perfcounters: restructure x86 counter math
[linux-2.6-block.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/fs.h>
11#include <linux/cpu.h>
12#include <linux/smp.h>
04289bb9 13#include <linux/file.h>
0793a61d
TG
14#include <linux/poll.h>
15#include <linux/sysfs.h>
16#include <linux/ptrace.h>
17#include <linux/percpu.h>
18#include <linux/uaccess.h>
19#include <linux/syscalls.h>
20#include <linux/anon_inodes.h>
21#include <linux/perf_counter.h>
22
23/*
24 * Each CPU has a list of per CPU counters:
25 */
26DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
27
28int perf_max_counters __read_mostly;
29static int perf_reserved_percpu __read_mostly;
30static int perf_overcommit __read_mostly = 1;
31
32/*
33 * Mutex for (sysadmin-configurable) counter reservations:
34 */
35static DEFINE_MUTEX(perf_resource_mutex);
36
37/*
38 * Architecture provided APIs - weak aliases:
39 */
5c92d124 40extern __weak const struct hw_perf_counter_ops *
621a01ea 41hw_perf_counter_init(struct perf_counter *counter)
0793a61d 42{
621a01ea 43 return ERR_PTR(-EINVAL);
0793a61d
TG
44}
45
01b2838c 46u64 __weak hw_perf_save_disable(void) { return 0; }
ee06094f 47void __weak hw_perf_restore(u64 ctrl) { }
5c92d124 48void __weak hw_perf_counter_setup(void) { }
0793a61d 49
04289bb9
IM
50static void
51list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
52{
53 struct perf_counter *group_leader = counter->group_leader;
54
55 /*
56 * Depending on whether it is a standalone or sibling counter,
57 * add it straight to the context's counter list, or to the group
58 * leader's sibling list:
59 */
60 if (counter->group_leader == counter)
61 list_add_tail(&counter->list_entry, &ctx->counter_list);
62 else
63 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
64}
65
66static void
67list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68{
69 struct perf_counter *sibling, *tmp;
70
71 list_del_init(&counter->list_entry);
72
04289bb9
IM
73 /*
74 * If this was a group counter with sibling counters then
75 * upgrade the siblings to singleton counters by adding them
76 * to the context list directly:
77 */
78 list_for_each_entry_safe(sibling, tmp,
79 &counter->sibling_list, list_entry) {
80
81 list_del_init(&sibling->list_entry);
82 list_add_tail(&sibling->list_entry, &ctx->counter_list);
83 WARN_ON_ONCE(!sibling->group_leader);
84 WARN_ON_ONCE(sibling->group_leader == sibling);
85 sibling->group_leader = sibling;
86 }
87}
88
0793a61d
TG
89/*
90 * Cross CPU call to remove a performance counter
91 *
92 * We disable the counter on the hardware level first. After that we
93 * remove it from the context list.
94 */
04289bb9 95static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
96{
97 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
98 struct perf_counter *counter = info;
99 struct perf_counter_context *ctx = counter->ctx;
5c92d124 100 u64 perf_flags;
0793a61d
TG
101
102 /*
103 * If this is a task context, we need to check whether it is
104 * the current task context of this cpu. If not it has been
105 * scheduled out before the smp call arrived.
106 */
107 if (ctx->task && cpuctx->task_ctx != ctx)
108 return;
109
110 spin_lock(&ctx->lock);
111
6a930700 112 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
621a01ea 113 counter->hw_ops->hw_perf_counter_disable(counter);
6a930700 114 counter->state = PERF_COUNTER_STATE_INACTIVE;
0793a61d
TG
115 ctx->nr_active--;
116 cpuctx->active_oncpu--;
117 counter->task = NULL;
118 }
119 ctx->nr_counters--;
120
121 /*
122 * Protect the list operation against NMI by disabling the
123 * counters on a global level. NOP for non NMI based counters.
124 */
01b2838c 125 perf_flags = hw_perf_save_disable();
04289bb9 126 list_del_counter(counter, ctx);
01b2838c 127 hw_perf_restore(perf_flags);
0793a61d
TG
128
129 if (!ctx->task) {
130 /*
131 * Allow more per task counters with respect to the
132 * reservation:
133 */
134 cpuctx->max_pertask =
135 min(perf_max_counters - ctx->nr_counters,
136 perf_max_counters - perf_reserved_percpu);
137 }
138
139 spin_unlock(&ctx->lock);
140}
141
142
143/*
144 * Remove the counter from a task's (or a CPU's) list of counters.
145 *
146 * Must be called with counter->mutex held.
147 *
148 * CPU counters are removed with a smp call. For task counters we only
149 * call when the task is on a CPU.
