perf_counter, x86: protect per-cpu variables with compile barriers only
[linux-2.6-block.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7b732a75
PZ
7 *
8 * For licensing details see kernel-base/COPYING
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
04289bb9 15#include <linux/file.h>
0793a61d
TG
16#include <linux/poll.h>
17#include <linux/sysfs.h>
18#include <linux/ptrace.h>
19#include <linux/percpu.h>
b9cacc7b
PZ
20#include <linux/vmstat.h>
21#include <linux/hardirq.h>
22#include <linux/rculist.h>
0793a61d
TG
23#include <linux/uaccess.h>
24#include <linux/syscalls.h>
25#include <linux/anon_inodes.h>
aa9c4c0f 26#include <linux/kernel_stat.h>
0793a61d 27#include <linux/perf_counter.h>
0a4a9391 28#include <linux/dcache.h>
0793a61d 29
4e193bd4
TB
30#include <asm/irq_regs.h>
31
0793a61d
TG
32/*
33 * Each CPU has a list of per CPU counters:
34 */
35DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
088e2852 37int perf_max_counters __read_mostly = 1;
0793a61d
TG
38static int perf_reserved_percpu __read_mostly;
39static int perf_overcommit __read_mostly = 1;
40
9ee318a7
PZ
41static atomic_t nr_mmap_tracking __read_mostly;
42static atomic_t nr_munmap_tracking __read_mostly;
43static atomic_t nr_comm_tracking __read_mostly;
44
1ccd1549
PZ
45int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
46
0793a61d
TG
47/*
48 * Mutex for (sysadmin-configurable) counter reservations:
49 */
50static DEFINE_MUTEX(perf_resource_mutex);
51
52/*
53 * Architecture provided APIs - weak aliases:
54 */
5c92d124 55extern __weak const struct hw_perf_counter_ops *
621a01ea 56hw_perf_counter_init(struct perf_counter *counter)
0793a61d 57{
ff6f0541 58 return NULL;
0793a61d
TG
59}
60
01b2838c 61u64 __weak hw_perf_save_disable(void) { return 0; }
01ea1cca 62void __weak hw_perf_restore(u64 ctrl) { barrier(); }
01d0287f 63void __weak hw_perf_counter_setup(int cpu) { barrier(); }
3cbed429
PM
64int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
65 struct perf_cpu_context *cpuctx,
66 struct perf_counter_context *ctx, int cpu)
67{
68 return 0;
69}
0793a61d 70
4eb96fcf
PM
71void __weak perf_counter_print_debug(void) { }
72
04289bb9
IM
73static void
74list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
75{
76 struct perf_counter *group_leader = counter->group_leader;
77
78 /*
79 * Depending on whether it is a standalone or sibling counter,
80 * add it straight to the context's counter list, or to the group
81 * leader's sibling list:
82 */
83 if (counter->group_leader == counter)
84 list_add_tail(&counter->list_entry, &ctx->counter_list);
5c148194 85 else {
04289bb9 86 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
5c148194
PZ
87 group_leader->nr_siblings++;
88 }
592903cd
PZ
89
90 list_add_rcu(&counter->event_entry, &ctx->event_list);
04289bb9
IM
91}
92
93static void
94list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
95{
96 struct perf_counter *sibling, *tmp;
97
98 list_del_init(&counter->list_entry);
592903cd 99 list_del_rcu(&counter->event_entry);
04289bb9 100
5c148194
PZ
101 if (counter->group_leader != counter)
102 counter->group_leader->nr_siblings--;
103
04289bb9
IM
104 /*
105 * If this was a group counter with sibling counters then
106 * upgrade the siblings to singleton counters by adding them
107 * to the context list directly:
108 */
109 list_for_each_entry_safe(sibling, tmp,
110 &counter->sibling_list, list_entry) {
111
75564232 112 list_move_tail(&sibling->list_entry, &ctx->counter_list);
04289bb9
IM
113 sibling->group_leader = sibling;
114 }
115}
116
3b6f9e5c
PM
117static void
118counter_sched_out(struct perf_counter *counter,
119 struct perf_cpu_context *cpuctx,
120 struct perf_counter_context *ctx)
121{
122 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
123 return;
124
125 counter->state = PERF_COUNTER_STATE_INACTIVE;
4af4998b 126 counter->tstamp_stopped = ctx->time;
3b6f9e5c
PM
127 counter->hw_ops->disable(counter);
128 counter->oncpu = -1;
129
130 if (!is_software_counter(counter))
131 cpuctx->active_oncpu--;
132 ctx->nr_active--;
133 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
134 cpuctx->exclusive = 0;
135}
136
d859e29f
PM
137static void
138group_sched_out(struct perf_counter *group_counter,
139 struct perf_cpu_context *cpuctx,
140 struct perf_counter_context *ctx)
141{
142 struct perf_counter *counter;
143
144 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
145 return;
146
147 counter_sched_out(group_counter, cpuctx, ctx);
148
149 /*
150 * Schedule out siblings (if any):
151 */
152 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
153 counter_sched_out(counter, cpuctx, ctx);
154
155 if (group_counter->hw_event.exclusive)
156 cpuctx->exclusive = 0;
157}
158
0793a61d
TG
159/*
160 * Cross CPU call to remove a performance counter
161 *
162 * We disable the counter on the hardware level first. After that we
163 * remove it from the context list.
