perf_counter: fix perf_poll()
[linux-2.6-block.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7b732a75
PZ
7 *
8 * For licensing details see kernel-base/COPYING
0793a61d
TG
9 */
10
11#include <linux/fs.h>
12#include <linux/cpu.h>
13#include <linux/smp.h>
04289bb9 14#include <linux/file.h>
0793a61d
TG
15#include <linux/poll.h>
16#include <linux/sysfs.h>
17#include <linux/ptrace.h>
18#include <linux/percpu.h>
19#include <linux/uaccess.h>
20#include <linux/syscalls.h>
21#include <linux/anon_inodes.h>
aa9c4c0f 22#include <linux/kernel_stat.h>
0793a61d 23#include <linux/perf_counter.h>
23a185ca
PM
24#include <linux/mm.h>
25#include <linux/vmstat.h>
592903cd 26#include <linux/rculist.h>
96f6d444 27#include <linux/hardirq.h>
0793a61d 28
4e193bd4
TB
29#include <asm/irq_regs.h>
30
0793a61d
TG
31/*
32 * Each CPU has a list of per CPU counters:
33 */
34DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
088e2852 36int perf_max_counters __read_mostly = 1;
0793a61d
TG
37static int perf_reserved_percpu __read_mostly;
38static int perf_overcommit __read_mostly = 1;
39
40/*
41 * Mutex for (sysadmin-configurable) counter reservations:
42 */
43static DEFINE_MUTEX(perf_resource_mutex);
44
45/*
46 * Architecture provided APIs - weak aliases:
47 */
5c92d124 48extern __weak const struct hw_perf_counter_ops *
621a01ea 49hw_perf_counter_init(struct perf_counter *counter)
0793a61d 50{
ff6f0541 51 return NULL;
0793a61d
TG
52}
53
01b2838c 54u64 __weak hw_perf_save_disable(void) { return 0; }
01ea1cca 55void __weak hw_perf_restore(u64 ctrl) { barrier(); }
01d0287f 56void __weak hw_perf_counter_setup(int cpu) { barrier(); }
3cbed429
PM
57int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58 struct perf_cpu_context *cpuctx,
59 struct perf_counter_context *ctx, int cpu)
60{
61 return 0;
62}
0793a61d 63
4eb96fcf
PM
64void __weak perf_counter_print_debug(void) { }
65
04289bb9
IM
66static void
67list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68{
69 struct perf_counter *group_leader = counter->group_leader;
70
71 /*
72 * Depending on whether it is a standalone or sibling counter,
73 * add it straight to the context's counter list, or to the group
74 * leader's sibling list:
75 */
76 if (counter->group_leader == counter)
77 list_add_tail(&counter->list_entry, &ctx->counter_list);
78 else
79 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
592903cd
PZ
80
81 list_add_rcu(&counter->event_entry, &ctx->event_list);
04289bb9
IM
82}
83
84static void
85list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
86{
87 struct perf_counter *sibling, *tmp;
88
89 list_del_init(&counter->list_entry);
592903cd 90 list_del_rcu(&counter->event_entry);
04289bb9 91
04289bb9
IM
92 /*
93 * If this was a group counter with sibling counters then
94 * upgrade the siblings to singleton counters by adding them
95 * to the context list directly:
96 */
97 list_for_each_entry_safe(sibling, tmp,
98 &counter->sibling_list, list_entry) {
99
75564232 100 list_move_tail(&sibling->list_entry, &ctx->counter_list);
04289bb9
IM
101 sibling->group_leader = sibling;
102 }
103}
104
3b6f9e5c
PM
105static void
106counter_sched_out(struct perf_counter *counter,
107 struct perf_cpu_context *cpuctx,
108 struct perf_counter_context *ctx)
109{
110 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
111 return;
112
113 counter->state = PERF_COUNTER_STATE_INACTIVE;
114 counter->hw_ops->disable(counter);
115 counter->oncpu = -1;
116
117 if (!is_software_counter(counter))
118 cpuctx->active_oncpu--;
119 ctx->nr_active--;
120 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
121 cpuctx->exclusive = 0;
122}
123
d859e29f
PM
124static void
125group_sched_out(struct perf_counter *group_counter,
126 struct perf_cpu_context *cpuctx,
127 struct perf_counter_context *ctx)
128{
129 struct perf_counter *counter;
130
131 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
132 return;
133
134 counter_sched_out(group_counter, cpuctx, ctx);
135
136 /*
137 * Schedule out siblings (if any):
138 */
139 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
140 counter_sched_out(counter, cpuctx, ctx);
141
142 if (group_counter->hw_event.exclusive)
143 cpuctx->exclusive = 0;
144}
145
0793a61d
TG
146/*
147 * Cross CPU call to remove a performance counter
148 *
149 * We disable the counter on the hardware level first. After that we
150 * remove it from the context list.
151 */
04289bb9 152static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
153{
154 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
155 struct perf_counter *counter = info;
156 struct perf_counter_context *ctx = counter->ctx;
9b51f66d 157 unsigned long flags;
5c92d124 158 u64 perf_flags;
0793a61d
TG
159
160 /*
161 * If this is a task context, we need to check whether it is
162 * the current task context of this cpu. If not it has been
163 * scheduled out before the smp call arrived.
164 */
165 if (ctx->task && cpuctx->task_ctx != ctx)
166 return;
167
aa9c4c0f
IM
168 curr_rq_lock_irq_save(&flags);
169 spin_lock(&ctx->lock);
0793a61d 170
3b6f9e5c
PM
171 counter_sched_out(counter, cpuctx, ctx);
172
173 counter->task = NULL;
0793a61d
TG
174 ctx->nr_counters--;
175
176 /*
177 * Protect the list operation against NMI by disabling the
178 * counters on a global level. NOP for non NMI based counters.
179 */
01b2838c 180 perf_flags = hw_perf_save_disable();
04289bb9 181 list_del_counter(counter, ctx);
01b2838c 182 hw_perf_restore(perf_flags);
0793a61d
TG
183
184 if (!ctx->task) {
185 /*
186 * Allow more per task counters with respect to the
187 * reservation:
188 */
189 cpuctx->max_pertask =
190 min(perf_max_counters - ctx->nr_counters,
191 perf_max_counters - perf_reserved_percpu);
192 }
193
aa9c4c0f
IM
194 spin_unlock(&ctx->lock);
195 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
196}
197
198
199/*
200 * Remove the counter from a task's (or a CPU's) list of counters.
201 *
d859e29f 202 * Must be called with counter->mutex and ctx->mutex held.
0793a61d
TG
203 *
204 * CPU counters are removed with a smp call. For task counters we only
205 * call when the task is on a CPU.
206 */
04289bb9 207static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
208{
209 struct perf_counter_context *ctx = counter->ctx;
210 struct task_struct *task = ctx->task;
211
212 if (!task) {
213 /*
214 * Per cpu counters are removed via an smp call and
215 * the removal is always sucessful.
216 */
217 smp_call_function_single(counter->cpu,
04289bb9 218 __perf_counter_remove_from_context,
0793a61d
TG
219 counter, 1);
220 return;
221 }
222
223retry:
04289bb9 224 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
225 counter);
226
227 spin_lock_irq(&ctx->lock);
228 /*
229 * If the context is active we need to retry the smp call.
230 */
04289bb9 231 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
232 spin_unlock_irq(&ctx->lock);
233 goto retry;
234 }
235
236 /*
237 * The lock prevents that this context is scheduled in so we
04289bb9 238 * can remove the counter safely, if the call above did not
0793a61d
TG
239 * succeed.
240 */
04289bb9 241 if (!list_empty(&counter->list_entry)) {
0793a61d 242 ctx->nr_counters--;
04289bb9 243 list_del_counter(counter, ctx);
0793a61d
TG
244 counter->task = NULL;
245 }
246 spin_unlock_irq(&ctx->lock);
247}
248
d859e29f
PM
249/*
250 * Cross CPU call to disable a performance counter
251 */
252static void __perf_counter_disable(void *info)
253{
254 struct perf_counter *counter = info;
255 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
256 struct perf_counter_context *ctx = counter->ctx;
257 unsigned long flags;
258
259 /*
260 * If this is a per-task counter, need to check whether this
261 * counter's task is the current task on this cpu.
262 */
263 if (ctx->task && cpuctx->task_ctx != ctx)
264 return;
265
266 curr_rq_lock_irq_save(&flags);
267 spin_lock(&ctx->lock);
268
269 /*
270 * If the counter is on, turn it off.
271 * If it is in error state, leave it in error state.
272 */
273 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
274 if (counter == counter->group_leader)
275 group_sched_out(counter, cpuctx, ctx);
276 else
277 counter_sched_out(counter, cpuctx, ctx);
278 counter->state = PERF_COUNTER_STATE_OFF;
279 }
280
281 spin_unlock(&ctx->lock);
282 curr_rq_unlock_irq_restore(&flags);
283}
284
285/*
286 * Disable a counter.
287 */
288static void perf_counter_disable(struct perf_counter *counter)
289{
290 struct perf_counter_context *ctx = counter->ctx;
291 struct task_struct *task = ctx->task;
292
293 if (!task) {
294 /*
295 * Disable the counter on the cpu that it's on
296 */
297 smp_call_function_single(counter->cpu, __perf_counter_disable,
298 counter, 1);
299 return;
300 }
301
302 retry:
303 task_oncpu_function_call(task, __perf_counter_disable, counter);
304
305 spin_lock_irq(&ctx->lock);
306 /*
307 * If the counter is still active, we need to retry the cross-call.
308 */
309 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
310 spin_unlock_irq(&ctx->lock);
311 goto retry;
312 }
313
314 /*
315 * Since we have the lock this context can't be scheduled
316 * in, so we can change the state safely.
317 */
318 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
319 counter->state = PERF_COUNTER_STATE_OFF;
320
321 spin_unlock_irq(&ctx->lock);
322}
323
324/*
325 * Disable a counter and all its children.