150 */
04289bb9 151static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
152{
153 struct perf_counter_context *ctx = counter->ctx;
154 struct task_struct *task = ctx->task;
155
156 if (!task) {
157 /*
158 * Per cpu counters are removed via an smp call and
159 * the removal is always sucessful.
160 */
161 smp_call_function_single(counter->cpu,
04289bb9 162 __perf_counter_remove_from_context,
0793a61d
TG
163 counter, 1);
164 return;
165 }
166
167retry:
04289bb9 168 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
169 counter);
170
171 spin_lock_irq(&ctx->lock);
172 /*
173 * If the context is active we need to retry the smp call.
174 */
04289bb9 175 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
176 spin_unlock_irq(&ctx->lock);
177 goto retry;
178 }
179
180 /*
181 * The lock prevents that this context is scheduled in so we
04289bb9 182 * can remove the counter safely, if the call above did not
0793a61d
TG
183 * succeed.
184 */
04289bb9 185 if (!list_empty(&counter->list_entry)) {
0793a61d 186 ctx->nr_counters--;
04289bb9 187 list_del_counter(counter, ctx);
0793a61d
TG
188 counter->task = NULL;
189 }
190 spin_unlock_irq(&ctx->lock);
191}
192
193/*
194 * Cross CPU call to install and enable a preformance counter
195 */
196static void __perf_install_in_context(void *info)
197{
198 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
199 struct perf_counter *counter = info;
200 struct perf_counter_context *ctx = counter->ctx;
201 int cpu = smp_processor_id();
5c92d124 202 u64 perf_flags;
0793a61d
TG
203
204 /*
205 * If this is a task context, we need to check whether it is
206 * the current task context of this cpu. If not it has been
207 * scheduled out before the smp call arrived.
208 */
209 if (ctx->task && cpuctx->task_ctx != ctx)
210 return;
211
212 spin_lock(&ctx->lock);
213
214 /*
215 * Protect the list operation against NMI by disabling the
216 * counters on a global level. NOP for non NMI based counters.
217 */
01b2838c 218 perf_flags = hw_perf_save_disable();
04289bb9 219 list_add_counter(counter, ctx);
01b2838c 220 hw_perf_restore(perf_flags);
0793a61d
TG
221
222 ctx->nr_counters++;
223
224 if (cpuctx->active_oncpu < perf_max_counters) {
6a930700 225 counter->state = PERF_COUNTER_STATE_ACTIVE;
0793a61d
TG
226 counter->oncpu = cpu;
227 ctx->nr_active++;
228 cpuctx->active_oncpu++;
ee06094f 229 counter->hw_ops->hw_perf_counter_enable(counter);
0793a61d
TG
230 }
231
232 if (!ctx->task && cpuctx->max_pertask)
233 cpuctx->max_pertask--;
234
235 spin_unlock(&ctx->lock);
236}
237
238/*
239 * Attach a performance counter to a context
240 *
241 * First we add the counter to the list with the hardware enable bit
242 * in counter->hw_config cleared.
243 *
244 * If the counter is attached to a task which is on a CPU we use a smp
245 * call to enable it in the task context. The task might have been
246 * scheduled away, but we check this in the smp call again.
247 */
248static void
249perf_install_in_context(struct perf_counter_context *ctx,
250 struct perf_counter *counter,
251 int cpu)
252{
253 struct task_struct *task = ctx->task;
254
255 counter->ctx = ctx;
256 if (!task) {
257 /*
258 * Per cpu counters are installed via an smp call and
259 * the install is always sucessful.
260 */
261 smp_call_function_single(cpu, __perf_install_in_context,
262 counter, 1);
263 return;
264 }
265
266 counter->task = task;
267retry:
268 task_oncpu_function_call(task, __perf_install_in_context,
269 counter);
270
271 spin_lock_irq(&ctx->lock);
272 /*
0793a61d
TG
273 * we need to retry the smp call.
274 */
04289bb9 275 if (ctx->nr_active && list_empty(&counter->list_entry)) {
0793a61d
TG
276 spin_unlock_irq(&ctx->lock);
277 goto retry;
278 }
279
280 /*
281 * The lock prevents that this context is scheduled in so we
282 * can add the counter safely, if it the call above did not
283 * succeed.