164 */
04289bb9 165static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
166{
167 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
168 struct perf_counter *counter = info;
169 struct perf_counter_context *ctx = counter->ctx;
9b51f66d 170 unsigned long flags;
5c92d124 171 u64 perf_flags;
0793a61d
TG
172
173 /*
174 * If this is a task context, we need to check whether it is
175 * the current task context of this cpu. If not it has been
176 * scheduled out before the smp call arrived.
177 */
178 if (ctx->task && cpuctx->task_ctx != ctx)
179 return;
180
849691a6 181 spin_lock_irqsave(&ctx->lock, flags);
0793a61d 182
3b6f9e5c
PM
183 counter_sched_out(counter, cpuctx, ctx);
184
185 counter->task = NULL;
0793a61d
TG
186 ctx->nr_counters--;
187
188 /*
189 * Protect the list operation against NMI by disabling the
190 * counters on a global level. NOP for non NMI based counters.
191 */
01b2838c 192 perf_flags = hw_perf_save_disable();
04289bb9 193 list_del_counter(counter, ctx);
01b2838c 194 hw_perf_restore(perf_flags);
0793a61d
TG
195
196 if (!ctx->task) {
197 /*
198 * Allow more per task counters with respect to the
199 * reservation:
200 */
201 cpuctx->max_pertask =
202 min(perf_max_counters - ctx->nr_counters,
203 perf_max_counters - perf_reserved_percpu);
204 }
205
849691a6 206 spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
207}
208
209
210/*
211 * Remove the counter from a task's (or a CPU's) list of counters.
212 *
d859e29f 213 * Must be called with counter->mutex and ctx->mutex held.
0793a61d
TG
214 *
215 * CPU counters are removed with a smp call. For task counters we only
216 * call when the task is on a CPU.
217 */
04289bb9 218static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
219{
220 struct perf_counter_context *ctx = counter->ctx;
221 struct task_struct *task = ctx->task;
222
223 if (!task) {
224 /*
225 * Per cpu counters are removed via an smp call and
226 * the removal is always sucessful.
227 */
228 smp_call_function_single(counter->cpu,
04289bb9 229 __perf_counter_remove_from_context,
0793a61d
TG
230 counter, 1);
231 return;
232 }
233
234retry:
04289bb9 235 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
236 counter);
237
238 spin_lock_irq(&ctx->lock);
239 /*
240 * If the context is active we need to retry the smp call.
241 */
04289bb9 242 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
243 spin_unlock_irq(&ctx->lock);
244 goto retry;
245 }
246
247 /*
248 * The lock prevents that this context is scheduled in so we
04289bb9 249 * can remove the counter safely, if the call above did not
0793a61d
TG
250 * succeed.