326 */
327static void perf_counter_disable_family(struct perf_counter *counter)
328{
329 struct perf_counter *child;
330
331 perf_counter_disable(counter);
332
333 /*
334 * Lock the mutex to protect the list of children
335 */
336 mutex_lock(&counter->mutex);
337 list_for_each_entry(child, &counter->child_list, child_list)
338 perf_counter_disable(child);
339 mutex_unlock(&counter->mutex);
340}
341
235c7fc7
IM
342static int
343counter_sched_in(struct perf_counter *counter,
344 struct perf_cpu_context *cpuctx,
345 struct perf_counter_context *ctx,
346 int cpu)
347{
3b6f9e5c 348 if (counter->state <= PERF_COUNTER_STATE_OFF)
235c7fc7
IM
349 return 0;
350
351 counter->state = PERF_COUNTER_STATE_ACTIVE;
352 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
353 /*
354 * The new state must be visible before we turn it on in the hardware:
355 */
356 smp_wmb();
357
358 if (counter->hw_ops->enable(counter)) {
359 counter->state = PERF_COUNTER_STATE_INACTIVE;
360 counter->oncpu = -1;
361 return -EAGAIN;
362 }
363
3b6f9e5c
PM
364 if (!is_software_counter(counter))
365 cpuctx->active_oncpu++;
235c7fc7
IM
366 ctx->nr_active++;
367
3b6f9e5c
PM
368 if (counter->hw_event.exclusive)
369 cpuctx->exclusive = 1;
370
235c7fc7
IM
371 return 0;
372}
373
3b6f9e5c
PM
374/*
375 * Return 1 for a group consisting entirely of software counters,
376 * 0 if the group contains any hardware counters.
377 */
378static int is_software_only_group(struct perf_counter *leader)
379{
380 struct perf_counter *counter;
381
382 if (!is_software_counter(leader))
383 return 0;
384 list_for_each_entry(counter, &leader->sibling_list, list_entry)
385 if (!is_software_counter(counter))
386 return 0;
387 return 1;
388}
389
390/*
391 * Work out whether we can put this counter group on the CPU now.
392 */
393static int group_can_go_on(struct perf_counter *counter,
394 struct perf_cpu_context *cpuctx,
395 int can_add_hw)
396{
397 /*
398 * Groups consisting entirely of software counters can always go on.
399 */
400 if (is_software_only_group(counter))
401 return 1;
402 /*
403 * If an exclusive group is already on, no other hardware
404 * counters can go on.
405 */
406 if (cpuctx->exclusive)
407 return 0;
408 /*
409 * If this group is exclusive and there are already
410 * counters on the CPU, it can't go on.
411 */
412 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
413 return 0;
414 /*
415 * Otherwise, try to add it if all previous groups were able
416 * to go on.
417 */
418 return can_add_hw;
419}
420
0793a61d 421/*
235c7fc7 422 * Cross CPU call to install and enable a performance counter
0793a61d
TG
423 */
424static void __perf_install_in_context(void *info)
425{
426 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
427 struct perf_counter *counter = info;
428 struct perf_counter_context *ctx = counter->ctx;
d859e29f 429 struct perf_counter *leader = counter->group_leader;
0793a61d 430 int cpu = smp_processor_id();
9b51f66d 431 unsigned long flags;
5c92d124 432 u64 perf_flags;
3b6f9e5c 433 int err;
0793a61d
TG
434
435 /*
436 * If this is a task context, we need to check whether it is
437 * the current task context of this cpu. If not it has been
438 * scheduled out before the smp call arrived.
439 */
440 if (ctx->task && cpuctx->task_ctx != ctx)
441 return;
442
aa9c4c0f
IM
443 curr_rq_lock_irq_save(&flags);
444 spin_lock(&ctx->lock);
0793a61d
TG
445
446 /*
447 * Protect the list operation against NMI by disabling the
448 * counters on a global level. NOP for non NMI based counters.
449 */
01b2838c 450 perf_flags = hw_perf_save_disable();
0793a61d 451
235c7fc7 452 list_add_counter(counter, ctx);
0793a61d 453 ctx->nr_counters++;
c07c99b6 454 counter->prev_state = PERF_COUNTER_STATE_OFF;
0793a61d 455
d859e29f
PM
456 /*
457 * Don't put the counter on if it is disabled or if
458 * it is in a group and the group isn't on.
459 */
460 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
461 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
462 goto unlock;
463
3b6f9e5c
PM
464 /*
465 * An exclusive counter can't go on if there are already active
466 * hardware counters, and no hardware counter can go on if there
467 * is already an exclusive counter on.
468 */
d859e29f 469 if (!group_can_go_on(counter, cpuctx, 1))
3b6f9e5c
PM
470 err = -EEXIST;
471 else
472 err = counter_sched_in(counter, cpuctx, ctx, cpu);
473
d859e29f
PM
474 if (err) {
475 /*
476 * This counter couldn't go on. If it is in a group
477 * then we have to pull the whole group off.
478 * If the counter group is pinned then put it in error state.
479 */
480 if (leader != counter)
481 group_sched_out(leader, cpuctx, ctx);
482 if (leader->hw_event.pinned)
483 leader->state = PERF_COUNTER_STATE_ERROR;
484 }
0793a61d 485
3b6f9e5c 486 if (!err && !ctx->task && cpuctx->max_pertask)
0793a61d
TG
487 cpuctx->max_pertask--;
488
d859e29f 489 unlock:
235c7fc7
IM
490 hw_perf_restore(perf_flags);
491
aa9c4c0f
IM
492 spin_unlock(&ctx->lock);
493 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
494}
495
496/*
497 * Attach a performance counter to a context
498 *
499 * First we add the counter to the list with the hardware enable bit
500 * in counter->hw_config cleared.
501 *
502 * If the counter is attached to a task which is on a CPU we use a smp
503 * call to enable it in the task context. The task might have been
504 * scheduled away, but we check this in the smp call again.
d859e29f
PM
505 *
506 * Must be called with ctx->mutex held.
0793a61d
TG
507 */
508static void
509perf_install_in_context(struct perf_counter_context *ctx,
510 struct perf_counter *counter,
511 int cpu)
512{
513 struct task_struct *task = ctx->task;
514
0793a61d
TG
515 if (!task) {
516 /*
517 * Per cpu counters are installed via an smp call and
518 * the install is always sucessful.
519 */
520 smp_call_function_single(cpu, __perf_install_in_context,
521 counter, 1);
522 return;
523 }
524
525 counter->task = task;
526retry:
527 task_oncpu_function_call(task, __perf_install_in_context,
528 counter);
529
530 spin_lock_irq(&ctx->lock);
531 /*
0793a61d
TG
532 * we need to retry the smp call.
533 */
d859e29f 534 if (ctx->is_active && list_empty(&counter->list_entry)) {
0793a61d
TG
535 spin_unlock_irq(&ctx->lock);
536 goto retry;
537 }
538
539 /*
540 * The lock prevents that this context is scheduled in so we
541 * can add the counter safely, if it the call above did not
542 * succeed.
543 */
04289bb9
IM
544 if (list_empty(&counter->list_entry)) {
545 list_add_counter(counter, ctx);
0793a61d
TG
546 ctx->nr_counters++;
547 }
548 spin_unlock_irq(&ctx->lock);
549}
550
d859e29f
PM
551/*
552 * Cross CPU call to enable a performance counter
553 */
554static void __perf_counter_enable(void *info)
04289bb9 555{
d859e29f
PM
556 struct perf_counter *counter = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_counter_context *ctx = counter->ctx;
559 struct perf_counter *leader = counter->group_leader;
560 unsigned long flags;
561 int err;
04289bb9 562
d859e29f
PM
563 /*
564 * If this is a per-task counter, need to check whether this
565 * counter's task is the current task on this cpu.
566 */
567 if (ctx->task && cpuctx->task_ctx != ctx)
3cbed429
PM
568 return;
569
d859e29f
PM
570 curr_rq_lock_irq_save(&flags);
571 spin_lock(&ctx->lock);
572
c07c99b6 573 counter->prev_state = counter->state;
d859e29f
PM
574 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
575 goto unlock;
576 counter->state = PERF_COUNTER_STATE_INACTIVE;
04289bb9
IM
577
578 /*
d859e29f
PM
579 * If the counter is in a group and isn't the group leader,
580 * then don't put it on unless the group is on.
04289bb9 581 */
d859e29f
PM
582 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
583 goto unlock;
3b6f9e5c 584
d859e29f
PM
585 if (!group_can_go_on(counter, cpuctx, 1))
586 err = -EEXIST;
587 else
588 err = counter_sched_in(counter, cpuctx, ctx,
589 smp_processor_id());
590
591 if (err) {
592 /*
593 * If this counter can't go on and it's part of a
594 * group, then the whole group has to come off.
595 */
596 if (leader != counter)
597 group_sched_out(leader, cpuctx, ctx);
598 if (leader->hw_event.pinned)
599 leader->state = PERF_COUNTER_STATE_ERROR;
600 }
601
602 unlock:
603 spin_unlock(&ctx->lock);
604 curr_rq_unlock_irq_restore(&flags);
605}
606
607/*
608 * Enable a counter.
609 */
610static void perf_counter_enable(struct perf_counter *counter)
611{
612 struct perf_counter_context *ctx = counter->ctx;
613 struct task_struct *task = ctx->task;
614
615 if (!task) {
616 /*
617 * Enable the counter on the cpu that it's on
618 */
619 smp_call_function_single(counter->cpu, __perf_counter_enable,
620 counter, 1);
621 return;
622 }
623
624 spin_lock_irq(&ctx->lock);
625 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
626 goto out;
627
628 /*
629 * If the counter is in error state, clear that first.
630 * That way, if we see the counter in error state below, we
631 * know that it has gone back into error state, as distinct
632 * from the task having been scheduled away before the
633 * cross-call arrived.
634 */
635 if (counter->state == PERF_COUNTER_STATE_ERROR)
636 counter->state = PERF_COUNTER_STATE_OFF;
637
638 retry:
639 spin_unlock_irq(&ctx->lock);
640 task_oncpu_function_call(task, __perf_counter_enable, counter);
641
642 spin_lock_irq(&ctx->lock);
643
644 /*
645 * If the context is active and the counter is still off,
646 * we need to retry the cross-call.
647 */
648 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
649 goto retry;
650
651 /*
652 * Since we have the lock this context can't be scheduled
653 * in, so we can change the state safely.
654 */
655 if (counter->state == PERF_COUNTER_STATE_OFF)
656 counter->state = PERF_COUNTER_STATE_INACTIVE;
657 out:
658 spin_unlock_irq(&ctx->lock);
659}
660
661/*
662 * Enable a counter and all its children.
