perf_counter: record time running and time enabled for each counter
[linux-2.6-block.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7b732a75
PZ
7 *
8 * For licensing details see kernel-base/COPYING
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
04289bb9 15#include <linux/file.h>
0793a61d
TG
16#include <linux/poll.h>
17#include <linux/sysfs.h>
18#include <linux/ptrace.h>
19#include <linux/percpu.h>
b9cacc7b
PZ
20#include <linux/vmstat.h>
21#include <linux/hardirq.h>
22#include <linux/rculist.h>
0793a61d
TG
23#include <linux/uaccess.h>
24#include <linux/syscalls.h>
25#include <linux/anon_inodes.h>
aa9c4c0f 26#include <linux/kernel_stat.h>
0793a61d
TG
27#include <linux/perf_counter.h>
28
4e193bd4
TB
29#include <asm/irq_regs.h>
30
0793a61d
TG
31/*
32 * Each CPU has a list of per CPU counters:
33 */
34DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
088e2852 36int perf_max_counters __read_mostly = 1;
0793a61d
TG
37static int perf_reserved_percpu __read_mostly;
38static int perf_overcommit __read_mostly = 1;
39
40/*
41 * Mutex for (sysadmin-configurable) counter reservations:
42 */
43static DEFINE_MUTEX(perf_resource_mutex);
44
45/*
46 * Architecture provided APIs - weak aliases:
47 */
5c92d124 48extern __weak const struct hw_perf_counter_ops *
621a01ea 49hw_perf_counter_init(struct perf_counter *counter)
0793a61d 50{
ff6f0541 51 return NULL;
0793a61d
TG
52}
53
01b2838c 54u64 __weak hw_perf_save_disable(void) { return 0; }
01ea1cca 55void __weak hw_perf_restore(u64 ctrl) { barrier(); }
01d0287f 56void __weak hw_perf_counter_setup(int cpu) { barrier(); }
3cbed429
PM
57int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58 struct perf_cpu_context *cpuctx,
59 struct perf_counter_context *ctx, int cpu)
60{
61 return 0;
62}
0793a61d 63
4eb96fcf
PM
64void __weak perf_counter_print_debug(void) { }
65
04289bb9
IM
66static void
67list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68{
69 struct perf_counter *group_leader = counter->group_leader;
70
71 /*
72 * Depending on whether it is a standalone or sibling counter,
73 * add it straight to the context's counter list, or to the group
74 * leader's sibling list:
75 */
76 if (counter->group_leader == counter)
77 list_add_tail(&counter->list_entry, &ctx->counter_list);
5c148194 78 else {
04289bb9 79 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
5c148194
PZ
80 group_leader->nr_siblings++;
81 }
592903cd
PZ
82
83 list_add_rcu(&counter->event_entry, &ctx->event_list);
04289bb9
IM
84}
85
86static void
87list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
88{
89 struct perf_counter *sibling, *tmp;
90
91 list_del_init(&counter->list_entry);
592903cd 92 list_del_rcu(&counter->event_entry);
04289bb9 93
5c148194
PZ
94 if (counter->group_leader != counter)
95 counter->group_leader->nr_siblings--;
96
04289bb9
IM
97 /*
98 * If this was a group counter with sibling counters then
99 * upgrade the siblings to singleton counters by adding them
100 * to the context list directly:
101 */
102 list_for_each_entry_safe(sibling, tmp,
103 &counter->sibling_list, list_entry) {
104
75564232 105 list_move_tail(&sibling->list_entry, &ctx->counter_list);
04289bb9
IM
106 sibling->group_leader = sibling;
107 }
108}
109
3b6f9e5c
PM
110static void
111counter_sched_out(struct perf_counter *counter,
112 struct perf_cpu_context *cpuctx,
113 struct perf_counter_context *ctx)
114{
115 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
116 return;
117
118 counter->state = PERF_COUNTER_STATE_INACTIVE;
53cfbf59 119 counter->tstamp_stopped = ctx->time_now;
3b6f9e5c
PM
120 counter->hw_ops->disable(counter);
121 counter->oncpu = -1;
122
123 if (!is_software_counter(counter))
124 cpuctx->active_oncpu--;
125 ctx->nr_active--;
126 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
127 cpuctx->exclusive = 0;
128}
129
d859e29f
PM
130static void
131group_sched_out(struct perf_counter *group_counter,
132 struct perf_cpu_context *cpuctx,
133 struct perf_counter_context *ctx)
134{
135 struct perf_counter *counter;
136
137 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
138 return;
139
140 counter_sched_out(group_counter, cpuctx, ctx);
141
142 /*
143 * Schedule out siblings (if any):
144 */
145 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
146 counter_sched_out(counter, cpuctx, ctx);
147
148 if (group_counter->hw_event.exclusive)
149 cpuctx->exclusive = 0;
150}
151
0793a61d
TG
152/*
153 * Cross CPU call to remove a performance counter
154 *
155 * We disable the counter on the hardware level first. After that we
156 * remove it from the context list.
157 */
04289bb9 158static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
159{
160 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
161 struct perf_counter *counter = info;
162 struct perf_counter_context *ctx = counter->ctx;
9b51f66d 163 unsigned long flags;
5c92d124 164 u64 perf_flags;
0793a61d
TG
165
166 /*
167 * If this is a task context, we need to check whether it is
168 * the current task context of this cpu. If not it has been
169 * scheduled out before the smp call arrived.
170 */
171 if (ctx->task && cpuctx->task_ctx != ctx)
172 return;
173
aa9c4c0f
IM
174 curr_rq_lock_irq_save(&flags);
175 spin_lock(&ctx->lock);
0793a61d 176
3b6f9e5c
PM
177 counter_sched_out(counter, cpuctx, ctx);
178
179 counter->task = NULL;
0793a61d
TG
180 ctx->nr_counters--;
181
182 /*
183 * Protect the list operation against NMI by disabling the
184 * counters on a global level. NOP for non NMI based counters.
185 */
01b2838c 186 perf_flags = hw_perf_save_disable();
04289bb9 187 list_del_counter(counter, ctx);
01b2838c 188 hw_perf_restore(perf_flags);
0793a61d
TG
189
190 if (!ctx->task) {
191 /*
192 * Allow more per task counters with respect to the
193 * reservation:
194 */
195 cpuctx->max_pertask =
196 min(perf_max_counters - ctx->nr_counters,
197 perf_max_counters - perf_reserved_percpu);
198 }
199
aa9c4c0f
IM
200 spin_unlock(&ctx->lock);
201 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
202}
203
204
205/*
206 * Remove the counter from a task's (or a CPU's) list of counters.
207 *
d859e29f 208 * Must be called with counter->mutex and ctx->mutex held.
0793a61d
TG
209 *
210 * CPU counters are removed with a smp call. For task counters we only
211 * call when the task is on a CPU.
212 */
04289bb9 213static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
214{
215 struct perf_counter_context *ctx = counter->ctx;
216 struct task_struct *task = ctx->task;
217
218 if (!task) {
219 /*
220 * Per cpu counters are removed via an smp call and
221 * the removal is always sucessful.
222 */
223 smp_call_function_single(counter->cpu,
04289bb9 224 __perf_counter_remove_from_context,
0793a61d
TG
225 counter, 1);
226 return;
227 }
228
229retry:
04289bb9 230 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
231 counter);
232
233 spin_lock_irq(&ctx->lock);
234 /*
235 * If the context is active we need to retry the smp call.
236 */
04289bb9 237 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
238 spin_unlock_irq(&ctx->lock);
239 goto retry;
240 }
241
242 /*
243 * The lock prevents that this context is scheduled in so we
04289bb9 244 * can remove the counter safely, if the call above did not
0793a61d
TG
245 * succeed.
246 */
04289bb9 247 if (!list_empty(&counter->list_entry)) {
0793a61d 248 ctx->nr_counters--;
04289bb9 249 list_del_counter(counter, ctx);
0793a61d
TG
250 counter->task = NULL;
251 }
252 spin_unlock_irq(&ctx->lock);
253}
254
53cfbf59
PM
255/*
256 * Get the current time for this context.
257 * If this is a task context, we use the task's task clock,
258 * or for a per-cpu context, we use the cpu clock.
259 */
260static u64 get_context_time(struct perf_counter_context *ctx, int update)
261{
262 struct task_struct *curr = ctx->task;
263
264 if (!curr)
265 return cpu_clock(smp_processor_id());
266
267 return __task_delta_exec(curr, update) + curr->se.sum_exec_runtime;
268}
269
270/*
271 * Update the record of the current time in a context.
272 */
273static void update_context_time(struct perf_counter_context *ctx, int update)
274{
275 ctx->time_now = get_context_time(ctx, update) - ctx->time_lost;
276}
277
278/*
279 * Update the total_time_enabled and total_time_running fields for a counter.
280 */
281static void update_counter_times(struct perf_counter *counter)
282{
283 struct perf_counter_context *ctx = counter->ctx;
284 u64 run_end;
285
286 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
287 counter->total_time_enabled = ctx->time_now -
288 counter->tstamp_enabled;
289 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290 run_end = counter->tstamp_stopped;
291 else
292 run_end = ctx->time_now;
293 counter->total_time_running = run_end - counter->tstamp_running;
294 }
295}
296
297/*
298 * Update total_time_enabled and total_time_running for all counters in a group.
299 */
300static void update_group_times(struct perf_counter *leader)
301{
302 struct perf_counter *counter;
303
304 update_counter_times(leader);
305 list_for_each_entry(counter, &leader->sibling_list, list_entry)
306 update_counter_times(counter);
307}
308
d859e29f
PM
309/*
310 * Cross CPU call to disable a performance counter
311 */
312static void __perf_counter_disable(void *info)
313{
314 struct perf_counter *counter = info;
315 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316 struct perf_counter_context *ctx = counter->ctx;
317 unsigned long flags;
318
319 /*
320 * If this is a per-task counter, need to check whether this
321 * counter's task is the current task on this cpu.
322 */
323 if (ctx->task && cpuctx->task_ctx != ctx)
324 return;
325
326 curr_rq_lock_irq_save(&flags);
327 spin_lock(&ctx->lock);
328
329 /*
330 * If the counter is on, turn it off.
331 * If it is in error state, leave it in error state.
332 */
333 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
53cfbf59
PM
334 update_context_time(ctx, 1);
335 update_counter_times(counter);
d859e29f
PM
336 if (counter == counter->group_leader)
337 group_sched_out(counter, cpuctx, ctx);
338 else
339 counter_sched_out(counter, cpuctx, ctx);
340 counter->state = PERF_COUNTER_STATE_OFF;
341 }
342
343 spin_unlock(&ctx->lock);
344 curr_rq_unlock_irq_restore(&flags);
345}
346
347/*
348 * Disable a counter.
349 */
350static void perf_counter_disable(struct perf_counter *counter)
351{
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
354
355 if (!task) {
356 /*
357 * Disable the counter on the cpu that it's on
358 */
359 smp_call_function_single(counter->cpu, __perf_counter_disable,
360 counter, 1);
361 return;
362 }
363
364 retry:
365 task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367 spin_lock_irq(&ctx->lock);
368 /*
369 * If the counter is still active, we need to retry the cross-call.
370 */
371 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372 spin_unlock_irq(&ctx->lock);
373 goto retry;
374 }
375
376 /*
377 * Since we have the lock this context can't be scheduled
378 * in, so we can change the state safely.
379 */
53cfbf59
PM
380 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381 update_counter_times(counter);
d859e29f 382 counter->state = PERF_COUNTER_STATE_OFF;
53cfbf59 383 }
d859e29f
PM
384
385 spin_unlock_irq(&ctx->lock);
386}
387
388/*
389 * Disable a counter and all its children.
