mutex: drop "inline" from mutex_lock() inside kernel/mutex.c
[linux-2.6-block.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/fs.h>
11#include <linux/cpu.h>
12#include <linux/smp.h>
04289bb9 13#include <linux/file.h>
0793a61d
TG
14#include <linux/poll.h>
15#include <linux/sysfs.h>
16#include <linux/ptrace.h>
17#include <linux/percpu.h>
18#include <linux/uaccess.h>
19#include <linux/syscalls.h>
20#include <linux/anon_inodes.h>
aa9c4c0f 21#include <linux/kernel_stat.h>
0793a61d 22#include <linux/perf_counter.h>
23a185ca
PM
23#include <linux/mm.h>
24#include <linux/vmstat.h>
592903cd 25#include <linux/rculist.h>
96f6d444 26#include <linux/hardirq.h>
0793a61d 27
4e193bd4
TB
28#include <asm/irq_regs.h>
29
0793a61d
TG
30/*
31 * Each CPU has a list of per CPU counters:
32 */
33DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
34
088e2852 35int perf_max_counters __read_mostly = 1;
0793a61d
TG
36static int perf_reserved_percpu __read_mostly;
37static int perf_overcommit __read_mostly = 1;
38
39/*
40 * Mutex for (sysadmin-configurable) counter reservations:
41 */
42static DEFINE_MUTEX(perf_resource_mutex);
43
44/*
45 * Architecture provided APIs - weak aliases:
46 */
5c92d124 47extern __weak const struct hw_perf_counter_ops *
621a01ea 48hw_perf_counter_init(struct perf_counter *counter)
0793a61d 49{
ff6f0541 50 return NULL;
0793a61d
TG
51}
52
01b2838c 53u64 __weak hw_perf_save_disable(void) { return 0; }
01ea1cca 54void __weak hw_perf_restore(u64 ctrl) { barrier(); }
01d0287f 55void __weak hw_perf_counter_setup(int cpu) { barrier(); }
3cbed429
PM
56int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
57 struct perf_cpu_context *cpuctx,
58 struct perf_counter_context *ctx, int cpu)
59{
60 return 0;
61}
0793a61d 62
4eb96fcf
PM
63void __weak perf_counter_print_debug(void) { }
64
04289bb9
IM
65static void
66list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
67{
68 struct perf_counter *group_leader = counter->group_leader;
69
70 /*
71 * Depending on whether it is a standalone or sibling counter,
72 * add it straight to the context's counter list, or to the group
73 * leader's sibling list:
74 */
75 if (counter->group_leader == counter)
76 list_add_tail(&counter->list_entry, &ctx->counter_list);
77 else
78 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
592903cd
PZ
79
80 list_add_rcu(&counter->event_entry, &ctx->event_list);
04289bb9
IM
81}
82
83static void
84list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
85{
86 struct perf_counter *sibling, *tmp;
87
88 list_del_init(&counter->list_entry);
592903cd 89 list_del_rcu(&counter->event_entry);
04289bb9 90
04289bb9
IM
91 /*
92 * If this was a group counter with sibling counters then
93 * upgrade the siblings to singleton counters by adding them
94 * to the context list directly:
95 */
96 list_for_each_entry_safe(sibling, tmp,
97 &counter->sibling_list, list_entry) {
98
75564232 99 list_move_tail(&sibling->list_entry, &ctx->counter_list);
04289bb9
IM
100 sibling->group_leader = sibling;
101 }
102}
103
3b6f9e5c
PM
104static void
105counter_sched_out(struct perf_counter *counter,
106 struct perf_cpu_context *cpuctx,
107 struct perf_counter_context *ctx)
108{
109 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
110 return;
111
112 counter->state = PERF_COUNTER_STATE_INACTIVE;
113 counter->hw_ops->disable(counter);
114 counter->oncpu = -1;
115
116 if (!is_software_counter(counter))
117 cpuctx->active_oncpu--;
118 ctx->nr_active--;
119 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
120 cpuctx->exclusive = 0;
121}
122
d859e29f
PM
123static void
124group_sched_out(struct perf_counter *group_counter,
125 struct perf_cpu_context *cpuctx,
126 struct perf_counter_context *ctx)
127{
128 struct perf_counter *counter;
129
130 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
131 return;
132
133 counter_sched_out(group_counter, cpuctx, ctx);
134
135 /*
136 * Schedule out siblings (if any):
137 */
138 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
139 counter_sched_out(counter, cpuctx, ctx);
140
141 if (group_counter->hw_event.exclusive)
142 cpuctx->exclusive = 0;
143}
144
0793a61d
TG
145/*
146 * Cross CPU call to remove a performance counter
147 *
148 * We disable the counter on the hardware level first. After that we
149 * remove it from the context list.
150 */
04289bb9 151static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
152{
153 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
154 struct perf_counter *counter = info;
155 struct perf_counter_context *ctx = counter->ctx;
9b51f66d 156 unsigned long flags;
5c92d124 157 u64 perf_flags;
0793a61d
TG
158
159 /*
160 * If this is a task context, we need to check whether it is
161 * the current task context of this cpu. If not it has been
162 * scheduled out before the smp call arrived.
163 */
164 if (ctx->task && cpuctx->task_ctx != ctx)
165 return;
166
aa9c4c0f
IM
167 curr_rq_lock_irq_save(&flags);
168 spin_lock(&ctx->lock);
0793a61d 169
3b6f9e5c
PM
170 counter_sched_out(counter, cpuctx, ctx);
171
172 counter->task = NULL;
0793a61d
TG
173 ctx->nr_counters--;
174
175 /*
176 * Protect the list operation against NMI by disabling the
177 * counters on a global level. NOP for non NMI based counters.
178 */
01b2838c 179 perf_flags = hw_perf_save_disable();
04289bb9 180 list_del_counter(counter, ctx);
01b2838c 181 hw_perf_restore(perf_flags);
0793a61d
TG
182
183 if (!ctx->task) {
184 /*
185 * Allow more per task counters with respect to the
186 * reservation:
187 */
188 cpuctx->max_pertask =
189 min(perf_max_counters - ctx->nr_counters,
190 perf_max_counters - perf_reserved_percpu);
191 }
192
aa9c4c0f
IM
193 spin_unlock(&ctx->lock);
194 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
195}
196
197
198/*
199 * Remove the counter from a task's (or a CPU's) list of counters.
200 *
d859e29f 201 * Must be called with counter->mutex and ctx->mutex held.
0793a61d
TG
202 *
203 * CPU counters are removed with a smp call. For task counters we only
204 * call when the task is on a CPU.
205 */
04289bb9 206static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
207{
208 struct perf_counter_context *ctx = counter->ctx;
209 struct task_struct *task = ctx->task;
210
211 if (!task) {
212 /*
213 * Per cpu counters are removed via an smp call and
214 * the removal is always sucessful.
215 */
216 smp_call_function_single(counter->cpu,
04289bb9 217 __perf_counter_remove_from_context,
0793a61d
TG
218 counter, 1);
219 return;
220 }
221
222retry:
04289bb9 223 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
224 counter);
225
226 spin_lock_irq(&ctx->lock);
227 /*
228 * If the context is active we need to retry the smp call.
229 */
04289bb9 230 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
231 spin_unlock_irq(&ctx->lock);
232 goto retry;
233 }
234
235 /*
236 * The lock prevents that this context is scheduled in so we
04289bb9 237 * can remove the counter safely, if the call above did not
0793a61d
TG
238 * succeed.
239 */
04289bb9 240 if (!list_empty(&counter->list_entry)) {
0793a61d 241 ctx->nr_counters--;
04289bb9 242 list_del_counter(counter, ctx);
0793a61d
TG
243 counter->task = NULL;
244 }
245 spin_unlock_irq(&ctx->lock);
246}
247
d859e29f
PM
248/*
249 * Cross CPU call to disable a performance counter
250 */
251static void __perf_counter_disable(void *info)
252{
253 struct perf_counter *counter = info;
254 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
255 struct perf_counter_context *ctx = counter->ctx;
256 unsigned long flags;
257
258 /*
259 * If this is a per-task counter, need to check whether this
260 * counter's task is the current task on this cpu.
261 */
262 if (ctx->task && cpuctx->task_ctx != ctx)
263 return;
264
265 curr_rq_lock_irq_save(&flags);
266 spin_lock(&ctx->lock);
267
268 /*
269 * If the counter is on, turn it off.
270 * If it is in error state, leave it in error state.
271 */
272 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
273 if (counter == counter->group_leader)
274 group_sched_out(counter, cpuctx, ctx);
275 else
276 counter_sched_out(counter, cpuctx, ctx);
277 counter->state = PERF_COUNTER_STATE_OFF;
278 }
279
280 spin_unlock(&ctx->lock);
281 curr_rq_unlock_irq_restore(&flags);
282}
283
284/*
285 * Disable a counter.
286 */
287static void perf_counter_disable(struct perf_counter *counter)
288{
289 struct perf_counter_context *ctx = counter->ctx;
290 struct task_struct *task = ctx->task;
291
292 if (!task) {
293 /*
294 * Disable the counter on the cpu that it's on
295 */
296 smp_call_function_single(counter->cpu, __perf_counter_disable,
297 counter, 1);
298 return;
299 }
300
301 retry:
302 task_oncpu_function_call(task, __perf_counter_disable, counter);
303
304 spin_lock_irq(&ctx->lock);
305 /*
306 * If the counter is still active, we need to retry the cross-call.
307 */
308 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
309 spin_unlock_irq(&ctx->lock);
310 goto retry;
311 }
312
313 /*
314 * Since we have the lock this context can't be scheduled
315 * in, so we can change the state safely.
316 */
317 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
318 counter->state = PERF_COUNTER_STATE_OFF;
319
320 spin_unlock_irq(&ctx->lock);
321}
322
323/*
324 * Disable a counter and all its children.