663 */
664static void perf_counter_enable_family(struct perf_counter *counter)
665{
666 struct perf_counter *child;
667
668 perf_counter_enable(counter);
669
670 /*
671 * Lock the mutex to protect the list of children
672 */
673 mutex_lock(&counter->mutex);
674 list_for_each_entry(child, &counter->child_list, child_list)
675 perf_counter_enable(child);
676 mutex_unlock(&counter->mutex);
04289bb9
IM
677}
678
235c7fc7
IM
679void __perf_counter_sched_out(struct perf_counter_context *ctx,
680 struct perf_cpu_context *cpuctx)
681{
682 struct perf_counter *counter;
3cbed429 683 u64 flags;
235c7fc7 684
d859e29f
PM
685 spin_lock(&ctx->lock);
686 ctx->is_active = 0;
235c7fc7 687 if (likely(!ctx->nr_counters))
d859e29f 688 goto out;
235c7fc7 689
3cbed429 690 flags = hw_perf_save_disable();
235c7fc7
IM
691 if (ctx->nr_active) {
692 list_for_each_entry(counter, &ctx->counter_list, list_entry)
693 group_sched_out(counter, cpuctx, ctx);
694 }
3cbed429 695 hw_perf_restore(flags);
d859e29f 696 out:
235c7fc7
IM
697 spin_unlock(&ctx->lock);
698}
699
0793a61d
TG
700/*
701 * Called from scheduler to remove the counters of the current task,
702 * with interrupts disabled.
703 *
704 * We stop each counter and update the counter value in counter->count.
705 *
7671581f 706 * This does not protect us against NMI, but disable()
0793a61d
TG
707 * sets the disabled bit in the control field of counter _before_
708 * accessing the counter control register. If a NMI hits, then it will
709 * not restart the counter.
710 */
711void perf_counter_task_sched_out(struct task_struct *task, int cpu)
712{
713 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
714 struct perf_counter_context *ctx = &task->perf_counter_ctx;
4a0deca6 715 struct pt_regs *regs;
0793a61d
TG
716
717 if (likely(!cpuctx->task_ctx))
718 return;
719
4a0deca6
PZ
720 regs = task_pt_regs(task);
721 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
235c7fc7
IM
722 __perf_counter_sched_out(ctx, cpuctx);
723
0793a61d
TG
724 cpuctx->task_ctx = NULL;
725}
726
235c7fc7 727static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
04289bb9 728{
235c7fc7 729 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
04289bb9
IM
730}
731
7995888f 732static int
04289bb9
IM
733group_sched_in(struct perf_counter *group_counter,
734 struct perf_cpu_context *cpuctx,
735 struct perf_counter_context *ctx,
736 int cpu)
737{
95cdd2e7 738 struct perf_counter *counter, *partial_group;
3cbed429
PM
739 int ret;
740
741 if (group_counter->state == PERF_COUNTER_STATE_OFF)
742 return 0;
743
744 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
745 if (ret)
746 return ret < 0 ? ret : 0;
04289bb9 747
c07c99b6 748 group_counter->prev_state = group_counter->state;
95cdd2e7
IM
749 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
750 return -EAGAIN;
04289bb9
IM
751
752 /*
753 * Schedule in siblings as one group (if any):
754 */
7995888f 755 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
c07c99b6 756 counter->prev_state = counter->state;
95cdd2e7
IM
757 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
758 partial_group = counter;
759 goto group_error;
760 }
95cdd2e7
IM
761 }
762
3cbed429 763 return 0;
95cdd2e7
IM
764
765group_error:
766 /*
767 * Groups can be scheduled in as one unit only, so undo any
768 * partial group before returning:
769 */
770 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
771 if (counter == partial_group)
772 break;
773 counter_sched_out(counter, cpuctx, ctx);
7995888f 774 }
95cdd2e7 775 counter_sched_out(group_counter, cpuctx, ctx);
7995888f 776
95cdd2e7 777 return -EAGAIN;
04289bb9
IM
778}
779
235c7fc7
IM
780static void
781__perf_counter_sched_in(struct perf_counter_context *ctx,
782 struct perf_cpu_context *cpuctx, int cpu)
0793a61d 783{
0793a61d 784 struct perf_counter *counter;
3cbed429 785 u64 flags;
dd0e6ba2 786 int can_add_hw = 1;
0793a61d 787
d859e29f
PM
788 spin_lock(&ctx->lock);
789 ctx->is_active = 1;
0793a61d 790 if (likely(!ctx->nr_counters))
d859e29f 791 goto out;
0793a61d 792
3cbed429 793 flags = hw_perf_save_disable();
3b6f9e5c
PM
794
795 /*
796 * First go through the list and put on any pinned groups
797 * in order to give them the best chance of going on.
798 */
799 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
800 if (counter->state <= PERF_COUNTER_STATE_OFF ||
801 !counter->hw_event.pinned)
802 continue;
803 if (counter->cpu != -1 && counter->cpu != cpu)
804 continue;
805
806 if (group_can_go_on(counter, cpuctx, 1))
807 group_sched_in(counter, cpuctx, ctx, cpu);
808
809 /*
810 * If this pinned group hasn't been scheduled,
811 * put it in error state.
812 */
813 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
814 counter->state = PERF_COUNTER_STATE_ERROR;
815 }
816
04289bb9 817 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c
PM
818 /*
819 * Ignore counters in OFF or ERROR state, and
820 * ignore pinned counters since we did them already.
821 */
822 if (counter->state <= PERF_COUNTER_STATE_OFF ||
823 counter->hw_event.pinned)
824 continue;
825
04289bb9
IM
826 /*
827 * Listen to the 'cpu' scheduling filter constraint
828 * of counters:
829 */
0793a61d
TG
830 if (counter->cpu != -1 && counter->cpu != cpu)
831 continue;
832
3b6f9e5c 833 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
dd0e6ba2
PM
834 if (group_sched_in(counter, cpuctx, ctx, cpu))
835 can_add_hw = 0;
3b6f9e5c 836 }
0793a61d 837 }
3cbed429 838 hw_perf_restore(flags);
d859e29f 839 out:
0793a61d 840 spin_unlock(&ctx->lock);
235c7fc7
IM
841}
842
843/*
844 * Called from scheduler to add the counters of the current task
845 * with interrupts disabled.
846 *
847 * We restore the counter value and then enable it.
848 *
849 * This does not protect us against NMI, but enable()
850 * sets the enabled bit in the control field of counter _before_
851 * accessing the counter control register. If a NMI hits, then it will
852 * keep the counter running.
853 */
854void perf_counter_task_sched_in(struct task_struct *task, int cpu)
855{
856 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
857 struct perf_counter_context *ctx = &task->perf_counter_ctx;
04289bb9 858
235c7fc7 859 __perf_counter_sched_in(ctx, cpuctx, cpu);
0793a61d
TG
860 cpuctx->task_ctx = ctx;
861}
862
235c7fc7
IM
863static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
864{
865 struct perf_counter_context *ctx = &cpuctx->ctx;
866
867 __perf_counter_sched_in(ctx, cpuctx, cpu);
868}
869
1d1c7ddb
IM
870int perf_counter_task_disable(void)
871{
872 struct task_struct *curr = current;
873 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
874 struct perf_counter *counter;
aa9c4c0f 875 unsigned long flags;
1d1c7ddb
IM
876 u64 perf_flags;
877 int cpu;
878
879 if (likely(!ctx->nr_counters))
880 return 0;
881
aa9c4c0f 882 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
883 cpu = smp_processor_id();
884
aa9c4c0f
IM
885 /* force the update of the task clock: */
886 __task_delta_exec(curr, 1);
887
1d1c7ddb
IM
888 perf_counter_task_sched_out(curr, cpu);
889
890 spin_lock(&ctx->lock);
891
892 /*
893 * Disable all the counters:
894 */
895 perf_flags = hw_perf_save_disable();
896
3b6f9e5c
PM
897 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
898 if (counter->state != PERF_COUNTER_STATE_ERROR)
899 counter->state = PERF_COUNTER_STATE_OFF;
900 }
9b51f66d 901
1d1c7ddb
IM
902 hw_perf_restore(perf_flags);
903
904 spin_unlock(&ctx->lock);
905
aa9c4c0f 906 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
907
908 return 0;
909}
910
911int perf_counter_task_enable(void)
912{
913 struct task_struct *curr = current;
914 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
915 struct perf_counter *counter;
aa9c4c0f 916 unsigned long flags;
1d1c7ddb
IM
917 u64 perf_flags;
918 int cpu;
919
920 if (likely(!ctx->nr_counters))
921 return 0;
922
aa9c4c0f 923 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
924 cpu = smp_processor_id();
925
aa9c4c0f
IM
926 /* force the update of the task clock: */
927 __task_delta_exec(curr, 1);
928
235c7fc7
IM
929 perf_counter_task_sched_out(curr, cpu);
930
1d1c7ddb
IM
931 spin_lock(&ctx->lock);
932
933 /*
934 * Disable all the counters:
935 */
936 perf_flags = hw_perf_save_disable();
937
938 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c 939 if (counter->state > PERF_COUNTER_STATE_OFF)
1d1c7ddb 940 continue;
6a930700 941 counter->state = PERF_COUNTER_STATE_INACTIVE;
aa9c4c0f 942 counter->hw_event.disabled = 0;
1d1c7ddb
IM
943 }
944 hw_perf_restore(perf_flags);
945
946 spin_unlock(&ctx->lock);
947
948 perf_counter_task_sched_in(curr, cpu);
949
aa9c4c0f 950 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
951
952 return 0;
953}
954
235c7fc7
IM
955/*
956 * Round-robin a context's counters:
957 */
958static void rotate_ctx(struct perf_counter_context *ctx)
0793a61d 959{
0793a61d 960 struct perf_counter *counter;
5c92d124 961 u64 perf_flags;
0793a61d 962
235c7fc7 963 if (!ctx->nr_counters)
0793a61d
TG
964 return;
965
0793a61d 966 spin_lock(&ctx->lock);
0793a61d 967 /*
04289bb9 968 * Rotate the first entry last (works just fine for group counters too):
0793a61d 969 */
01b2838c 970 perf_flags = hw_perf_save_disable();
04289bb9 971 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
75564232 972 list_move_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
973 break;
974 }
01b2838c 975 hw_perf_restore(perf_flags);
0793a61d
TG
976
977 spin_unlock(&ctx->lock);
235c7fc7
IM
978}
979
980void perf_counter_task_tick(struct task_struct *curr, int cpu)
981{
982 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
983 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
984 const int rotate_percpu = 0;
985
986 if (rotate_percpu)
987 perf_counter_cpu_sched_out(cpuctx);
988 perf_counter_task_sched_out(curr, cpu);
0793a61d 989
235c7fc7
IM
990 if (rotate_percpu)
991 rotate_ctx(&cpuctx->ctx);
992 rotate_ctx(ctx);
993
994 if (rotate_percpu)
995 perf_counter_cpu_sched_in(cpuctx, cpu);
0793a61d
TG
996 perf_counter_task_sched_in(curr, cpu);
997}
998
0793a61d
TG
999/*
1000 * Cross CPU call to read the hardware counter
1001 */
7671581f 1002static void __read(void *info)
0793a61d 1003{
621a01ea 1004 struct perf_counter *counter = info;
aa9c4c0f 1005 unsigned long flags;
621a01ea 1006
aa9c4c0f 1007 curr_rq_lock_irq_save(&flags);
7671581f 1008 counter->hw_ops->read(counter);
aa9c4c0f 1009 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
1010}
1011
04289bb9 1012static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
1013{
1014 /*
1015 * If counter is enabled and currently active on a CPU, update the
1016 * value in the counter structure:
1017 */
6a930700 1018 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d 1019 smp_call_function_single(counter->oncpu,
7671581f 1020 __read, counter, 1);
0793a61d
TG
1021 }
1022
ee06094f 1023 return atomic64_read(&counter->count);
0793a61d
TG
1024}
1025
0793a61d
TG
1026static void put_context(struct perf_counter_context *ctx)
1027{
1028 if (ctx->task)
1029 put_task_struct(ctx->task);
1030}
1031
1032static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1033{
1034 struct perf_cpu_context *cpuctx;
1035 struct perf_counter_context *ctx;
1036 struct task_struct *task;
1037
1038 /*
1039 * If cpu is not a wildcard then this is a percpu counter:
1040 */
1041 if (cpu != -1) {
1042 /* Must be root to operate on a CPU counter: */
1043 if (!capable(CAP_SYS_ADMIN))
1044 return ERR_PTR(-EACCES);
1045
1046 if (cpu < 0 || cpu > num_possible_cpus())
1047 return ERR_PTR(-EINVAL);
1048
1049 /*
1050 * We could be clever and allow to attach a counter to an
1051 * offline CPU and activate it when the CPU comes up, but
1052 * that's for later.