390 */
391static void perf_counter_disable_family(struct perf_counter *counter)
392{
393 struct perf_counter *child;
394
395 perf_counter_disable(counter);
396
397 /*
398 * Lock the mutex to protect the list of children
399 */
400 mutex_lock(&counter->mutex);
401 list_for_each_entry(child, &counter->child_list, child_list)
402 perf_counter_disable(child);
403 mutex_unlock(&counter->mutex);
404}
405
235c7fc7
IM
406static int
407counter_sched_in(struct perf_counter *counter,
408 struct perf_cpu_context *cpuctx,
409 struct perf_counter_context *ctx,
410 int cpu)
411{
3b6f9e5c 412 if (counter->state <= PERF_COUNTER_STATE_OFF)
235c7fc7
IM
413 return 0;
414
415 counter->state = PERF_COUNTER_STATE_ACTIVE;
416 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
417 /*
418 * The new state must be visible before we turn it on in the hardware:
419 */
420 smp_wmb();
421
422 if (counter->hw_ops->enable(counter)) {
423 counter->state = PERF_COUNTER_STATE_INACTIVE;
424 counter->oncpu = -1;
425 return -EAGAIN;
426 }
427
53cfbf59
PM
428 counter->tstamp_running += ctx->time_now - counter->tstamp_stopped;
429
3b6f9e5c
PM
430 if (!is_software_counter(counter))
431 cpuctx->active_oncpu++;
235c7fc7
IM
432 ctx->nr_active++;
433
3b6f9e5c
PM
434 if (counter->hw_event.exclusive)
435 cpuctx->exclusive = 1;
436
235c7fc7
IM
437 return 0;
438}
439
3b6f9e5c
PM
440/*
441 * Return 1 for a group consisting entirely of software counters,
442 * 0 if the group contains any hardware counters.
443 */
444static int is_software_only_group(struct perf_counter *leader)
445{
446 struct perf_counter *counter;
447
448 if (!is_software_counter(leader))
449 return 0;
5c148194 450
3b6f9e5c
PM
451 list_for_each_entry(counter, &leader->sibling_list, list_entry)
452 if (!is_software_counter(counter))
453 return 0;
5c148194 454
3b6f9e5c
PM
455 return 1;
456}
457
458/*
459 * Work out whether we can put this counter group on the CPU now.
460 */
461static int group_can_go_on(struct perf_counter *counter,
462 struct perf_cpu_context *cpuctx,
463 int can_add_hw)
464{
465 /*
466 * Groups consisting entirely of software counters can always go on.
467 */
468 if (is_software_only_group(counter))
469 return 1;
470 /*
471 * If an exclusive group is already on, no other hardware
472 * counters can go on.
473 */
474 if (cpuctx->exclusive)
475 return 0;
476 /*
477 * If this group is exclusive and there are already
478 * counters on the CPU, it can't go on.
479 */
480 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
481 return 0;
482 /*
483 * Otherwise, try to add it if all previous groups were able
484 * to go on.
485 */
486 return can_add_hw;
487}
488
53cfbf59
PM
489static void add_counter_to_ctx(struct perf_counter *counter,
490 struct perf_counter_context *ctx)
491{
492 list_add_counter(counter, ctx);
493 ctx->nr_counters++;
494 counter->prev_state = PERF_COUNTER_STATE_OFF;
495 counter->tstamp_enabled = ctx->time_now;
496 counter->tstamp_running = ctx->time_now;
497 counter->tstamp_stopped = ctx->time_now;
498}
499
0793a61d 500/*
235c7fc7 501 * Cross CPU call to install and enable a performance counter
0793a61d
TG
502 */
503static void __perf_install_in_context(void *info)
504{
505 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
506 struct perf_counter *counter = info;
507 struct perf_counter_context *ctx = counter->ctx;
d859e29f 508 struct perf_counter *leader = counter->group_leader;
0793a61d 509 int cpu = smp_processor_id();
9b51f66d 510 unsigned long flags;
5c92d124 511 u64 perf_flags;
3b6f9e5c 512 int err;
0793a61d
TG
513
514 /*
515 * If this is a task context, we need to check whether it is
516 * the current task context of this cpu. If not it has been
517 * scheduled out before the smp call arrived.
518 */
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
521
aa9c4c0f
IM
522 curr_rq_lock_irq_save(&flags);
523 spin_lock(&ctx->lock);
53cfbf59 524 update_context_time(ctx, 1);
0793a61d
TG
525
526 /*
527 * Protect the list operation against NMI by disabling the
528 * counters on a global level. NOP for non NMI based counters.
529 */
01b2838c 530 perf_flags = hw_perf_save_disable();
0793a61d 531
53cfbf59 532 add_counter_to_ctx(counter, ctx);
0793a61d 533
d859e29f
PM
534 /*
535 * Don't put the counter on if it is disabled or if
536 * it is in a group and the group isn't on.
537 */
538 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
539 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
540 goto unlock;
541
3b6f9e5c
PM
542 /*
543 * An exclusive counter can't go on if there are already active
544 * hardware counters, and no hardware counter can go on if there
545 * is already an exclusive counter on.
546 */
d859e29f 547 if (!group_can_go_on(counter, cpuctx, 1))
3b6f9e5c
PM
548 err = -EEXIST;
549 else
550 err = counter_sched_in(counter, cpuctx, ctx, cpu);
551
d859e29f
PM
552 if (err) {
553 /*
554 * This counter couldn't go on. If it is in a group
555 * then we have to pull the whole group off.
556 * If the counter group is pinned then put it in error state.
557 */
558 if (leader != counter)
559 group_sched_out(leader, cpuctx, ctx);
53cfbf59
PM
560 if (leader->hw_event.pinned) {
561 update_group_times(leader);
d859e29f 562 leader->state = PERF_COUNTER_STATE_ERROR;
53cfbf59 563 }
d859e29f 564 }
0793a61d 565
3b6f9e5c 566 if (!err && !ctx->task && cpuctx->max_pertask)
0793a61d
TG
567 cpuctx->max_pertask--;
568
d859e29f 569 unlock:
235c7fc7
IM
570 hw_perf_restore(perf_flags);
571
aa9c4c0f
IM
572 spin_unlock(&ctx->lock);
573 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
574}
575
576/*
577 * Attach a performance counter to a context
578 *
579 * First we add the counter to the list with the hardware enable bit
580 * in counter->hw_config cleared.
581 *
582 * If the counter is attached to a task which is on a CPU we use a smp
583 * call to enable it in the task context. The task might have been
584 * scheduled away, but we check this in the smp call again.
d859e29f
PM
585 *
586 * Must be called with ctx->mutex held.
0793a61d
TG
587 */
588static void
589perf_install_in_context(struct perf_counter_context *ctx,
590 struct perf_counter *counter,
591 int cpu)
592{
593 struct task_struct *task = ctx->task;
594
0793a61d
TG
595 if (!task) {
596 /*
597 * Per cpu counters are installed via an smp call and
598 * the install is always sucessful.
599 */
600 smp_call_function_single(cpu, __perf_install_in_context,
601 counter, 1);
602 return;
603 }
604
605 counter->task = task;
606retry:
607 task_oncpu_function_call(task, __perf_install_in_context,
608 counter);
609
610 spin_lock_irq(&ctx->lock);
611 /*
0793a61d
TG
612 * we need to retry the smp call.
613 */
d859e29f 614 if (ctx->is_active && list_empty(&counter->list_entry)) {
0793a61d
TG
615 spin_unlock_irq(&ctx->lock);
616 goto retry;
617 }
618
619 /*
620 * The lock prevents that this context is scheduled in so we
621 * can add the counter safely, if it the call above did not
622 * succeed.
623 */
53cfbf59
PM
624 if (list_empty(&counter->list_entry))
625 add_counter_to_ctx(counter, ctx);
0793a61d
TG
626 spin_unlock_irq(&ctx->lock);
627}
628
d859e29f
PM
629/*
630 * Cross CPU call to enable a performance counter
631 */
632static void __perf_counter_enable(void *info)
04289bb9 633{
d859e29f
PM
634 struct perf_counter *counter = info;
635 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
636 struct perf_counter_context *ctx = counter->ctx;
637 struct perf_counter *leader = counter->group_leader;
638 unsigned long flags;
639 int err;
04289bb9 640
d859e29f
PM
641 /*
642 * If this is a per-task counter, need to check whether this
643 * counter's task is the current task on this cpu.
644 */
645 if (ctx->task && cpuctx->task_ctx != ctx)
3cbed429
PM
646 return;
647
d859e29f
PM
648 curr_rq_lock_irq_save(&flags);
649 spin_lock(&ctx->lock);
53cfbf59 650 update_context_time(ctx, 1);
d859e29f 651
c07c99b6 652 counter->prev_state = counter->state;
d859e29f
PM
653 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
654 goto unlock;
655 counter->state = PERF_COUNTER_STATE_INACTIVE;
53cfbf59 656 counter->tstamp_enabled = ctx->time_now - counter->total_time_enabled;
04289bb9
IM
657
658 /*
d859e29f
PM
659 * If the counter is in a group and isn't the group leader,
660 * then don't put it on unless the group is on.
04289bb9 661 */
d859e29f
PM
662 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
663 goto unlock;
3b6f9e5c 664
d859e29f
PM
665 if (!group_can_go_on(counter, cpuctx, 1))
666 err = -EEXIST;
667 else
668 err = counter_sched_in(counter, cpuctx, ctx,
669 smp_processor_id());
670
671 if (err) {
672 /*
673 * If this counter can't go on and it's part of a
674 * group, then the whole group has to come off.
675 */
676 if (leader != counter)
677 group_sched_out(leader, cpuctx, ctx);
53cfbf59
PM
678 if (leader->hw_event.pinned) {
679 update_group_times(leader);
d859e29f 680 leader->state = PERF_COUNTER_STATE_ERROR;
53cfbf59 681 }
d859e29f
PM
682 }
683
684 unlock:
685 spin_unlock(&ctx->lock);
686 curr_rq_unlock_irq_restore(&flags);
687}
688
689/*
690 * Enable a counter.
691 */
692static void perf_counter_enable(struct perf_counter *counter)
693{
694 struct perf_counter_context *ctx = counter->ctx;
695 struct task_struct *task = ctx->task;
696
697 if (!task) {
698 /*
699 * Enable the counter on the cpu that it's on
700 */
701 smp_call_function_single(counter->cpu, __perf_counter_enable,
702 counter, 1);
703 return;
704 }
705
706 spin_lock_irq(&ctx->lock);
707 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
708 goto out;
709
710 /*
711 * If the counter is in error state, clear that first.
712 * That way, if we see the counter in error state below, we
713 * know that it has gone back into error state, as distinct
714 * from the task having been scheduled away before the
715 * cross-call arrived.
716 */
717 if (counter->state == PERF_COUNTER_STATE_ERROR)
718 counter->state = PERF_COUNTER_STATE_OFF;
719
720 retry:
721 spin_unlock_irq(&ctx->lock);
722 task_oncpu_function_call(task, __perf_counter_enable, counter);
723
724 spin_lock_irq(&ctx->lock);
725
726 /*
727 * If the context is active and the counter is still off,
728 * we need to retry the cross-call.
729 */
730 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
731 goto retry;
732
733 /*
734 * Since we have the lock this context can't be scheduled
735 * in, so we can change the state safely.
