_process(timer->it_process);
682 timer->it.cpu.expires.sched = 0;
683 } else if (timer->it.cpu.incr.sched == 0) {
684 /*
685 * One-shot timer. Clear it as soon as it's fired.
686 */
687 posix_timer_event(timer, 0);
688 timer->it.cpu.expires.sched = 0;
689 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
690 /*
691 * The signal did not get queued because the signal
692 * was ignored, so we won't get any callback to
693 * reload the timer. But we need to keep it
694 * ticking in case the signal is deliverable next time.
695 */
696 posix_cpu_timer_schedule(timer);
697 }
698}
699
700/*
701 * Guts of sys_timer_settime for CPU timers.
702 * This is called with the timer locked and interrupts disabled.
703 * If we return TIMER_RETRY, it's necessary to release the timer's lock
704 * and try again. (This happens when the timer is in the middle of firing.)
705 */
706int posix_cpu_timer_set(struct k_itimer *timer, int flags,
707 struct itimerspec *new, struct itimerspec *old)
708{
709 struct task_struct *p = timer->it.cpu.task;
710 union cpu_time_count old_expires, new_expires, val;
711 int ret;
712
713 if (unlikely(p == NULL)) {
714 /*
715 * Timer refers to a dead task's clock.
716 */
717 return -ESRCH;
718 }
719
720 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
721
722 read_lock(&tasklist_lock);
723 /*
724 * We need the tasklist_lock to protect against reaping that
725 * clears p->signal. If p has just been reaped, we can no
726 * longer get any information about it at all.
727 */
728 if (unlikely(p->signal == NULL)) {
729 read_unlock(&tasklist_lock);
730 put_task_struct(p);
731 timer->it.cpu.task = NULL;
732 return -ESRCH;
733 }
734
735 /*
736 * Disarm any old timer after extracting its expiry time.
737 */
738 BUG_ON(!irqs_disabled());
a69ac4a7
ON
739
740 ret = 0;
1da177e4
LT
741 spin_lock(&p->sighand->siglock);
742 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
743 if (unlikely(timer->it.cpu.firing)) {
744 timer->it.cpu.firing = -1;
745 ret = TIMER_RETRY;
746 } else
747 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
748 spin_unlock(&p->sighand->siglock);
749
750 /*
751 * We need to sample the current value to convert the new
752 * value from to relative and absolute, and to convert the
753 * old value from absolute to relative. To set a process
754 * timer, we need a sample to balance the thread expiry
755 * times (in arm_timer). With an absolute time, we must
756 * check if it's already passed. In short, we need a sample.
757 */
758 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
759 cpu_clock_sample(timer->it_clock, p, &val);
760 } else {
761 cpu_clock_sample_group(timer->it_clock, p, &val);
762 }
763
764 if (old) {
765 if (old_expires.sched == 0) {
766 old->it_value.tv_sec = 0;
767 old->it_value.tv_nsec = 0;
768 } else {
769 /*
770 * Update the timer in case it has
771 * overrun already. If it has,
772 * we'll report it as having overrun
773 * and with the next reloaded timer
774 * already ticking, though we are
775 * swallowing that pending
776 * notification here to install the
777 * new setting.
778 */
779 bump_cpu_timer(timer, val);
780 if (cpu_time_before(timer->it_clock, val,
781 timer->it.cpu.expires)) {
782 old_expires = cpu_time_sub(
783 timer->it_clock,
784 timer->it.cpu.expires, val);
785 sample_to_timespec(timer->it_clock,
786 old_expires,
787 &old->it_value);
788 } else {
789 old->it_value.tv_nsec = 1;
790 old->it_value.tv_sec = 0;
791 }
792 }
793 }
794
a69ac4a7 795 if (unlikely(ret)) {
1da177e4
LT
796 /*
797 * We are colliding with the timer actually firing.
798 * Punt after filling in the timer's old value, and
799 * disable this firing since we are already reporting
800 * it as an overrun (thanks to bump_cpu_timer above).