251 */
04289bb9 252 if (!list_empty(&counter->list_entry)) {
0793a61d 253 ctx->nr_counters--;
04289bb9 254 list_del_counter(counter, ctx);
0793a61d
TG
255 counter->task = NULL;
256 }
257 spin_unlock_irq(&ctx->lock);
258}
259
4af4998b 260static inline u64 perf_clock(void)
53cfbf59 261{
4af4998b 262 return cpu_clock(smp_processor_id());
53cfbf59
PM
263}
264
265/*
266 * Update the record of the current time in a context.
267 */
4af4998b 268static void update_context_time(struct perf_counter_context *ctx)
53cfbf59 269{
4af4998b
PZ
270 u64 now = perf_clock();
271
272 ctx->time += now - ctx->timestamp;
273 ctx->timestamp = now;
53cfbf59
PM
274}
275
276/*
277 * Update the total_time_enabled and total_time_running fields for a counter.
278 */
279static void update_counter_times(struct perf_counter *counter)
280{
281 struct perf_counter_context *ctx = counter->ctx;
282 u64 run_end;
283
4af4998b
PZ
284 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
285 return;
286
287 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
288
289 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290 run_end = counter->tstamp_stopped;
291 else
292 run_end = ctx->time;
293
294 counter->total_time_running = run_end - counter->tstamp_running;
53cfbf59
PM
295}
296
297/*
298 * Update total_time_enabled and total_time_running for all counters in a group.
299 */
300static void update_group_times(struct perf_counter *leader)
301{
302 struct perf_counter *counter;
303
304 update_counter_times(leader);
305 list_for_each_entry(counter, &leader->sibling_list, list_entry)
306 update_counter_times(counter);
307}
308
d859e29f
PM
309/*
310 * Cross CPU call to disable a performance counter
311 */
312static void __perf_counter_disable(void *info)
313{
314 struct perf_counter *counter = info;
315 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316 struct perf_counter_context *ctx = counter->ctx;
317 unsigned long flags;
318
319 /*
320 * If this is a per-task counter, need to check whether this
321 * counter's task is the current task on this cpu.
322 */
323 if (ctx->task && cpuctx->task_ctx != ctx)
324 return;
325
849691a6 326 spin_lock_irqsave(&ctx->lock, flags);
d859e29f
PM
327
328 /*
329 * If the counter is on, turn it off.
330 * If it is in error state, leave it in error state.
331 */
332 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
4af4998b 333 update_context_time(ctx);
53cfbf59 334 update_counter_times(counter);
d859e29f
PM
335 if (counter == counter->group_leader)
336 group_sched_out(counter, cpuctx, ctx);
337 else
338 counter_sched_out(counter, cpuctx, ctx);
339 counter->state = PERF_COUNTER_STATE_OFF;
340 }
341
849691a6 342 spin_unlock_irqrestore(&ctx->lock, flags);
d859e29f
PM
343}
344
345/*
346 * Disable a counter.
347 */
348static void perf_counter_disable(struct perf_counter *counter)
349{
350 struct perf_counter_context *ctx = counter->ctx;
351 struct task_struct *task = ctx->task;
352
353 if (!task) {
354 /*
355 * Disable the counter on the cpu that it's on
356 */
357 smp_call_function_single(counter->cpu, __perf_counter_disable,
358 counter, 1);
359 return;
360 }
361
362 retry:
363 task_oncpu_function_call(task, __perf_counter_disable, counter);
364
365 spin_lock_irq(&ctx->lock);
366 /*
367 * If the counter is still active, we need to retry the cross-call.
368 */
369 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
370 spin_unlock_irq(&ctx->lock);
371 goto retry;
372 }
373
374 /*
375 * Since we have the lock this context can't be scheduled
376 * in, so we can change the state safely.
377 */
53cfbf59
PM
378 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
379 update_counter_times(counter);
d859e29f 380 counter->state = PERF_COUNTER_STATE_OFF;
53cfbf59 381 }
d859e29f
PM
382
383 spin_unlock_irq(&ctx->lock);
384}
385
386/*
387 * Disable a counter and all its children.