736 */
53cfbf59 737 if (counter->state == PERF_COUNTER_STATE_OFF) {
d859e29f 738 counter->state = PERF_COUNTER_STATE_INACTIVE;
53cfbf59
PM
739 counter->tstamp_enabled = ctx->time_now -
740 counter->total_time_enabled;
741 }
d859e29f
PM
742 out:
743 spin_unlock_irq(&ctx->lock);
744}
745
746/*
747 * Enable a counter and all its children.
748 */
749static void perf_counter_enable_family(struct perf_counter *counter)
750{
751 struct perf_counter *child;
752
753 perf_counter_enable(counter);
754
755 /*
756 * Lock the mutex to protect the list of children
757 */
758 mutex_lock(&counter->mutex);
759 list_for_each_entry(child, &counter->child_list, child_list)
760 perf_counter_enable(child);
761 mutex_unlock(&counter->mutex);
04289bb9
IM
762}
763
235c7fc7
IM
764void __perf_counter_sched_out(struct perf_counter_context *ctx,
765 struct perf_cpu_context *cpuctx)
766{
767 struct perf_counter *counter;
3cbed429 768 u64 flags;
235c7fc7 769
d859e29f
PM
770 spin_lock(&ctx->lock);
771 ctx->is_active = 0;
235c7fc7 772 if (likely(!ctx->nr_counters))
d859e29f 773 goto out;
53cfbf59 774 update_context_time(ctx, 0);
235c7fc7 775
3cbed429 776 flags = hw_perf_save_disable();
235c7fc7
IM
777 if (ctx->nr_active) {
778 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779 group_sched_out(counter, cpuctx, ctx);
780 }
3cbed429 781 hw_perf_restore(flags);
d859e29f 782 out:
235c7fc7
IM
783 spin_unlock(&ctx->lock);
784}
785
0793a61d
TG
786/*
787 * Called from scheduler to remove the counters of the current task,
788 * with interrupts disabled.
789 *
790 * We stop each counter and update the counter value in counter->count.
791 *
7671581f 792 * This does not protect us against NMI, but disable()
0793a61d
TG
793 * sets the disabled bit in the control field of counter _before_
794 * accessing the counter control register. If a NMI hits, then it will
795 * not restart the counter.
796 */
797void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798{
799 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800 struct perf_counter_context *ctx = &task->perf_counter_ctx;
4a0deca6 801 struct pt_regs *regs;
0793a61d
TG
802
803 if (likely(!cpuctx->task_ctx))
804 return;
805
4a0deca6
PZ
806 regs = task_pt_regs(task);
807 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
235c7fc7
IM
808 __perf_counter_sched_out(ctx, cpuctx);
809
0793a61d
TG
810 cpuctx->task_ctx = NULL;
811}
812
235c7fc7 813static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
04289bb9 814{
235c7fc7 815 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
04289bb9
IM
816}
817
7995888f 818static int
04289bb9
IM
819group_sched_in(struct perf_counter *group_counter,
820 struct perf_cpu_context *cpuctx,
821 struct perf_counter_context *ctx,
822 int cpu)
823{
95cdd2e7 824 struct perf_counter *counter, *partial_group;
3cbed429
PM
825 int ret;
826
827 if (group_counter->state == PERF_COUNTER_STATE_OFF)
828 return 0;
829
830 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
831 if (ret)
832 return ret < 0 ? ret : 0;
04289bb9 833
c07c99b6 834 group_counter->prev_state = group_counter->state;
95cdd2e7
IM
835 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
836 return -EAGAIN;
04289bb9
IM
837
838 /*
839 * Schedule in siblings as one group (if any):
840 */
7995888f 841 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
c07c99b6 842 counter->prev_state = counter->state;
95cdd2e7
IM
843 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
844 partial_group = counter;
845 goto group_error;
846 }
95cdd2e7
IM
847 }
848
3cbed429 849 return 0;
95cdd2e7
IM
850
851group_error:
852 /*
853 * Groups can be scheduled in as one unit only, so undo any
854 * partial group before returning:
855 */
856 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
857 if (counter == partial_group)
858 break;
859 counter_sched_out(counter, cpuctx, ctx);
7995888f 860 }
95cdd2e7 861 counter_sched_out(group_counter, cpuctx, ctx);
7995888f 862
95cdd2e7 863 return -EAGAIN;
04289bb9
IM
864}
865
235c7fc7
IM
866static void
867__perf_counter_sched_in(struct perf_counter_context *ctx,
868 struct perf_cpu_context *cpuctx, int cpu)
0793a61d 869{
0793a61d 870 struct perf_counter *counter;
3cbed429 871 u64 flags;
dd0e6ba2 872 int can_add_hw = 1;
0793a61d 873
d859e29f
PM
874 spin_lock(&ctx->lock);
875 ctx->is_active = 1;
0793a61d 876 if (likely(!ctx->nr_counters))
d859e29f 877 goto out;
0793a61d 878
53cfbf59
PM
879 /*
880 * Add any time since the last sched_out to the lost time
881 * so it doesn't get included in the total_time_enabled and
882 * total_time_running measures for counters in the context.
883 */
884 ctx->time_lost = get_context_time(ctx, 0) - ctx->time_now;
885
3cbed429 886 flags = hw_perf_save_disable();
3b6f9e5c
PM
887
888 /*
889 * First go through the list and put on any pinned groups
890 * in order to give them the best chance of going on.
891 */
892 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
893 if (counter->state <= PERF_COUNTER_STATE_OFF ||
894 !counter->hw_event.pinned)
895 continue;
896 if (counter->cpu != -1 && counter->cpu != cpu)
897 continue;
898
899 if (group_can_go_on(counter, cpuctx, 1))
900 group_sched_in(counter, cpuctx, ctx, cpu);
901
902 /*
903 * If this pinned group hasn't been scheduled,
904 * put it in error state.
905 */
53cfbf59
PM
906 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
907 update_group_times(counter);
3b6f9e5c 908 counter->state = PERF_COUNTER_STATE_ERROR;
53cfbf59 909 }
3b6f9e5c
PM
910 }
911
04289bb9 912 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c
PM
913 /*
914 * Ignore counters in OFF or ERROR state, and
915 * ignore pinned counters since we did them already.
916 */
917 if (counter->state <= PERF_COUNTER_STATE_OFF ||
918 counter->hw_event.pinned)
919 continue;
920
04289bb9
IM
921 /*
922 * Listen to the 'cpu' scheduling filter constraint
923 * of counters:
924 */
0793a61d
TG
925 if (counter->cpu != -1 && counter->cpu != cpu)
926 continue;
927
3b6f9e5c 928 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
dd0e6ba2
PM
929 if (group_sched_in(counter, cpuctx, ctx, cpu))
930 can_add_hw = 0;
3b6f9e5c 931 }
0793a61d 932 }
3cbed429 933 hw_perf_restore(flags);
d859e29f 934 out:
0793a61d 935 spin_unlock(&ctx->lock);
235c7fc7
IM
936}
937
938/*
939 * Called from scheduler to add the counters of the current task
940 * with interrupts disabled.
941 *
942 * We restore the counter value and then enable it.
943 *
944 * This does not protect us against NMI, but enable()
945 * sets the enabled bit in the control field of counter _before_
946 * accessing the counter control register. If a NMI hits, then it will
947 * keep the counter running.
948 */
949void perf_counter_task_sched_in(struct task_struct *task, int cpu)
950{
951 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
952 struct perf_counter_context *ctx = &task->perf_counter_ctx;
04289bb9 953
235c7fc7 954 __perf_counter_sched_in(ctx, cpuctx, cpu);
0793a61d
TG
955 cpuctx->task_ctx = ctx;
956}
957
235c7fc7
IM
958static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
959{
960 struct perf_counter_context *ctx = &cpuctx->ctx;
961
962 __perf_counter_sched_in(ctx, cpuctx, cpu);
963}
964
1d1c7ddb
IM
965int perf_counter_task_disable(void)
966{
967 struct task_struct *curr = current;
968 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
969 struct perf_counter *counter;
aa9c4c0f 970 unsigned long flags;
1d1c7ddb
IM
971 u64 perf_flags;
972 int cpu;
973
974 if (likely(!ctx->nr_counters))
975 return 0;
976
aa9c4c0f 977 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
978 cpu = smp_processor_id();
979
aa9c4c0f
IM
980 /* force the update of the task clock: */
981 __task_delta_exec(curr, 1);
982
1d1c7ddb
IM
983 perf_counter_task_sched_out(curr, cpu);
984
985 spin_lock(&ctx->lock);
986
987 /*
988 * Disable all the counters:
989 */
990 perf_flags = hw_perf_save_disable();
991
3b6f9e5c 992 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
53cfbf59
PM
993 if (counter->state != PERF_COUNTER_STATE_ERROR) {
994 update_group_times(counter);
3b6f9e5c 995 counter->state = PERF_COUNTER_STATE_OFF;
53cfbf59 996 }
3b6f9e5c 997 }
9b51f66d 998
1d1c7ddb
IM
999 hw_perf_restore(perf_flags);
1000
1001 spin_unlock(&ctx->lock);
1002
aa9c4c0f 1003 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
1004
1005 return 0;
1006}
1007
1008int perf_counter_task_enable(void)
1009{
1010 struct task_struct *curr = current;
1011 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1012 struct perf_counter *counter;
aa9c4c0f 1013 unsigned long flags;
1d1c7ddb
IM
1014 u64 perf_flags;
1015 int cpu;
1016
1017 if (likely(!ctx->nr_counters))
1018 return 0;
1019
aa9c4c0f 1020 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
1021 cpu = smp_processor_id();
1022
aa9c4c0f
IM
1023 /* force the update of the task clock: */
1024 __task_delta_exec(curr, 1);
1025
235c7fc7
IM
1026 perf_counter_task_sched_out(curr, cpu);
1027
1d1c7ddb
IM
1028 spin_lock(&ctx->lock);
1029
1030 /*
1031 * Disable all the counters:
1032 */
1033 perf_flags = hw_perf_save_disable();
1034
1035 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c 1036 if (counter->state > PERF_COUNTER_STATE_OFF)
1d1c7ddb 1037 continue;
6a930700 1038 counter->state = PERF_COUNTER_STATE_INACTIVE;
53cfbf59
PM
1039 counter->tstamp_enabled = ctx->time_now -
1040 counter->total_time_enabled;
aa9c4c0f 1041 counter->hw_event.disabled = 0;
1d1c7ddb
IM
1042 }
1043 hw_perf_restore(perf_flags);
1044
1045 spin_unlock(&ctx->lock);
1046
1047 perf_counter_task_sched_in(curr, cpu);
1048
aa9c4c0f 1049 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
1050
1051 return 0;
1052}
1053
235c7fc7
IM
1054/*
1055 * Round-robin a context's counters:
1056 */
1057static void rotate_ctx(struct perf_counter_context *ctx)
0793a61d 1058{
0793a61d 1059 struct perf_counter *counter;
5c92d124 1060 u64 perf_flags;
0793a61d 1061
235c7fc7 1062 if (!ctx->nr_counters)
0793a61d
TG
1063 return;
1064
0793a61d 1065 spin_lock(&ctx->lock);
0793a61d 1066 /*
04289bb9 1067 * Rotate the first entry last (works just fine for group counters too):
0793a61d 1068 */
01b2838c 1069 perf_flags = hw_perf_save_disable();
04289bb9 1070 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
75564232 1071 list_move_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
1072 break;
1073 }
01b2838c 1074 hw_perf_restore(perf_flags);
0793a61d
TG
1075
1076 spin_unlock(&ctx->lock);
235c7fc7
IM
1077}
1078
1079void perf_counter_task_tick(struct task_struct *curr, int cpu)
1080{
1081 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1082 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1083 const int rotate_percpu = 0;
1084
1085 if (rotate_percpu)
1086 perf_counter_cpu_sched_out(cpuctx);
1087 perf_counter_task_sched_out(curr, cpu);
0793a61d 1088
235c7fc7
IM
1089 if (rotate_percpu)
1090 rotate_ctx(&cpuctx->ctx);
1091 rotate_ctx(ctx);
1092
1093 if (rotate_percpu)
1094 perf_counter_cpu_sched_in(cpuctx, cpu);
0793a61d
TG
1095 perf_counter_task_sched_in(curr, cpu);
1096}
1097
0793a61d
TG
1098/*
1099 * Cross CPU call to read the hardware counter
1100 */
7671581f 1101static void __read(void *info)
0793a61d 1102{
621a01ea 1103 struct perf_counter *counter = info;
53cfbf59 1104 struct perf_counter_context *ctx = counter->ctx;
aa9c4c0f 1105 unsigned long flags;
621a01ea 1106
aa9c4c0f 1107 curr_rq_lock_irq_save(&flags);
53cfbf59
PM
1108 if (ctx->is_active)
1109 update_context_time(ctx, 1);
7671581f 1110 counter->hw_ops->read(counter);
53cfbf59 1111 update_counter_times(counter);
aa9c4c0f 1112 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
1113}
1114
04289bb9 1115static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
1116{
1117 /*
1118 * If counter is enabled and currently active on a CPU, update the
1119 * value in the counter structure:
1120 */
6a930700 1121 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d 1122 smp_call_function_single(counter->oncpu,
7671581f 1123 __read, counter, 1);
53cfbf59
PM
1124 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1125 update_counter_times(counter);
0793a61d
TG
1126 }
1127
ee06094f 1128 return atomic64_read(&counter->count);
0793a61d
TG
1129}
1130
0793a61d
TG
1131static void put_context(struct perf_counter_context *ctx)
1132{
1133 if (ctx->task)
1134 put_task_struct(ctx->task);
1135}
1136
1137static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1138{
1139 struct perf_cpu_context *cpuctx;
1140 struct perf_counter_context *ctx;
1141 struct task_struct *task;
1142
1143 /*
1144 * If cpu is not a wildcard then this is a percpu counter:
1145 */
1146 if (cpu != -1) {
1147 /* Must be root to operate on a CPU counter: */
1148 if (!capable(CAP_SYS_ADMIN))
1149 return ERR_PTR(-EACCES);
1150
1151 if (cpu < 0 || cpu > num_possible_cpus())
1152 return ERR_PTR(-EINVAL);
1153
1154 /*
1155 * We could be clever and allow to attach a counter to an
1156 * offline CPU and activate it when the CPU comes up, but
1157 * that's for later.