284 */
04289bb9
IM
285 if (list_empty(&counter->list_entry)) {
286 list_add_counter(counter, ctx);
0793a61d
TG
287 ctx->nr_counters++;
288 }
289 spin_unlock_irq(&ctx->lock);
290}
291
04289bb9
IM
292static void
293counter_sched_out(struct perf_counter *counter,
294 struct perf_cpu_context *cpuctx,
295 struct perf_counter_context *ctx)
296{
6a930700 297 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
04289bb9
IM
298 return;
299
621a01ea 300 counter->hw_ops->hw_perf_counter_disable(counter);
6a930700
IM
301 counter->state = PERF_COUNTER_STATE_INACTIVE;
302 counter->oncpu = -1;
04289bb9
IM
303
304 cpuctx->active_oncpu--;
305 ctx->nr_active--;
306}
307
308static void
309group_sched_out(struct perf_counter *group_counter,
310 struct perf_cpu_context *cpuctx,
311 struct perf_counter_context *ctx)
312{
313 struct perf_counter *counter;
314
315 counter_sched_out(group_counter, cpuctx, ctx);
316
317 /*
318 * Schedule out siblings (if any):
319 */
320 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
321 counter_sched_out(counter, cpuctx, ctx);
322}
323
0793a61d
TG
324/*
325 * Called from scheduler to remove the counters of the current task,
326 * with interrupts disabled.
327 *
328 * We stop each counter and update the counter value in counter->count.
329 *
330 * This does not protect us against NMI, but hw_perf_counter_disable()
331 * sets the disabled bit in the control field of counter _before_
332 * accessing the counter control register. If a NMI hits, then it will
333 * not restart the counter.
334 */
335void perf_counter_task_sched_out(struct task_struct *task, int cpu)
336{
337 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
338 struct perf_counter_context *ctx = &task->perf_counter_ctx;
339 struct perf_counter *counter;
340
341 if (likely(!cpuctx->task_ctx))
342 return;
343
344 spin_lock(&ctx->lock);
04289bb9
IM
345 if (ctx->nr_active) {
346 list_for_each_entry(counter, &ctx->counter_list, list_entry)
347 group_sched_out(counter, cpuctx, ctx);
0793a61d
TG
348 }
349 spin_unlock(&ctx->lock);
350 cpuctx->task_ctx = NULL;
351}
352
04289bb9
IM
353static void
354counter_sched_in(struct perf_counter *counter,
355 struct perf_cpu_context *cpuctx,
356 struct perf_counter_context *ctx,
357 int cpu)
358{
6a930700 359 if (counter->state == PERF_COUNTER_STATE_OFF)
1d1c7ddb
IM
360 return;
361
621a01ea 362 counter->hw_ops->hw_perf_counter_enable(counter);
6a930700 363 counter->state = PERF_COUNTER_STATE_ACTIVE;
04289bb9
IM
364 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
365
366 cpuctx->active_oncpu++;
367 ctx->nr_active++;
368}
369
370static void
371group_sched_in(struct perf_counter *group_counter,
372 struct perf_cpu_context *cpuctx,
373 struct perf_counter_context *ctx,
374 int cpu)
375{
376 struct perf_counter *counter;
377
378 counter_sched_in(group_counter, cpuctx, ctx, cpu);
379
380 /*
381 * Schedule in siblings as one group (if any):
382 */
383 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
384 counter_sched_in(counter, cpuctx, ctx, cpu);
385}
386
0793a61d
TG
387/*
388 * Called from scheduler to add the counters of the current task
389 * with interrupts disabled.
390 *
391 * We restore the counter value and then enable it.
392 *
393 * This does not protect us against NMI, but hw_perf_counter_enable()
394 * sets the enabled bit in the control field of counter _before_
395 * accessing the counter control register. If a NMI hits, then it will
396 * keep the counter running.