801 */
802 read_unlock(&tasklist_lock);
1da177e4
LT
803 goto out;
804 }
805
806 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
807 cpu_time_add(timer->it_clock, &new_expires, val);
808 }
809
810 /*
811 * Install the new expiry time (or zero).
812 * For a timer with no notification action, we don't actually
813 * arm the timer (we'll just fake it for timer_gettime).
814 */
815 timer->it.cpu.expires = new_expires;
816 if (new_expires.sched != 0 &&
817 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
818 cpu_time_before(timer->it_clock, val, new_expires)) {
819 arm_timer(timer, val);
820 }
821
822 read_unlock(&tasklist_lock);
823
824 /*
825 * Install the new reload setting, and
826 * set up the signal and overrun bookkeeping.
827 */
828 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
829 &new->it_interval);
830
831 /*
832 * This acts as a modification timestamp for the timer,
833 * so any automatic reload attempt will punt on seeing
834 * that we have reset the timer manually.
835 */
836 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
837 ~REQUEUE_PENDING;
838 timer->it_overrun_last = 0;
839 timer->it_overrun = -1;
840
841 if (new_expires.sched != 0 &&
842 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
843 !cpu_time_before(timer->it_clock, val, new_expires)) {
844 /*
845 * The designated time already passed, so we notify
846 * immediately, even if the thread never runs to
847 * accumulate more time on this clock.
848 */
849 cpu_timer_fire(timer);
850 }
851
852 ret = 0;
853 out:
854 if (old) {
855 sample_to_timespec(timer->it_clock,
856 timer->it.cpu.incr, &old->it_interval);
857 }
858 return ret;
859}
860
861void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
862{
863 union cpu_time_count now;
864 struct task_struct *p = timer->it.cpu.task;
865 int clear_dead;
866
867 /*
868 * Easy part: convert the reload time.
869 */
870 sample_to_timespec(timer->it_clock,
871 timer->it.cpu.incr, &itp->it_interval);
872
873 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
874 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
875 return;
876 }
877
878 if (unlikely(p == NULL)) {
879 /*
880 * This task already died and the timer will never fire.
881 * In this case, expires is actually the dead value.
882 */
883 dead:
884 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
885 &itp->it_value);
886 return;
887 }
888
889 /*
890 * Sample the clock to take the difference with the expiry time.
891 */
892 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
893 cpu_clock_sample(timer->it_clock, p, &now);
894 clear_dead = p->exit_state;
895 } else {
896 read_lock(&tasklist_lock);
897 if (unlikely(p->signal == NULL)) {
898 /*
899 * The process has been reaped.
900 * We can't even collect a sample any more.
901 * Call the timer disarmed, nothing else to do.
902 */
903 put_task_struct(p);
904 timer->it.cpu.task = NULL;
905 timer->it.cpu.expires.sched = 0;
906 read_unlock(&tasklist_lock);
907 goto dead;
908 } else {
909 cpu_clock_sample_group(timer->it_clock, p, &now);
910 clear_dead = (unlikely(p->exit_state) &&
911 thread_group_empty(p));
912 }
913 read_unlock(&tasklist_lock);
914 }
915
916 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
917 if (timer->it.cpu.incr.sched == 0 &&
918 cpu_time_before(timer->it_clock,
919 timer->it.cpu.expires, now)) {
920 /*
921 * Do-nothing timer expired and has no reload,
922 * so it's as if it was never set.
923 */
924 timer->it.cpu.expires.sched = 0;
925 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
926 return;
927 }
928 /*
929 * Account for any expirations and reloads that should
930 * have happened.
931 */
932 bump_cpu_timer(timer, now);
933 }
934
935 if (unlikely(clear_dead)) {
936 /*
937 * We've noticed that the thread is dead, but
938 * not yet reaped. Take this opportunity to
939 * drop our task ref.