1158 */
1159 if (!cpu_isset(cpu, cpu_online_map))
1160 return ERR_PTR(-ENODEV);
1161
1162 cpuctx = &per_cpu(perf_cpu_context, cpu);
1163 ctx = &cpuctx->ctx;
1164
0793a61d
TG
1165 return ctx;
1166 }
1167
1168 rcu_read_lock();
1169 if (!pid)
1170 task = current;
1171 else
1172 task = find_task_by_vpid(pid);
1173 if (task)
1174 get_task_struct(task);
1175 rcu_read_unlock();
1176
1177 if (!task)
1178 return ERR_PTR(-ESRCH);
1179
1180 ctx = &task->perf_counter_ctx;
1181 ctx->task = task;
1182
1183 /* Reuse ptrace permission checks for now. */
1184 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1185 put_context(ctx);
1186 return ERR_PTR(-EACCES);
1187 }
1188
1189 return ctx;
1190}
1191
592903cd
PZ
1192static void free_counter_rcu(struct rcu_head *head)
1193{
1194 struct perf_counter *counter;
1195
1196 counter = container_of(head, struct perf_counter, rcu_head);
1197 kfree(counter);
1198}
1199
f1600952
PZ
1200static void free_counter(struct perf_counter *counter)
1201{
e077df4f
PZ
1202 if (counter->destroy)
1203 counter->destroy(counter);
1204
f1600952
PZ
1205 call_rcu(&counter->rcu_head, free_counter_rcu);
1206}
1207
0793a61d
TG
1208/*
1209 * Called when the last reference to the file is gone.
1210 */
1211static int perf_release(struct inode *inode, struct file *file)
1212{
1213 struct perf_counter *counter = file->private_data;
1214 struct perf_counter_context *ctx = counter->ctx;
1215
1216 file->private_data = NULL;
1217
d859e29f 1218 mutex_lock(&ctx->mutex);
0793a61d
TG
1219 mutex_lock(&counter->mutex);
1220
04289bb9 1221 perf_counter_remove_from_context(counter);
0793a61d
TG
1222
1223 mutex_unlock(&counter->mutex);
d859e29f 1224 mutex_unlock(&ctx->mutex);
0793a61d 1225
f1600952 1226 free_counter(counter);
5af75917 1227 put_context(ctx);
0793a61d
TG
1228
1229 return 0;
1230}
1231
1232/*
1233 * Read the performance counter - simple non blocking version for now
1234 */
1235static ssize_t
1236perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1237{
53cfbf59
PM
1238 u64 values[3];
1239 int n;
0793a61d 1240
3b6f9e5c
PM
1241 /*
1242 * Return end-of-file for a read on a counter that is in
1243 * error state (i.e. because it was pinned but it couldn't be
1244 * scheduled on to the CPU at some point).
1245 */
1246 if (counter->state == PERF_COUNTER_STATE_ERROR)
1247 return 0;
1248
0793a61d 1249 mutex_lock(&counter->mutex);
53cfbf59
PM
1250 values[0] = perf_counter_read(counter);
1251 n = 1;
1252 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 values[n++] = counter->total_time_enabled +
1254 atomic64_read(&counter->child_total_time_enabled);
1255 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 values[n++] = counter->total_time_running +
1257 atomic64_read(&counter->child_total_time_running);
0793a61d
TG
1258 mutex_unlock(&counter->mutex);
1259
53cfbf59
PM
1260 if (count < n * sizeof(u64))
1261 return -EINVAL;
1262 count = n * sizeof(u64);
1263
1264 if (copy_to_user(buf, values, count))
1265 return -EFAULT;
1266
1267 return count;
0793a61d
TG
1268}
1269
0793a61d
TG
1270static ssize_t
1271perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1272{
1273 struct perf_counter *counter = file->private_data;
1274
7b732a75 1275 return perf_read_hw(counter, buf, count);
0793a61d
TG
1276}
1277
1278static unsigned int perf_poll(struct file *file, poll_table *wait)
1279{
1280 struct perf_counter *counter = file->private_data;
c7138f37
PZ
1281 struct perf_mmap_data *data;
1282 unsigned int events;
1283
1284 rcu_read_lock();
1285 data = rcu_dereference(counter->data);
1286 if (data)
1287 events = atomic_xchg(&data->wakeup, 0);
1288 else
1289 events = POLL_HUP;
1290 rcu_read_unlock();
0793a61d
TG
1291
1292 poll_wait(file, &counter->waitq, wait);
1293
0793a61d
TG
1294 return events;
1295}
1296
d859e29f
PM
1297static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1298{
1299 struct perf_counter *counter = file->private_data;
1300 int err = 0;
1301
1302 switch (cmd) {
1303 case PERF_COUNTER_IOC_ENABLE:
1304 perf_counter_enable_family(counter);
1305 break;
1306 case PERF_COUNTER_IOC_DISABLE:
1307 perf_counter_disable_family(counter);
1308 break;
1309 default:
1310 err = -ENOTTY;
1311 }
1312 return err;
1313}
1314
7b732a75
PZ
1315static void __perf_counter_update_userpage(struct perf_counter *counter,
1316 struct perf_mmap_data *data)
37d81828 1317{
7b732a75 1318 struct perf_counter_mmap_page *userpg = data->user_page;
37d81828 1319
7b732a75
PZ
1320 /*
1321 * Disable preemption so as to not let the corresponding user-space
1322 * spin too long if we get preempted.
1323 */
1324 preempt_disable();
37d81828
PM
1325 ++userpg->lock;
1326 smp_wmb();
1327 userpg->index = counter->hw.idx;
1328 userpg->offset = atomic64_read(&counter->count);
1329 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1330 userpg->offset -= atomic64_read(&counter->hw.prev_count);
7b732a75
PZ
1331
1332 userpg->data_head = atomic_read(&data->head);
37d81828
PM
1333 smp_wmb();
1334 ++userpg->lock;
7b732a75
PZ
1335 preempt_enable();
1336}
1337
1338void perf_counter_update_userpage(struct perf_counter *counter)
1339{
1340 struct perf_mmap_data *data;
1341
1342 rcu_read_lock();
1343 data = rcu_dereference(counter->data);
1344 if (data)
1345 __perf_counter_update_userpage(counter, data);
1346 rcu_read_unlock();
37d81828
PM
1347}
1348
1349static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1350{
1351 struct perf_counter *counter = vma->vm_file->private_data;
7b732a75
PZ
1352 struct perf_mmap_data *data;
1353 int ret = VM_FAULT_SIGBUS;
1354
1355 rcu_read_lock();
1356 data = rcu_dereference(counter->data);
1357 if (!data)
1358 goto unlock;
1359
1360 if (vmf->pgoff == 0) {
1361 vmf->page = virt_to_page(data->user_page);
1362 } else {
1363 int nr = vmf->pgoff - 1;
37d81828 1364
7b732a75
PZ
1365 if ((unsigned)nr > data->nr_pages)
1366 goto unlock;
37d81828 1367
7b732a75
PZ
1368 vmf->page = virt_to_page(data->data_pages[nr]);
1369 }
37d81828 1370 get_page(vmf->page);
7b732a75
PZ
1371 ret = 0;
1372unlock:
1373 rcu_read_unlock();
1374
1375 return ret;
1376}
1377
1378static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1379{
1380 struct perf_mmap_data *data;
1381 unsigned long size;
1382 int i;
1383
1384 WARN_ON(atomic_read(&counter->mmap_count));
1385
1386 size = sizeof(struct perf_mmap_data);
1387 size += nr_pages * sizeof(void *);
1388
1389 data = kzalloc(size, GFP_KERNEL);
1390 if (!data)
1391 goto fail;
1392
1393 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1394 if (!data->user_page)
1395 goto fail_user_page;
1396
1397 for (i = 0; i < nr_pages; i++) {
1398 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1399 if (!data->data_pages[i])
1400 goto fail_data_pages;
1401 }
1402
1403 data->nr_pages = nr_pages;
1404
1405 rcu_assign_pointer(counter->data, data);
1406
37d81828 1407 return 0;
7b732a75
PZ
1408
1409fail_data_pages:
1410 for (i--; i >= 0; i--)
1411 free_page((unsigned long)data->data_pages[i]);
1412
1413 free_page((unsigned long)data->user_page);
1414
1415fail_user_page:
1416 kfree(data);
1417
1418fail:
1419 return -ENOMEM;
1420}
1421
1422static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1423{
1424 struct perf_mmap_data *data = container_of(rcu_head,
1425 struct perf_mmap_data, rcu_head);
1426 int i;
1427
1428 free_page((unsigned long)data->user_page);
1429 for (i = 0; i < data->nr_pages; i++)
1430 free_page((unsigned long)data->data_pages[i]);
1431 kfree(data);
1432}
1433
1434static void perf_mmap_data_free(struct perf_counter *counter)
1435{
1436 struct perf_mmap_data *data = counter->data;
1437
1438 WARN_ON(atomic_read(&counter->mmap_count));
1439
1440 rcu_assign_pointer(counter->data, NULL);
1441 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1442}
1443
1444static void perf_mmap_open(struct vm_area_struct *vma)
1445{
1446 struct perf_counter *counter = vma->vm_file->private_data;
1447
1448 atomic_inc(&counter->mmap_count);
1449}
1450
1451static void perf_mmap_close(struct vm_area_struct *vma)
1452{
1453 struct perf_counter *counter = vma->vm_file->private_data;
1454
1455 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1456 &counter->mmap_mutex)) {
1457 perf_mmap_data_free(counter);
1458 mutex_unlock(&counter->mmap_mutex);
1459 }
37d81828
PM
1460}
1461
1462static struct vm_operations_struct perf_mmap_vmops = {
7b732a75
PZ
1463 .open = perf_mmap_open,
1464 .close = perf_mmap_close,
37d81828
PM
1465 .fault = perf_mmap_fault,
1466};
1467
1468static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1469{
1470 struct perf_counter *counter = file->private_data;
7b732a75
PZ
1471 unsigned long vma_size;
1472 unsigned long nr_pages;
1473 unsigned long locked, lock_limit;
1474 int ret = 0;
37d81828
PM
1475
1476 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1477 return -EINVAL;
7b732a75
PZ
1478
1479 vma_size = vma->vm_end - vma->vm_start;
1480 nr_pages = (vma_size / PAGE_SIZE) - 1;
1481
7730d865
PZ
1482 /*
1483 * If we have data pages ensure they're a power-of-two number, so we
1484 * can do bitmasks instead of modulo.