397 */
398void perf_counter_task_sched_in(struct task_struct *task, int cpu)
399{
400 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
401 struct perf_counter_context *ctx = &task->perf_counter_ctx;
402 struct perf_counter *counter;
403
404 if (likely(!ctx->nr_counters))
405 return;
406
407 spin_lock(&ctx->lock);
04289bb9 408 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
0793a61d
TG
409 if (ctx->nr_active == cpuctx->max_pertask)
410 break;
04289bb9
IM
411
412 /*
413 * Listen to the 'cpu' scheduling filter constraint
414 * of counters:
415 */
0793a61d
TG
416 if (counter->cpu != -1 && counter->cpu != cpu)
417 continue;
418
04289bb9 419 group_sched_in(counter, cpuctx, ctx, cpu);
0793a61d
TG
420 }
421 spin_unlock(&ctx->lock);
04289bb9 422
0793a61d
TG
423 cpuctx->task_ctx = ctx;
424}
425
1d1c7ddb
IM
426int perf_counter_task_disable(void)
427{
428 struct task_struct *curr = current;
429 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
430 struct perf_counter *counter;
431 u64 perf_flags;
432 int cpu;
433
434 if (likely(!ctx->nr_counters))
435 return 0;
436
437 local_irq_disable();
438 cpu = smp_processor_id();
439
440 perf_counter_task_sched_out(curr, cpu);
441
442 spin_lock(&ctx->lock);
443
444 /*
445 * Disable all the counters:
446 */
447 perf_flags = hw_perf_save_disable();
448
449 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
6a930700
IM
450 WARN_ON_ONCE(counter->state == PERF_COUNTER_STATE_ACTIVE);
451 counter->state = PERF_COUNTER_STATE_OFF;
1d1c7ddb
IM
452 }
453 hw_perf_restore(perf_flags);
454
455 spin_unlock(&ctx->lock);
456
457 local_irq_enable();
458
459 return 0;
460}
461
462int perf_counter_task_enable(void)
463{
464 struct task_struct *curr = current;
465 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
466 struct perf_counter *counter;
467 u64 perf_flags;
468 int cpu;
469
470 if (likely(!ctx->nr_counters))
471 return 0;
472
473 local_irq_disable();
474 cpu = smp_processor_id();
475
476 spin_lock(&ctx->lock);
477
478 /*
479 * Disable all the counters:
480 */
481 perf_flags = hw_perf_save_disable();
482
483 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
6a930700 484 if (counter->state != PERF_COUNTER_STATE_OFF)
1d1c7ddb 485 continue;
6a930700 486 counter->state = PERF_COUNTER_STATE_INACTIVE;
1d1c7ddb
IM
487 }
488 hw_perf_restore(perf_flags);
489
490 spin_unlock(&ctx->lock);
491
492 perf_counter_task_sched_in(curr, cpu);
493
494 local_irq_enable();
495
496 return 0;
497}
498
0793a61d
TG
499void perf_counter_task_tick(struct task_struct *curr, int cpu)
500{
501 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
502 struct perf_counter *counter;
5c92d124 503 u64 perf_flags;
0793a61d
TG
504
505 if (likely(!ctx->nr_counters))
506 return;
507
508 perf_counter_task_sched_out(curr, cpu);
509
510 spin_lock(&ctx->lock);
511
512 /*
04289bb9 513 * Rotate the first entry last (works just fine for group counters too):
0793a61d 514 */
01b2838c 515 perf_flags = hw_perf_save_disable();
04289bb9
IM
516 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
517 list_del(&counter->list_entry);
518 list_add_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
519 break;
520 }
01b2838c 521 hw_perf_restore(perf_flags);
0793a61d
TG
522
523 spin_unlock(&ctx->lock);
524
525 perf_counter_task_sched_in(curr, cpu);
526}
527
04289bb9
IM
528/*
529 * Initialize the perf_counter context in a task_struct:
530 */
531static void
532__perf_counter_init_context(struct perf_counter_context *ctx,
533 struct task_struct *task)
534{
535 spin_lock_init(&ctx->lock);
536 INIT_LIST_HEAD(&ctx->counter_list);
537 ctx->nr_counters = 0;
538 ctx->task = task;
539}
0793a61d
TG
540/*
541 * Initialize the perf_counter context in task_struct
542 */
543void perf_counter_init_task(struct task_struct *task)
544{
04289bb9 545 __perf_counter_init_context(&task->perf_counter_ctx, task);
0793a61d
TG
546}
547
548/*
549 * Cross CPU call to read the hardware counter
550 */
551static void __hw_perf_counter_read(void *info)
552{
621a01ea
IM
553 struct perf_counter *counter = info;
554
555 counter->hw_ops->hw_perf_counter_read(counter);
0793a61d
TG
556}
557
04289bb9 558static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
559{
560 /*
561 * If counter is enabled and currently active on a CPU, update the
562 * value in the counter structure:
563 */
6a930700 564 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d
TG
565 smp_call_function_single(counter->oncpu,
566 __hw_perf_counter_read, counter, 1);
567 }
568
ee06094f 569 return atomic64_read(&counter->count);
0793a61d
TG
570}
571
572/*
573 * Cross CPU call to switch performance data pointers
574 */
575static void __perf_switch_irq_data(void *info)
576{
577 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
578 struct perf_counter *counter = info;
579 struct perf_counter_context *ctx = counter->ctx;
580 struct perf_data *oldirqdata = counter->irqdata;
581
582 /*
583 * If this is a task context, we need to check whether it is
584 * the current task context of this cpu. If not it has been
585 * scheduled out before the smp call arrived.