940 */
941 clear_dead_task(timer, now);
942 goto dead;
943 }
944
945 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
946 sample_to_timespec(timer->it_clock,
947 cpu_time_sub(timer->it_clock,
948 timer->it.cpu.expires, now),
949 &itp->it_value);
950 } else {
951 /*
952 * The timer should have expired already, but the firing
953 * hasn't taken place yet. Say it's just about to expire.
954 */
955 itp->it_value.tv_nsec = 1;
956 itp->it_value.tv_sec = 0;
957 }
958}
959
960/*
961 * Check for any per-thread CPU timers that have fired and move them off
962 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
963 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
964 */
965static void check_thread_timers(struct task_struct *tsk,
966 struct list_head *firing)
967{
e80eda94 968 int maxfire;
1da177e4 969 struct list_head *timers = tsk->cpu_timers;
78f2c7db 970 struct signal_struct *const sig = tsk->signal;
1da177e4 971
e80eda94 972 maxfire = 20;
1da177e4
LT
973 tsk->it_prof_expires = cputime_zero;
974 while (!list_empty(timers)) {
b5e61818 975 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
976 struct cpu_timer_list,
977 entry);
e80eda94 978 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
1da177e4
LT
979 tsk->it_prof_expires = t->expires.cpu;
980 break;
981 }
982 t->firing = 1;
983 list_move_tail(&t->entry, firing);
984 }
985
986 ++timers;
e80eda94 987 maxfire = 20;
1da177e4
LT
988 tsk->it_virt_expires = cputime_zero;
989 while (!list_empty(timers)) {
b5e61818 990 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
991 struct cpu_timer_list,
992 entry);
e80eda94 993 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1da177e4
LT
994 tsk->it_virt_expires = t->expires.cpu;
995 break;
996 }
997 t->firing = 1;
998 list_move_tail(&t->entry, firing);
999 }
1000
1001 ++timers;
e80eda94 1002 maxfire = 20;
1da177e4
LT
1003 tsk->it_sched_expires = 0;
1004 while (!list_empty(timers)) {
b5e61818 1005 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1006 struct cpu_timer_list,
1007 entry);
41b86e9c 1008 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1da177e4
LT
1009 tsk->it_sched_expires = t->expires.sched;
1010 break;
1011 }
1012 t->firing = 1;
1013 list_move_tail(&t->entry, firing);
1014 }
78f2c7db
PZ
1015
1016 /*
1017 * Check for the special case thread timers.
1018 */
1019 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1020 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1021 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1022
1023 if (tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1024 /*
1025 * At the hard limit, we just die.
1026 * No need to calculate anything else now.
1027 */
1028 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1029 return;
1030 }
1031 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1032 /*
1033 * At the soft limit, send a SIGXCPU every second.
1034 */
1035 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1036 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1037 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1038 USEC_PER_SEC;
1039 }
1040 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1041 }
1042 }
1da177e4
LT
1043}
1044
1045/*
1046 * Check for any per-thread CPU timers that have fired and move them
1047 * off the tsk->*_timers list onto the firing list. Per-thread timers
1048 * have already been taken off.
1049 */
1050static void check_process_timers(struct task_struct *tsk,
1051 struct list_head *firing)
1052{
e80eda94 1053 int maxfire;
1da177e4
LT
1054 struct signal_struct *const sig = tsk->signal;
1055 cputime_t utime, stime, ptime, virt_expires, prof_expires;
41b86e9c 1056 unsigned long long sum_sched_runtime, sched_expires;
1da177e4
LT
1057 struct task_struct *t;
1058 struct list_head *timers = sig->cpu_timers;
1059
1060 /*
1061 * Don't sample the current process CPU clocks if there are no timers.
1062 */
1063 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1064 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1065 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1066 list_empty(&timers[CPUCLOCK_VIRT]) &&
1067 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1068 list_empty(&timers[CPUCLOCK_SCHED]))
1069 return;
1070
1071 /*
1072 * Collect the current process totals.