1485 */
1486 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
1487 return -EINVAL;
1488
7b732a75 1489 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
1490 return -EINVAL;
1491
7b732a75
PZ
1492 if (vma->vm_pgoff != 0)
1493 return -EINVAL;
37d81828 1494
7b732a75
PZ
1495 locked = vma_size >> PAGE_SHIFT;
1496 locked += vma->vm_mm->locked_vm;
1497
1498 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1499 lock_limit >>= PAGE_SHIFT;
1500
1501 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1502 return -EPERM;
1503
1504 mutex_lock(&counter->mmap_mutex);
1505 if (atomic_inc_not_zero(&counter->mmap_count))
1506 goto out;
1507
1508 WARN_ON(counter->data);
1509 ret = perf_mmap_data_alloc(counter, nr_pages);
1510 if (!ret)
1511 atomic_set(&counter->mmap_count, 1);
1512out:
1513 mutex_unlock(&counter->mmap_mutex);
37d81828
PM
1514
1515 vma->vm_flags &= ~VM_MAYWRITE;
1516 vma->vm_flags |= VM_RESERVED;
1517 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
1518
1519 return ret;
37d81828
PM
1520}
1521
0793a61d
TG
1522static const struct file_operations perf_fops = {
1523 .release = perf_release,
1524 .read = perf_read,
1525 .poll = perf_poll,
d859e29f
PM
1526 .unlocked_ioctl = perf_ioctl,
1527 .compat_ioctl = perf_ioctl,
37d81828 1528 .mmap = perf_mmap,
0793a61d
TG
1529};
1530
0322cd6e
PZ
1531/*
1532 * Output
1533 */
1534
b9cacc7b
PZ
1535struct perf_output_handle {
1536 struct perf_counter *counter;
1537 struct perf_mmap_data *data;
1538 unsigned int offset;
63e35b25 1539 unsigned int head;
b9cacc7b
PZ
1540 int wakeup;
1541};
1542
1543static int perf_output_begin(struct perf_output_handle *handle,
1544 struct perf_counter *counter, unsigned int size)
0322cd6e 1545{
7b732a75 1546 struct perf_mmap_data *data;
b9cacc7b 1547 unsigned int offset, head;
0322cd6e 1548
7b732a75 1549 rcu_read_lock();
7b732a75
PZ
1550 data = rcu_dereference(counter->data);
1551 if (!data)
1552 goto out;
1553
1554 if (!data->nr_pages)
1555 goto out;
1556
7b732a75
PZ
1557 do {
1558 offset = head = atomic_read(&data->head);
c7138f37 1559 head += size;
7b732a75
PZ
1560 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1561
b9cacc7b
PZ
1562 handle->counter = counter;
1563 handle->data = data;
1564 handle->offset = offset;
63e35b25 1565 handle->head = head;
b9cacc7b 1566 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
0322cd6e 1567
b9cacc7b 1568 return 0;
7b732a75 1569
b9cacc7b
PZ
1570out:
1571 rcu_read_unlock();
7b732a75 1572
b9cacc7b
PZ
1573 return -ENOSPC;
1574}
7b732a75 1575
b9cacc7b
PZ
1576static void perf_output_copy(struct perf_output_handle *handle,
1577 void *buf, unsigned int len)
1578{
1579 unsigned int pages_mask;
1580 unsigned int offset;
1581 unsigned int size;
1582 void **pages;
1583
1584 offset = handle->offset;
1585 pages_mask = handle->data->nr_pages - 1;
1586 pages = handle->data->data_pages;
1587
1588 do {
1589 unsigned int page_offset;
1590 int nr;
1591
1592 nr = (offset >> PAGE_SHIFT) & pages_mask;
1593 page_offset = offset & (PAGE_SIZE - 1);
1594 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1595
1596 memcpy(pages[nr] + page_offset, buf, size);
1597
1598 len -= size;
1599 buf += size;
1600 offset += size;
1601 } while (len);
1602
1603 handle->offset = offset;
63e35b25
PZ
1604
1605 WARN_ON_ONCE(handle->offset > handle->head);
b9cacc7b
PZ
1606}
1607
5c148194
PZ
1608#define perf_output_put(handle, x) \
1609 perf_output_copy((handle), &(x), sizeof(x))
1610
b9cacc7b
PZ
1611static void perf_output_end(struct perf_output_handle *handle, int nmi)
1612{
1613 if (handle->wakeup) {
1614 (void)atomic_xchg(&handle->data->wakeup, POLL_IN);
1615 __perf_counter_update_userpage(handle->counter, handle->data);
7b732a75 1616 if (nmi) {
b9cacc7b 1617 handle->counter->wakeup_pending = 1;
7b732a75
PZ
1618 set_perf_counter_pending();
1619 } else
b9cacc7b 1620 wake_up(&handle->counter->waitq);
0322cd6e 1621 }
7b732a75 1622 rcu_read_unlock();
b9cacc7b
PZ
1623}
1624
1625static int perf_output_write(struct perf_counter *counter, int nmi,
1626 void *buf, ssize_t size)
1627{
1628 struct perf_output_handle handle;
1629 int ret;
7b732a75 1630
b9cacc7b
PZ
1631 ret = perf_output_begin(&handle, counter, size);
1632 if (ret)
1633 goto out;
1634
1635 perf_output_copy(&handle, buf, size);
1636 perf_output_end(&handle, nmi);
1637
1638out:
7b732a75
PZ
1639 return ret;
1640}
1641
1642static void perf_output_simple(struct perf_counter *counter,
1643 int nmi, struct pt_regs *regs)
1644{
ea5d20cf 1645 unsigned int size;
5c148194
PZ
1646 struct {
1647 struct perf_event_header header;
1648 u64 ip;
ea5d20cf 1649 u32 pid, tid;
5c148194 1650 } event;
7b732a75 1651
5c148194 1652 event.header.type = PERF_EVENT_IP;
5c148194 1653 event.ip = instruction_pointer(regs);
7b732a75 1654
ea5d20cf
PZ
1655 size = sizeof(event);
1656
1657 if (counter->hw_event.include_tid) {
1658 /* namespace issues */
1659 event.pid = current->group_leader->pid;
1660 event.tid = current->pid;
1661
1662 event.header.type |= __PERF_EVENT_TID;
1663 } else
1664 size -= sizeof(u64);
1665
1666 event.header.size = size;
1667
1668 perf_output_write(counter, nmi, &event, size);
0322cd6e
PZ
1669}
1670
7b732a75 1671static void perf_output_group(struct perf_counter *counter, int nmi)
0322cd6e 1672{
5c148194
PZ
1673 struct perf_output_handle handle;
1674 struct perf_event_header header;
0322cd6e 1675 struct perf_counter *leader, *sub;
5c148194
PZ
1676 unsigned int size;
1677 struct {
1678 u64 event;
1679 u64 counter;
1680 } entry;
1681 int ret;
1682
1683 size = sizeof(header) + counter->nr_siblings * sizeof(entry);
1684
1685 ret = perf_output_begin(&handle, counter, size);
1686 if (ret)
1687 return;
1688
1689 header.type = PERF_EVENT_GROUP;
1690 header.size = size;
1691
1692 perf_output_put(&handle, header);
0322cd6e
PZ
1693
1694 leader = counter->group_leader;
1695 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1696 if (sub != counter)
1697 sub->hw_ops->read(sub);
7b732a75
PZ
1698
1699 entry.event = sub->hw_event.config;
1700 entry.counter = atomic64_read(&sub->count);
1701
5c148194 1702 perf_output_put(&handle, entry);
0322cd6e 1703 }
5c148194
PZ
1704
1705 perf_output_end(&handle, nmi);
0322cd6e
PZ
1706}
1707
1708void perf_counter_output(struct perf_counter *counter,
1709 int nmi, struct pt_regs *regs)
1710{
1711 switch (counter->hw_event.record_type) {
1712 case PERF_RECORD_SIMPLE:
1713 return;
1714
1715 case PERF_RECORD_IRQ:
7b732a75 1716 perf_output_simple(counter, nmi, regs);
0322cd6e
PZ
1717 break;
1718
1719 case PERF_RECORD_GROUP:
7b732a75 1720 perf_output_group(counter, nmi);
0322cd6e
PZ
1721 break;
1722 }
0322cd6e
PZ
1723}
1724
15dbf27c
PZ
1725/*
1726 * Generic software counter infrastructure
1727 */
1728
1729static void perf_swcounter_update(struct perf_counter *counter)
1730{
1731 struct hw_perf_counter *hwc = &counter->hw;
1732 u64 prev, now;
1733 s64 delta;
1734
1735again:
1736 prev = atomic64_read(&hwc->prev_count);
1737 now = atomic64_read(&hwc->count);
1738 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1739 goto again;
1740
1741 delta = now - prev;
1742
1743 atomic64_add(delta, &counter->count);
1744 atomic64_sub(delta, &hwc->period_left);
1745}
1746
1747static void perf_swcounter_set_period(struct perf_counter *counter)
1748{
1749 struct hw_perf_counter *hwc = &counter->hw;
1750 s64 left = atomic64_read(&hwc->period_left);
1751 s64 period = hwc->irq_period;
1752
1753 if (unlikely(left <= -period)) {
1754 left = period;
1755 atomic64_set(&hwc->period_left, left);
1756 }
1757
1758 if (unlikely(left <= 0)) {
1759 left += period;
1760 atomic64_add(period, &hwc->period_left);
1761 }
1762
1763 atomic64_set(&hwc->prev_count, -left);
1764 atomic64_set(&hwc->count, -left);
1765}
1766
d6d020e9
PZ
1767static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1768{
1769 struct perf_counter *counter;
1770 struct pt_regs *regs;
1771
1772 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1773 counter->hw_ops->read(counter);
1774
1775 regs = get_irq_regs();
1776 /*
1777 * In case we exclude kernel IPs or are somehow not in interrupt
1778 * context, provide the next best thing, the user IP.