325 */
326static void perf_counter_disable_family(struct perf_counter *counter)
327{
328 struct perf_counter *child;
329
330 perf_counter_disable(counter);
331
332 /*
333 * Lock the mutex to protect the list of children
334 */
335 mutex_lock(&counter->mutex);
336 list_for_each_entry(child, &counter->child_list, child_list)
337 perf_counter_disable(child);
338 mutex_unlock(&counter->mutex);
339}
340
235c7fc7
IM
341static int
342counter_sched_in(struct perf_counter *counter,
343 struct perf_cpu_context *cpuctx,
344 struct perf_counter_context *ctx,
345 int cpu)
346{
3b6f9e5c 347 if (counter->state <= PERF_COUNTER_STATE_OFF)
235c7fc7
IM
348 return 0;
349
350 counter->state = PERF_COUNTER_STATE_ACTIVE;
351 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
352 /*
353 * The new state must be visible before we turn it on in the hardware:
354 */
355 smp_wmb();
356
357 if (counter->hw_ops->enable(counter)) {
358 counter->state = PERF_COUNTER_STATE_INACTIVE;
359 counter->oncpu = -1;
360 return -EAGAIN;
361 }
362
3b6f9e5c
PM
363 if (!is_software_counter(counter))
364 cpuctx->active_oncpu++;
235c7fc7
IM
365 ctx->nr_active++;
366
3b6f9e5c
PM
367 if (counter->hw_event.exclusive)
368 cpuctx->exclusive = 1;
369
235c7fc7
IM
370 return 0;
371}
372
3b6f9e5c
PM
373/*
374 * Return 1 for a group consisting entirely of software counters,
375 * 0 if the group contains any hardware counters.
376 */
377static int is_software_only_group(struct perf_counter *leader)
378{
379 struct perf_counter *counter;
380
381 if (!is_software_counter(leader))
382 return 0;
383 list_for_each_entry(counter, &leader->sibling_list, list_entry)
384 if (!is_software_counter(counter))
385 return 0;
386 return 1;
387}
388
389/*
390 * Work out whether we can put this counter group on the CPU now.
391 */
392static int group_can_go_on(struct perf_counter *counter,
393 struct perf_cpu_context *cpuctx,
394 int can_add_hw)
395{
396 /*
397 * Groups consisting entirely of software counters can always go on.
398 */
399 if (is_software_only_group(counter))
400 return 1;
401 /*
402 * If an exclusive group is already on, no other hardware
403 * counters can go on.
404 */
405 if (cpuctx->exclusive)
406 return 0;
407 /*
408 * If this group is exclusive and there are already
409 * counters on the CPU, it can't go on.
410 */
411 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
412 return 0;
413 /*
414 * Otherwise, try to add it if all previous groups were able
415 * to go on.
416 */
417 return can_add_hw;
418}
419
0793a61d 420/*
235c7fc7 421 * Cross CPU call to install and enable a performance counter
0793a61d
TG
422 */
423static void __perf_install_in_context(void *info)
424{
425 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
426 struct perf_counter *counter = info;
427 struct perf_counter_context *ctx = counter->ctx;
d859e29f 428 struct perf_counter *leader = counter->group_leader;
0793a61d 429 int cpu = smp_processor_id();
9b51f66d 430 unsigned long flags;
5c92d124 431 u64 perf_flags;
3b6f9e5c 432 int err;
0793a61d
TG
433
434 /*
435 * If this is a task context, we need to check whether it is
436 * the current task context of this cpu. If not it has been
437 * scheduled out before the smp call arrived.
438 */
439 if (ctx->task && cpuctx->task_ctx != ctx)
440 return;
441
aa9c4c0f
IM
442 curr_rq_lock_irq_save(&flags);
443 spin_lock(&ctx->lock);
0793a61d
TG
444
445 /*
446 * Protect the list operation against NMI by disabling the
447 * counters on a global level. NOP for non NMI based counters.
448 */
01b2838c 449 perf_flags = hw_perf_save_disable();
0793a61d 450
235c7fc7 451 list_add_counter(counter, ctx);
0793a61d 452 ctx->nr_counters++;
c07c99b6 453 counter->prev_state = PERF_COUNTER_STATE_OFF;
0793a61d 454
d859e29f
PM
455 /*
456 * Don't put the counter on if it is disabled or if
457 * it is in a group and the group isn't on.
458 */
459 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
460 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
461 goto unlock;
462
3b6f9e5c
PM
463 /*
464 * An exclusive counter can't go on if there are already active
465 * hardware counters, and no hardware counter can go on if there
466 * is already an exclusive counter on.
467 */
d859e29f 468 if (!group_can_go_on(counter, cpuctx, 1))
3b6f9e5c
PM
469 err = -EEXIST;
470 else
471 err = counter_sched_in(counter, cpuctx, ctx, cpu);
472
d859e29f
PM
473 if (err) {
474 /*
475 * This counter couldn't go on. If it is in a group
476 * then we have to pull the whole group off.
477 * If the counter group is pinned then put it in error state.
478 */
479 if (leader != counter)
480 group_sched_out(leader, cpuctx, ctx);
481 if (leader->hw_event.pinned)
482 leader->state = PERF_COUNTER_STATE_ERROR;
483 }
0793a61d 484
3b6f9e5c 485 if (!err && !ctx->task && cpuctx->max_pertask)
0793a61d
TG
486 cpuctx->max_pertask--;
487
d859e29f 488 unlock:
235c7fc7
IM
489 hw_perf_restore(perf_flags);
490
aa9c4c0f
IM
491 spin_unlock(&ctx->lock);
492 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
493}
494
495/*
496 * Attach a performance counter to a context
497 *
498 * First we add the counter to the list with the hardware enable bit
499 * in counter->hw_config cleared.
500 *
501 * If the counter is attached to a task which is on a CPU we use a smp
502 * call to enable it in the task context. The task might have been
503 * scheduled away, but we check this in the smp call again.
d859e29f
PM
504 *
505 * Must be called with ctx->mutex held.
0793a61d
TG
506 */
507static void
508perf_install_in_context(struct perf_counter_context *ctx,
509 struct perf_counter *counter,
510 int cpu)
511{
512 struct task_struct *task = ctx->task;
513
0793a61d
TG
514 if (!task) {
515 /*
516 * Per cpu counters are installed via an smp call and
517 * the install is always sucessful.
518 */
519 smp_call_function_single(cpu, __perf_install_in_context,
520 counter, 1);
521 return;
522 }
523
524 counter->task = task;
525retry:
526 task_oncpu_function_call(task, __perf_install_in_context,
527 counter);
528
529 spin_lock_irq(&ctx->lock);
530 /*
0793a61d
TG
531 * we need to retry the smp call.
532 */
d859e29f 533 if (ctx->is_active && list_empty(&counter->list_entry)) {
0793a61d
TG
534 spin_unlock_irq(&ctx->lock);
535 goto retry;
536 }
537
538 /*
539 * The lock prevents that this context is scheduled in so we
540 * can add the counter safely, if it the call above did not
541 * succeed.
542 */
04289bb9
IM
543 if (list_empty(&counter->list_entry)) {
544 list_add_counter(counter, ctx);
0793a61d
TG
545 ctx->nr_counters++;
546 }
547 spin_unlock_irq(&ctx->lock);
548}
549
d859e29f
PM
550/*
551 * Cross CPU call to enable a performance counter
552 */
553static void __perf_counter_enable(void *info)
04289bb9 554{
d859e29f
PM
555 struct perf_counter *counter = info;
556 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
557 struct perf_counter_context *ctx = counter->ctx;
558 struct perf_counter *leader = counter->group_leader;
559 unsigned long flags;
560 int err;
04289bb9 561
d859e29f
PM
562 /*
563 * If this is a per-task counter, need to check whether this
564 * counter's task is the current task on this cpu.
565 */
566 if (ctx->task && cpuctx->task_ctx != ctx)
3cbed429
PM
567 return;
568
d859e29f
PM
569 curr_rq_lock_irq_save(&flags);
570 spin_lock(&ctx->lock);
571
c07c99b6 572 counter->prev_state = counter->state;
d859e29f
PM
573 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
574 goto unlock;
575 counter->state = PERF_COUNTER_STATE_INACTIVE;
04289bb9
IM
576
577 /*
d859e29f
PM
578 * If the counter is in a group and isn't the group leader,
579 * then don't put it on unless the group is on.
04289bb9 580 */
d859e29f
PM
581 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
582 goto unlock;
3b6f9e5c 583
d859e29f
PM
584 if (!group_can_go_on(counter, cpuctx, 1))
585 err = -EEXIST;
586 else
587 err = counter_sched_in(counter, cpuctx, ctx,
588 smp_processor_id());
589
590 if (err) {
591 /*
592 * If this counter can't go on and it's part of a
593 * group, then the whole group has to come off.
594 */
595 if (leader != counter)
596 group_sched_out(leader, cpuctx, ctx);
597 if (leader->hw_event.pinned)
598 leader->state = PERF_COUNTER_STATE_ERROR;
599 }
600
601 unlock:
602 spin_unlock(&ctx->lock);
603 curr_rq_unlock_irq_restore(&flags);
604}
605
606/*
607 * Enable a counter.
608 */
609static void perf_counter_enable(struct perf_counter *counter)
610{
611 struct perf_counter_context *ctx = counter->ctx;
612 struct task_struct *task = ctx->task;
613
614 if (!task) {
615 /*
616 * Enable the counter on the cpu that it's on
617 */
618 smp_call_function_single(counter->cpu, __perf_counter_enable,
619 counter, 1);
620 return;
621 }
622
623 spin_lock_irq(&ctx->lock);
624 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
625 goto out;
626
627 /*
628 * If the counter is in error state, clear that first.
629 * That way, if we see the counter in error state below, we
630 * know that it has gone back into error state, as distinct
631 * from the task having been scheduled away before the
632 * cross-call arrived.
633 */
634 if (counter->state == PERF_COUNTER_STATE_ERROR)
635 counter->state = PERF_COUNTER_STATE_OFF;
636
637 retry:
638 spin_unlock_irq(&ctx->lock);
639 task_oncpu_function_call(task, __perf_counter_enable, counter);
640
641 spin_lock_irq(&ctx->lock);
642
643 /*
644 * If the context is active and the counter is still off,
645 * we need to retry the cross-call.
646 */
647 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
648 goto retry;
649
650 /*
651 * Since we have the lock this context can't be scheduled
652 * in, so we can change the state safely.
653 */
654 if (counter->state == PERF_COUNTER_STATE_OFF)
655 counter->state = PERF_COUNTER_STATE_INACTIVE;
656 out:
657 spin_unlock_irq(&ctx->lock);
658}
659
660/*
661 * Enable a counter and all its children.