586 */
587 if (ctx->task) {
588 if (cpuctx->task_ctx != ctx)
589 return;
590 spin_lock(&ctx->lock);
591 }
592
593 /* Change the pointer NMI safe */
594 atomic_long_set((atomic_long_t *)&counter->irqdata,
595 (unsigned long) counter->usrdata);
596 counter->usrdata = oldirqdata;
597
598 if (ctx->task)
599 spin_unlock(&ctx->lock);
600}
601
602static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
603{
604 struct perf_counter_context *ctx = counter->ctx;
605 struct perf_data *oldirqdata = counter->irqdata;
606 struct task_struct *task = ctx->task;
607
608 if (!task) {
609 smp_call_function_single(counter->cpu,
610 __perf_switch_irq_data,
611 counter, 1);
612 return counter->usrdata;
613 }
614
615retry:
616 spin_lock_irq(&ctx->lock);
6a930700 617 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
0793a61d
TG
618 counter->irqdata = counter->usrdata;
619 counter->usrdata = oldirqdata;
620 spin_unlock_irq(&ctx->lock);
621 return oldirqdata;
622 }
623 spin_unlock_irq(&ctx->lock);
624 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
625 /* Might have failed, because task was scheduled out */
626 if (counter->irqdata == oldirqdata)
627 goto retry;
628
629 return counter->usrdata;
630}
631
632static void put_context(struct perf_counter_context *ctx)
633{
634 if (ctx->task)
635 put_task_struct(ctx->task);
636}
637
638static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
639{
640 struct perf_cpu_context *cpuctx;
641 struct perf_counter_context *ctx;
642 struct task_struct *task;
643
644 /*
645 * If cpu is not a wildcard then this is a percpu counter:
646 */
647 if (cpu != -1) {
648 /* Must be root to operate on a CPU counter: */
649 if (!capable(CAP_SYS_ADMIN))
650 return ERR_PTR(-EACCES);
651
652 if (cpu < 0 || cpu > num_possible_cpus())
653 return ERR_PTR(-EINVAL);
654
655 /*
656 * We could be clever and allow to attach a counter to an
657 * offline CPU and activate it when the CPU comes up, but
658 * that's for later.
659 */
660 if (!cpu_isset(cpu, cpu_online_map))
661 return ERR_PTR(-ENODEV);
662
663 cpuctx = &per_cpu(perf_cpu_context, cpu);
664 ctx = &cpuctx->ctx;
665
666 WARN_ON_ONCE(ctx->task);
667 return ctx;
668 }
669
670 rcu_read_lock();
671 if (!pid)
672 task = current;
673 else
674 task = find_task_by_vpid(pid);
675 if (task)
676 get_task_struct(task);
677 rcu_read_unlock();
678
679 if (!task)
680 return ERR_PTR(-ESRCH);
681
682 ctx = &task->perf_counter_ctx;
683 ctx->task = task;
684
685 /* Reuse ptrace permission checks for now. */
686 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
687 put_context(ctx);
688 return ERR_PTR(-EACCES);
689 }
690
691 return ctx;
692}
693
694/*
695 * Called when the last reference to the file is gone.
696 */
697static int perf_release(struct inode *inode, struct file *file)
698{
699 struct perf_counter *counter = file->private_data;
700 struct perf_counter_context *ctx = counter->ctx;
701
702 file->private_data = NULL;
703
704 mutex_lock(&counter->mutex);
705
04289bb9 706 perf_counter_remove_from_context(counter);
0793a61d
TG
707 put_context(ctx);
708
709 mutex_unlock(&counter->mutex);
710
711 kfree(counter);
712
713 return 0;
714}
715
716/*
717 * Read the performance counter - simple non blocking version for now
718 */
719static ssize_t
720perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
721{
722 u64 cntval;
723
724 if (count != sizeof(cntval))
725 return -EINVAL;
726
727 mutex_lock(&counter->mutex);
04289bb9 728 cntval = perf_counter_read(counter);
0793a61d
TG
729 mutex_unlock(&counter->mutex);
730
731 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
732}
733
734static ssize_t
735perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
736{
737 if (!usrdata->len)
738 return 0;
739
740 count = min(count, (size_t)usrdata->len);
741 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
742 return -EFAULT;
743
744 /* Adjust the counters */
745 usrdata->len -= count;
746 if (!usrdata->len)
747 usrdata->rd_idx = 0;
748 else
749 usrdata->rd_idx += count;
750
751 return count;
752}
753
754static ssize_t
755perf_read_irq_data(struct perf_counter *counter,
756 char __user *buf,