1073 */
1074 utime = sig->utime;
1075 stime = sig->stime;
41b86e9c 1076 sum_sched_runtime = sig->sum_sched_runtime;
1da177e4
LT
1077 t = tsk;
1078 do {
1079 utime = cputime_add(utime, t->utime);
1080 stime = cputime_add(stime, t->stime);
41b86e9c 1081 sum_sched_runtime += t->se.sum_exec_runtime;
1da177e4
LT
1082 t = next_thread(t);
1083 } while (t != tsk);
1084 ptime = cputime_add(utime, stime);
1085
e80eda94 1086 maxfire = 20;
1da177e4
LT
1087 prof_expires = cputime_zero;
1088 while (!list_empty(timers)) {
b5e61818 1089 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1090 struct cpu_timer_list,
1091 entry);
e80eda94 1092 if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1da177e4
LT
1093 prof_expires = t->expires.cpu;
1094 break;
1095 }
1096 t->firing = 1;
1097 list_move_tail(&t->entry, firing);
1098 }
1099
1100 ++timers;
e80eda94 1101 maxfire = 20;
1da177e4
LT
1102 virt_expires = cputime_zero;
1103 while (!list_empty(timers)) {
b5e61818 1104 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1105 struct cpu_timer_list,
1106 entry);
e80eda94 1107 if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1da177e4
LT
1108 virt_expires = t->expires.cpu;
1109 break;
1110 }
1111 t->firing = 1;
1112 list_move_tail(&t->entry, firing);
1113 }
1114
1115 ++timers;
e80eda94 1116 maxfire = 20;
1da177e4
LT
1117 sched_expires = 0;
1118 while (!list_empty(timers)) {
b5e61818 1119 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1120 struct cpu_timer_list,
1121 entry);
41b86e9c 1122 if (!--maxfire || sum_sched_runtime < t->expires.sched) {
1da177e4
LT
1123 sched_expires = t->expires.sched;
1124 break;
1125 }
1126 t->firing = 1;
1127 list_move_tail(&t->entry, firing);
1128 }
1129
1130 /*
1131 * Check for the special case process timers.
1132 */
1133 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1134 if (cputime_ge(ptime, sig->it_prof_expires)) {
1135 /* ITIMER_PROF fires and reloads. */
1136 sig->it_prof_expires = sig->it_prof_incr;
1137 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1138 sig->it_prof_expires = cputime_add(
1139 sig->it_prof_expires, ptime);
1140 }
1141 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1142 }
1143 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1144 (cputime_eq(prof_expires, cputime_zero) ||
1145 cputime_lt(sig->it_prof_expires, prof_expires))) {
1146 prof_expires = sig->it_prof_expires;
1147 }
1148 }
1149 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1150 if (cputime_ge(utime, sig->it_virt_expires)) {
1151 /* ITIMER_VIRTUAL fires and reloads. */
1152 sig->it_virt_expires = sig->it_virt_incr;
1153 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1154 sig->it_virt_expires = cputime_add(
1155 sig->it_virt_expires, utime);
1156 }
1157 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1158 }
1159 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1160 (cputime_eq(virt_expires, cputime_zero) ||
1161 cputime_lt(sig->it_virt_expires, virt_expires))) {
1162 virt_expires = sig->it_virt_expires;
1163 }
1164 }
1165 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1166 unsigned long psecs = cputime_to_secs(ptime);
1167 cputime_t x;
1168 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1169 /*
1170 * At the hard limit, we just die.
1171 * No need to calculate anything else now.
1172 */
1173 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1174 return;
1175 }
1176 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1177 /*
1178 * At the soft limit, send a SIGXCPU every second.
1179 */
1180 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1181 if (sig->rlim[RLIMIT_CPU].rlim_cur
1182 < sig->rlim[RLIMIT_CPU].rlim_max) {
1183 sig->rlim[RLIMIT_CPU].rlim_cur++;
1184 }
1185 }
1186 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1187 if (cputime_eq(prof_expires, cputime_zero) ||
1188 cputime_lt(x, prof_expires)) {
1189 prof_expires = x;
1190 }
1191 }
1192
1193 if (!cputime_eq(prof_expires, cputime_zero) ||
1194 !cputime_eq(virt_expires, cputime_zero) ||
1195 sched_expires != 0) {
1196 /*
1197 * Rebalance the threads' expiry times for the remaining
1198 * process CPU timers.