1779 */
1780 if ((counter->hw_event.exclude_kernel || !regs) &&
1781 !counter->hw_event.exclude_user)
1782 regs = task_pt_regs(current);
1783
1784 if (regs)
0322cd6e 1785 perf_counter_output(counter, 0, regs);
d6d020e9
PZ
1786
1787 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1788
1789 return HRTIMER_RESTART;
1790}
1791
1792static void perf_swcounter_overflow(struct perf_counter *counter,
1793 int nmi, struct pt_regs *regs)
1794{
b8e83514
PZ
1795 perf_swcounter_update(counter);
1796 perf_swcounter_set_period(counter);
0322cd6e 1797 perf_counter_output(counter, nmi, regs);
d6d020e9
PZ
1798}
1799
15dbf27c 1800static int perf_swcounter_match(struct perf_counter *counter,
b8e83514
PZ
1801 enum perf_event_types type,
1802 u32 event, struct pt_regs *regs)
15dbf27c
PZ
1803{
1804 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1805 return 0;
1806
f4a2deb4 1807 if (perf_event_raw(&counter->hw_event))
b8e83514
PZ
1808 return 0;
1809
f4a2deb4 1810 if (perf_event_type(&counter->hw_event) != type)
15dbf27c
PZ
1811 return 0;
1812
f4a2deb4 1813 if (perf_event_id(&counter->hw_event) != event)
15dbf27c
PZ
1814 return 0;
1815
1816 if (counter->hw_event.exclude_user && user_mode(regs))
1817 return 0;
1818
1819 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1820 return 0;
1821
1822 return 1;
1823}
1824
d6d020e9
PZ
1825static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1826 int nmi, struct pt_regs *regs)
1827{
1828 int neg = atomic64_add_negative(nr, &counter->hw.count);
1829 if (counter->hw.irq_period && !neg)
1830 perf_swcounter_overflow(counter, nmi, regs);
1831}
1832
15dbf27c 1833static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
b8e83514
PZ
1834 enum perf_event_types type, u32 event,
1835 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1836{
1837 struct perf_counter *counter;
15dbf27c 1838
01ef09d9 1839 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
15dbf27c
PZ
1840 return;
1841
592903cd
PZ
1842 rcu_read_lock();
1843 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
b8e83514 1844 if (perf_swcounter_match(counter, type, event, regs))
d6d020e9 1845 perf_swcounter_add(counter, nr, nmi, regs);
15dbf27c 1846 }
592903cd 1847 rcu_read_unlock();
15dbf27c
PZ
1848}
1849
96f6d444
PZ
1850static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1851{
1852 if (in_nmi())
1853 return &cpuctx->recursion[3];
1854
1855 if (in_irq())
1856 return &cpuctx->recursion[2];
1857
1858 if (in_softirq())
1859 return &cpuctx->recursion[1];
1860
1861 return &cpuctx->recursion[0];
1862}
1863
b8e83514
PZ
1864static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1865 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1866{
1867 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
96f6d444
PZ
1868 int *recursion = perf_swcounter_recursion_context(cpuctx);
1869
1870 if (*recursion)
1871 goto out;
1872
1873 (*recursion)++;
1874 barrier();
15dbf27c 1875
b8e83514
PZ
1876 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1877 if (cpuctx->task_ctx) {
1878 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1879 nr, nmi, regs);
1880 }
15dbf27c 1881
96f6d444
PZ
1882 barrier();
1883 (*recursion)--;
1884
1885out:
15dbf27c
PZ
1886 put_cpu_var(perf_cpu_context);
1887}
1888
b8e83514
PZ
1889void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1890{
1891 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1892}
1893
15dbf27c
PZ
1894static void perf_swcounter_read(struct perf_counter *counter)
1895{
1896 perf_swcounter_update(counter);
1897}
1898
1899static int perf_swcounter_enable(struct perf_counter *counter)
1900{
1901 perf_swcounter_set_period(counter);
1902 return 0;
1903}
1904
1905static void perf_swcounter_disable(struct perf_counter *counter)
1906{
1907 perf_swcounter_update(counter);
1908}
1909
ac17dc8e
PZ
1910static const struct hw_perf_counter_ops perf_ops_generic = {
1911 .enable = perf_swcounter_enable,
1912 .disable = perf_swcounter_disable,
1913 .read = perf_swcounter_read,
1914};
1915
15dbf27c
PZ
1916/*
1917 * Software counter: cpu wall time clock
1918 */
1919
9abf8a08
PM
1920static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1921{
1922 int cpu = raw_smp_processor_id();
1923 s64 prev;
1924 u64 now;
1925
1926 now = cpu_clock(cpu);
1927 prev = atomic64_read(&counter->hw.prev_count);
1928 atomic64_set(&counter->hw.prev_count, now);
1929 atomic64_add(now - prev, &counter->count);
1930}
1931
d6d020e9
PZ
1932static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1933{
1934 struct hw_perf_counter *hwc = &counter->hw;
1935 int cpu = raw_smp_processor_id();
1936
1937 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
039fc91e
PZ
1938 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1939 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 1940 if (hwc->irq_period) {
d6d020e9
PZ
1941 __hrtimer_start_range_ns(&hwc->hrtimer,
1942 ns_to_ktime(hwc->irq_period), 0,
1943 HRTIMER_MODE_REL, 0);
1944 }
1945
1946 return 0;
1947}
1948
5c92d124
IM
1949static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1950{
d6d020e9 1951 hrtimer_cancel(&counter->hw.hrtimer);
9abf8a08 1952 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1953}
1954
1955static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1956{
9abf8a08 1957 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1958}
1959
1960static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
7671581f
IM
1961 .enable = cpu_clock_perf_counter_enable,
1962 .disable = cpu_clock_perf_counter_disable,
1963 .read = cpu_clock_perf_counter_read,
5c92d124
IM
1964};
1965
15dbf27c
PZ
1966/*
1967 * Software counter: task time clock
1968 */
1969
aa9c4c0f
IM
1970/*
1971 * Called from within the scheduler:
1972 */
1973static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
bae43c99 1974{
aa9c4c0f
IM
1975 struct task_struct *curr = counter->task;
1976 u64 delta;
1977
aa9c4c0f
IM
1978 delta = __task_delta_exec(curr, update);
1979
1980 return curr->se.sum_exec_runtime + delta;
1981}
1982
1983static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1984{
1985 u64 prev;
8cb391e8
IM
1986 s64 delta;
1987
1988 prev = atomic64_read(&counter->hw.prev_count);
8cb391e8
IM
1989
1990 atomic64_set(&counter->hw.prev_count, now);
1991
1992 delta = now - prev;
8cb391e8
IM
1993
1994 atomic64_add(delta, &counter->count);
bae43c99
IM
1995}
1996
95cdd2e7 1997static int task_clock_perf_counter_enable(struct perf_counter *counter)
8cb391e8 1998{
d6d020e9
PZ
1999 struct hw_perf_counter *hwc = &counter->hw;
2000
2001 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
039fc91e
PZ
2002 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2003 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 2004 if (hwc->irq_period) {
d6d020e9
PZ
2005 __hrtimer_start_range_ns(&hwc->hrtimer,
2006 ns_to_ktime(hwc->irq_period), 0,
2007 HRTIMER_MODE_REL, 0);
2008 }
95cdd2e7
IM
2009
2010 return 0;
8cb391e8
IM
2011}
2012
2013static void task_clock_perf_counter_disable(struct perf_counter *counter)
bae43c99 2014{
d6d020e9
PZ
2015 hrtimer_cancel(&counter->hw.hrtimer);
2016 task_clock_perf_counter_update(counter,
2017 task_clock_perf_counter_val(counter, 0));
2018}
aa9c4c0f 2019
d6d020e9
PZ
2020static void task_clock_perf_counter_read(struct perf_counter *counter)
2021{
2022 task_clock_perf_counter_update(counter,
2023 task_clock_perf_counter_val(counter, 1));
bae43c99
IM
2024}
2025
2026static const struct hw_perf_counter_ops perf_ops_task_clock = {
7671581f
IM
2027 .enable = task_clock_perf_counter_enable,
2028 .disable = task_clock_perf_counter_disable,
2029 .read = task_clock_perf_counter_read,
bae43c99
IM
2030};
2031
15dbf27c
PZ
2032/*
2033 * Software counter: cpu migrations
2034 */
2035
23a185ca 2036static inline u64 get_cpu_migrations(struct perf_counter *counter)
6c594c21 2037{
23a185ca
PM
2038 struct task_struct *curr = counter->ctx->task;
2039
2040 if (curr)
2041 return curr->se.nr_migrations;
2042 return cpu_nr_migrations(smp_processor_id());
6c594c21
IM
2043}
2044
2045static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2046{
2047 u64 prev, now;
2048 s64 delta;
2049
2050 prev = atomic64_read(&counter->hw.prev_count);
23a185ca 2051 now = get_cpu_migrations(counter);
6c594c21
IM
2052
2053 atomic64_set(&counter->hw.prev_count, now);
2054
2055 delta = now - prev;
6c594c21
IM
2056
2057 atomic64_add(delta, &counter->count);
2058}
2059
2060static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2061{
2062 cpu_migrations_perf_counter_update(counter);
2063}
2064
95cdd2e7 2065static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
6c594c21 2066{
c07c99b6
PM
2067 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2068 atomic64_set(&counter->hw.prev_count,
2069 get_cpu_migrations(counter));
95cdd2e7 2070 return 0;
6c594c21
IM
2071}
2072
2073static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2074{
2075 cpu_migrations_perf_counter_update(counter);
2076}
2077
2078static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
7671581f
IM
2079 .enable = cpu_migrations_perf_counter_enable,
2080 .disable = cpu_migrations_perf_counter_disable,
2081 .read = cpu_migrations_perf_counter_read,
6c594c21
IM
2082};
2083
e077df4f
PZ
2084#ifdef CONFIG_EVENT_PROFILE
2085void perf_tpcounter_event(int event_id)
2086{
b8e83514
PZ
2087 struct pt_regs *regs = get_irq_regs();
2088
2089 if (!regs)
2090 regs = task_pt_regs(current);
2091
2092 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
e077df4f
PZ
2093}
2094
2095extern int ftrace_profile_enable(int);
2096extern void ftrace_profile_disable(int);
2097
2098static void tp_perf_counter_destroy(struct perf_counter *counter)
2099{
f4a2deb4 2100 ftrace_profile_disable(perf_event_id(&counter->hw_event));
e077df4f
PZ
2101}
2102
2103static const struct hw_perf_counter_ops *
2104tp_perf_counter_init(struct perf_counter *counter)
2105{
f4a2deb4 2106 int event_id = perf_event_id(&counter->hw_event);
e077df4f
PZ
2107 int ret;
2108
2109 ret = ftrace_profile_enable(event_id);
2110 if (ret)
2111 return NULL;
2112
2113 counter->destroy = tp_perf_counter_destroy;
b8e83514 2114 counter->hw.irq_period = counter->hw_event.irq_period;
e077df4f
PZ
2115
2116 return &perf_ops_generic;
2117}
2118#else
2119static const struct hw_perf_counter_ops *
2120tp_perf_counter_init(struct perf_counter *counter)
2121{
2122 return NULL;
2123}
2124#endif
2125
5c92d124
IM
2126static const struct hw_perf_counter_ops *
2127sw_perf_counter_init(struct perf_counter *counter)
2128{
15dbf27c 2129 struct perf_counter_hw_event *hw_event = &counter->hw_event;
5c92d124 2130 const struct hw_perf_counter_ops *hw_ops = NULL;
15dbf27c 2131 struct hw_perf_counter *hwc = &counter->hw;
5c92d124 2132
0475f9ea
PM
2133 /*
2134 * Software counters (currently) can't in general distinguish
2135 * between user, kernel and hypervisor events.
2136 * However, context switches and cpu migrations are considered
2137 * to be kernel events, and page faults are never hypervisor
2138 * events.