1053 */
1054 if (!cpu_isset(cpu, cpu_online_map))
1055 return ERR_PTR(-ENODEV);
1056
1057 cpuctx = &per_cpu(perf_cpu_context, cpu);
1058 ctx = &cpuctx->ctx;
1059
0793a61d
TG
1060 return ctx;
1061 }
1062
1063 rcu_read_lock();
1064 if (!pid)
1065 task = current;
1066 else
1067 task = find_task_by_vpid(pid);
1068 if (task)
1069 get_task_struct(task);
1070 rcu_read_unlock();
1071
1072 if (!task)
1073 return ERR_PTR(-ESRCH);
1074
1075 ctx = &task->perf_counter_ctx;
1076 ctx->task = task;
1077
1078 /* Reuse ptrace permission checks for now. */
1079 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1080 put_context(ctx);
1081 return ERR_PTR(-EACCES);
1082 }
1083
1084 return ctx;
1085}
1086
592903cd
PZ
1087static void free_counter_rcu(struct rcu_head *head)
1088{
1089 struct perf_counter *counter;
1090
1091 counter = container_of(head, struct perf_counter, rcu_head);
1092 kfree(counter);
1093}
1094
f1600952
PZ
1095static void free_counter(struct perf_counter *counter)
1096{
e077df4f
PZ
1097 if (counter->destroy)
1098 counter->destroy(counter);
1099
f1600952
PZ
1100 call_rcu(&counter->rcu_head, free_counter_rcu);
1101}
1102
0793a61d
TG
1103/*
1104 * Called when the last reference to the file is gone.
1105 */
1106static int perf_release(struct inode *inode, struct file *file)
1107{
1108 struct perf_counter *counter = file->private_data;
1109 struct perf_counter_context *ctx = counter->ctx;
1110
1111 file->private_data = NULL;
1112
d859e29f 1113 mutex_lock(&ctx->mutex);
0793a61d
TG
1114 mutex_lock(&counter->mutex);
1115
04289bb9 1116 perf_counter_remove_from_context(counter);
0793a61d
TG
1117
1118 mutex_unlock(&counter->mutex);
d859e29f 1119 mutex_unlock(&ctx->mutex);
0793a61d 1120
f1600952 1121 free_counter(counter);
5af75917 1122 put_context(ctx);
0793a61d
TG
1123
1124 return 0;
1125}
1126
1127/*
1128 * Read the performance counter - simple non blocking version for now
1129 */
1130static ssize_t
1131perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1132{
1133 u64 cntval;
1134
7b732a75 1135 if (count < sizeof(cntval))
0793a61d
TG
1136 return -EINVAL;
1137
3b6f9e5c
PM
1138 /*
1139 * Return end-of-file for a read on a counter that is in
1140 * error state (i.e. because it was pinned but it couldn't be
1141 * scheduled on to the CPU at some point).
1142 */
1143 if (counter->state == PERF_COUNTER_STATE_ERROR)
1144 return 0;
1145
0793a61d 1146 mutex_lock(&counter->mutex);
04289bb9 1147 cntval = perf_counter_read(counter);
0793a61d
TG
1148 mutex_unlock(&counter->mutex);
1149
1150 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1151}
1152
0793a61d
TG
1153static ssize_t
1154perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1155{
1156 struct perf_counter *counter = file->private_data;
1157
7b732a75 1158 return perf_read_hw(counter, buf, count);
0793a61d
TG
1159}
1160
1161static unsigned int perf_poll(struct file *file, poll_table *wait)
1162{
1163 struct perf_counter *counter = file->private_data;
c7138f37
PZ
1164 struct perf_mmap_data *data;
1165 unsigned int events;
1166
1167 rcu_read_lock();
1168 data = rcu_dereference(counter->data);
1169 if (data)
1170 events = atomic_xchg(&data->wakeup, 0);
1171 else
1172 events = POLL_HUP;
1173 rcu_read_unlock();
0793a61d
TG
1174
1175 poll_wait(file, &counter->waitq, wait);
1176
0793a61d
TG
1177 return events;
1178}
1179
d859e29f
PM
1180static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1181{
1182 struct perf_counter *counter = file->private_data;
1183 int err = 0;
1184
1185 switch (cmd) {
1186 case PERF_COUNTER_IOC_ENABLE:
1187 perf_counter_enable_family(counter);
1188 break;
1189 case PERF_COUNTER_IOC_DISABLE:
1190 perf_counter_disable_family(counter);
1191 break;
1192 default:
1193 err = -ENOTTY;
1194 }
1195 return err;
1196}
1197
7b732a75
PZ
1198static void __perf_counter_update_userpage(struct perf_counter *counter,
1199 struct perf_mmap_data *data)
37d81828 1200{
7b732a75 1201 struct perf_counter_mmap_page *userpg = data->user_page;
37d81828 1202
7b732a75
PZ
1203 /*
1204 * Disable preemption so as to not let the corresponding user-space
1205 * spin too long if we get preempted.
1206 */
1207 preempt_disable();
37d81828
PM
1208 ++userpg->lock;
1209 smp_wmb();
1210 userpg->index = counter->hw.idx;
1211 userpg->offset = atomic64_read(&counter->count);
1212 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1213 userpg->offset -= atomic64_read(&counter->hw.prev_count);
7b732a75
PZ
1214
1215 userpg->data_head = atomic_read(&data->head);
37d81828
PM
1216 smp_wmb();
1217 ++userpg->lock;
7b732a75
PZ
1218 preempt_enable();
1219}
1220
1221void perf_counter_update_userpage(struct perf_counter *counter)
1222{
1223 struct perf_mmap_data *data;
1224
1225 rcu_read_lock();
1226 data = rcu_dereference(counter->data);
1227 if (data)
1228 __perf_counter_update_userpage(counter, data);
1229 rcu_read_unlock();
37d81828
PM
1230}
1231
1232static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1233{
1234 struct perf_counter *counter = vma->vm_file->private_data;
7b732a75
PZ
1235 struct perf_mmap_data *data;
1236 int ret = VM_FAULT_SIGBUS;
1237
1238 rcu_read_lock();
1239 data = rcu_dereference(counter->data);
1240 if (!data)
1241 goto unlock;
1242
1243 if (vmf->pgoff == 0) {
1244 vmf->page = virt_to_page(data->user_page);
1245 } else {
1246 int nr = vmf->pgoff - 1;
37d81828 1247
7b732a75
PZ
1248 if ((unsigned)nr > data->nr_pages)
1249 goto unlock;
37d81828 1250
7b732a75
PZ
1251 vmf->page = virt_to_page(data->data_pages[nr]);
1252 }
37d81828 1253 get_page(vmf->page);
7b732a75
PZ
1254 ret = 0;
1255unlock:
1256 rcu_read_unlock();
1257
1258 return ret;
1259}
1260
1261static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1262{
1263 struct perf_mmap_data *data;
1264 unsigned long size;
1265 int i;
1266
1267 WARN_ON(atomic_read(&counter->mmap_count));
1268
1269 size = sizeof(struct perf_mmap_data);
1270 size += nr_pages * sizeof(void *);
1271
1272 data = kzalloc(size, GFP_KERNEL);
1273 if (!data)
1274 goto fail;
1275
1276 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1277 if (!data->user_page)
1278 goto fail_user_page;
1279
1280 for (i = 0; i < nr_pages; i++) {
1281 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1282 if (!data->data_pages[i])
1283 goto fail_data_pages;
1284 }
1285
1286 data->nr_pages = nr_pages;
1287
1288 rcu_assign_pointer(counter->data, data);
1289
37d81828 1290 return 0;
7b732a75
PZ
1291
1292fail_data_pages:
1293 for (i--; i >= 0; i--)
1294 free_page((unsigned long)data->data_pages[i]);
1295
1296 free_page((unsigned long)data->user_page);
1297
1298fail_user_page:
1299 kfree(data);
1300
1301fail:
1302 return -ENOMEM;
1303}
1304
1305static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1306{
1307 struct perf_mmap_data *data = container_of(rcu_head,
1308 struct perf_mmap_data, rcu_head);
1309 int i;
1310
1311 free_page((unsigned long)data->user_page);
1312 for (i = 0; i < data->nr_pages; i++)
1313 free_page((unsigned long)data->data_pages[i]);
1314 kfree(data);
1315}
1316
1317static void perf_mmap_data_free(struct perf_counter *counter)
1318{
1319 struct perf_mmap_data *data = counter->data;