1199 */
1200
1201 cputime_t prof_left, virt_left, ticks;
1202 unsigned long long sched_left, sched;
1203 const unsigned int nthreads = atomic_read(&sig->live);
1204
ca531a0a
ON
1205 if (!nthreads)
1206 return;
1207
1da177e4
LT
1208 prof_left = cputime_sub(prof_expires, utime);
1209 prof_left = cputime_sub(prof_left, stime);
ac08c264 1210 prof_left = cputime_div_non_zero(prof_left, nthreads);
1da177e4 1211 virt_left = cputime_sub(virt_expires, utime);
ac08c264 1212 virt_left = cputime_div_non_zero(virt_left, nthreads);
1da177e4 1213 if (sched_expires) {
41b86e9c 1214 sched_left = sched_expires - sum_sched_runtime;
1da177e4 1215 do_div(sched_left, nthreads);
ac08c264 1216 sched_left = max_t(unsigned long long, sched_left, 1);
1da177e4
LT
1217 } else {
1218 sched_left = 0;
1219 }
1220 t = tsk;
1221 do {
8f17fc20
ON
1222 if (unlikely(t->flags & PF_EXITING))
1223 continue;
1224
1da177e4
LT
1225 ticks = cputime_add(cputime_add(t->utime, t->stime),
1226 prof_left);
1227 if (!cputime_eq(prof_expires, cputime_zero) &&
1228 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1229 cputime_gt(t->it_prof_expires, ticks))) {
1230 t->it_prof_expires = ticks;
1231 }
1232
1233 ticks = cputime_add(t->utime, virt_left);
1234 if (!cputime_eq(virt_expires, cputime_zero) &&
1235 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1236 cputime_gt(t->it_virt_expires, ticks))) {
1237 t->it_virt_expires = ticks;
1238 }
1239
41b86e9c 1240 sched = t->se.sum_exec_runtime + sched_left;
1da177e4
LT
1241 if (sched_expires && (t->it_sched_expires == 0 ||
1242 t->it_sched_expires > sched)) {
1243 t->it_sched_expires = sched;
1244 }
8f17fc20 1245 } while ((t = next_thread(t)) != tsk);
1da177e4
LT
1246 }
1247}
1248
1249/*
1250 * This is called from the signal code (via do_schedule_next_timer)
1251 * when the last timer signal was delivered and we have to reload the timer.
1252 */
1253void posix_cpu_timer_schedule(struct k_itimer *timer)
1254{
1255 struct task_struct *p = timer->it.cpu.task;
1256 union cpu_time_count now;
1257
1258 if (unlikely(p == NULL))
1259 /*
1260 * The task was cleaned up already, no future firings.
1261 */
708f430d 1262 goto out;
1da177e4
LT
1263
1264 /*
1265 * Fetch the current sample and update the timer's expiry time.
1266 */
1267 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1268 cpu_clock_sample(timer->it_clock, p, &now);
1269 bump_cpu_timer(timer, now);
1270 if (unlikely(p->exit_state)) {
1271 clear_dead_task(timer, now);
708f430d 1272 goto out;
1da177e4
LT
1273 }
1274 read_lock(&tasklist_lock); /* arm_timer needs it. */
1275 } else {
1276 read_lock(&tasklist_lock);
1277 if (unlikely(p->signal == NULL)) {
1278 /*
1279 * The process has been reaped.
1280 * We can't even collect a sample any more.
1281 */
1282 put_task_struct(p);
1283 timer->it.cpu.task = p = NULL;
1284 timer->it.cpu.expires.sched = 0;
708f430d 1285 goto out_unlock;
1da177e4
LT
1286 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1287 /*
1288 * We've noticed that the thread is dead, but
1289 * not yet reaped. Take this opportunity to
1290 * drop our task ref.