2139 */
f4a2deb4 2140 switch (perf_event_id(&counter->hw_event)) {
5c92d124 2141 case PERF_COUNT_CPU_CLOCK:
d6d020e9
PZ
2142 hw_ops = &perf_ops_cpu_clock;
2143
2144 if (hw_event->irq_period && hw_event->irq_period < 10000)
2145 hw_event->irq_period = 10000;
5c92d124 2146 break;
bae43c99 2147 case PERF_COUNT_TASK_CLOCK:
23a185ca
PM
2148 /*
2149 * If the user instantiates this as a per-cpu counter,
2150 * use the cpu_clock counter instead.
2151 */
2152 if (counter->ctx->task)
2153 hw_ops = &perf_ops_task_clock;
2154 else
2155 hw_ops = &perf_ops_cpu_clock;
d6d020e9
PZ
2156
2157 if (hw_event->irq_period && hw_event->irq_period < 10000)
2158 hw_event->irq_period = 10000;
bae43c99 2159 break;
e06c61a8 2160 case PERF_COUNT_PAGE_FAULTS:
ac17dc8e
PZ
2161 case PERF_COUNT_PAGE_FAULTS_MIN:
2162 case PERF_COUNT_PAGE_FAULTS_MAJ:
5d6a27d8 2163 case PERF_COUNT_CONTEXT_SWITCHES:
4a0deca6 2164 hw_ops = &perf_ops_generic;
5d6a27d8 2165 break;
6c594c21 2166 case PERF_COUNT_CPU_MIGRATIONS:
0475f9ea
PM
2167 if (!counter->hw_event.exclude_kernel)
2168 hw_ops = &perf_ops_cpu_migrations;
6c594c21 2169 break;
5c92d124 2170 }
15dbf27c
PZ
2171
2172 if (hw_ops)
2173 hwc->irq_period = hw_event->irq_period;
2174
5c92d124
IM
2175 return hw_ops;
2176}
2177
0793a61d
TG
2178/*
2179 * Allocate and initialize a counter structure
2180 */
2181static struct perf_counter *
04289bb9
IM
2182perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2183 int cpu,
23a185ca 2184 struct perf_counter_context *ctx,
9b51f66d
IM
2185 struct perf_counter *group_leader,
2186 gfp_t gfpflags)
0793a61d 2187{
5c92d124 2188 const struct hw_perf_counter_ops *hw_ops;
621a01ea 2189 struct perf_counter *counter;
0793a61d 2190
9b51f66d 2191 counter = kzalloc(sizeof(*counter), gfpflags);
0793a61d
TG
2192 if (!counter)
2193 return NULL;
2194
04289bb9
IM
2195 /*
2196 * Single counters are their own group leaders, with an
2197 * empty sibling list:
2198 */
2199 if (!group_leader)
2200 group_leader = counter;
2201
0793a61d 2202 mutex_init(&counter->mutex);
04289bb9 2203 INIT_LIST_HEAD(&counter->list_entry);
592903cd 2204 INIT_LIST_HEAD(&counter->event_entry);
04289bb9 2205 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
2206 init_waitqueue_head(&counter->waitq);
2207
7b732a75
PZ
2208 mutex_init(&counter->mmap_mutex);
2209
d859e29f
PM
2210 INIT_LIST_HEAD(&counter->child_list);
2211
9f66a381
IM
2212 counter->cpu = cpu;
2213 counter->hw_event = *hw_event;
2214 counter->wakeup_pending = 0;
04289bb9 2215 counter->group_leader = group_leader;
621a01ea 2216 counter->hw_ops = NULL;
23a185ca 2217 counter->ctx = ctx;
621a01ea 2218
235c7fc7 2219 counter->state = PERF_COUNTER_STATE_INACTIVE;
a86ed508
IM
2220 if (hw_event->disabled)
2221 counter->state = PERF_COUNTER_STATE_OFF;
2222
5c92d124 2223 hw_ops = NULL;
b8e83514 2224
f4a2deb4 2225 if (perf_event_raw(hw_event)) {
b8e83514 2226 hw_ops = hw_perf_counter_init(counter);
f4a2deb4
PZ
2227 goto done;
2228 }
2229
2230 switch (perf_event_type(hw_event)) {
b8e83514 2231 case PERF_TYPE_HARDWARE:
5c92d124 2232 hw_ops = hw_perf_counter_init(counter);
b8e83514
PZ
2233 break;
2234
2235 case PERF_TYPE_SOFTWARE:
2236 hw_ops = sw_perf_counter_init(counter);
2237 break;
2238
2239 case PERF_TYPE_TRACEPOINT:
2240 hw_ops = tp_perf_counter_init(counter);
2241 break;
2242 }
5c92d124 2243
621a01ea
IM
2244 if (!hw_ops) {
2245 kfree(counter);
2246 return NULL;
2247 }
f4a2deb4 2248done:
621a01ea 2249 counter->hw_ops = hw_ops;
0793a61d
TG
2250
2251 return counter;
2252}
2253
2254/**
2743a5b0 2255 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
9f66a381
IM
2256 *
2257 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 2258 * @pid: target pid
9f66a381
IM
2259 * @cpu: target cpu
2260 * @group_fd: group leader counter fd
0793a61d 2261 */
2743a5b0 2262SYSCALL_DEFINE5(perf_counter_open,
f3dfd265 2263 const struct perf_counter_hw_event __user *, hw_event_uptr,
2743a5b0 2264 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 2265{
04289bb9 2266 struct perf_counter *counter, *group_leader;
9f66a381 2267 struct perf_counter_hw_event hw_event;
04289bb9 2268 struct perf_counter_context *ctx;
9b51f66d 2269 struct file *counter_file = NULL;
04289bb9
IM
2270 struct file *group_file = NULL;
2271 int fput_needed = 0;
9b51f66d 2272 int fput_needed2 = 0;
0793a61d
TG
2273 int ret;
2274
2743a5b0
PM
2275 /* for future expandability... */
2276 if (flags)
2277 return -EINVAL;
2278
9f66a381 2279 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
2280 return -EFAULT;
2281
04289bb9 2282 /*
ccff286d
IM
2283 * Get the target context (task or percpu):
2284 */
2285 ctx = find_get_context(pid, cpu);
2286 if (IS_ERR(ctx))
2287 return PTR_ERR(ctx);
2288
2289 /*
2290 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
2291 */
2292 group_leader = NULL;
2293 if (group_fd != -1) {
2294 ret = -EINVAL;
2295 group_file = fget_light(group_fd, &fput_needed);
2296 if (!group_file)
ccff286d 2297 goto err_put_context;
04289bb9 2298 if (group_file->f_op != &perf_fops)
ccff286d 2299 goto err_put_context;
04289bb9
IM
2300
2301 group_leader = group_file->private_data;
2302 /*
ccff286d
IM
2303 * Do not allow a recursive hierarchy (this new sibling
2304 * becoming part of another group-sibling):
2305 */
2306 if (group_leader->group_leader != group_leader)
2307 goto err_put_context;
2308 /*
2309 * Do not allow to attach to a group in a different
2310 * task or CPU context:
04289bb9 2311 */
ccff286d
IM
2312 if (group_leader->ctx != ctx)
2313 goto err_put_context;
3b6f9e5c
PM
2314 /*
2315 * Only a group leader can be exclusive or pinned
2316 */
2317 if (hw_event.exclusive || hw_event.pinned)
2318 goto err_put_context;
04289bb9
IM
2319 }
2320
5c92d124 2321 ret = -EINVAL;
23a185ca
PM
2322 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2323 GFP_KERNEL);
0793a61d
TG
2324 if (!counter)
2325 goto err_put_context;
2326
0793a61d
TG
2327 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2328 if (ret < 0)
9b51f66d
IM
2329 goto err_free_put_context;
2330
2331 counter_file = fget_light(ret, &fput_needed2);
2332 if (!counter_file)
2333 goto err_free_put_context;
2334
2335 counter->filp = counter_file;
d859e29f 2336 mutex_lock(&ctx->mutex);
9b51f66d 2337 perf_install_in_context(ctx, counter, cpu);
d859e29f 2338 mutex_unlock(&ctx->mutex);
9b51f66d
IM
2339
2340 fput_light(counter_file, fput_needed2);
0793a61d 2341
04289bb9
IM
2342out_fput:
2343 fput_light(group_file, fput_needed);
2344
0793a61d
TG
2345 return ret;
2346
9b51f66d 2347err_free_put_context:
0793a61d
TG
2348 kfree(counter);
2349
2350err_put_context:
2351 put_context(ctx);
2352
04289bb9 2353 goto out_fput;
0793a61d
TG
2354}
2355
9b51f66d
IM
2356/*
2357 * Initialize the perf_counter context in a task_struct:
2358 */
2359static void
2360__perf_counter_init_context(struct perf_counter_context *ctx,
2361 struct task_struct *task)
2362{
2363 memset(ctx, 0, sizeof(*ctx));
2364 spin_lock_init(&ctx->lock);
d859e29f 2365 mutex_init(&ctx->mutex);
9b51f66d 2366 INIT_LIST_HEAD(&ctx->counter_list);
592903cd 2367 INIT_LIST_HEAD(&ctx->event_list);
9b51f66d
IM
2368 ctx->task = task;
2369}
2370
2371/*
2372 * inherit a counter from parent task to child task:
2373 */
d859e29f 2374static struct perf_counter *
9b51f66d
IM
2375inherit_counter(struct perf_counter *parent_counter,
2376 struct task_struct *parent,
2377 struct perf_counter_context *parent_ctx,
2378 struct task_struct *child,
d859e29f 2379 struct perf_counter *group_leader,
9b51f66d
IM
2380 struct perf_counter_context *child_ctx)
2381{
2382 struct perf_counter *child_counter;
2383
d859e29f
PM
2384 /*
2385 * Instead of creating recursive hierarchies of counters,
2386 * we link inherited counters back to the original parent,
2387 * which has a filp for sure, which we use as the reference
2388 * count:
2389 */
2390 if (parent_counter->parent)
2391 parent_counter = parent_counter->parent;
2392
9b51f66d 2393 child_counter = perf_counter_alloc(&parent_counter->hw_event,
23a185ca
PM
2394 parent_counter->cpu, child_ctx,
2395 group_leader, GFP_KERNEL);
9b51f66d 2396 if (!child_counter)
d859e29f 2397 return NULL;
9b51f66d
IM
2398
2399 /*
2400 * Link it up in the child's context:
2401 */
9b51f66d 2402 child_counter->task = child;
53cfbf59 2403 add_counter_to_ctx(child_counter, child_ctx);
9b51f66d
IM
2404
2405 child_counter->parent = parent_counter;
9b51f66d
IM
2406 /*
2407 * inherit into child's child as well:
2408 */
2409 child_counter->hw_event.inherit = 1;
2410
2411 /*
2412 * Get a reference to the parent filp - we will fput it
2413 * when the child counter exits. This is safe to do because
2414 * we are in the parent and we know that the filp still
2415 * exists and has a nonzero count:
2416 */
2417 atomic_long_inc(&parent_counter->filp->f_count);
2418
d859e29f
PM
2419 /*
2420 * Link this into the parent counter's child list
2421 */
2422 mutex_lock(&parent_counter->mutex);
2423 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2424
2425 /*
2426 * Make the child state follow the state of the parent counter,
2427 * not its hw_event.disabled bit. We hold the parent's mutex,
2428 * so we won't race with perf_counter_{en,dis}able_family.