662 */
663static void perf_counter_enable_family(struct perf_counter *counter)
664{
665 struct perf_counter *child;
666
667 perf_counter_enable(counter);
668
669 /*
670 * Lock the mutex to protect the list of children
671 */
672 mutex_lock(&counter->mutex);
673 list_for_each_entry(child, &counter->child_list, child_list)
674 perf_counter_enable(child);
675 mutex_unlock(&counter->mutex);
04289bb9
IM
676}
677
235c7fc7
IM
678void __perf_counter_sched_out(struct perf_counter_context *ctx,
679 struct perf_cpu_context *cpuctx)
680{
681 struct perf_counter *counter;
3cbed429 682 u64 flags;
235c7fc7 683
d859e29f
PM
684 spin_lock(&ctx->lock);
685 ctx->is_active = 0;
235c7fc7 686 if (likely(!ctx->nr_counters))
d859e29f 687 goto out;
235c7fc7 688
3cbed429 689 flags = hw_perf_save_disable();
235c7fc7
IM
690 if (ctx->nr_active) {
691 list_for_each_entry(counter, &ctx->counter_list, list_entry)
692 group_sched_out(counter, cpuctx, ctx);
693 }
3cbed429 694 hw_perf_restore(flags);
d859e29f 695 out:
235c7fc7
IM
696 spin_unlock(&ctx->lock);
697}
698
0793a61d
TG
699/*
700 * Called from scheduler to remove the counters of the current task,
701 * with interrupts disabled.
702 *
703 * We stop each counter and update the counter value in counter->count.
704 *
7671581f 705 * This does not protect us against NMI, but disable()
0793a61d
TG
706 * sets the disabled bit in the control field of counter _before_
707 * accessing the counter control register. If a NMI hits, then it will
708 * not restart the counter.
709 */
710void perf_counter_task_sched_out(struct task_struct *task, int cpu)
711{
712 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
713 struct perf_counter_context *ctx = &task->perf_counter_ctx;
4a0deca6 714 struct pt_regs *regs;
0793a61d
TG
715
716 if (likely(!cpuctx->task_ctx))
717 return;
718
4a0deca6
PZ
719 regs = task_pt_regs(task);
720 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
235c7fc7
IM
721 __perf_counter_sched_out(ctx, cpuctx);
722
0793a61d
TG
723 cpuctx->task_ctx = NULL;
724}
725
235c7fc7 726static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
04289bb9 727{
235c7fc7 728 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
04289bb9
IM
729}
730
7995888f 731static int
04289bb9
IM
732group_sched_in(struct perf_counter *group_counter,
733 struct perf_cpu_context *cpuctx,
734 struct perf_counter_context *ctx,
735 int cpu)
736{
95cdd2e7 737 struct perf_counter *counter, *partial_group;
3cbed429
PM
738 int ret;
739
740 if (group_counter->state == PERF_COUNTER_STATE_OFF)
741 return 0;
742
743 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
744 if (ret)
745 return ret < 0 ? ret : 0;
04289bb9 746
c07c99b6 747 group_counter->prev_state = group_counter->state;
95cdd2e7
IM
748 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
749 return -EAGAIN;
04289bb9
IM
750
751 /*
752 * Schedule in siblings as one group (if any):
753 */
7995888f 754 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
c07c99b6 755 counter->prev_state = counter->state;
95cdd2e7
IM
756 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
757 partial_group = counter;
758 goto group_error;
759 }
95cdd2e7
IM
760 }
761
3cbed429 762 return 0;
95cdd2e7
IM
763
764group_error:
765 /*
766 * Groups can be scheduled in as one unit only, so undo any
767 * partial group before returning:
768 */
769 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
770 if (counter == partial_group)
771 break;
772 counter_sched_out(counter, cpuctx, ctx);
7995888f 773 }
95cdd2e7 774 counter_sched_out(group_counter, cpuctx, ctx);
7995888f 775
95cdd2e7 776 return -EAGAIN;
04289bb9
IM
777}
778
235c7fc7
IM
779static void
780__perf_counter_sched_in(struct perf_counter_context *ctx,
781 struct perf_cpu_context *cpuctx, int cpu)
0793a61d 782{
0793a61d 783 struct perf_counter *counter;
3cbed429 784 u64 flags;
dd0e6ba2 785 int can_add_hw = 1;
0793a61d 786
d859e29f
PM
787 spin_lock(&ctx->lock);
788 ctx->is_active = 1;
0793a61d 789 if (likely(!ctx->nr_counters))
d859e29f 790 goto out;
0793a61d 791
3cbed429 792 flags = hw_perf_save_disable();
3b6f9e5c
PM
793
794 /*
795 * First go through the list and put on any pinned groups
796 * in order to give them the best chance of going on.
797 */
798 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
799 if (counter->state <= PERF_COUNTER_STATE_OFF ||
800 !counter->hw_event.pinned)
801 continue;
802 if (counter->cpu != -1 && counter->cpu != cpu)
803 continue;
804
805 if (group_can_go_on(counter, cpuctx, 1))
806 group_sched_in(counter, cpuctx, ctx, cpu);
807
808 /*
809 * If this pinned group hasn't been scheduled,
810 * put it in error state.
811 */
812 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
813 counter->state = PERF_COUNTER_STATE_ERROR;
814 }
815
04289bb9 816 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c
PM
817 /*
818 * Ignore counters in OFF or ERROR state, and
819 * ignore pinned counters since we did them already.
820 */
821 if (counter->state <= PERF_COUNTER_STATE_OFF ||
822 counter->hw_event.pinned)
823 continue;
824
04289bb9
IM
825 /*
826 * Listen to the 'cpu' scheduling filter constraint
827 * of counters:
828 */
0793a61d
TG
829 if (counter->cpu != -1 && counter->cpu != cpu)
830 continue;
831
3b6f9e5c 832 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
dd0e6ba2
PM
833 if (group_sched_in(counter, cpuctx, ctx, cpu))
834 can_add_hw = 0;
3b6f9e5c 835 }
0793a61d 836 }
3cbed429 837 hw_perf_restore(flags);
d859e29f 838 out:
0793a61d 839 spin_unlock(&ctx->lock);
235c7fc7
IM
840}
841
842/*
843 * Called from scheduler to add the counters of the current task
844 * with interrupts disabled.
845 *
846 * We restore the counter value and then enable it.
847 *
848 * This does not protect us against NMI, but enable()
849 * sets the enabled bit in the control field of counter _before_
850 * accessing the counter control register. If a NMI hits, then it will
851 * keep the counter running.
852 */
853void perf_counter_task_sched_in(struct task_struct *task, int cpu)
854{
855 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
856 struct perf_counter_context *ctx = &task->perf_counter_ctx;
04289bb9 857
235c7fc7 858 __perf_counter_sched_in(ctx, cpuctx, cpu);
0793a61d
TG
859 cpuctx->task_ctx = ctx;
860}
861
235c7fc7
IM
862static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
863{
864 struct perf_counter_context *ctx = &cpuctx->ctx;
865
866 __perf_counter_sched_in(ctx, cpuctx, cpu);
867}
868
1d1c7ddb
IM
869int perf_counter_task_disable(void)
870{
871 struct task_struct *curr = current;
872 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
873 struct perf_counter *counter;
aa9c4c0f 874 unsigned long flags;
1d1c7ddb
IM
875 u64 perf_flags;
876 int cpu;
877
878 if (likely(!ctx->nr_counters))
879 return 0;
880
aa9c4c0f 881 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
882 cpu = smp_processor_id();
883
aa9c4c0f
IM
884 /* force the update of the task clock: */
885 __task_delta_exec(curr, 1);
886
1d1c7ddb
IM
887 perf_counter_task_sched_out(curr, cpu);
888
889 spin_lock(&ctx->lock);
890
891 /*
892 * Disable all the counters:
893 */
894 perf_flags = hw_perf_save_disable();
895
3b6f9e5c
PM
896 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
897 if (counter->state != PERF_COUNTER_STATE_ERROR)
898 counter->state = PERF_COUNTER_STATE_OFF;
899 }
9b51f66d 900
1d1c7ddb
IM
901 hw_perf_restore(perf_flags);
902
903 spin_unlock(&ctx->lock);
904
aa9c4c0f 905 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
906
907 return 0;
908}
909
910int perf_counter_task_enable(void)
911{
912 struct task_struct *curr = current;
913 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
914 struct perf_counter *counter;
aa9c4c0f 915 unsigned long flags;
1d1c7ddb
IM
916 u64 perf_flags;
917 int cpu;
918
919 if (likely(!ctx->nr_counters))
920 return 0;
921
aa9c4c0f 922 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
923 cpu = smp_processor_id();
924
aa9c4c0f
IM
925 /* force the update of the task clock: */
926 __task_delta_exec(curr, 1);
927
235c7fc7
IM
928 perf_counter_task_sched_out(curr, cpu);
929
1d1c7ddb
IM
930 spin_lock(&ctx->lock);
931
932 /*
933 * Disable all the counters:
934 */
935 perf_flags = hw_perf_save_disable();
936
937 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c 938 if (counter->state > PERF_COUNTER_STATE_OFF)
1d1c7ddb 939 continue;
6a930700 940 counter->state = PERF_COUNTER_STATE_INACTIVE;
aa9c4c0f 941 counter->hw_event.disabled = 0;
1d1c7ddb
IM
942 }
943 hw_perf_restore(perf_flags);
944
945 spin_unlock(&ctx->lock);
946
947 perf_counter_task_sched_in(curr, cpu);
948
aa9c4c0f 949 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
950
951 return 0;
952}
953
235c7fc7
IM
954/*
955 * Round-robin a context's counters:
956 */
957static void rotate_ctx(struct perf_counter_context *ctx)
0793a61d 958{
0793a61d 959 struct perf_counter *counter;
5c92d124 960 u64 perf_flags;
0793a61d 961
235c7fc7 962 if (!ctx->nr_counters)
0793a61d
TG
963 return;
964
0793a61d 965 spin_lock(&ctx->lock);
0793a61d 966 /*
04289bb9 967 * Rotate the first entry last (works just fine for group counters too):
0793a61d 968 */
01b2838c 969 perf_flags = hw_perf_save_disable();
04289bb9 970 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
75564232 971 list_move_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
972 break;
973 }
01b2838c 974 hw_perf_restore(perf_flags);
0793a61d
TG
975
976 spin_unlock(&ctx->lock);
235c7fc7
IM
977}
978
979void perf_counter_task_tick(struct task_struct *curr, int cpu)
980{
981 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
982 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
983 const int rotate_percpu = 0;
984
985 if (rotate_percpu)
986 perf_counter_cpu_sched_out(cpuctx);
987 perf_counter_task_sched_out(curr, cpu);
0793a61d 988
235c7fc7
IM
989 if (rotate_percpu)
990 rotate_ctx(&cpuctx->ctx);
991 rotate_ctx(ctx);
992
993 if (rotate_percpu)
994 perf_counter_cpu_sched_in(cpuctx, cpu);
0793a61d
TG
995 perf_counter_task_sched_in(curr, cpu);
996}
997
0793a61d
TG
998/*
999 * Cross CPU call to read the hardware counter
1000 */
7671581f 1001static void __read(void *info)
0793a61d 1002{
621a01ea 1003 struct perf_counter *counter = info;
aa9c4c0f 1004 unsigned long flags;
621a01ea 1005
aa9c4c0f 1006 curr_rq_lock_irq_save(&flags);
7671581f 1007 counter->hw_ops->read(counter);
aa9c4c0f 1008 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
1009}
1010
04289bb9 1011static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
1012{
1013 /*
1014 * If counter is enabled and currently active on a CPU, update the
1015 * value in the counter structure:
1016 */
6a930700 1017 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d 1018 smp_call_function_single(counter->oncpu,
7671581f 1019 __read, counter, 1);
0793a61d
TG
1020 }
1021
ee06094f 1022 return atomic64_read(&counter->count);
0793a61d
TG
1023}
1024
1025/*
1026 * Cross CPU call to switch performance data pointers
1027 */
1028static void __perf_switch_irq_data(void *info)
1029{
1030 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1031 struct perf_counter *counter = info;
1032 struct perf_counter_context *ctx = counter->ctx;
1033 struct perf_data *oldirqdata = counter->irqdata;
1034
1035 /*
1036 * If this is a task context, we need to check whether it is
1037 * the current task context of this cpu. If not it has been
1038 * scheduled out before the smp call arrived.