1320
1321 WARN_ON(atomic_read(&counter->mmap_count));
1322
1323 rcu_assign_pointer(counter->data, NULL);
1324 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1325}
1326
1327static void perf_mmap_open(struct vm_area_struct *vma)
1328{
1329 struct perf_counter *counter = vma->vm_file->private_data;
1330
1331 atomic_inc(&counter->mmap_count);
1332}
1333
1334static void perf_mmap_close(struct vm_area_struct *vma)
1335{
1336 struct perf_counter *counter = vma->vm_file->private_data;
1337
1338 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1339 &counter->mmap_mutex)) {
1340 perf_mmap_data_free(counter);
1341 mutex_unlock(&counter->mmap_mutex);
1342 }
37d81828
PM
1343}
1344
1345static struct vm_operations_struct perf_mmap_vmops = {
7b732a75
PZ
1346 .open = perf_mmap_open,
1347 .close = perf_mmap_close,
37d81828
PM
1348 .fault = perf_mmap_fault,
1349};
1350
1351static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1352{
1353 struct perf_counter *counter = file->private_data;
7b732a75
PZ
1354 unsigned long vma_size;
1355 unsigned long nr_pages;
1356 unsigned long locked, lock_limit;
1357 int ret = 0;
37d81828
PM
1358
1359 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1360 return -EINVAL;
7b732a75
PZ
1361
1362 vma_size = vma->vm_end - vma->vm_start;
1363 nr_pages = (vma_size / PAGE_SIZE) - 1;
1364
1365 if (nr_pages == 0 || !is_power_of_2(nr_pages))
37d81828
PM
1366 return -EINVAL;
1367
7b732a75 1368 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
1369 return -EINVAL;
1370
7b732a75
PZ
1371 if (vma->vm_pgoff != 0)
1372 return -EINVAL;
37d81828 1373
7b732a75
PZ
1374 locked = vma_size >> PAGE_SHIFT;
1375 locked += vma->vm_mm->locked_vm;
1376
1377 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1378 lock_limit >>= PAGE_SHIFT;
1379
1380 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1381 return -EPERM;
1382
1383 mutex_lock(&counter->mmap_mutex);
1384 if (atomic_inc_not_zero(&counter->mmap_count))
1385 goto out;
1386
1387 WARN_ON(counter->data);
1388 ret = perf_mmap_data_alloc(counter, nr_pages);
1389 if (!ret)
1390 atomic_set(&counter->mmap_count, 1);
1391out:
1392 mutex_unlock(&counter->mmap_mutex);
37d81828
PM
1393
1394 vma->vm_flags &= ~VM_MAYWRITE;
1395 vma->vm_flags |= VM_RESERVED;
1396 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
1397
1398 return ret;
37d81828
PM
1399}
1400
0793a61d
TG
1401static const struct file_operations perf_fops = {
1402 .release = perf_release,
1403 .read = perf_read,
1404 .poll = perf_poll,
d859e29f
PM
1405 .unlocked_ioctl = perf_ioctl,
1406 .compat_ioctl = perf_ioctl,
37d81828 1407 .mmap = perf_mmap,
0793a61d
TG
1408};
1409
0322cd6e
PZ
1410/*
1411 * Output
1412 */
1413
7b732a75
PZ
1414static int perf_output_write(struct perf_counter *counter, int nmi,
1415 void *buf, ssize_t size)
0322cd6e 1416{
7b732a75
PZ
1417 struct perf_mmap_data *data;
1418 unsigned int offset, head, nr;
1419 unsigned int len;
1420 int ret, wakeup;
0322cd6e 1421
7b732a75
PZ
1422 rcu_read_lock();
1423 ret = -ENOSPC;
1424 data = rcu_dereference(counter->data);
1425 if (!data)
1426 goto out;
1427
1428 if (!data->nr_pages)
1429 goto out;
1430
1431 ret = -EINVAL;
1432 if (size > PAGE_SIZE)
1433 goto out;
1434
1435 do {
1436 offset = head = atomic_read(&data->head);
c7138f37 1437 head += size;
7b732a75
PZ
1438 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1439
1440 wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
0322cd6e 1441
7b732a75
PZ
1442 nr = (offset >> PAGE_SHIFT) & (data->nr_pages - 1);
1443 offset &= PAGE_SIZE - 1;
1444
1445 len = min_t(unsigned int, PAGE_SIZE - offset, size);
1446 memcpy(data->data_pages[nr] + offset, buf, len);
1447 size -= len;
1448
1449 if (size) {
1450 nr = (nr + 1) & (data->nr_pages - 1);
1451 memcpy(data->data_pages[nr], buf + len, size);
1452 }
1453
1454 /*
1455 * generate a poll() wakeup for every page boundary crossed
1456 */
1457 if (wakeup) {
c7138f37 1458 atomic_xchg(&data->wakeup, POLL_IN);
7b732a75
PZ
1459 __perf_counter_update_userpage(counter, data);
1460 if (nmi) {
1461 counter->wakeup_pending = 1;
1462 set_perf_counter_pending();
1463 } else
1464 wake_up(&counter->waitq);
0322cd6e 1465 }
7b732a75
PZ
1466 ret = 0;
1467out:
1468 rcu_read_unlock();
1469
1470 return ret;
1471}
1472
1473static void perf_output_simple(struct perf_counter *counter,
1474 int nmi, struct pt_regs *regs)
1475{
1476 u64 entry;
1477
1478 entry = instruction_pointer(regs);
1479
1480 perf_output_write(counter, nmi, &entry, sizeof(entry));
0322cd6e
PZ
1481}
1482
7b732a75
PZ
1483struct group_entry {
1484 u64 event;
1485 u64 counter;
1486};
1487
1488static void perf_output_group(struct perf_counter *counter, int nmi)
0322cd6e
PZ
1489{
1490 struct perf_counter *leader, *sub;
1491
1492 leader = counter->group_leader;
1493 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
7b732a75
PZ
1494 struct group_entry entry;
1495
0322cd6e
PZ
1496 if (sub != counter)
1497 sub->hw_ops->read(sub);
7b732a75
PZ
1498
1499 entry.event = sub->hw_event.config;
1500 entry.counter = atomic64_read(&sub->count);
1501
1502 perf_output_write(counter, nmi, &entry, sizeof(entry));
0322cd6e
PZ
1503 }
1504}
1505
1506void perf_counter_output(struct perf_counter *counter,
1507 int nmi, struct pt_regs *regs)
1508{
1509 switch (counter->hw_event.record_type) {
1510 case PERF_RECORD_SIMPLE:
1511 return;
1512
1513 case PERF_RECORD_IRQ:
7b732a75 1514 perf_output_simple(counter, nmi, regs);
0322cd6e
PZ
1515 break;
1516
1517 case PERF_RECORD_GROUP:
7b732a75 1518 perf_output_group(counter, nmi);
0322cd6e
PZ
1519 break;
1520 }
0322cd6e
PZ
1521}
1522
15dbf27c
PZ
1523/*
1524 * Generic software counter infrastructure
1525 */
1526
1527static void perf_swcounter_update(struct perf_counter *counter)
1528{
1529 struct hw_perf_counter *hwc = &counter->hw;
1530 u64 prev, now;
1531 s64 delta;
1532
1533again:
1534 prev = atomic64_read(&hwc->prev_count);
1535 now = atomic64_read(&hwc->count);
1536 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1537 goto again;
1538
1539 delta = now - prev;
1540
1541 atomic64_add(delta, &counter->count);
1542 atomic64_sub(delta, &hwc->period_left);
1543}
1544
1545static void perf_swcounter_set_period(struct perf_counter *counter)
1546{
1547 struct hw_perf_counter *hwc = &counter->hw;
1548 s64 left = atomic64_read(&hwc->period_left);
1549 s64 period = hwc->irq_period;
1550
1551 if (unlikely(left <= -period)) {
1552 left = period;
1553 atomic64_set(&hwc->period_left, left);
1554 }
1555
1556 if (unlikely(left <= 0)) {
1557 left += period;
1558 atomic64_add(period, &hwc->period_left);
1559 }
1560
1561 atomic64_set(&hwc->prev_count, -left);
1562 atomic64_set(&hwc->count, -left);
1563}
1564
d6d020e9
PZ
1565static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1566{
1567 struct perf_counter *counter;
1568 struct pt_regs *regs;
1569
1570 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1571 counter->hw_ops->read(counter);
1572
1573 regs = get_irq_regs();
1574 /*
1575 * In case we exclude kernel IPs or are somehow not in interrupt
1576 * context, provide the next best thing, the user IP.