1291 */
1292 clear_dead_task(timer, now);
708f430d 1293 goto out_unlock;
1da177e4
LT
1294 }
1295 cpu_clock_sample_group(timer->it_clock, p, &now);
1296 bump_cpu_timer(timer, now);
1297 /* Leave the tasklist_lock locked for the call below. */
1298 }
1299
1300 /*
1301 * Now re-arm for the new expiry time.
1302 */
1303 arm_timer(timer, now);
1304
708f430d 1305out_unlock:
1da177e4 1306 read_unlock(&tasklist_lock);
708f430d
RM
1307
1308out:
1309 timer->it_overrun_last = timer->it_overrun;
1310 timer->it_overrun = -1;
1311 ++timer->it_requeue_pending;
1da177e4
LT
1312}
1313
1314/*
1315 * This is called from the timer interrupt handler. The irq handler has
1316 * already updated our counts. We need to check if any timers fire now.
1317 * Interrupts are disabled.
1318 */
1319void run_posix_cpu_timers(struct task_struct *tsk)
1320{
1321 LIST_HEAD(firing);
1322 struct k_itimer *timer, *next;
1323
1324 BUG_ON(!irqs_disabled());
1325
1326#define UNEXPIRED(clock) \
1327 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1328 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1329
1330 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1331 (tsk->it_sched_expires == 0 ||
41b86e9c 1332 tsk->se.sum_exec_runtime < tsk->it_sched_expires))
1da177e4
LT
1333 return;
1334
1335#undef UNEXPIRED
1336
1da177e4
LT
1337 /*
1338 * Double-check with locks held.
1339 */
1340 read_lock(&tasklist_lock);
30f1e3dd
ON
1341 if (likely(tsk->signal != NULL)) {
1342 spin_lock(&tsk->sighand->siglock);
1da177e4 1343
30f1e3dd
ON
1344 /*
1345 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1346 * all the timers that are firing, and put them on the firing list.
1347 */
1348 check_thread_timers(tsk, &firing);
1349 check_process_timers(tsk, &firing);
1da177e4 1350
30f1e3dd
ON
1351 /*
1352 * We must release these locks before taking any timer's lock.
1353 * There is a potential race with timer deletion here, as the
1354 * siglock now protects our private firing list. We have set
1355 * the firing flag in each timer, so that a deletion attempt
1356 * that gets the timer lock before we do will give it up and
1357 * spin until we've taken care of that timer below.
1358 */
1359 spin_unlock(&tsk->sighand->siglock);
1360 }
1da177e4
LT
1361 read_unlock(&tasklist_lock);
1362
1363 /*
1364 * Now that all the timers on our list have the firing flag,
1365 * noone will touch their list entries but us. We'll take
1366 * each timer's lock before clearing its firing flag, so no
1367 * timer call will interfere.
1368 */
1369 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1370 int firing;
1371 spin_lock(&timer->it_lock);
1372 list_del_init(&timer->it.cpu.entry);
1373 firing = timer->it.cpu.firing;
1374 timer->it.cpu.firing = 0;
1375 /*
1376 * The firing flag is -1 if we collided with a reset
1377 * of the timer, which already reported this
1378 * almost-firing as an overrun. So don't generate an event.
1379 */
1380 if (likely(firing >= 0)) {
1381 cpu_timer_fire(timer);
1382 }
1383 spin_unlock(&timer->it_lock);
1384 }
1385}
1386
1387/*
1388 * Set one of the process-wide special case CPU timers.
1389 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1390 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1391 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1392 * it to be absolute, *oldval is absolute and we update it to be relative.