1039 */
1040 if (ctx->task) {
1041 if (cpuctx->task_ctx != ctx)
1042 return;
1043 spin_lock(&ctx->lock);
1044 }
1045
1046 /* Change the pointer NMI safe */
1047 atomic_long_set((atomic_long_t *)&counter->irqdata,
1048 (unsigned long) counter->usrdata);
1049 counter->usrdata = oldirqdata;
1050
1051 if (ctx->task)
1052 spin_unlock(&ctx->lock);
1053}
1054
1055static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1056{
1057 struct perf_counter_context *ctx = counter->ctx;
1058 struct perf_data *oldirqdata = counter->irqdata;
1059 struct task_struct *task = ctx->task;
1060
1061 if (!task) {
1062 smp_call_function_single(counter->cpu,
1063 __perf_switch_irq_data,
1064 counter, 1);
1065 return counter->usrdata;
1066 }
1067
1068retry:
1069 spin_lock_irq(&ctx->lock);
6a930700 1070 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
0793a61d
TG
1071 counter->irqdata = counter->usrdata;
1072 counter->usrdata = oldirqdata;
1073 spin_unlock_irq(&ctx->lock);
1074 return oldirqdata;
1075 }
1076 spin_unlock_irq(&ctx->lock);
1077 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1078 /* Might have failed, because task was scheduled out */
1079 if (counter->irqdata == oldirqdata)
1080 goto retry;
1081
1082 return counter->usrdata;
1083}
1084
1085static void put_context(struct perf_counter_context *ctx)
1086{
1087 if (ctx->task)
1088 put_task_struct(ctx->task);
1089}
1090
1091static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1092{
1093 struct perf_cpu_context *cpuctx;
1094 struct perf_counter_context *ctx;
1095 struct task_struct *task;
1096
1097 /*
1098 * If cpu is not a wildcard then this is a percpu counter:
1099 */
1100 if (cpu != -1) {
1101 /* Must be root to operate on a CPU counter: */
1102 if (!capable(CAP_SYS_ADMIN))
1103 return ERR_PTR(-EACCES);
1104
1105 if (cpu < 0 || cpu > num_possible_cpus())
1106 return ERR_PTR(-EINVAL);
1107
1108 /*
1109 * We could be clever and allow to attach a counter to an
1110 * offline CPU and activate it when the CPU comes up, but
1111 * that's for later.
1112 */
1113 if (!cpu_isset(cpu, cpu_online_map))
1114 return ERR_PTR(-ENODEV);
1115
1116 cpuctx = &per_cpu(perf_cpu_context, cpu);
1117 ctx = &cpuctx->ctx;
1118
0793a61d
TG
1119 return ctx;
1120 }
1121
1122 rcu_read_lock();
1123 if (!pid)
1124 task = current;
1125 else
1126 task = find_task_by_vpid(pid);
1127 if (task)
1128 get_task_struct(task);
1129 rcu_read_unlock();
1130
1131 if (!task)
1132 return ERR_PTR(-ESRCH);
1133
1134 ctx = &task->perf_counter_ctx;
1135 ctx->task = task;
1136
1137 /* Reuse ptrace permission checks for now. */
1138 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1139 put_context(ctx);
1140 return ERR_PTR(-EACCES);
1141 }
1142
1143 return ctx;
1144}
1145
592903cd
PZ
1146static void free_counter_rcu(struct rcu_head *head)
1147{
1148 struct perf_counter *counter;
1149
1150 counter = container_of(head, struct perf_counter, rcu_head);
1151 kfree(counter);
1152}
1153
f1600952
PZ
1154static void free_counter(struct perf_counter *counter)
1155{
e077df4f
PZ
1156 if (counter->destroy)
1157 counter->destroy(counter);
1158
f1600952
PZ
1159 call_rcu(&counter->rcu_head, free_counter_rcu);
1160}
1161
0793a61d
TG
1162/*
1163 * Called when the last reference to the file is gone.
1164 */
1165static int perf_release(struct inode *inode, struct file *file)
1166{
1167 struct perf_counter *counter = file->private_data;
1168 struct perf_counter_context *ctx = counter->ctx;
1169
1170 file->private_data = NULL;
1171
d859e29f 1172 mutex_lock(&ctx->mutex);
0793a61d
TG
1173 mutex_lock(&counter->mutex);
1174
04289bb9 1175 perf_counter_remove_from_context(counter);
0793a61d
TG
1176
1177 mutex_unlock(&counter->mutex);
d859e29f 1178 mutex_unlock(&ctx->mutex);
0793a61d 1179
37d81828 1180 free_page(counter->user_page);
f1600952 1181 free_counter(counter);
5af75917 1182 put_context(ctx);
0793a61d
TG
1183
1184 return 0;
1185}
1186
1187/*
1188 * Read the performance counter - simple non blocking version for now
1189 */
1190static ssize_t
1191perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1192{
1193 u64 cntval;
1194
1195 if (count != sizeof(cntval))
1196 return -EINVAL;
1197
3b6f9e5c
PM
1198 /*
1199 * Return end-of-file for a read on a counter that is in
1200 * error state (i.e. because it was pinned but it couldn't be
1201 * scheduled on to the CPU at some point).
1202 */
1203 if (counter->state == PERF_COUNTER_STATE_ERROR)
1204 return 0;
1205
0793a61d 1206 mutex_lock(&counter->mutex);
04289bb9 1207 cntval = perf_counter_read(counter);
0793a61d
TG
1208 mutex_unlock(&counter->mutex);
1209
1210 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1211}
1212
1213static ssize_t
1214perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1215{
1216 if (!usrdata->len)
1217 return 0;
1218
1219 count = min(count, (size_t)usrdata->len);
1220 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1221 return -EFAULT;
1222
1223 /* Adjust the counters */
1224 usrdata->len -= count;
1225 if (!usrdata->len)
1226 usrdata->rd_idx = 0;
1227 else
1228 usrdata->rd_idx += count;
1229
1230 return count;
1231}
1232
1233static ssize_t
1234perf_read_irq_data(struct perf_counter *counter,
1235 char __user *buf,
1236 size_t count,
1237 int nonblocking)
1238{
1239 struct perf_data *irqdata, *usrdata;
1240 DECLARE_WAITQUEUE(wait, current);
3b6f9e5c 1241 ssize_t res, res2;
0793a61d
TG
1242
1243 irqdata = counter->irqdata;
1244 usrdata = counter->usrdata;
1245
1246 if (usrdata->len + irqdata->len >= count)
1247 goto read_pending;
1248
1249 if (nonblocking)
1250 return -EAGAIN;
1251
1252 spin_lock_irq(&counter->waitq.lock);
1253 __add_wait_queue(&counter->waitq, &wait);
1254 for (;;) {
1255 set_current_state(TASK_INTERRUPTIBLE);
1256 if (usrdata->len + irqdata->len >= count)
1257 break;
1258
1259 if (signal_pending(current))
1260 break;
1261
3b6f9e5c
PM
1262 if (counter->state == PERF_COUNTER_STATE_ERROR)
1263 break;
1264
0793a61d
TG
1265 spin_unlock_irq(&counter->waitq.lock);
1266 schedule();
1267 spin_lock_irq(&counter->waitq.lock);
1268 }
1269 __remove_wait_queue(&counter->waitq, &wait);
1270 __set_current_state(TASK_RUNNING);
1271 spin_unlock_irq(&counter->waitq.lock);
1272
3b6f9e5c
PM
1273 if (usrdata->len + irqdata->len < count &&
1274 counter->state != PERF_COUNTER_STATE_ERROR)
0793a61d
TG
1275 return -ERESTARTSYS;
1276read_pending:
1277 mutex_lock(&counter->mutex);
1278
1279 /* Drain pending data first: */
1280 res = perf_copy_usrdata(usrdata, buf, count);
1281 if (res < 0 || res == count)
1282 goto out;
1283
1284 /* Switch irq buffer: */
1285 usrdata = perf_switch_irq_data(counter);
3b6f9e5c
PM
1286 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1287 if (res2 < 0) {
0793a61d
TG
1288 if (!res)
1289 res = -EFAULT;
1290 } else {
3b6f9e5c 1291 res += res2;
0793a61d
TG
1292 }
1293out:
1294 mutex_unlock(&counter->mutex);
1295
1296 return res;
1297}
1298
1299static ssize_t
1300perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1301{
1302 struct perf_counter *counter = file->private_data;
1303
9f66a381 1304 switch (counter->hw_event.record_type) {
0793a61d
TG
1305 case PERF_RECORD_SIMPLE:
1306 return perf_read_hw(counter, buf, count);
1307
1308 case PERF_RECORD_IRQ:
1309 case PERF_RECORD_GROUP:
1310 return perf_read_irq_data(counter, buf, count,
1311 file->f_flags & O_NONBLOCK);
1312 }
1313 return -EINVAL;
1314}
1315
1316static unsigned int perf_poll(struct file *file, poll_table *wait)
1317{
1318 struct perf_counter *counter = file->private_data;
1319 unsigned int events = 0;
1320 unsigned long flags;
1321
1322 poll_wait(file, &counter->waitq, wait);
1323
1324 spin_lock_irqsave(&counter->waitq.lock, flags);
1325 if (counter->usrdata->len || counter->irqdata->len)
1326 events |= POLLIN;
1327 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1328
1329 return events;
1330}
1331
d859e29f
PM
1332static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1333{
1334 struct perf_counter *counter = file->private_data;
1335 int err = 0;
1336
1337 switch (cmd) {
1338 case PERF_COUNTER_IOC_ENABLE:
1339 perf_counter_enable_family(counter);
1340 break;
1341 case PERF_COUNTER_IOC_DISABLE:
1342 perf_counter_disable_family(counter);
1343 break;
1344 default:
1345 err = -ENOTTY;
1346 }
1347 return err;
1348}
1349
37d81828
PM
1350void perf_counter_update_userpage(struct perf_counter *counter)
1351{
1352 struct perf_counter_mmap_page *userpg;
1353
1354 if (!counter->user_page)
1355 return;
1356 userpg = (struct perf_counter_mmap_page *) counter->user_page;
1357
1358 ++userpg->lock;
1359 smp_wmb();
1360 userpg->index = counter->hw.idx;
1361 userpg->offset = atomic64_read(&counter->count);
1362 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1363 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1364 smp_wmb();
1365 ++userpg->lock;
1366}
1367
1368static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1369{
1370 struct perf_counter *counter = vma->vm_file->private_data;
1371
1372 if (!counter->user_page)
1373 return VM_FAULT_SIGBUS;
1374
1375 vmf->page = virt_to_page(counter->user_page);
1376 get_page(vmf->page);
1377 return 0;
1378}
1379
1380static struct vm_operations_struct perf_mmap_vmops = {
1381 .fault = perf_mmap_fault,
1382};
1383
1384static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1385{
1386 struct perf_counter *counter = file->private_data;
1387 unsigned long userpg;
1388
1389 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1390 return -EINVAL;
1391 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1392 return -EINVAL;
1393
1394 /*
1395 * For now, restrict to the case of a hardware counter
1396 * on the current task.