1577 */
1578 if ((counter->hw_event.exclude_kernel || !regs) &&
1579 !counter->hw_event.exclude_user)
1580 regs = task_pt_regs(current);
1581
1582 if (regs)
0322cd6e 1583 perf_counter_output(counter, 0, regs);
d6d020e9
PZ
1584
1585 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1586
1587 return HRTIMER_RESTART;
1588}
1589
1590static void perf_swcounter_overflow(struct perf_counter *counter,
1591 int nmi, struct pt_regs *regs)
1592{
b8e83514
PZ
1593 perf_swcounter_update(counter);
1594 perf_swcounter_set_period(counter);
0322cd6e 1595 perf_counter_output(counter, nmi, regs);
d6d020e9
PZ
1596}
1597
15dbf27c 1598static int perf_swcounter_match(struct perf_counter *counter,
b8e83514
PZ
1599 enum perf_event_types type,
1600 u32 event, struct pt_regs *regs)
15dbf27c
PZ
1601{
1602 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1603 return 0;
1604
f4a2deb4 1605 if (perf_event_raw(&counter->hw_event))
b8e83514
PZ
1606 return 0;
1607
f4a2deb4 1608 if (perf_event_type(&counter->hw_event) != type)
15dbf27c
PZ
1609 return 0;
1610
f4a2deb4 1611 if (perf_event_id(&counter->hw_event) != event)
15dbf27c
PZ
1612 return 0;
1613
1614 if (counter->hw_event.exclude_user && user_mode(regs))
1615 return 0;
1616
1617 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1618 return 0;
1619
1620 return 1;
1621}
1622
d6d020e9
PZ
1623static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1624 int nmi, struct pt_regs *regs)
1625{
1626 int neg = atomic64_add_negative(nr, &counter->hw.count);
1627 if (counter->hw.irq_period && !neg)
1628 perf_swcounter_overflow(counter, nmi, regs);
1629}
1630
15dbf27c 1631static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
b8e83514
PZ
1632 enum perf_event_types type, u32 event,
1633 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1634{
1635 struct perf_counter *counter;
15dbf27c 1636
01ef09d9 1637 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
15dbf27c
PZ
1638 return;
1639
592903cd
PZ
1640 rcu_read_lock();
1641 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
b8e83514 1642 if (perf_swcounter_match(counter, type, event, regs))
d6d020e9 1643 perf_swcounter_add(counter, nr, nmi, regs);
15dbf27c 1644 }
592903cd 1645 rcu_read_unlock();
15dbf27c
PZ
1646}
1647
96f6d444
PZ
1648static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1649{
1650 if (in_nmi())
1651 return &cpuctx->recursion[3];
1652
1653 if (in_irq())
1654 return &cpuctx->recursion[2];
1655
1656 if (in_softirq())
1657 return &cpuctx->recursion[1];
1658
1659 return &cpuctx->recursion[0];
1660}
1661
b8e83514
PZ
1662static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1663 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1664{
1665 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
96f6d444
PZ
1666 int *recursion = perf_swcounter_recursion_context(cpuctx);
1667
1668 if (*recursion)
1669 goto out;
1670
1671 (*recursion)++;
1672 barrier();
15dbf27c 1673
b8e83514
PZ
1674 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1675 if (cpuctx->task_ctx) {
1676 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1677 nr, nmi, regs);
1678 }
15dbf27c 1679
96f6d444
PZ
1680 barrier();
1681 (*recursion)--;
1682
1683out:
15dbf27c
PZ
1684 put_cpu_var(perf_cpu_context);
1685}
1686
b8e83514
PZ
1687void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1688{
1689 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1690}
1691
15dbf27c
PZ
1692static void perf_swcounter_read(struct perf_counter *counter)
1693{
1694 perf_swcounter_update(counter);
1695}
1696
1697static int perf_swcounter_enable(struct perf_counter *counter)
1698{
1699 perf_swcounter_set_period(counter);
1700 return 0;
1701}
1702
1703static void perf_swcounter_disable(struct perf_counter *counter)
1704{
1705 perf_swcounter_update(counter);
1706}
1707
ac17dc8e
PZ
1708static const struct hw_perf_counter_ops perf_ops_generic = {
1709 .enable = perf_swcounter_enable,
1710 .disable = perf_swcounter_disable,
1711 .read = perf_swcounter_read,
1712};
1713
15dbf27c
PZ
1714/*
1715 * Software counter: cpu wall time clock
1716 */
1717
9abf8a08
PM
1718static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1719{
1720 int cpu = raw_smp_processor_id();
1721 s64 prev;
1722 u64 now;
1723
1724 now = cpu_clock(cpu);
1725 prev = atomic64_read(&counter->hw.prev_count);
1726 atomic64_set(&counter->hw.prev_count, now);
1727 atomic64_add(now - prev, &counter->count);
1728}
1729
d6d020e9
PZ
1730static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1731{
1732 struct hw_perf_counter *hwc = &counter->hw;
1733 int cpu = raw_smp_processor_id();
1734
1735 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
039fc91e
PZ
1736 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1737 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 1738 if (hwc->irq_period) {
d6d020e9
PZ
1739 __hrtimer_start_range_ns(&hwc->hrtimer,
1740 ns_to_ktime(hwc->irq_period), 0,
1741 HRTIMER_MODE_REL, 0);
1742 }
1743
1744 return 0;
1745}
1746
5c92d124
IM
1747static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1748{
d6d020e9 1749 hrtimer_cancel(&counter->hw.hrtimer);
9abf8a08 1750 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1751}
1752
1753static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1754{
9abf8a08 1755 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1756}
1757
1758static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
7671581f
IM
1759 .enable = cpu_clock_perf_counter_enable,
1760 .disable = cpu_clock_perf_counter_disable,
1761 .read = cpu_clock_perf_counter_read,
5c92d124
IM
1762};
1763
15dbf27c
PZ
1764/*
1765 * Software counter: task time clock
1766 */
1767
aa9c4c0f
IM
1768/*
1769 * Called from within the scheduler:
1770 */
1771static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
bae43c99 1772{
aa9c4c0f
IM
1773 struct task_struct *curr = counter->task;
1774 u64 delta;
1775
aa9c4c0f
IM
1776 delta = __task_delta_exec(curr, update);
1777
1778 return curr->se.sum_exec_runtime + delta;
1779}
1780
1781static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1782{
1783 u64 prev;
8cb391e8
IM
1784 s64 delta;
1785
1786 prev = atomic64_read(&counter->hw.prev_count);
8cb391e8
IM
1787
1788 atomic64_set(&counter->hw.prev_count, now);
1789
1790 delta = now - prev;
8cb391e8
IM
1791
1792 atomic64_add(delta, &counter->count);
bae43c99
IM
1793}
1794
95cdd2e7 1795static int task_clock_perf_counter_enable(struct perf_counter *counter)
8cb391e8 1796{
d6d020e9
PZ
1797 struct hw_perf_counter *hwc = &counter->hw;
1798
1799 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
039fc91e
PZ
1800 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1801 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 1802 if (hwc->irq_period) {
d6d020e9
PZ
1803 __hrtimer_start_range_ns(&hwc->hrtimer,
1804 ns_to_ktime(hwc->irq_period), 0,
1805 HRTIMER_MODE_REL, 0);
1806 }
95cdd2e7
IM
1807
1808 return 0;
8cb391e8
IM
1809}
1810
1811static void task_clock_perf_counter_disable(struct perf_counter *counter)
bae43c99 1812{
d6d020e9
PZ
1813 hrtimer_cancel(&counter->hw.hrtimer);
1814 task_clock_perf_counter_update(counter,
1815 task_clock_perf_counter_val(counter, 0));
1816}
aa9c4c0f 1817
d6d020e9
PZ
1818static void task_clock_perf_counter_read(struct perf_counter *counter)
1819{
1820 task_clock_perf_counter_update(counter,
1821 task_clock_perf_counter_val(counter, 1));
bae43c99
IM
1822}
1823
1824static const struct hw_perf_counter_ops perf_ops_task_clock = {
7671581f
IM
1825 .enable = task_clock_perf_counter_enable,
1826 .disable = task_clock_perf_counter_disable,
1827 .read = task_clock_perf_counter_read,
bae43c99
IM
1828};
1829
15dbf27c
PZ
1830/*
1831 * Software counter: cpu migrations
1832 */
1833
23a185ca 1834static inline u64 get_cpu_migrations(struct perf_counter *counter)
6c594c21 1835{
23a185ca
PM
1836 struct task_struct *curr = counter->ctx->task;
1837
1838 if (curr)
1839 return curr->se.nr_migrations;
1840 return cpu_nr_migrations(smp_processor_id());
6c594c21
IM
1841}
1842
1843static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1844{
1845 u64 prev, now;
1846 s64 delta;
1847
1848 prev = atomic64_read(&counter->hw.prev_count);
23a185ca 1849 now = get_cpu_migrations(counter);
6c594c21
IM
1850
1851 atomic64_set(&counter->hw.prev_count, now);
1852
1853 delta = now - prev;
6c594c21
IM
1854
1855 atomic64_add(delta, &counter->count);
1856}
1857
1858static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1859{
1860 cpu_migrations_perf_counter_update(counter);
1861}
1862
95cdd2e7 1863static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
6c594c21 1864{
c07c99b6
PM
1865 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1866 atomic64_set(&counter->hw.prev_count,
1867 get_cpu_migrations(counter));
95cdd2e7 1868 return 0;
6c594c21
IM
1869}
1870
1871static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1872{
1873 cpu_migrations_perf_counter_update(counter);
1874}
1875
1876static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
7671581f
IM
1877 .enable = cpu_migrations_perf_counter_enable,
1878 .disable = cpu_migrations_perf_counter_disable,
1879 .read = cpu_migrations_perf_counter_read,
6c594c21
IM
1880};
1881
e077df4f
PZ
1882#ifdef CONFIG_EVENT_PROFILE
1883void perf_tpcounter_event(int event_id)
1884{
b8e83514
PZ
1885 struct pt_regs *regs = get_irq_regs();
1886
1887 if (!regs)
1888 regs = task_pt_regs(current);
1889
1890 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
e077df4f
PZ
1891}
1892
1893extern int ftrace_profile_enable(int);
1894extern void ftrace_profile_disable(int);
1895
1896static void tp_perf_counter_destroy(struct perf_counter *counter)
1897{
f4a2deb4 1898 ftrace_profile_disable(perf_event_id(&counter->hw_event));
e077df4f
PZ
1899}
1900
1901static const struct hw_perf_counter_ops *
1902tp_perf_counter_init(struct perf_counter *counter)
1903{
f4a2deb4 1904 int event_id = perf_event_id(&counter->hw_event);
e077df4f
PZ
1905 int ret;
1906
1907 ret = ftrace_profile_enable(event_id);
1908 if (ret)
1909 return NULL;
1910
1911 counter->destroy = tp_perf_counter_destroy;
b8e83514 1912 counter->hw.irq_period = counter->hw_event.irq_period;
e077df4f
PZ
1913
1914 return &perf_ops_generic;
1915}
1916#else
1917static const struct hw_perf_counter_ops *
1918tp_perf_counter_init(struct perf_counter *counter)
1919{
1920 return NULL;
1921}
1922#endif
1923
5c92d124
IM
1924static const struct hw_perf_counter_ops *
1925sw_perf_counter_init(struct perf_counter *counter)
1926{
15dbf27c 1927 struct perf_counter_hw_event *hw_event = &counter->hw_event;
5c92d124 1928 const struct hw_perf_counter_ops *hw_ops = NULL;
15dbf27c 1929 struct hw_perf_counter *hwc = &counter->hw;
5c92d124 1930
0475f9ea
PM
1931 /*
1932 * Software counters (currently) can't in general distinguish
1933 * between user, kernel and hypervisor events.
1934 * However, context switches and cpu migrations are considered
1935 * to be kernel events, and page faults are never hypervisor
1936 * events.
1937 */
f4a2deb4 1938 switch (perf_event_id(&counter->hw_event)) {
5c92d124 1939 case PERF_COUNT_CPU_CLOCK:
d6d020e9
PZ
1940 hw_ops = &perf_ops_cpu_clock;
1941
1942 if (hw_event->irq_period && hw_event->irq_period < 10000)
1943 hw_event->irq_period = 10000;
5c92d124 1944 break;
bae43c99 1945 case PERF_COUNT_TASK_CLOCK:
23a185ca
PM
1946 /*
1947 * If the user instantiates this as a per-cpu counter,
1948 * use the cpu_clock counter instead.