757 size_t count,
758 int nonblocking)
759{
760 struct perf_data *irqdata, *usrdata;
761 DECLARE_WAITQUEUE(wait, current);
762 ssize_t res;
763
764 irqdata = counter->irqdata;
765 usrdata = counter->usrdata;
766
767 if (usrdata->len + irqdata->len >= count)
768 goto read_pending;
769
770 if (nonblocking)
771 return -EAGAIN;
772
773 spin_lock_irq(&counter->waitq.lock);
774 __add_wait_queue(&counter->waitq, &wait);
775 for (;;) {
776 set_current_state(TASK_INTERRUPTIBLE);
777 if (usrdata->len + irqdata->len >= count)
778 break;
779
780 if (signal_pending(current))
781 break;
782
783 spin_unlock_irq(&counter->waitq.lock);
784 schedule();
785 spin_lock_irq(&counter->waitq.lock);
786 }
787 __remove_wait_queue(&counter->waitq, &wait);
788 __set_current_state(TASK_RUNNING);
789 spin_unlock_irq(&counter->waitq.lock);
790
791 if (usrdata->len + irqdata->len < count)
792 return -ERESTARTSYS;
793read_pending:
794 mutex_lock(&counter->mutex);
795
796 /* Drain pending data first: */
797 res = perf_copy_usrdata(usrdata, buf, count);
798 if (res < 0 || res == count)
799 goto out;
800
801 /* Switch irq buffer: */
802 usrdata = perf_switch_irq_data(counter);
803 if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
804 if (!res)
805 res = -EFAULT;
806 } else {
807 res = count;
808 }
809out:
810 mutex_unlock(&counter->mutex);
811
812 return res;
813}
814
815static ssize_t
816perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
817{
818 struct perf_counter *counter = file->private_data;
819
9f66a381 820 switch (counter->hw_event.record_type) {
0793a61d
TG
821 case PERF_RECORD_SIMPLE:
822 return perf_read_hw(counter, buf, count);
823
824 case PERF_RECORD_IRQ:
825 case PERF_RECORD_GROUP:
826 return perf_read_irq_data(counter, buf, count,
827 file->f_flags & O_NONBLOCK);
828 }
829 return -EINVAL;
830}
831
832static unsigned int perf_poll(struct file *file, poll_table *wait)
833{
834 struct perf_counter *counter = file->private_data;
835 unsigned int events = 0;
836 unsigned long flags;
837
838 poll_wait(file, &counter->waitq, wait);
839
840 spin_lock_irqsave(&counter->waitq.lock, flags);
841 if (counter->usrdata->len || counter->irqdata->len)
842 events |= POLLIN;
843 spin_unlock_irqrestore(&counter->waitq.lock, flags);
844
845 return events;
846}
847
848static const struct file_operations perf_fops = {
849 .release = perf_release,
850 .read = perf_read,
851 .poll = perf_poll,
852};
853
5c92d124
IM
854static void cpu_clock_perf_counter_enable(struct perf_counter *counter)
855{
856}
857
858static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
859{
860}
861
862static void cpu_clock_perf_counter_read(struct perf_counter *counter)
863{
864 int cpu = raw_smp_processor_id();
865
ee06094f 866 atomic64_set(&counter->count, cpu_clock(cpu));
5c92d124
IM
867}
868
869static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
870 .hw_perf_counter_enable = cpu_clock_perf_counter_enable,
871 .hw_perf_counter_disable = cpu_clock_perf_counter_disable,
872 .hw_perf_counter_read = cpu_clock_perf_counter_read,
873};
874
bae43c99
IM
875static void task_clock_perf_counter_enable(struct perf_counter *counter)
876{
877}
878
879static void task_clock_perf_counter_disable(struct perf_counter *counter)
880{
881}
882
883static void task_clock_perf_counter_read(struct perf_counter *counter)
884{
ee06094f 885 atomic64_set(&counter->count, current->se.sum_exec_runtime);
bae43c99
IM
886}
887
888static const struct hw_perf_counter_ops perf_ops_task_clock = {
889 .hw_perf_counter_enable = task_clock_perf_counter_enable,
890 .hw_perf_counter_disable = task_clock_perf_counter_disable,
891 .hw_perf_counter_read = task_clock_perf_counter_read,
892};
893
5c92d124
IM
894static const struct hw_perf_counter_ops *
895sw_perf_counter_init(struct perf_counter *counter)
896{
897 const struct hw_perf_counter_ops *hw_ops = NULL;
898
899 switch (counter->hw_event.type) {
900 case PERF_COUNT_CPU_CLOCK:
901 hw_ops = &perf_ops_cpu_clock;
902 break;
bae43c99
IM
903 case PERF_COUNT_TASK_CLOCK:
904 hw_ops = &perf_ops_task_clock;
905 break;
5c92d124
IM
906 default:
907 break;
908 }