1397 */
1398 if (is_software_counter(counter) || counter->task != current)
1399 return -EINVAL;
1400
1401 userpg = counter->user_page;
1402 if (!userpg) {
1403 userpg = get_zeroed_page(GFP_KERNEL);
1404 mutex_lock(&counter->mutex);
1405 if (counter->user_page) {
1406 free_page(userpg);
1407 userpg = counter->user_page;
1408 } else {
1409 counter->user_page = userpg;
1410 }
1411 mutex_unlock(&counter->mutex);
1412 if (!userpg)
1413 return -ENOMEM;
1414 }
1415
1416 perf_counter_update_userpage(counter);
1417
1418 vma->vm_flags &= ~VM_MAYWRITE;
1419 vma->vm_flags |= VM_RESERVED;
1420 vma->vm_ops = &perf_mmap_vmops;
1421 return 0;
1422}
1423
0793a61d
TG
1424static const struct file_operations perf_fops = {
1425 .release = perf_release,
1426 .read = perf_read,
1427 .poll = perf_poll,
d859e29f
PM
1428 .unlocked_ioctl = perf_ioctl,
1429 .compat_ioctl = perf_ioctl,
37d81828 1430 .mmap = perf_mmap,
0793a61d
TG
1431};
1432
0322cd6e
PZ
1433/*
1434 * Output
1435 */
1436
1437static void perf_counter_store_irq(struct perf_counter *counter, u64 data)
1438{
1439 struct perf_data *irqdata = counter->irqdata;
1440
1441 if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1442 irqdata->overrun++;
1443 } else {
1444 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1445
1446 *p = data;
1447 irqdata->len += sizeof(u64);
1448 }
1449}
1450
1451static void perf_counter_handle_group(struct perf_counter *counter)
1452{
1453 struct perf_counter *leader, *sub;
1454
1455 leader = counter->group_leader;
1456 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1457 if (sub != counter)
1458 sub->hw_ops->read(sub);
f4a2deb4 1459 perf_counter_store_irq(counter, sub->hw_event.config);
0322cd6e
PZ
1460 perf_counter_store_irq(counter, atomic64_read(&sub->count));
1461 }
1462}
1463
1464void perf_counter_output(struct perf_counter *counter,
1465 int nmi, struct pt_regs *regs)
1466{
1467 switch (counter->hw_event.record_type) {
1468 case PERF_RECORD_SIMPLE:
1469 return;
1470
1471 case PERF_RECORD_IRQ:
1472 perf_counter_store_irq(counter, instruction_pointer(regs));
1473 break;
1474
1475 case PERF_RECORD_GROUP:
1476 perf_counter_handle_group(counter);
1477 break;
1478 }
1479
1480 if (nmi) {
1481 counter->wakeup_pending = 1;
1482 set_perf_counter_pending();
1483 } else
1484 wake_up(&counter->waitq);
1485}
1486
15dbf27c
PZ
1487/*
1488 * Generic software counter infrastructure
1489 */
1490
1491static void perf_swcounter_update(struct perf_counter *counter)
1492{
1493 struct hw_perf_counter *hwc = &counter->hw;
1494 u64 prev, now;
1495 s64 delta;
1496
1497again:
1498 prev = atomic64_read(&hwc->prev_count);
1499 now = atomic64_read(&hwc->count);
1500 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1501 goto again;
1502
1503 delta = now - prev;
1504
1505 atomic64_add(delta, &counter->count);
1506 atomic64_sub(delta, &hwc->period_left);
1507}
1508
1509static void perf_swcounter_set_period(struct perf_counter *counter)
1510{
1511 struct hw_perf_counter *hwc = &counter->hw;
1512 s64 left = atomic64_read(&hwc->period_left);
1513 s64 period = hwc->irq_period;
1514
1515 if (unlikely(left <= -period)) {
1516 left = period;
1517 atomic64_set(&hwc->period_left, left);
1518 }
1519
1520 if (unlikely(left <= 0)) {
1521 left += period;
1522 atomic64_add(period, &hwc->period_left);
1523 }
1524
1525 atomic64_set(&hwc->prev_count, -left);
1526 atomic64_set(&hwc->count, -left);
1527}
1528
d6d020e9
PZ
1529static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1530{
1531 struct perf_counter *counter;
1532 struct pt_regs *regs;
1533
1534 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1535 counter->hw_ops->read(counter);
1536
1537 regs = get_irq_regs();
1538 /*
1539 * In case we exclude kernel IPs or are somehow not in interrupt
1540 * context, provide the next best thing, the user IP.
1541 */
1542 if ((counter->hw_event.exclude_kernel || !regs) &&
1543 !counter->hw_event.exclude_user)
1544 regs = task_pt_regs(current);
1545
1546 if (regs)
0322cd6e 1547 perf_counter_output(counter, 0, regs);
d6d020e9
PZ
1548
1549 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1550
1551 return HRTIMER_RESTART;
1552}
1553
1554static void perf_swcounter_overflow(struct perf_counter *counter,
1555 int nmi, struct pt_regs *regs)
1556{
b8e83514
PZ
1557 perf_swcounter_update(counter);
1558 perf_swcounter_set_period(counter);
0322cd6e 1559 perf_counter_output(counter, nmi, regs);
d6d020e9
PZ
1560}
1561
15dbf27c 1562static int perf_swcounter_match(struct perf_counter *counter,
b8e83514
PZ
1563 enum perf_event_types type,
1564 u32 event, struct pt_regs *regs)
15dbf27c
PZ
1565{
1566 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1567 return 0;
1568
f4a2deb4 1569 if (perf_event_raw(&counter->hw_event))
b8e83514
PZ
1570 return 0;
1571
f4a2deb4 1572 if (perf_event_type(&counter->hw_event) != type)
15dbf27c
PZ
1573 return 0;
1574
f4a2deb4 1575 if (perf_event_id(&counter->hw_event) != event)
15dbf27c
PZ
1576 return 0;
1577
1578 if (counter->hw_event.exclude_user && user_mode(regs))
1579 return 0;
1580
1581 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1582 return 0;
1583
1584 return 1;
1585}
1586
d6d020e9
PZ
1587static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1588 int nmi, struct pt_regs *regs)
1589{
1590 int neg = atomic64_add_negative(nr, &counter->hw.count);
1591 if (counter->hw.irq_period && !neg)
1592 perf_swcounter_overflow(counter, nmi, regs);
1593}
1594
15dbf27c 1595static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
b8e83514
PZ
1596 enum perf_event_types type, u32 event,
1597 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1598{
1599 struct perf_counter *counter;
15dbf27c 1600
01ef09d9 1601 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
15dbf27c
PZ
1602 return;
1603
592903cd
PZ
1604 rcu_read_lock();
1605 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
b8e83514 1606 if (perf_swcounter_match(counter, type, event, regs))
d6d020e9 1607 perf_swcounter_add(counter, nr, nmi, regs);
15dbf27c 1608 }
592903cd 1609 rcu_read_unlock();
15dbf27c
PZ
1610}
1611
96f6d444
PZ
1612static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1613{
1614 if (in_nmi())
1615 return &cpuctx->recursion[3];
1616
1617 if (in_irq())
1618 return &cpuctx->recursion[2];
1619
1620 if (in_softirq())
1621 return &cpuctx->recursion[1];
1622
1623 return &cpuctx->recursion[0];
1624}
1625
b8e83514
PZ
1626static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1627 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1628{
1629 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
96f6d444
PZ
1630 int *recursion = perf_swcounter_recursion_context(cpuctx);
1631
1632 if (*recursion)
1633 goto out;
1634
1635 (*recursion)++;
1636 barrier();
15dbf27c 1637
b8e83514
PZ
1638 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1639 if (cpuctx->task_ctx) {
1640 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1641 nr, nmi, regs);
1642 }
15dbf27c 1643
96f6d444
PZ
1644 barrier();
1645 (*recursion)--;
1646
1647out:
15dbf27c
PZ
1648 put_cpu_var(perf_cpu_context);
1649}
1650
b8e83514
PZ
1651void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1652{
1653 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1654}
1655
15dbf27c
PZ
1656static void perf_swcounter_read(struct perf_counter *counter)
1657{
1658 perf_swcounter_update(counter);
1659}
1660
1661static int perf_swcounter_enable(struct perf_counter *counter)
1662{
1663 perf_swcounter_set_period(counter);
1664 return 0;
1665}
1666
1667static void perf_swcounter_disable(struct perf_counter *counter)
1668{
1669 perf_swcounter_update(counter);