1393 */
1394void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1395 cputime_t *newval, cputime_t *oldval)
1396{
1397 union cpu_time_count now;
1398 struct list_head *head;
1399
1400 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1401 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1402
1403 if (oldval) {
1404 if (!cputime_eq(*oldval, cputime_zero)) {
1405 if (cputime_le(*oldval, now.cpu)) {
1406 /* Just about to fire. */
1407 *oldval = jiffies_to_cputime(1);
1408 } else {
1409 *oldval = cputime_sub(*oldval, now.cpu);
1410 }
1411 }
1412
1413 if (cputime_eq(*newval, cputime_zero))
1414 return;
1415 *newval = cputime_add(*newval, now.cpu);
1416
1417 /*
1418 * If the RLIMIT_CPU timer will expire before the
1419 * ITIMER_PROF timer, we have nothing else to do.
1420 */
1421 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1422 < cputime_to_secs(*newval))
1423 return;
1424 }
1425
1426 /*
1427 * Check whether there are any process timers already set to fire
1428 * before this one. If so, we don't have anything more to do.
1429 */
1430 head = &tsk->signal->cpu_timers[clock_idx];
1431 if (list_empty(head) ||
b5e61818 1432 cputime_ge(list_first_entry(head,
1da177e4
LT
1433 struct cpu_timer_list, entry)->expires.cpu,
1434 *newval)) {
1435 /*
1436 * Rejigger each thread's expiry time so that one will
1437 * notice before we hit the process-cumulative expiry time.
1438 */
1439 union cpu_time_count expires = { .sched = 0 };
1440 expires.cpu = *newval;
1441 process_timer_rebalance(tsk, clock_idx, expires, now);
1442 }
1443}
1444
e4b76555
TA
1445static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1446 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1447{
1da177e4
LT
1448 struct k_itimer timer;
1449 int error;
1450
1da177e4
LT
1451 /*
1452 * Set up a temporary timer and then wait for it to go off.
1453 */
1454 memset(&timer, 0, sizeof timer);
1455 spin_lock_init(&timer.it_lock);
1456 timer.it_clock = which_clock;
1457 timer.it_overrun = -1;
1458 error = posix_cpu_timer_create(&timer);
1459 timer.it_process = current;
1460 if (!error) {
1da177e4 1461 static struct itimerspec zero_it;
e4b76555
TA
1462
1463 memset(it, 0, sizeof *it);
1464 it->it_value = *rqtp;
1da177e4
LT
1465
1466 spin_lock_irq(&timer.it_lock);
e4b76555 1467 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1468 if (error) {
1469 spin_unlock_irq(&timer.it_lock);
1470 return error;
1471 }
1472
1473 while (!signal_pending(current)) {
1474 if (timer.it.cpu.expires.sched == 0) {
1475 /*
1476 * Our timer fired and was reset.
1477 */
1478 spin_unlock_irq(&timer.it_lock);
1479 return 0;
1480 }
1481
1482 /*
1483 * Block until cpu_timer_fire (or a signal) wakes us.
1484 */
1485 __set_current_state(TASK_INTERRUPTIBLE);
1486 spin_unlock_irq(&timer.it_lock);
1487 schedule();
1488 spin_lock_irq(&timer.it_lock);
1489 }
1490
1491 /*
1492 * We were interrupted by a signal.
1493 */
1494 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1495 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1496 spin_unlock_irq(&timer.it_lock);
1497
e4b76555 1498 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1499 /*
1500 * It actually did fire already.
1501 */
1502 return 0;
1503 }
1504
e4b76555
TA
1505 error = -ERESTART_RESTARTBLOCK;
1506 }
1507
1508 return error;
1509}
1510
1511int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1512 struct timespec *rqtp, struct timespec __user *rmtp)
1513{
1514 struct restart_block *restart_block =
1515 &current_thread_info()->restart_block;
1516 struct itimerspec it;
1517 int error;
1518
1519 /*
1520 * Diagnose required errors first.
1521 */
1522 if (CPUCLOCK_PERTHREAD(which_clock) &&
1523 (CPUCLOCK_PID(which_clock) == 0 ||
1524 CPUCLOCK_PID(which_clock) == current->pid))
1525 return -EINVAL;
1526
1527 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1528
1529 if (error == -ERESTART_RESTARTBLOCK) {
1530
1531 if (flags & TIMER_ABSTIME)
1532 return -ERESTARTNOHAND;
1da177e4 1533 /*
e4b76555
TA
1534 * Report back to the user the time still remaining.