909 return hw_ops;
910}
911
0793a61d
TG
912/*
913 * Allocate and initialize a counter structure
914 */
915static struct perf_counter *
04289bb9
IM
916perf_counter_alloc(struct perf_counter_hw_event *hw_event,
917 int cpu,
918 struct perf_counter *group_leader)
0793a61d 919{
5c92d124 920 const struct hw_perf_counter_ops *hw_ops;
621a01ea 921 struct perf_counter *counter;
0793a61d 922
621a01ea 923 counter = kzalloc(sizeof(*counter), GFP_KERNEL);
0793a61d
TG
924 if (!counter)
925 return NULL;
926
04289bb9
IM
927 /*
928 * Single counters are their own group leaders, with an
929 * empty sibling list:
930 */
931 if (!group_leader)
932 group_leader = counter;
933
0793a61d 934 mutex_init(&counter->mutex);
04289bb9
IM
935 INIT_LIST_HEAD(&counter->list_entry);
936 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
937 init_waitqueue_head(&counter->waitq);
938
9f66a381
IM
939 counter->irqdata = &counter->data[0];
940 counter->usrdata = &counter->data[1];
941 counter->cpu = cpu;
942 counter->hw_event = *hw_event;
943 counter->wakeup_pending = 0;
04289bb9 944 counter->group_leader = group_leader;
621a01ea
IM
945 counter->hw_ops = NULL;
946
5c92d124
IM
947 hw_ops = NULL;
948 if (!hw_event->raw && hw_event->type < 0)
949 hw_ops = sw_perf_counter_init(counter);
950 if (!hw_ops) {
951 hw_ops = hw_perf_counter_init(counter);
952 }
953
621a01ea
IM
954 if (!hw_ops) {
955 kfree(counter);
956 return NULL;
957 }
958 counter->hw_ops = hw_ops;
0793a61d
TG
959
960 return counter;
961}
962
963/**
9f66a381
IM
964 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
965 *
966 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 967 * @pid: target pid
9f66a381
IM
968 * @cpu: target cpu
969 * @group_fd: group leader counter fd
0793a61d 970 */
1d1c7ddb
IM
971asmlinkage int
972sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
973 pid_t pid, int cpu, int group_fd)
0793a61d 974{
04289bb9 975 struct perf_counter *counter, *group_leader;
9f66a381 976 struct perf_counter_hw_event hw_event;
04289bb9
IM
977 struct perf_counter_context *ctx;
978 struct file *group_file = NULL;
979 int fput_needed = 0;
0793a61d
TG
980 int ret;
981
9f66a381 982 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
983 return -EFAULT;
984
04289bb9 985 /*
ccff286d
IM
986 * Get the target context (task or percpu):
987 */
988 ctx = find_get_context(pid, cpu);
989 if (IS_ERR(ctx))
990 return PTR_ERR(ctx);
991
992 /*
993 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
994 */
995 group_leader = NULL;
996 if (group_fd != -1) {
997 ret = -EINVAL;
998 group_file = fget_light(group_fd, &fput_needed);
999 if (!group_file)
ccff286d 1000 goto err_put_context;
04289bb9 1001 if (group_file->f_op != &perf_fops)
ccff286d 1002 goto err_put_context;
04289bb9
IM
1003
1004 group_leader = group_file->private_data;
1005 /*
ccff286d
IM
1006 * Do not allow a recursive hierarchy (this new sibling
1007 * becoming part of another group-sibling):
1008 */
1009 if (group_leader->group_leader != group_leader)
1010 goto err_put_context;
1011 /*
1012 * Do not allow to attach to a group in a different
1013 * task or CPU context:
04289bb9 1014 */
ccff286d
IM
1015 if (group_leader->ctx != ctx)
1016 goto err_put_context;
04289bb9
IM
1017 }
1018
5c92d124 1019 ret = -EINVAL;
04289bb9 1020 counter = perf_counter_alloc(&hw_event, cpu, group_leader);
0793a61d
TG
1021 if (!counter)
1022 goto err_put_context;
1023
0793a61d
TG
1024 perf_install_in_context(ctx, counter, cpu);
1025
1026 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1027 if (ret < 0)
1028 goto err_remove_free_put_context;
1029
04289bb9
IM
1030out_fput:
1031 fput_light(group_file, fput_needed);
1032
0793a61d
TG
1033 return ret;
1034
1035err_remove_free_put_context:
1036 mutex_lock(&counter->mutex);
04289bb9 1037 perf_counter_remove_from_context(counter);
0793a61d 1038 mutex_unlock(&counter->mutex);
0793a61d
TG
1039 kfree(counter);
1040
1041err_put_context:
1042 put_context(ctx);
1043
04289bb9 1044 goto out_fput;
0793a61d
TG
1045}
1046
04289bb9 1047static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 1048{
04289bb9 1049 struct perf_cpu_context *cpuctx;