1670}
1671
ac17dc8e
PZ
1672static const struct hw_perf_counter_ops perf_ops_generic = {
1673 .enable = perf_swcounter_enable,
1674 .disable = perf_swcounter_disable,
1675 .read = perf_swcounter_read,
1676};
1677
15dbf27c
PZ
1678/*
1679 * Software counter: cpu wall time clock
1680 */
1681
9abf8a08
PM
1682static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1683{
1684 int cpu = raw_smp_processor_id();
1685 s64 prev;
1686 u64 now;
1687
1688 now = cpu_clock(cpu);
1689 prev = atomic64_read(&counter->hw.prev_count);
1690 atomic64_set(&counter->hw.prev_count, now);
1691 atomic64_add(now - prev, &counter->count);
1692}
1693
d6d020e9
PZ
1694static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1695{
1696 struct hw_perf_counter *hwc = &counter->hw;
1697 int cpu = raw_smp_processor_id();
1698
1699 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
039fc91e
PZ
1700 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1701 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 1702 if (hwc->irq_period) {
d6d020e9
PZ
1703 __hrtimer_start_range_ns(&hwc->hrtimer,
1704 ns_to_ktime(hwc->irq_period), 0,
1705 HRTIMER_MODE_REL, 0);
1706 }
1707
1708 return 0;
1709}
1710
5c92d124
IM
1711static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1712{
d6d020e9 1713 hrtimer_cancel(&counter->hw.hrtimer);
9abf8a08 1714 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1715}
1716
1717static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1718{
9abf8a08 1719 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1720}
1721
1722static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
7671581f
IM
1723 .enable = cpu_clock_perf_counter_enable,
1724 .disable = cpu_clock_perf_counter_disable,
1725 .read = cpu_clock_perf_counter_read,
5c92d124
IM
1726};
1727
15dbf27c
PZ
1728/*
1729 * Software counter: task time clock
1730 */
1731
aa9c4c0f
IM
1732/*
1733 * Called from within the scheduler:
1734 */
1735static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
bae43c99 1736{
aa9c4c0f
IM
1737 struct task_struct *curr = counter->task;
1738 u64 delta;
1739
aa9c4c0f
IM
1740 delta = __task_delta_exec(curr, update);
1741
1742 return curr->se.sum_exec_runtime + delta;
1743}
1744
1745static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1746{
1747 u64 prev;
8cb391e8
IM
1748 s64 delta;
1749
1750 prev = atomic64_read(&counter->hw.prev_count);
8cb391e8
IM
1751
1752 atomic64_set(&counter->hw.prev_count, now);
1753
1754 delta = now - prev;
8cb391e8
IM
1755
1756 atomic64_add(delta, &counter->count);
bae43c99
IM
1757}
1758
95cdd2e7 1759static int task_clock_perf_counter_enable(struct perf_counter *counter)
8cb391e8 1760{
d6d020e9
PZ
1761 struct hw_perf_counter *hwc = &counter->hw;
1762
1763 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
039fc91e
PZ
1764 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1765 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 1766 if (hwc->irq_period) {
d6d020e9
PZ
1767 __hrtimer_start_range_ns(&hwc->hrtimer,
1768 ns_to_ktime(hwc->irq_period), 0,
1769 HRTIMER_MODE_REL, 0);
1770 }
95cdd2e7
IM
1771
1772 return 0;
8cb391e8
IM
1773}
1774
1775static void task_clock_perf_counter_disable(struct perf_counter *counter)
bae43c99 1776{
d6d020e9
PZ
1777 hrtimer_cancel(&counter->hw.hrtimer);
1778 task_clock_perf_counter_update(counter,
1779 task_clock_perf_counter_val(counter, 0));
1780}
aa9c4c0f 1781
d6d020e9
PZ
1782static void task_clock_perf_counter_read(struct perf_counter *counter)
1783{
1784 task_clock_perf_counter_update(counter,
1785 task_clock_perf_counter_val(counter, 1));
bae43c99
IM
1786}
1787
1788static const struct hw_perf_counter_ops perf_ops_task_clock = {
7671581f
IM
1789 .enable = task_clock_perf_counter_enable,
1790 .disable = task_clock_perf_counter_disable,
1791 .read = task_clock_perf_counter_read,
bae43c99
IM
1792};
1793
15dbf27c
PZ
1794/*
1795 * Software counter: cpu migrations
1796 */
1797
23a185ca 1798static inline u64 get_cpu_migrations(struct perf_counter *counter)
6c594c21 1799{
23a185ca
PM
1800 struct task_struct *curr = counter->ctx->task;
1801
1802 if (curr)
1803 return curr->se.nr_migrations;
1804 return cpu_nr_migrations(smp_processor_id());
6c594c21
IM
1805}
1806
1807static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1808{
1809 u64 prev, now;
1810 s64 delta;
1811
1812 prev = atomic64_read(&counter->hw.prev_count);
23a185ca 1813 now = get_cpu_migrations(counter);
6c594c21
IM
1814
1815 atomic64_set(&counter->hw.prev_count, now);
1816
1817 delta = now - prev;
6c594c21
IM
1818
1819 atomic64_add(delta, &counter->count);
1820}
1821
1822static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1823{
1824 cpu_migrations_perf_counter_update(counter);
1825}
1826
95cdd2e7 1827static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
6c594c21 1828{
c07c99b6
PM
1829 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1830 atomic64_set(&counter->hw.prev_count,
1831 get_cpu_migrations(counter));
95cdd2e7 1832 return 0;
6c594c21
IM
1833}
1834
1835static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1836{
1837 cpu_migrations_perf_counter_update(counter);
1838}
1839
1840static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
7671581f
IM
1841 .enable = cpu_migrations_perf_counter_enable,
1842 .disable = cpu_migrations_perf_counter_disable,
1843 .read = cpu_migrations_perf_counter_read,
6c594c21
IM
1844};
1845
e077df4f
PZ
1846#ifdef CONFIG_EVENT_PROFILE
1847void perf_tpcounter_event(int event_id)
1848{
b8e83514
PZ
1849 struct pt_regs *regs = get_irq_regs();
1850
1851 if (!regs)
1852 regs = task_pt_regs(current);
1853
1854 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
e077df4f
PZ
1855}
1856
1857extern int ftrace_profile_enable(int);
1858extern void ftrace_profile_disable(int);
1859
1860static void tp_perf_counter_destroy(struct perf_counter *counter)
1861{
f4a2deb4 1862 ftrace_profile_disable(perf_event_id(&counter->hw_event));
e077df4f
PZ
1863}
1864
1865static const struct hw_perf_counter_ops *
1866tp_perf_counter_init(struct perf_counter *counter)
1867{
f4a2deb4 1868 int event_id = perf_event_id(&counter->hw_event);
e077df4f
PZ
1869 int ret;
1870
1871 ret = ftrace_profile_enable(event_id);
1872 if (ret)
1873 return NULL;
1874
1875 counter->destroy = tp_perf_counter_destroy;
b8e83514 1876 counter->hw.irq_period = counter->hw_event.irq_period;
e077df4f
PZ
1877
1878 return &perf_ops_generic;
1879}
1880#else
1881static const struct hw_perf_counter_ops *
1882tp_perf_counter_init(struct perf_counter *counter)
1883{
1884 return NULL;
1885}
1886#endif
1887
5c92d124
IM
1888static const struct hw_perf_counter_ops *
1889sw_perf_counter_init(struct perf_counter *counter)
1890{
15dbf27c 1891 struct perf_counter_hw_event *hw_event = &counter->hw_event;
5c92d124 1892 const struct hw_perf_counter_ops *hw_ops = NULL;
15dbf27c 1893 struct hw_perf_counter *hwc = &counter->hw;
5c92d124 1894
0475f9ea
PM
1895 /*
1896 * Software counters (currently) can't in general distinguish
1897 * between user, kernel and hypervisor events.
1898 * However, context switches and cpu migrations are considered
1899 * to be kernel events, and page faults are never hypervisor
1900 * events.
1901 */
f4a2deb4 1902 switch (perf_event_id(&counter->hw_event)) {
5c92d124 1903 case PERF_COUNT_CPU_CLOCK:
d6d020e9
PZ
1904 hw_ops = &perf_ops_cpu_clock;
1905
1906 if (hw_event->irq_period && hw_event->irq_period < 10000)
1907 hw_event->irq_period = 10000;
5c92d124 1908 break;
bae43c99 1909 case PERF_COUNT_TASK_CLOCK:
23a185ca
PM
1910 /*
1911 * If the user instantiates this as a per-cpu counter,
1912 * use the cpu_clock counter instead.