388 */
389static void perf_counter_disable_family(struct perf_counter *counter)
390{
391 struct perf_counter *child;
392
393 perf_counter_disable(counter);
394
395 /*
396 * Lock the mutex to protect the list of children
397 */
398 mutex_lock(&counter->mutex);
399 list_for_each_entry(child, &counter->child_list, child_list)
400 perf_counter_disable(child);
401 mutex_unlock(&counter->mutex);
402}
403
235c7fc7
IM
404static int
405counter_sched_in(struct perf_counter *counter,
406 struct perf_cpu_context *cpuctx,
407 struct perf_counter_context *ctx,
408 int cpu)
409{
3b6f9e5c 410 if (counter->state <= PERF_COUNTER_STATE_OFF)
235c7fc7
IM
411 return 0;
412
413 counter->state = PERF_COUNTER_STATE_ACTIVE;
414 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
415 /*
416 * The new state must be visible before we turn it on in the hardware:
417 */
418 smp_wmb();
419
420 if (counter->hw_ops->enable(counter)) {
421 counter->state = PERF_COUNTER_STATE_INACTIVE;
422 counter->oncpu = -1;
423 return -EAGAIN;
424 }
425
4af4998b 426 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
53cfbf59 427
3b6f9e5c
PM
428 if (!is_software_counter(counter))
429 cpuctx->active_oncpu++;
235c7fc7
IM
430 ctx->nr_active++;
431
3b6f9e5c
PM
432 if (counter->hw_event.exclusive)
433 cpuctx->exclusive = 1;
434
235c7fc7
IM
435 return 0;
436}
437
3b6f9e5c
PM
438/*
439 * Return 1 for a group consisting entirely of software counters,
440 * 0 if the group contains any hardware counters.
441 */
442static int is_software_only_group(struct perf_counter *leader)
443{
444 struct perf_counter *counter;
445
446 if (!is_software_counter(leader))
447 return 0;
5c148194 448
3b6f9e5c
PM
449 list_for_each_entry(counter, &leader->sibling_list, list_entry)
450 if (!is_software_counter(counter))
451 return 0;
5c148194 452
3b6f9e5c
PM
453 return 1;
454}
455
456/*
457 * Work out whether we can put this counter group on the CPU now.
458 */
459static int group_can_go_on(struct perf_counter *counter,
460 struct perf_cpu_context *cpuctx,
461 int can_add_hw)
462{
463 /*
464 * Groups consisting entirely of software counters can always go on.
465 */
466 if (is_software_only_group(counter))
467 return 1;
468 /*
469 * If an exclusive group is already on, no other hardware
470 * counters can go on.
471 */
472 if (cpuctx->exclusive)
473 return 0;
474 /*
475 * If this group is exclusive and there are already
476 * counters on the CPU, it can't go on.
477 */
478 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
479 return 0;
480 /*
481 * Otherwise, try to add it if all previous groups were able
482 * to go on.
483 */
484 return can_add_hw;
485}
486
53cfbf59
PM
487static void add_counter_to_ctx(struct perf_counter *counter,
488 struct perf_counter_context *ctx)
489{
490 list_add_counter(counter, ctx);
491 ctx->nr_counters++;
492 counter->prev_state = PERF_COUNTER_STATE_OFF;
4af4998b
PZ
493 counter->tstamp_enabled = ctx->time;
494 counter->tstamp_running = ctx->time;
495 counter->tstamp_stopped = ctx->time;
53cfbf59
PM
496}
497
0793a61d 498/*
235c7fc7 499 * Cross CPU call to install and enable a performance counter
0793a61d
TG
500 */
501static void __perf_install_in_context(void *info)
502{
503 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504 struct perf_counter *counter = info;
505 struct perf_counter_context *ctx = counter->ctx;
d859e29f 506 struct perf_counter *leader = counter->group_leader;
0793a61d 507 int cpu = smp_processor_id();
9b51f66d 508 unsigned long flags;
5c92d124 509 u64 perf_flags;
3b6f9e5c 510 int err;
0793a61d
TG
511
512 /*
513 * If this is a task context, we need to check whether it is
514 * the current task context of this cpu. If not it has been
515 * scheduled out before the smp call arrived.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
849691a6 520 spin_lock_irqsave(&ctx->lock, flags);
4af4998b 521 update_context_time(ctx);
0793a61d
TG
522
523 /*
524 * Protect the list operation against NMI by disabling the
525 * counters on a global level. NOP for non NMI based counters.