1949 */
1950 if (counter->ctx->task)
1951 hw_ops = &perf_ops_task_clock;
1952 else
1953 hw_ops = &perf_ops_cpu_clock;
d6d020e9
PZ
1954
1955 if (hw_event->irq_period && hw_event->irq_period < 10000)
1956 hw_event->irq_period = 10000;
bae43c99 1957 break;
e06c61a8 1958 case PERF_COUNT_PAGE_FAULTS:
ac17dc8e
PZ
1959 case PERF_COUNT_PAGE_FAULTS_MIN:
1960 case PERF_COUNT_PAGE_FAULTS_MAJ:
5d6a27d8 1961 case PERF_COUNT_CONTEXT_SWITCHES:
4a0deca6 1962 hw_ops = &perf_ops_generic;
5d6a27d8 1963 break;
6c594c21 1964 case PERF_COUNT_CPU_MIGRATIONS:
0475f9ea
PM
1965 if (!counter->hw_event.exclude_kernel)
1966 hw_ops = &perf_ops_cpu_migrations;
6c594c21 1967 break;
5c92d124 1968 }
15dbf27c
PZ
1969
1970 if (hw_ops)
1971 hwc->irq_period = hw_event->irq_period;
1972
5c92d124
IM
1973 return hw_ops;
1974}
1975
0793a61d
TG
1976/*
1977 * Allocate and initialize a counter structure
1978 */
1979static struct perf_counter *
04289bb9
IM
1980perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1981 int cpu,
23a185ca 1982 struct perf_counter_context *ctx,
9b51f66d
IM
1983 struct perf_counter *group_leader,
1984 gfp_t gfpflags)
0793a61d 1985{
5c92d124 1986 const struct hw_perf_counter_ops *hw_ops;
621a01ea 1987 struct perf_counter *counter;
0793a61d 1988
9b51f66d 1989 counter = kzalloc(sizeof(*counter), gfpflags);
0793a61d
TG
1990 if (!counter)
1991 return NULL;
1992
04289bb9
IM
1993 /*
1994 * Single counters are their own group leaders, with an
1995 * empty sibling list:
1996 */
1997 if (!group_leader)
1998 group_leader = counter;
1999
0793a61d 2000 mutex_init(&counter->mutex);
04289bb9 2001 INIT_LIST_HEAD(&counter->list_entry);
592903cd 2002 INIT_LIST_HEAD(&counter->event_entry);
04289bb9 2003 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
2004 init_waitqueue_head(&counter->waitq);
2005
7b732a75
PZ
2006 mutex_init(&counter->mmap_mutex);
2007
d859e29f
PM
2008 INIT_LIST_HEAD(&counter->child_list);
2009
9f66a381
IM
2010 counter->cpu = cpu;
2011 counter->hw_event = *hw_event;
2012 counter->wakeup_pending = 0;
04289bb9 2013 counter->group_leader = group_leader;
621a01ea 2014 counter->hw_ops = NULL;
23a185ca 2015 counter->ctx = ctx;
621a01ea 2016
235c7fc7 2017 counter->state = PERF_COUNTER_STATE_INACTIVE;
a86ed508
IM
2018 if (hw_event->disabled)
2019 counter->state = PERF_COUNTER_STATE_OFF;
2020
5c92d124 2021 hw_ops = NULL;
b8e83514 2022
f4a2deb4 2023 if (perf_event_raw(hw_event)) {
b8e83514 2024 hw_ops = hw_perf_counter_init(counter);
f4a2deb4
PZ
2025 goto done;
2026 }
2027
2028 switch (perf_event_type(hw_event)) {
b8e83514 2029 case PERF_TYPE_HARDWARE:
5c92d124 2030 hw_ops = hw_perf_counter_init(counter);
b8e83514
PZ
2031 break;
2032
2033 case PERF_TYPE_SOFTWARE:
2034 hw_ops = sw_perf_counter_init(counter);
2035 break;
2036
2037 case PERF_TYPE_TRACEPOINT:
2038 hw_ops = tp_perf_counter_init(counter);
2039 break;
2040 }
5c92d124 2041
621a01ea
IM
2042 if (!hw_ops) {
2043 kfree(counter);
2044 return NULL;
2045 }
f4a2deb4 2046done:
621a01ea 2047 counter->hw_ops = hw_ops;
0793a61d
TG
2048
2049 return counter;
2050}
2051
2052/**
2743a5b0 2053 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
9f66a381
IM
2054 *
2055 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 2056 * @pid: target pid
9f66a381
IM
2057 * @cpu: target cpu
2058 * @group_fd: group leader counter fd
0793a61d 2059 */
2743a5b0 2060SYSCALL_DEFINE5(perf_counter_open,
f3dfd265 2061 const struct perf_counter_hw_event __user *, hw_event_uptr,
2743a5b0 2062 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 2063{
04289bb9 2064 struct perf_counter *counter, *group_leader;
9f66a381 2065 struct perf_counter_hw_event hw_event;
04289bb9 2066 struct perf_counter_context *ctx;
9b51f66d 2067 struct file *counter_file = NULL;
04289bb9
IM
2068 struct file *group_file = NULL;
2069 int fput_needed = 0;
9b51f66d 2070 int fput_needed2 = 0;
0793a61d
TG
2071 int ret;
2072
2743a5b0
PM
2073 /* for future expandability... */
2074 if (flags)
2075 return -EINVAL;
2076
9f66a381 2077 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
2078 return -EFAULT;
2079
04289bb9 2080 /*
ccff286d
IM
2081 * Get the target context (task or percpu):
2082 */
2083 ctx = find_get_context(pid, cpu);
2084 if (IS_ERR(ctx))
2085 return PTR_ERR(ctx);
2086
2087 /*
2088 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
2089 */
2090 group_leader = NULL;
2091 if (group_fd != -1) {
2092 ret = -EINVAL;
2093 group_file = fget_light(group_fd, &fput_needed);
2094 if (!group_file)
ccff286d 2095 goto err_put_context;
04289bb9 2096 if (group_file->f_op != &perf_fops)
ccff286d 2097 goto err_put_context;
04289bb9
IM
2098
2099 group_leader = group_file->private_data;
2100 /*
ccff286d
IM
2101 * Do not allow a recursive hierarchy (this new sibling
2102 * becoming part of another group-sibling):
2103 */
2104 if (group_leader->group_leader != group_leader)
2105 goto err_put_context;
2106 /*
2107 * Do not allow to attach to a group in a different
2108 * task or CPU context:
04289bb9 2109 */
ccff286d
IM
2110 if (group_leader->ctx != ctx)
2111 goto err_put_context;
3b6f9e5c
PM
2112 /*
2113 * Only a group leader can be exclusive or pinned
2114 */
2115 if (hw_event.exclusive || hw_event.pinned)
2116 goto err_put_context;
04289bb9
IM
2117 }
2118
5c92d124 2119 ret = -EINVAL;
23a185ca
PM
2120 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2121 GFP_KERNEL);
0793a61d
TG
2122 if (!counter)
2123 goto err_put_context;
2124
0793a61d
TG
2125 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2126 if (ret < 0)
9b51f66d
IM
2127 goto err_free_put_context;
2128
2129 counter_file = fget_light(ret, &fput_needed2);
2130 if (!counter_file)
2131 goto err_free_put_context;
2132
2133 counter->filp = counter_file;
d859e29f 2134 mutex_lock(&ctx->mutex);
9b51f66d 2135 perf_install_in_context(ctx, counter, cpu);
d859e29f 2136 mutex_unlock(&ctx->mutex);
9b51f66d
IM
2137
2138 fput_light(counter_file, fput_needed2);
0793a61d 2139
04289bb9
IM
2140out_fput:
2141 fput_light(group_file, fput_needed);
2142
0793a61d
TG
2143 return ret;
2144
9b51f66d 2145err_free_put_context:
0793a61d
TG
2146 kfree(counter);
2147
2148err_put_context:
2149 put_context(ctx);
2150
04289bb9 2151 goto out_fput;
0793a61d
TG
2152}
2153
9b51f66d
IM
2154/*
2155 * Initialize the perf_counter context in a task_struct:
2156 */
2157static void
2158__perf_counter_init_context(struct perf_counter_context *ctx,
2159 struct task_struct *task)
2160{
2161 memset(ctx, 0, sizeof(*ctx));
2162 spin_lock_init(&ctx->lock);
d859e29f 2163 mutex_init(&ctx->mutex);
9b51f66d 2164 INIT_LIST_HEAD(&ctx->counter_list);
592903cd 2165 INIT_LIST_HEAD(&ctx->event_list);
9b51f66d
IM
2166 ctx->task = task;
2167}
2168
2169/*
2170 * inherit a counter from parent task to child task:
2171 */
d859e29f 2172static struct perf_counter *
9b51f66d
IM
2173inherit_counter(struct perf_counter *parent_counter,
2174 struct task_struct *parent,
2175 struct perf_counter_context *parent_ctx,
2176 struct task_struct *child,
d859e29f 2177 struct perf_counter *group_leader,
9b51f66d
IM
2178 struct perf_counter_context *child_ctx)
2179{
2180 struct perf_counter *child_counter;
2181
d859e29f
PM
2182 /*
2183 * Instead of creating recursive hierarchies of counters,
2184 * we link inherited counters back to the original parent,
2185 * which has a filp for sure, which we use as the reference
2186 * count:
2187 */
2188 if (parent_counter->parent)
2189 parent_counter = parent_counter->parent;
2190
9b51f66d 2191 child_counter = perf_counter_alloc(&parent_counter->hw_event,
23a185ca
PM
2192 parent_counter->cpu, child_ctx,
2193 group_leader, GFP_KERNEL);
9b51f66d 2194 if (!child_counter)
d859e29f 2195 return NULL;
9b51f66d
IM
2196
2197 /*
2198 * Link it up in the child's context:
2199 */
9b51f66d
IM
2200 child_counter->task = child;
2201 list_add_counter(child_counter, child_ctx);
2202 child_ctx->nr_counters++;
2203
2204 child_counter->parent = parent_counter;
9b51f66d
IM
2205 /*
2206 * inherit into child's child as well:
2207 */
2208 child_counter->hw_event.inherit = 1;
2209
2210 /*
2211 * Get a reference to the parent filp - we will fput it
2212 * when the child counter exits. This is safe to do because
2213 * we are in the parent and we know that the filp still
2214 * exists and has a nonzero count:
2215 */
2216 atomic_long_inc(&parent_counter->filp->f_count);
2217
d859e29f
PM
2218 /*
2219 * Link this into the parent counter's child list
2220 */
2221 mutex_lock(&parent_counter->mutex);
2222 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2223
2224 /*
2225 * Make the child state follow the state of the parent counter,
2226 * not its hw_event.disabled bit. We hold the parent's mutex,
2227 * so we won't race with perf_counter_{en,dis}able_family.