1913 */
1914 if (counter->ctx->task)
1915 hw_ops = &perf_ops_task_clock;
1916 else
1917 hw_ops = &perf_ops_cpu_clock;
d6d020e9
PZ
1918
1919 if (hw_event->irq_period && hw_event->irq_period < 10000)
1920 hw_event->irq_period = 10000;
bae43c99 1921 break;
e06c61a8 1922 case PERF_COUNT_PAGE_FAULTS:
ac17dc8e
PZ
1923 case PERF_COUNT_PAGE_FAULTS_MIN:
1924 case PERF_COUNT_PAGE_FAULTS_MAJ:
5d6a27d8 1925 case PERF_COUNT_CONTEXT_SWITCHES:
4a0deca6 1926 hw_ops = &perf_ops_generic;
5d6a27d8 1927 break;
6c594c21 1928 case PERF_COUNT_CPU_MIGRATIONS:
0475f9ea
PM
1929 if (!counter->hw_event.exclude_kernel)
1930 hw_ops = &perf_ops_cpu_migrations;
6c594c21 1931 break;
5c92d124 1932 }
15dbf27c
PZ
1933
1934 if (hw_ops)
1935 hwc->irq_period = hw_event->irq_period;
1936
5c92d124
IM
1937 return hw_ops;
1938}
1939
0793a61d
TG
1940/*
1941 * Allocate and initialize a counter structure
1942 */
1943static struct perf_counter *
04289bb9
IM
1944perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1945 int cpu,
23a185ca 1946 struct perf_counter_context *ctx,
9b51f66d
IM
1947 struct perf_counter *group_leader,
1948 gfp_t gfpflags)
0793a61d 1949{
5c92d124 1950 const struct hw_perf_counter_ops *hw_ops;
621a01ea 1951 struct perf_counter *counter;
0793a61d 1952
9b51f66d 1953 counter = kzalloc(sizeof(*counter), gfpflags);
0793a61d
TG
1954 if (!counter)
1955 return NULL;
1956
04289bb9
IM
1957 /*
1958 * Single counters are their own group leaders, with an
1959 * empty sibling list:
1960 */
1961 if (!group_leader)
1962 group_leader = counter;
1963
0793a61d 1964 mutex_init(&counter->mutex);
04289bb9 1965 INIT_LIST_HEAD(&counter->list_entry);
592903cd 1966 INIT_LIST_HEAD(&counter->event_entry);
04289bb9 1967 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
1968 init_waitqueue_head(&counter->waitq);
1969
d859e29f
PM
1970 INIT_LIST_HEAD(&counter->child_list);
1971
9f66a381
IM
1972 counter->irqdata = &counter->data[0];
1973 counter->usrdata = &counter->data[1];
1974 counter->cpu = cpu;
1975 counter->hw_event = *hw_event;
1976 counter->wakeup_pending = 0;
04289bb9 1977 counter->group_leader = group_leader;
621a01ea 1978 counter->hw_ops = NULL;
23a185ca 1979 counter->ctx = ctx;
621a01ea 1980
235c7fc7 1981 counter->state = PERF_COUNTER_STATE_INACTIVE;
a86ed508
IM
1982 if (hw_event->disabled)
1983 counter->state = PERF_COUNTER_STATE_OFF;
1984
5c92d124 1985 hw_ops = NULL;
b8e83514 1986
f4a2deb4 1987 if (perf_event_raw(hw_event)) {
b8e83514 1988 hw_ops = hw_perf_counter_init(counter);
f4a2deb4
PZ
1989 goto done;
1990 }
1991
1992 switch (perf_event_type(hw_event)) {
b8e83514 1993 case PERF_TYPE_HARDWARE:
5c92d124 1994 hw_ops = hw_perf_counter_init(counter);
b8e83514
PZ
1995 break;
1996
1997 case PERF_TYPE_SOFTWARE:
1998 hw_ops = sw_perf_counter_init(counter);
1999 break;
2000
2001 case PERF_TYPE_TRACEPOINT:
2002 hw_ops = tp_perf_counter_init(counter);
2003 break;
2004 }
5c92d124 2005
621a01ea
IM
2006 if (!hw_ops) {
2007 kfree(counter);
2008 return NULL;
2009 }
f4a2deb4 2010done:
621a01ea 2011 counter->hw_ops = hw_ops;
0793a61d
TG
2012
2013 return counter;
2014}
2015
2016/**
2743a5b0 2017 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
9f66a381
IM
2018 *
2019 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 2020 * @pid: target pid
9f66a381
IM
2021 * @cpu: target cpu
2022 * @group_fd: group leader counter fd
0793a61d 2023 */
2743a5b0 2024SYSCALL_DEFINE5(perf_counter_open,
f3dfd265 2025 const struct perf_counter_hw_event __user *, hw_event_uptr,
2743a5b0 2026 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 2027{
04289bb9 2028 struct perf_counter *counter, *group_leader;
9f66a381 2029 struct perf_counter_hw_event hw_event;
04289bb9 2030 struct perf_counter_context *ctx;
9b51f66d 2031 struct file *counter_file = NULL;
04289bb9
IM
2032 struct file *group_file = NULL;
2033 int fput_needed = 0;
9b51f66d 2034 int fput_needed2 = 0;
0793a61d
TG
2035 int ret;
2036
2743a5b0
PM
2037 /* for future expandability... */
2038 if (flags)
2039 return -EINVAL;
2040
9f66a381 2041 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
2042 return -EFAULT;
2043
04289bb9 2044 /*
ccff286d
IM
2045 * Get the target context (task or percpu):
2046 */
2047 ctx = find_get_context(pid, cpu);
2048 if (IS_ERR(ctx))
2049 return PTR_ERR(ctx);
2050
2051 /*
2052 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
2053 */
2054 group_leader = NULL;
2055 if (group_fd != -1) {
2056 ret = -EINVAL;
2057 group_file = fget_light(group_fd, &fput_needed);
2058 if (!group_file)
ccff286d 2059 goto err_put_context;
04289bb9 2060 if (group_file->f_op != &perf_fops)
ccff286d 2061 goto err_put_context;
04289bb9
IM
2062
2063 group_leader = group_file->private_data;
2064 /*
ccff286d
IM
2065 * Do not allow a recursive hierarchy (this new sibling
2066 * becoming part of another group-sibling):
2067 */
2068 if (group_leader->group_leader != group_leader)
2069 goto err_put_context;
2070 /*
2071 * Do not allow to attach to a group in a different
2072 * task or CPU context:
04289bb9 2073 */
ccff286d
IM
2074 if (group_leader->ctx != ctx)
2075 goto err_put_context;
3b6f9e5c
PM
2076 /*
2077 * Only a group leader can be exclusive or pinned
2078 */
2079 if (hw_event.exclusive || hw_event.pinned)
2080 goto err_put_context;
04289bb9
IM
2081 }
2082
5c92d124 2083 ret = -EINVAL;
23a185ca
PM
2084 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2085 GFP_KERNEL);
0793a61d
TG
2086 if (!counter)
2087 goto err_put_context;
2088
0793a61d
TG
2089 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2090 if (ret < 0)
9b51f66d
IM
2091 goto err_free_put_context;
2092
2093 counter_file = fget_light(ret, &fput_needed2);
2094 if (!counter_file)
2095 goto err_free_put_context;
2096
2097 counter->filp = counter_file;
d859e29f 2098 mutex_lock(&ctx->mutex);
9b51f66d 2099 perf_install_in_context(ctx, counter, cpu);
d859e29f 2100 mutex_unlock(&ctx->mutex);
9b51f66d
IM
2101
2102 fput_light(counter_file, fput_needed2);
0793a61d 2103
04289bb9
IM
2104out_fput:
2105 fput_light(group_file, fput_needed);
2106
0793a61d
TG
2107 return ret;
2108
9b51f66d 2109err_free_put_context:
0793a61d
TG
2110 kfree(counter);
2111
2112err_put_context:
2113 put_context(ctx);
2114
04289bb9 2115 goto out_fput;
0793a61d
TG
2116}
2117
9b51f66d
IM
2118/*
2119 * Initialize the perf_counter context in a task_struct:
2120 */
2121static void
2122__perf_counter_init_context(struct perf_counter_context *ctx,
2123 struct task_struct *task)
2124{
2125 memset(ctx, 0, sizeof(*ctx));
2126 spin_lock_init(&ctx->lock);
d859e29f 2127 mutex_init(&ctx->mutex);
9b51f66d 2128 INIT_LIST_HEAD(&ctx->counter_list);
592903cd 2129 INIT_LIST_HEAD(&ctx->event_list);
9b51f66d
IM
2130 ctx->task = task;
2131}
2132
2133/*
2134 * inherit a counter from parent task to child task:
2135 */
d859e29f 2136static struct perf_counter *
9b51f66d
IM
2137inherit_counter(struct perf_counter *parent_counter,
2138 struct task_struct *parent,
2139 struct perf_counter_context *parent_ctx,
2140 struct task_struct *child,
d859e29f 2141 struct perf_counter *group_leader,
9b51f66d
IM
2142 struct perf_counter_context *child_ctx)
2143{
2144 struct perf_counter *child_counter;
2145
d859e29f
PM
2146 /*
2147 * Instead of creating recursive hierarchies of counters,
2148 * we link inherited counters back to the original parent,
2149 * which has a filp for sure, which we use as the reference
2150 * count:
2151 */
2152 if (parent_counter->parent)
2153 parent_counter = parent_counter->parent;
2154
9b51f66d 2155 child_counter = perf_counter_alloc(&parent_counter->hw_event,
23a185ca
PM
2156 parent_counter->cpu, child_ctx,
2157 group_leader, GFP_KERNEL);
9b51f66d 2158 if (!child_counter)
d859e29f 2159 return NULL;
9b51f66d
IM
2160
2161 /*
2162 * Link it up in the child's context:
2163 */
9b51f66d
IM
2164 child_counter->task = child;
2165 list_add_counter(child_counter, child_ctx);
2166 child_ctx->nr_counters++;
2167
2168 child_counter->parent = parent_counter;
9b51f66d
IM
2169 /*
2170 * inherit into child's child as well:
2171 */
2172 child_counter->hw_event.inherit = 1;
2173
2174 /*
2175 * Get a reference to the parent filp - we will fput it
2176 * when the child counter exits. This is safe to do because
2177 * we are in the parent and we know that the filp still
2178 * exists and has a nonzero count:
2179 */
2180 atomic_long_inc(&parent_counter->filp->f_count);
2181
d859e29f
PM
2182 /*
2183 * Link this into the parent counter's child list
2184 */
2185 mutex_lock(&parent_counter->mutex);
2186 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2187
2188 /*
2189 * Make the child state follow the state of the parent counter,
2190 * not its hw_event.disabled bit. We hold the parent's mutex,
2191 * so we won't race with perf_counter_{en,dis}able_family.
2192 */
2193 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2194 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2195 else
2196 child_counter->state = PERF_COUNTER_STATE_OFF;
2197
2198 mutex_unlock(&parent_counter->mutex);
2199
2200 return child_counter;
2201}
2202
2203static int inherit_group(struct perf_counter *parent_counter,
2204 struct task_struct *parent,
2205 struct perf_counter_context *parent_ctx,
2206 struct task_struct *child,
2207 struct perf_counter_context *child_ctx)
2208{
2209 struct perf_counter *leader;
2210 struct perf_counter *sub;
2211
2212 leader = inherit_counter(parent_counter, parent, parent_ctx,
2213 child, NULL, child_ctx);
2214 if (!leader)
2215 return -ENOMEM;
2216 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2217 if (!inherit_counter(sub, parent, parent_ctx,
2218 child, leader, child_ctx))
2219 return -ENOMEM;
2220 }
9b51f66d
IM
2221 return 0;
2222}
2223
d859e29f
PM
2224static void sync_child_counter(struct perf_counter *child_counter,
2225 struct perf_counter *parent_counter)
2226{
2227 u64 parent_val, child_val;
2228
2229 parent_val = atomic64_read(&parent_counter->count);
2230 child_val = atomic64_read(&child_counter->count);
2231
2232 /*
2233 * Add back the child's count to the parent's count:
2234 */
2235 atomic64_add(child_val, &parent_counter->count);
2236
2237 /*
2238 * Remove this counter from the parent's list
2239 */
2240 mutex_lock(&parent_counter->mutex);
2241 list_del_init(&child_counter->child_list);
2242 mutex_unlock(&parent_counter->mutex);
2243
2244 /*
2245 * Release the parent counter, if this was the last
2246 * reference to it.