526 */
01b2838c 527 perf_flags = hw_perf_save_disable();
0793a61d 528
53cfbf59 529 add_counter_to_ctx(counter, ctx);
0793a61d 530
d859e29f
PM
531 /*
532 * Don't put the counter on if it is disabled or if
533 * it is in a group and the group isn't on.
534 */
535 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
536 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
537 goto unlock;
538
3b6f9e5c
PM
539 /*
540 * An exclusive counter can't go on if there are already active
541 * hardware counters, and no hardware counter can go on if there
542 * is already an exclusive counter on.
543 */
d859e29f 544 if (!group_can_go_on(counter, cpuctx, 1))
3b6f9e5c
PM
545 err = -EEXIST;
546 else
547 err = counter_sched_in(counter, cpuctx, ctx, cpu);
548
d859e29f
PM
549 if (err) {
550 /*
551 * This counter couldn't go on. If it is in a group
552 * then we have to pull the whole group off.
553 * If the counter group is pinned then put it in error state.
554 */
555 if (leader != counter)
556 group_sched_out(leader, cpuctx, ctx);
53cfbf59
PM
557 if (leader->hw_event.pinned) {
558 update_group_times(leader);
d859e29f 559 leader->state = PERF_COUNTER_STATE_ERROR;
53cfbf59 560 }
d859e29f 561 }
0793a61d 562
3b6f9e5c 563 if (!err && !ctx->task && cpuctx->max_pertask)
0793a61d
TG
564 cpuctx->max_pertask--;
565
d859e29f 566 unlock:
235c7fc7
IM
567 hw_perf_restore(perf_flags);
568
849691a6 569 spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
570}
571
572/*
573 * Attach a performance counter to a context
574 *
575 * First we add the counter to the list with the hardware enable bit
576 * in counter->hw_config cleared.
577 *
578 * If the counter is attached to a task which is on a CPU we use a smp
579 * call to enable it in the task context. The task might have been
580 * scheduled away, but we check this in the smp call again.
d859e29f
PM
581 *
582 * Must be called with ctx->mutex held.
0793a61d
TG
583 */
584static void
585perf_install_in_context(struct perf_counter_context *ctx,
586 struct perf_counter *counter,
587 int cpu)
588{
589 struct task_struct *task = ctx->task;
590
0793a61d
TG
591 if (!task) {
592 /*
593 * Per cpu counters are installed via an smp call and
594 * the install is always sucessful.
595 */
596 smp_call_function_single(cpu, __perf_install_in_context,
597 counter, 1);
598 return;
599 }
600
601 counter->task = task;
602retry:
603 task_oncpu_function_call(task, __perf_install_in_context,
604 counter);
605
606 spin_lock_irq(&ctx->lock);
607 /*
0793a61d
TG
608 * we need to retry the smp call.
609 */
d859e29f 610 if (ctx->is_active && list_empty(&counter->list_entry)) {
0793a61d
TG
611 spin_unlock_irq(&ctx->lock);
612 goto retry;
613 }
614
615 /*
616 * The lock prevents that this context is scheduled in so we
617 * can add the counter safely, if it the call above did not
618 * succeed.
619 */
53cfbf59
PM
620 if (list_empty(&counter->list_entry))
621 add_counter_to_ctx(counter, ctx);
0793a61d
TG
622 spin_unlock_irq(&ctx->lock);
623}
624
d859e29f
PM
625/*
626 * Cross CPU call to enable a performance counter
627 */
628static void __perf_counter_enable(void *info)
04289bb9 629{
d859e29f
PM
630 struct perf_counter *counter = info;
631 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
632 struct perf_counter_context *ctx = counter->ctx;
633 struct perf_counter *leader = counter->group_leader;
634 unsigned long flags;
635 int err;
04289bb9 636
d859e29f
PM
637 /*
638 * If this is a per-task counter, need to check whether this
639 * counter's task is the current task on this cpu.