2429 */
2430 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2431 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2432 else
2433 child_counter->state = PERF_COUNTER_STATE_OFF;
2434
2435 mutex_unlock(&parent_counter->mutex);
2436
2437 return child_counter;
2438}
2439
2440static int inherit_group(struct perf_counter *parent_counter,
2441 struct task_struct *parent,
2442 struct perf_counter_context *parent_ctx,
2443 struct task_struct *child,
2444 struct perf_counter_context *child_ctx)
2445{
2446 struct perf_counter *leader;
2447 struct perf_counter *sub;
2448
2449 leader = inherit_counter(parent_counter, parent, parent_ctx,
2450 child, NULL, child_ctx);
2451 if (!leader)
2452 return -ENOMEM;
2453 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2454 if (!inherit_counter(sub, parent, parent_ctx,
2455 child, leader, child_ctx))
2456 return -ENOMEM;
2457 }
9b51f66d
IM
2458 return 0;
2459}
2460
d859e29f
PM
2461static void sync_child_counter(struct perf_counter *child_counter,
2462 struct perf_counter *parent_counter)
2463{
2464 u64 parent_val, child_val;
2465
2466 parent_val = atomic64_read(&parent_counter->count);
2467 child_val = atomic64_read(&child_counter->count);
2468
2469 /*
2470 * Add back the child's count to the parent's count:
2471 */
2472 atomic64_add(child_val, &parent_counter->count);
53cfbf59
PM
2473 atomic64_add(child_counter->total_time_enabled,
2474 &parent_counter->child_total_time_enabled);
2475 atomic64_add(child_counter->total_time_running,
2476 &parent_counter->child_total_time_running);
d859e29f
PM
2477
2478 /*
2479 * Remove this counter from the parent's list
2480 */
2481 mutex_lock(&parent_counter->mutex);
2482 list_del_init(&child_counter->child_list);
2483 mutex_unlock(&parent_counter->mutex);
2484
2485 /*
2486 * Release the parent counter, if this was the last
2487 * reference to it.
2488 */
2489 fput(parent_counter->filp);
2490}
2491
9b51f66d
IM
2492static void
2493__perf_counter_exit_task(struct task_struct *child,
2494 struct perf_counter *child_counter,
2495 struct perf_counter_context *child_ctx)
2496{
2497 struct perf_counter *parent_counter;
d859e29f 2498 struct perf_counter *sub, *tmp;
9b51f66d
IM
2499
2500 /*
235c7fc7
IM
2501 * If we do not self-reap then we have to wait for the
2502 * child task to unschedule (it will happen for sure),
2503 * so that its counter is at its final count. (This
2504 * condition triggers rarely - child tasks usually get
2505 * off their CPU before the parent has a chance to
2506 * get this far into the reaping action)
9b51f66d 2507 */
235c7fc7
IM
2508 if (child != current) {
2509 wait_task_inactive(child, 0);
2510 list_del_init(&child_counter->list_entry);
53cfbf59 2511 update_counter_times(child_counter);
235c7fc7 2512 } else {
0cc0c027 2513 struct perf_cpu_context *cpuctx;
235c7fc7
IM
2514 unsigned long flags;
2515 u64 perf_flags;
2516
2517 /*
2518 * Disable and unlink this counter.
2519 *
2520 * Be careful about zapping the list - IRQ/NMI context
2521 * could still be processing it:
2522 */
2523 curr_rq_lock_irq_save(&flags);
2524 perf_flags = hw_perf_save_disable();
0cc0c027
IM
2525
2526 cpuctx = &__get_cpu_var(perf_cpu_context);
2527
d859e29f 2528 group_sched_out(child_counter, cpuctx, child_ctx);
53cfbf59 2529 update_counter_times(child_counter);
0cc0c027 2530
235c7fc7 2531 list_del_init(&child_counter->list_entry);
0cc0c027 2532
235c7fc7 2533 child_ctx->nr_counters--;
9b51f66d 2534
235c7fc7
IM
2535 hw_perf_restore(perf_flags);
2536 curr_rq_unlock_irq_restore(&flags);
2537 }
9b51f66d
IM
2538
2539 parent_counter = child_counter->parent;
2540 /*
2541 * It can happen that parent exits first, and has counters
2542 * that are still around due to the child reference. These
2543 * counters need to be zapped - but otherwise linger.
2544 */
d859e29f
PM
2545 if (parent_counter) {
2546 sync_child_counter(child_counter, parent_counter);
2547 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2548 list_entry) {
4bcf349a 2549 if (sub->parent) {
d859e29f 2550 sync_child_counter(sub, sub->parent);
f1600952 2551 free_counter(sub);
4bcf349a 2552 }
d859e29f 2553 }
f1600952 2554 free_counter(child_counter);
4bcf349a 2555 }
9b51f66d
IM
2556}
2557
2558/*
d859e29f 2559 * When a child task exits, feed back counter values to parent counters.
9b51f66d 2560 *
d859e29f 2561 * Note: we may be running in child context, but the PID is not hashed
9b51f66d
IM
2562 * anymore so new counters will not be added.
2563 */
2564void perf_counter_exit_task(struct task_struct *child)
2565{
2566 struct perf_counter *child_counter, *tmp;
2567 struct perf_counter_context *child_ctx;
2568
2569 child_ctx = &child->perf_counter_ctx;
2570
2571 if (likely(!child_ctx->nr_counters))
2572 return;
2573
2574 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2575 list_entry)
2576 __perf_counter_exit_task(child, child_counter, child_ctx);
2577}
2578
2579/*
2580 * Initialize the perf_counter context in task_struct
2581 */
2582void perf_counter_init_task(struct task_struct *child)
2583{
2584 struct perf_counter_context *child_ctx, *parent_ctx;
d859e29f 2585 struct perf_counter *counter;
9b51f66d 2586 struct task_struct *parent = current;
9b51f66d
IM
2587
2588 child_ctx = &child->perf_counter_ctx;
2589 parent_ctx = &parent->perf_counter_ctx;
2590
2591 __perf_counter_init_context(child_ctx, child);
2592
2593 /*
2594 * This is executed from the parent task context, so inherit
2595 * counters that have been marked for cloning:
2596 */
2597
2598 if (likely(!parent_ctx->nr_counters))
2599 return;
2600
2601 /*
2602 * Lock the parent list. No need to lock the child - not PID
2603 * hashed yet and not running, so nobody can access it.
2604 */
d859e29f 2605 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
2606
2607 /*
2608 * We dont have to disable NMIs - we are only looking at
2609 * the list, not manipulating it:
2610 */
2611 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
d859e29f 2612 if (!counter->hw_event.inherit)
9b51f66d
IM
2613 continue;
2614
d859e29f 2615 if (inherit_group(counter, parent,
9b51f66d
IM
2616 parent_ctx, child, child_ctx))
2617 break;
2618 }
2619
d859e29f 2620 mutex_unlock(&parent_ctx->mutex);
9b51f66d
IM
2621}
2622
04289bb9 2623static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 2624{
04289bb9 2625 struct perf_cpu_context *cpuctx;
0793a61d 2626
04289bb9
IM
2627 cpuctx = &per_cpu(perf_cpu_context, cpu);
2628 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
2629
2630 mutex_lock(&perf_resource_mutex);
04289bb9 2631 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 2632 mutex_unlock(&perf_resource_mutex);
04289bb9 2633
01d0287f 2634 hw_perf_counter_setup(cpu);
0793a61d
TG
2635}
2636
2637#ifdef CONFIG_HOTPLUG_CPU
04289bb9 2638static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
2639{
2640 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2641 struct perf_counter_context *ctx = &cpuctx->ctx;
2642 struct perf_counter *counter, *tmp;
2643
04289bb9
IM
2644 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2645 __perf_counter_remove_from_context(counter);
0793a61d 2646}
04289bb9 2647static void perf_counter_exit_cpu(int cpu)
0793a61d 2648{
d859e29f
PM
2649 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2650 struct perf_counter_context *ctx = &cpuctx->ctx;
2651
2652 mutex_lock(&ctx->mutex);
04289bb9 2653 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
d859e29f 2654 mutex_unlock(&ctx->mutex);
0793a61d
TG
2655}
2656#else
04289bb9 2657static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
2658#endif
2659
2660static int __cpuinit
2661perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2662{
2663 unsigned int cpu = (long)hcpu;
2664
2665 switch (action) {
2666
2667 case CPU_UP_PREPARE:
2668 case CPU_UP_PREPARE_FROZEN:
04289bb9 2669 perf_counter_init_cpu(cpu);
0793a61d
TG
2670 break;
2671
2672 case CPU_DOWN_PREPARE:
2673 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 2674 perf_counter_exit_cpu(cpu);
0793a61d
TG
2675 break;
2676
2677 default:
2678 break;
2679 }
2680
2681 return NOTIFY_OK;
2682}
2683
2684static struct notifier_block __cpuinitdata perf_cpu_nb = {
2685 .notifier_call = perf_cpu_notify,
2686};
2687
2688static int __init perf_counter_init(void)
2689{
2690 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2691 (void *)(long)smp_processor_id());
2692 register_cpu_notifier(&perf_cpu_nb);
2693
2694 return 0;
2695}
2696early_initcall(perf_counter_init);
2697
2698static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2699{
2700 return sprintf(buf, "%d\n", perf_reserved_percpu);
2701}
2702
2703static ssize_t
2704perf_set_reserve_percpu(struct sysdev_class *class,
2705 const char *buf,
2706 size_t count)
2707{
2708 struct perf_cpu_context *cpuctx;
2709 unsigned long val;
2710 int err, cpu, mpt;
2711
2712 err = strict_strtoul(buf, 10, &val);
2713 if (err)
2714 return err;
2715 if (val > perf_max_counters)
2716 return -EINVAL;
2717
2718 mutex_lock(&perf_resource_mutex);
2719 perf_reserved_percpu = val;
2720 for_each_online_cpu(cpu) {
2721 cpuctx = &per_cpu(perf_cpu_context, cpu);
2722 spin_lock_irq(&cpuctx->ctx.lock);
2723 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2724 perf_max_counters - perf_reserved_percpu);
2725 cpuctx->max_pertask = mpt;
2726 spin_unlock_irq(&cpuctx->ctx.lock);
2727 }
2728 mutex_unlock(&perf_resource_mutex);
2729
2730 return count;
2731}
2732
2733static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2734{
2735 return sprintf(buf, "%d\n", perf_overcommit);
2736}
2737
2738static ssize_t
2739perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2740{
2741 unsigned long val;
2742 int err;
2743
2744 err = strict_strtoul(buf, 10, &val);
2745 if (err)
2746 return err;
2747 if (val > 1)
2748 return -EINVAL;
2749
2750 mutex_lock(&perf_resource_mutex);
2751 perf_overcommit = val;
2752 mutex_unlock(&perf_resource_mutex);
2753
2754 return count;
2755}
2756
2757static SYSDEV_CLASS_ATTR(
2758 reserve_percpu,
2759 0644,
2760 perf_show_reserve_percpu,
2761 perf_set_reserve_percpu
2762 );
2763
2764static SYSDEV_CLASS_ATTR(
2765 overcommit,
2766 0644,
2767 perf_show_overcommit,
2768 perf_set_overcommit
2769 );
2770
2771static struct attribute *perfclass_attrs[] = {
2772 &attr_reserve_percpu.attr,
2773 &attr_overcommit.attr,
2774 NULL
2775};
2776
2777static struct attribute_group perfclass_attr_group = {
2778 .attrs = perfclass_attrs,
2779 .name = "perf_counters",
2780};
2781
2782static int __init perf_counter_sysfs_init(void)
2783{
2784 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2785 &perfclass_attr_group);
2786}
2787device_initcall(perf_counter_sysfs_init);