2228 */
2229 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2230 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2231 else
2232 child_counter->state = PERF_COUNTER_STATE_OFF;
2233
2234 mutex_unlock(&parent_counter->mutex);
2235
2236 return child_counter;
2237}
2238
2239static int inherit_group(struct perf_counter *parent_counter,
2240 struct task_struct *parent,
2241 struct perf_counter_context *parent_ctx,
2242 struct task_struct *child,
2243 struct perf_counter_context *child_ctx)
2244{
2245 struct perf_counter *leader;
2246 struct perf_counter *sub;
2247
2248 leader = inherit_counter(parent_counter, parent, parent_ctx,
2249 child, NULL, child_ctx);
2250 if (!leader)
2251 return -ENOMEM;
2252 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2253 if (!inherit_counter(sub, parent, parent_ctx,
2254 child, leader, child_ctx))
2255 return -ENOMEM;
2256 }
9b51f66d
IM
2257 return 0;
2258}
2259
d859e29f
PM
2260static void sync_child_counter(struct perf_counter *child_counter,
2261 struct perf_counter *parent_counter)
2262{
2263 u64 parent_val, child_val;
2264
2265 parent_val = atomic64_read(&parent_counter->count);
2266 child_val = atomic64_read(&child_counter->count);
2267
2268 /*
2269 * Add back the child's count to the parent's count:
2270 */
2271 atomic64_add(child_val, &parent_counter->count);
2272
2273 /*
2274 * Remove this counter from the parent's list
2275 */
2276 mutex_lock(&parent_counter->mutex);
2277 list_del_init(&child_counter->child_list);
2278 mutex_unlock(&parent_counter->mutex);
2279
2280 /*
2281 * Release the parent counter, if this was the last
2282 * reference to it.
2283 */
2284 fput(parent_counter->filp);
2285}
2286
9b51f66d
IM
2287static void
2288__perf_counter_exit_task(struct task_struct *child,
2289 struct perf_counter *child_counter,
2290 struct perf_counter_context *child_ctx)
2291{
2292 struct perf_counter *parent_counter;
d859e29f 2293 struct perf_counter *sub, *tmp;
9b51f66d
IM
2294
2295 /*
235c7fc7
IM
2296 * If we do not self-reap then we have to wait for the
2297 * child task to unschedule (it will happen for sure),
2298 * so that its counter is at its final count. (This
2299 * condition triggers rarely - child tasks usually get
2300 * off their CPU before the parent has a chance to
2301 * get this far into the reaping action)
9b51f66d 2302 */
235c7fc7
IM
2303 if (child != current) {
2304 wait_task_inactive(child, 0);
2305 list_del_init(&child_counter->list_entry);
2306 } else {
0cc0c027 2307 struct perf_cpu_context *cpuctx;
235c7fc7
IM
2308 unsigned long flags;
2309 u64 perf_flags;
2310
2311 /*
2312 * Disable and unlink this counter.
2313 *
2314 * Be careful about zapping the list - IRQ/NMI context
2315 * could still be processing it:
2316 */
2317 curr_rq_lock_irq_save(&flags);
2318 perf_flags = hw_perf_save_disable();
0cc0c027
IM
2319
2320 cpuctx = &__get_cpu_var(perf_cpu_context);
2321
d859e29f 2322 group_sched_out(child_counter, cpuctx, child_ctx);
0cc0c027 2323
235c7fc7 2324 list_del_init(&child_counter->list_entry);
0cc0c027 2325
235c7fc7 2326 child_ctx->nr_counters--;
9b51f66d 2327
235c7fc7
IM
2328 hw_perf_restore(perf_flags);
2329 curr_rq_unlock_irq_restore(&flags);
2330 }
9b51f66d
IM
2331
2332 parent_counter = child_counter->parent;
2333 /*
2334 * It can happen that parent exits first, and has counters
2335 * that are still around due to the child reference. These
2336 * counters need to be zapped - but otherwise linger.
2337 */
d859e29f
PM
2338 if (parent_counter) {
2339 sync_child_counter(child_counter, parent_counter);
2340 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2341 list_entry) {
4bcf349a 2342 if (sub->parent) {
d859e29f 2343 sync_child_counter(sub, sub->parent);
f1600952 2344 free_counter(sub);
4bcf349a 2345 }
d859e29f 2346 }
f1600952 2347 free_counter(child_counter);
4bcf349a 2348 }
9b51f66d
IM
2349}
2350
2351/*
d859e29f 2352 * When a child task exits, feed back counter values to parent counters.
9b51f66d 2353 *
d859e29f 2354 * Note: we may be running in child context, but the PID is not hashed
9b51f66d
IM
2355 * anymore so new counters will not be added.
2356 */
2357void perf_counter_exit_task(struct task_struct *child)
2358{
2359 struct perf_counter *child_counter, *tmp;
2360 struct perf_counter_context *child_ctx;
2361
2362 child_ctx = &child->perf_counter_ctx;
2363
2364 if (likely(!child_ctx->nr_counters))
2365 return;
2366
2367 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2368 list_entry)
2369 __perf_counter_exit_task(child, child_counter, child_ctx);
2370}
2371
2372/*
2373 * Initialize the perf_counter context in task_struct
2374 */
2375void perf_counter_init_task(struct task_struct *child)
2376{
2377 struct perf_counter_context *child_ctx, *parent_ctx;
d859e29f 2378 struct perf_counter *counter;
9b51f66d 2379 struct task_struct *parent = current;
9b51f66d
IM
2380
2381 child_ctx = &child->perf_counter_ctx;
2382 parent_ctx = &parent->perf_counter_ctx;
2383
2384 __perf_counter_init_context(child_ctx, child);
2385
2386 /*
2387 * This is executed from the parent task context, so inherit
2388 * counters that have been marked for cloning:
2389 */
2390
2391 if (likely(!parent_ctx->nr_counters))
2392 return;
2393
2394 /*
2395 * Lock the parent list. No need to lock the child - not PID
2396 * hashed yet and not running, so nobody can access it.
2397 */
d859e29f 2398 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
2399
2400 /*
2401 * We dont have to disable NMIs - we are only looking at
2402 * the list, not manipulating it:
2403 */
2404 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
d859e29f 2405 if (!counter->hw_event.inherit)
9b51f66d
IM
2406 continue;
2407
d859e29f 2408 if (inherit_group(counter, parent,
9b51f66d
IM
2409 parent_ctx, child, child_ctx))
2410 break;
2411 }
2412
d859e29f 2413 mutex_unlock(&parent_ctx->mutex);
9b51f66d
IM
2414}
2415
04289bb9 2416static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 2417{
04289bb9 2418 struct perf_cpu_context *cpuctx;
0793a61d 2419
04289bb9
IM
2420 cpuctx = &per_cpu(perf_cpu_context, cpu);
2421 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
2422
2423 mutex_lock(&perf_resource_mutex);
04289bb9 2424 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 2425 mutex_unlock(&perf_resource_mutex);
04289bb9 2426
01d0287f 2427 hw_perf_counter_setup(cpu);
0793a61d
TG
2428}
2429
2430#ifdef CONFIG_HOTPLUG_CPU
04289bb9 2431static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
2432{
2433 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2434 struct perf_counter_context *ctx = &cpuctx->ctx;
2435 struct perf_counter *counter, *tmp;
2436
04289bb9
IM
2437 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2438 __perf_counter_remove_from_context(counter);
0793a61d 2439}
04289bb9 2440static void perf_counter_exit_cpu(int cpu)
0793a61d 2441{
d859e29f
PM
2442 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2443 struct perf_counter_context *ctx = &cpuctx->ctx;
2444
2445 mutex_lock(&ctx->mutex);
04289bb9 2446 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
d859e29f 2447 mutex_unlock(&ctx->mutex);
0793a61d
TG
2448}
2449#else
04289bb9 2450static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
2451#endif
2452
2453static int __cpuinit
2454perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2455{
2456 unsigned int cpu = (long)hcpu;
2457
2458 switch (action) {
2459
2460 case CPU_UP_PREPARE:
2461 case CPU_UP_PREPARE_FROZEN:
04289bb9 2462 perf_counter_init_cpu(cpu);
0793a61d
TG
2463 break;
2464
2465 case CPU_DOWN_PREPARE:
2466 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 2467 perf_counter_exit_cpu(cpu);
0793a61d
TG
2468 break;
2469
2470 default:
2471 break;
2472 }
2473
2474 return NOTIFY_OK;
2475}
2476
2477static struct notifier_block __cpuinitdata perf_cpu_nb = {
2478 .notifier_call = perf_cpu_notify,
2479};
2480
2481static int __init perf_counter_init(void)
2482{
2483 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2484 (void *)(long)smp_processor_id());
2485 register_cpu_notifier(&perf_cpu_nb);
2486
2487 return 0;
2488}
2489early_initcall(perf_counter_init);
2490
2491static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2492{
2493 return sprintf(buf, "%d\n", perf_reserved_percpu);
2494}
2495
2496static ssize_t
2497perf_set_reserve_percpu(struct sysdev_class *class,
2498 const char *buf,
2499 size_t count)
2500{
2501 struct perf_cpu_context *cpuctx;
2502 unsigned long val;
2503 int err, cpu, mpt;
2504
2505 err = strict_strtoul(buf, 10, &val);
2506 if (err)
2507 return err;
2508 if (val > perf_max_counters)
2509 return -EINVAL;
2510
2511 mutex_lock(&perf_resource_mutex);
2512 perf_reserved_percpu = val;
2513 for_each_online_cpu(cpu) {
2514 cpuctx = &per_cpu(perf_cpu_context, cpu);
2515 spin_lock_irq(&cpuctx->ctx.lock);
2516 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2517 perf_max_counters - perf_reserved_percpu);
2518 cpuctx->max_pertask = mpt;
2519 spin_unlock_irq(&cpuctx->ctx.lock);
2520 }
2521 mutex_unlock(&perf_resource_mutex);
2522
2523 return count;
2524}
2525
2526static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2527{
2528 return sprintf(buf, "%d\n", perf_overcommit);
2529}
2530
2531static ssize_t
2532perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2533{
2534 unsigned long val;
2535 int err;
2536
2537 err = strict_strtoul(buf, 10, &val);
2538 if (err)
2539 return err;
2540 if (val > 1)
2541 return -EINVAL;
2542
2543 mutex_lock(&perf_resource_mutex);
2544 perf_overcommit = val;
2545 mutex_unlock(&perf_resource_mutex);
2546
2547 return count;
2548}
2549
2550static SYSDEV_CLASS_ATTR(
2551 reserve_percpu,
2552 0644,
2553 perf_show_reserve_percpu,
2554 perf_set_reserve_percpu
2555 );
2556
2557static SYSDEV_CLASS_ATTR(
2558 overcommit,
2559 0644,
2560 perf_show_overcommit,
2561 perf_set_overcommit
2562 );
2563
2564static struct attribute *perfclass_attrs[] = {
2565 &attr_reserve_percpu.attr,
2566 &attr_overcommit.attr,
2567 NULL
2568};
2569
2570static struct attribute_group perfclass_attr_group = {
2571 .attrs = perfclass_attrs,
2572 .name = "perf_counters",
2573};
2574
2575static int __init perf_counter_sysfs_init(void)
2576{
2577 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2578 &perfclass_attr_group);
2579}
2580device_initcall(perf_counter_sysfs_init);