640 */
641 if (ctx->task && cpuctx->task_ctx != ctx)
3cbed429
PM
642 return;
643
849691a6 644 spin_lock_irqsave(&ctx->lock, flags);
4af4998b 645 update_context_time(ctx);
d859e29f 646
c07c99b6 647 counter->prev_state = counter->state;
d859e29f
PM
648 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
649 goto unlock;
650 counter->state = PERF_COUNTER_STATE_INACTIVE;
4af4998b 651 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
04289bb9
IM
652
653 /*
d859e29f
PM
654 * If the counter is in a group and isn't the group leader,
655 * then don't put it on unless the group is on.
04289bb9 656 */
d859e29f
PM
657 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
658 goto unlock;
3b6f9e5c 659
d859e29f
PM
660 if (!group_can_go_on(counter, cpuctx, 1))
661 err = -EEXIST;
662 else
663 err = counter_sched_in(counter, cpuctx, ctx,
664 smp_processor_id());
665
666 if (err) {
667 /*
668 * If this counter can't go on and it's part of a
669 * group, then the whole group has to come off.
670 */
671 if (leader != counter)
672 group_sched_out(leader, cpuctx, ctx);
53cfbf59
PM
673 if (leader->hw_event.pinned) {
674 update_group_times(leader);
d859e29f 675 leader->state = PERF_COUNTER_STATE_ERROR;
53cfbf59 676 }
d859e29f
PM
677 }
678
679 unlock:
849691a6 680 spin_unlock_irqrestore(&ctx->lock, flags);
d859e29f
PM
681}
682
683/*
684 * Enable a counter.
685 */
686static void perf_counter_enable(struct perf_counter *counter)
687{
688 struct perf_counter_context *ctx = counter->ctx;
689 struct task_struct *task = ctx->task;
690
691 if (!task) {
692 /*
693 * Enable the counter on the cpu that it's on
694 */
695 smp_call_function_single(counter->cpu, __perf_counter_enable,
696 counter, 1);
697 return;
698 }
699
700 spin_lock_irq(&ctx->lock);
701 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
702 goto out;
703
704 /*
705 * If the counter is in error state, clear that first.
706 * That way, if we see the counter in error state below, we
707 * know that it has gone back into error state, as distinct
708 * from the task having been scheduled away before the
709 * cross-call arrived.
710 */
711 if (counter->state == PERF_COUNTER_STATE_ERROR)
712 counter->state = PERF_COUNTER_STATE_OFF;
713
714 retry:
715 spin_unlock_irq(&ctx->lock);
716 task_oncpu_function_call(task, __perf_counter_enable, counter);
717
718 spin_lock_irq(&ctx->lock);
719
720 /*
721 * If the context is active and the counter is still off,
722 * we need to retry the cross-call.
723 */
724 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
725 goto retry;
726
727 /*
728 * Since we have the lock this context can't be scheduled
729 * in, so we can change the state safely.
730 */
53cfbf59 731 if (counter->state == PERF_COUNTER_STATE_OFF) {
d859e29f 732 counter->state = PERF_COUNTER_STATE_INACTIVE;
4af4998b
PZ
733 counter->tstamp_enabled =
734 ctx->time - counter->total_time_enabled;
53cfbf59 735 }
d859e29f
PM
736 out:
737 spin_unlock_irq(&ctx->lock);
738}
739
79f14641
PZ
740static void perf_counter_refresh(struct perf_counter *counter, int refresh)
741{
742 atomic_add(refresh, &counter->event_limit);
743 perf_counter_enable(counter);
744}
745
d859e29f
PM
746/*
747 * Enable a counter and all its children.
748 */
749static void perf_counter_enable_family(struct perf_counter *counter)
750{
751 struct perf_counter *child;
752
753 perf_counter_enable(counter);
754
755 /*
756 * Lock the mutex to protect the list of children
757 */
758 mutex_lock(&counter->mutex);
759 list_for_each_entry(child, &counter->child_list, child_list)
760 perf_counter_enable(child);
761 mutex_unlock(&counter->mutex);
04289bb9
IM
762}
763
235c7fc7
IM
764void __perf_counter_sched_out(struct perf_counter_context *ctx,
765 struct perf_cpu_context *cpuctx)
766{
767 struct perf_counter *counter;
3cbed429 768 u64 flags;
235c7fc7 769
d859e29f
PM
770 spin_lock(&ctx->lock);
771 ctx->is_active = 0;
235c7fc7 772 if (likely(!ctx->nr_counters))
d859e29f 773 goto out;
4af4998b 774 update_context_time(ctx);
235c7fc7 775
3cbed429 776 flags = hw_perf_save_disable();
235c7fc7
IM
777 if (ctx->nr_active) {
778 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779 group_sched_out(counter, cpuctx, ctx);
780 }
3cbed429 781 hw_perf_restore(flags);
d859e29f 782 out:
235c7fc7
IM
783 spin_unlock(&ctx->lock);
784}
785
0793a61d
TG
786/*
787 * Called from scheduler to remove the counters of the current task,
788 * with interrupts disabled.