1535 */
1536 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1537 return -EFAULT;
1538
1711ef38 1539 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1540 restart_block->arg0 = which_clock;
97735f25 1541 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1542 restart_block->arg2 = rqtp->tv_sec;
1543 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1544 }
1da177e4
LT
1545 return error;
1546}
1547
1711ef38 1548long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1549{
1550 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1551 struct timespec __user *rmtp;
1552 struct timespec t;
e4b76555
TA
1553 struct itimerspec it;
1554 int error;
97735f25
TG
1555
1556 rmtp = (struct timespec __user *) restart_block->arg1;
1557 t.tv_sec = restart_block->arg2;
1558 t.tv_nsec = restart_block->arg3;
1559
1da177e4 1560 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1561 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1562
1563 if (error == -ERESTART_RESTARTBLOCK) {
1564 /*
1565 * Report back to the user the time still remaining.
1566 */
1567 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1568 return -EFAULT;
1569
1570 restart_block->fn = posix_cpu_nsleep_restart;
1571 restart_block->arg0 = which_clock;
1572 restart_block->arg1 = (unsigned long) rmtp;
1573 restart_block->arg2 = t.tv_sec;
1574 restart_block->arg3 = t.tv_nsec;
1575 }
1576 return error;
1577
1da177e4
LT
1578}
1579
1580
1581#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1582#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1583
a924b04d
TG
1584static int process_cpu_clock_getres(const clockid_t which_clock,
1585 struct timespec *tp)
1da177e4
LT
1586{
1587 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1588}
a924b04d
TG
1589static int process_cpu_clock_get(const clockid_t which_clock,
1590 struct timespec *tp)
1da177e4
LT
1591{
1592 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1593}
1594static int process_cpu_timer_create(struct k_itimer *timer)
1595{
1596 timer->it_clock = PROCESS_CLOCK;
1597 return posix_cpu_timer_create(timer);
1598}
a924b04d 1599static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1600 struct timespec *rqtp,
1601 struct timespec __user *rmtp)
1da177e4 1602{
97735f25 1603 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1604}
1711ef38
TA
1605static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1606{
1607 return -EINVAL;
1608}
a924b04d
TG
1609static int thread_cpu_clock_getres(const clockid_t which_clock,
1610 struct timespec *tp)
1da177e4
LT
1611{
1612 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1613}
a924b04d
TG
1614static int thread_cpu_clock_get(const clockid_t which_clock,
1615 struct timespec *tp)
1da177e4
LT
1616{
1617 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1618}
1619static int thread_cpu_timer_create(struct k_itimer *timer)
1620{
1621 timer->it_clock = THREAD_CLOCK;
1622 return posix_cpu_timer_create(timer);
1623}
a924b04d 1624static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1625 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1626{
1627 return -EINVAL;
1628}
1711ef38
TA
1629static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1630{
1631 return -EINVAL;
1632}
1da177e4
LT
1633
1634static __init int init_posix_cpu_timers(void)
1635{
1636 struct k_clock process = {
1637 .clock_getres = process_cpu_clock_getres,
1638 .clock_get = process_cpu_clock_get,
1639 .clock_set = do_posix_clock_nosettime,
1640 .timer_create = process_cpu_timer_create,
1641 .nsleep = process_cpu_nsleep,
1711ef38 1642 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1643 };
1644 struct k_clock thread = {
1645 .clock_getres = thread_cpu_clock_getres,
1646 .clock_get = thread_cpu_clock_get,
1647 .clock_set = do_posix_clock_nosettime,
1648 .timer_create = thread_cpu_timer_create,
1649 .nsleep = thread_cpu_nsleep,
1711ef38 1650 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4
LT
1651 };
1652
1653 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1654 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1655
1656 return 0;
1657}
1658__initcall(init_posix_cpu_timers);