2247 */
2248 fput(parent_counter->filp);
2249}
2250
9b51f66d
IM
2251static void
2252__perf_counter_exit_task(struct task_struct *child,
2253 struct perf_counter *child_counter,
2254 struct perf_counter_context *child_ctx)
2255{
2256 struct perf_counter *parent_counter;
d859e29f 2257 struct perf_counter *sub, *tmp;
9b51f66d
IM
2258
2259 /*
235c7fc7
IM
2260 * If we do not self-reap then we have to wait for the
2261 * child task to unschedule (it will happen for sure),
2262 * so that its counter is at its final count. (This
2263 * condition triggers rarely - child tasks usually get
2264 * off their CPU before the parent has a chance to
2265 * get this far into the reaping action)
9b51f66d 2266 */
235c7fc7
IM
2267 if (child != current) {
2268 wait_task_inactive(child, 0);
2269 list_del_init(&child_counter->list_entry);
2270 } else {
0cc0c027 2271 struct perf_cpu_context *cpuctx;
235c7fc7
IM
2272 unsigned long flags;
2273 u64 perf_flags;
2274
2275 /*
2276 * Disable and unlink this counter.
2277 *
2278 * Be careful about zapping the list - IRQ/NMI context
2279 * could still be processing it:
2280 */
2281 curr_rq_lock_irq_save(&flags);
2282 perf_flags = hw_perf_save_disable();
0cc0c027
IM
2283
2284 cpuctx = &__get_cpu_var(perf_cpu_context);
2285
d859e29f 2286 group_sched_out(child_counter, cpuctx, child_ctx);
0cc0c027 2287
235c7fc7 2288 list_del_init(&child_counter->list_entry);
0cc0c027 2289
235c7fc7 2290 child_ctx->nr_counters--;
9b51f66d 2291
235c7fc7
IM
2292 hw_perf_restore(perf_flags);
2293 curr_rq_unlock_irq_restore(&flags);
2294 }
9b51f66d
IM
2295
2296 parent_counter = child_counter->parent;
2297 /*
2298 * It can happen that parent exits first, and has counters
2299 * that are still around due to the child reference. These
2300 * counters need to be zapped - but otherwise linger.
2301 */
d859e29f
PM
2302 if (parent_counter) {
2303 sync_child_counter(child_counter, parent_counter);
2304 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2305 list_entry) {
4bcf349a 2306 if (sub->parent) {
d859e29f 2307 sync_child_counter(sub, sub->parent);
f1600952 2308 free_counter(sub);
4bcf349a 2309 }
d859e29f 2310 }
f1600952 2311 free_counter(child_counter);
4bcf349a 2312 }
9b51f66d
IM
2313}
2314
2315/*
d859e29f 2316 * When a child task exits, feed back counter values to parent counters.
9b51f66d 2317 *
d859e29f 2318 * Note: we may be running in child context, but the PID is not hashed
9b51f66d
IM
2319 * anymore so new counters will not be added.
2320 */
2321void perf_counter_exit_task(struct task_struct *child)
2322{
2323 struct perf_counter *child_counter, *tmp;
2324 struct perf_counter_context *child_ctx;
2325
2326 child_ctx = &child->perf_counter_ctx;
2327
2328 if (likely(!child_ctx->nr_counters))
2329 return;
2330
2331 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2332 list_entry)
2333 __perf_counter_exit_task(child, child_counter, child_ctx);
2334}
2335
2336/*
2337 * Initialize the perf_counter context in task_struct
2338 */
2339void perf_counter_init_task(struct task_struct *child)
2340{
2341 struct perf_counter_context *child_ctx, *parent_ctx;
d859e29f 2342 struct perf_counter *counter;
9b51f66d 2343 struct task_struct *parent = current;
9b51f66d
IM
2344
2345 child_ctx = &child->perf_counter_ctx;
2346 parent_ctx = &parent->perf_counter_ctx;
2347
2348 __perf_counter_init_context(child_ctx, child);
2349
2350 /*
2351 * This is executed from the parent task context, so inherit
2352 * counters that have been marked for cloning:
2353 */
2354
2355 if (likely(!parent_ctx->nr_counters))
2356 return;
2357
2358 /*
2359 * Lock the parent list. No need to lock the child - not PID
2360 * hashed yet and not running, so nobody can access it.
2361 */
d859e29f 2362 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
2363
2364 /*
2365 * We dont have to disable NMIs - we are only looking at
2366 * the list, not manipulating it:
2367 */
2368 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
d859e29f 2369 if (!counter->hw_event.inherit)
9b51f66d
IM
2370 continue;
2371
d859e29f 2372 if (inherit_group(counter, parent,
9b51f66d
IM
2373 parent_ctx, child, child_ctx))
2374 break;
2375 }
2376
d859e29f 2377 mutex_unlock(&parent_ctx->mutex);
9b51f66d
IM
2378}
2379
04289bb9 2380static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 2381{
04289bb9 2382 struct perf_cpu_context *cpuctx;
0793a61d 2383
04289bb9
IM
2384 cpuctx = &per_cpu(perf_cpu_context, cpu);
2385 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
2386
2387 mutex_lock(&perf_resource_mutex);
04289bb9 2388 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 2389 mutex_unlock(&perf_resource_mutex);
04289bb9 2390
01d0287f 2391 hw_perf_counter_setup(cpu);
0793a61d
TG
2392}
2393
2394#ifdef CONFIG_HOTPLUG_CPU
04289bb9 2395static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
2396{
2397 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2398 struct perf_counter_context *ctx = &cpuctx->ctx;
2399 struct perf_counter *counter, *tmp;
2400
04289bb9
IM
2401 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2402 __perf_counter_remove_from_context(counter);
0793a61d 2403}
04289bb9 2404static void perf_counter_exit_cpu(int cpu)
0793a61d 2405{
d859e29f
PM
2406 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2407 struct perf_counter_context *ctx = &cpuctx->ctx;
2408
2409 mutex_lock(&ctx->mutex);
04289bb9 2410 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
d859e29f 2411 mutex_unlock(&ctx->mutex);
0793a61d
TG
2412}
2413#else
04289bb9 2414static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
2415#endif
2416
2417static int __cpuinit
2418perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2419{
2420 unsigned int cpu = (long)hcpu;
2421
2422 switch (action) {
2423
2424 case CPU_UP_PREPARE:
2425 case CPU_UP_PREPARE_FROZEN:
04289bb9 2426 perf_counter_init_cpu(cpu);
0793a61d
TG
2427 break;
2428
2429 case CPU_DOWN_PREPARE:
2430 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 2431 perf_counter_exit_cpu(cpu);
0793a61d
TG
2432 break;
2433
2434 default:
2435 break;
2436 }
2437
2438 return NOTIFY_OK;
2439}
2440
2441static struct notifier_block __cpuinitdata perf_cpu_nb = {
2442 .notifier_call = perf_cpu_notify,
2443};
2444
2445static int __init perf_counter_init(void)
2446{
2447 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2448 (void *)(long)smp_processor_id());
2449 register_cpu_notifier(&perf_cpu_nb);
2450
2451 return 0;
2452}
2453early_initcall(perf_counter_init);
2454
2455static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2456{
2457 return sprintf(buf, "%d\n", perf_reserved_percpu);
2458}
2459
2460static ssize_t
2461perf_set_reserve_percpu(struct sysdev_class *class,
2462 const char *buf,
2463 size_t count)
2464{
2465 struct perf_cpu_context *cpuctx;
2466 unsigned long val;
2467 int err, cpu, mpt;
2468
2469 err = strict_strtoul(buf, 10, &val);
2470 if (err)
2471 return err;
2472 if (val > perf_max_counters)
2473 return -EINVAL;
2474
2475 mutex_lock(&perf_resource_mutex);
2476 perf_reserved_percpu = val;
2477 for_each_online_cpu(cpu) {
2478 cpuctx = &per_cpu(perf_cpu_context, cpu);
2479 spin_lock_irq(&cpuctx->ctx.lock);
2480 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2481 perf_max_counters - perf_reserved_percpu);
2482 cpuctx->max_pertask = mpt;
2483 spin_unlock_irq(&cpuctx->ctx.lock);
2484 }
2485 mutex_unlock(&perf_resource_mutex);
2486
2487 return count;
2488}
2489
2490static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2491{
2492 return sprintf(buf, "%d\n", perf_overcommit);
2493}
2494
2495static ssize_t
2496perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2497{
2498 unsigned long val;
2499 int err;
2500
2501 err = strict_strtoul(buf, 10, &val);
2502 if (err)
2503 return err;
2504 if (val > 1)
2505 return -EINVAL;
2506
2507 mutex_lock(&perf_resource_mutex);
2508 perf_overcommit = val;
2509 mutex_unlock(&perf_resource_mutex);
2510
2511 return count;
2512}
2513
2514static SYSDEV_CLASS_ATTR(
2515 reserve_percpu,
2516 0644,
2517 perf_show_reserve_percpu,
2518 perf_set_reserve_percpu
2519 );
2520
2521static SYSDEV_CLASS_ATTR(
2522 overcommit,
2523 0644,
2524 perf_show_overcommit,
2525 perf_set_overcommit
2526 );
2527
2528static struct attribute *perfclass_attrs[] = {
2529 &attr_reserve_percpu.attr,
2530 &attr_overcommit.attr,
2531 NULL
2532};
2533
2534static struct attribute_group perfclass_attr_group = {
2535 .attrs = perfclass_attrs,
2536 .name = "perf_counters",
2537};
2538
2539static int __init perf_counter_sysfs_init(void)
2540{
2541 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2542 &perfclass_attr_group);
2543}
2544device_initcall(perf_counter_sysfs_init);