0793a61d 1050
04289bb9
IM
1051 cpuctx = &per_cpu(perf_cpu_context, cpu);
1052 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
1053
1054 mutex_lock(&perf_resource_mutex);
04289bb9 1055 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 1056 mutex_unlock(&perf_resource_mutex);
04289bb9 1057
0793a61d
TG
1058 hw_perf_counter_setup();
1059}
1060
1061#ifdef CONFIG_HOTPLUG_CPU
04289bb9 1062static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
1063{
1064 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1065 struct perf_counter_context *ctx = &cpuctx->ctx;
1066 struct perf_counter *counter, *tmp;
1067
04289bb9
IM
1068 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
1069 __perf_counter_remove_from_context(counter);
0793a61d
TG
1070
1071}
04289bb9 1072static void perf_counter_exit_cpu(int cpu)
0793a61d 1073{
04289bb9 1074 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
0793a61d
TG
1075}
1076#else
04289bb9 1077static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
1078#endif
1079
1080static int __cpuinit
1081perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
1082{
1083 unsigned int cpu = (long)hcpu;
1084
1085 switch (action) {
1086
1087 case CPU_UP_PREPARE:
1088 case CPU_UP_PREPARE_FROZEN:
04289bb9 1089 perf_counter_init_cpu(cpu);
0793a61d
TG
1090 break;
1091
1092 case CPU_DOWN_PREPARE:
1093 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 1094 perf_counter_exit_cpu(cpu);
0793a61d
TG
1095 break;
1096
1097 default:
1098 break;
1099 }
1100
1101 return NOTIFY_OK;
1102}
1103
1104static struct notifier_block __cpuinitdata perf_cpu_nb = {
1105 .notifier_call = perf_cpu_notify,
1106};
1107
1108static int __init perf_counter_init(void)
1109{
1110 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
1111 (void *)(long)smp_processor_id());
1112 register_cpu_notifier(&perf_cpu_nb);
1113
1114 return 0;
1115}
1116early_initcall(perf_counter_init);
1117
1118static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
1119{
1120 return sprintf(buf, "%d\n", perf_reserved_percpu);
1121}
1122
1123static ssize_t
1124perf_set_reserve_percpu(struct sysdev_class *class,
1125 const char *buf,
1126 size_t count)
1127{
1128 struct perf_cpu_context *cpuctx;
1129 unsigned long val;
1130 int err, cpu, mpt;
1131
1132 err = strict_strtoul(buf, 10, &val);
1133 if (err)
1134 return err;
1135 if (val > perf_max_counters)
1136 return -EINVAL;
1137
1138 mutex_lock(&perf_resource_mutex);
1139 perf_reserved_percpu = val;
1140 for_each_online_cpu(cpu) {
1141 cpuctx = &per_cpu(perf_cpu_context, cpu);
1142 spin_lock_irq(&cpuctx->ctx.lock);
1143 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
1144 perf_max_counters - perf_reserved_percpu);
1145 cpuctx->max_pertask = mpt;
1146 spin_unlock_irq(&cpuctx->ctx.lock);
1147 }
1148 mutex_unlock(&perf_resource_mutex);
1149
1150 return count;
1151}
1152
1153static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
1154{
1155 return sprintf(buf, "%d\n", perf_overcommit);
1156}
1157
1158static ssize_t
1159perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
1160{
1161 unsigned long val;
1162 int err;
1163
1164 err = strict_strtoul(buf, 10, &val);
1165 if (err)
1166 return err;
1167 if (val > 1)
1168 return -EINVAL;
1169
1170 mutex_lock(&perf_resource_mutex);
1171 perf_overcommit = val;
1172 mutex_unlock(&perf_resource_mutex);
1173
1174 return count;
1175}
1176
1177static SYSDEV_CLASS_ATTR(
1178 reserve_percpu,
1179 0644,
1180 perf_show_reserve_percpu,
1181 perf_set_reserve_percpu
1182 );
1183
1184static SYSDEV_CLASS_ATTR(
1185 overcommit,
1186 0644,
1187 perf_show_overcommit,
1188 perf_set_overcommit
1189 );
1190
1191static struct attribute *perfclass_attrs[] = {
1192 &attr_reserve_percpu.attr,
1193 &attr_overcommit.attr,
1194 NULL
1195};
1196
1197static struct attribute_group perfclass_attr_group = {
1198 .attrs = perfclass_attrs,
1199 .name = "perf_counters",
1200};
1201
1202static int __init perf_counter_sysfs_init(void)
1203{
1204 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
1205 &perfclass_attr_group);
1206}
1207device_initcall(perf_counter_sysfs_init);
1208