789 *
790 * We stop each counter and update the counter value in counter->count.
791 *
7671581f 792 * This does not protect us against NMI, but disable()
0793a61d
TG
793 * sets the disabled bit in the control field of counter _before_
794 * accessing the counter control register. If a NMI hits, then it will
795 * not restart the counter.
796 */
797void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798{
799 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800 struct perf_counter_context *ctx = &task->perf_counter_ctx;
4a0deca6 801 struct pt_regs *regs;
0793a61d
TG
802
803 if (likely(!cpuctx->task_ctx))
804 return;
805
bce379bf
PZ
806 update_context_time(ctx);
807
4a0deca6 808 regs = task_pt_regs(task);
78f13e95 809 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
235c7fc7
IM
810 __perf_counter_sched_out(ctx, cpuctx);
811
0793a61d
TG
812 cpuctx->task_ctx = NULL;
813}
814
235c7fc7 815static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
04289bb9 816{
235c7fc7 817 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
04289bb9
IM
818}
819
7995888f 820static int
04289bb9
IM
821group_sched_in(struct perf_counter *group_counter,
822 struct perf_cpu_context *cpuctx,
823 struct perf_counter_context *ctx,
824 int cpu)
825{
95cdd2e7 826 struct perf_counter *counter, *partial_group;
3cbed429
PM
827 int ret;
828
829 if (group_counter->state == PERF_COUNTER_STATE_OFF)
830 return 0;
831
832 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
833 if (ret)
834 return ret < 0 ? ret : 0;
04289bb9 835
c07c99b6 836 group_counter->prev_state = group_counter->state;
95cdd2e7
IM
837 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
838 return -EAGAIN;
04289bb9
IM
839
840 /*
841 * Schedule in siblings as one group (if any):
842 */
7995888f 843 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
c07c99b6 844 counter->prev_state = counter->state;
95cdd2e7
IM
845 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
846 partial_group = counter;
847 goto group_error;
848 }
95cdd2e7
IM
849 }
850
3cbed429 851 return 0;
95cdd2e7
IM
852
853group_error:
854 /*
855 * Groups can be scheduled in as one unit only, so undo any
856 * partial group before returning:
857 */
858 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
859 if (counter == partial_group)
860 break;
861 counter_sched_out(counter, cpuctx, ctx);
7995888f 862 }
95cdd2e7 863 counter_sched_out(group_counter, cpuctx, ctx);
7995888f 864
95cdd2e7 865 return -EAGAIN;
04289bb9
IM
866}
867
235c7fc7
IM
868static void
869__perf_counter_sched_in(struct perf_counter_context *ctx,
870 struct perf_cpu_context *cpuctx, int cpu)
0793a61d 871{
0793a61d 872 struct perf_counter *counter;
3cbed429 873 u64 flags;
dd0e6ba2 874 int can_add_hw = 1;
0793a61d 875
d859e29f
PM
876 spin_lock(&ctx->lock);
877 ctx->is_active = 1;
0793a61d 878 if (likely(!ctx->nr_counters))
d859e29f 879 goto out;
0793a61d 880
4af4998b 881 ctx->timestamp = perf_clock();
53cfbf59 882
3cbed429 883 flags = hw_perf_save_disable();
3b6f9e5c
PM
884
885 /*
886 * First go through the list and put on any pinned groups
887 * in order to give them the best chance of going on.
888 */
889 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
890 if (counter->state <= PERF_COUNTER_STATE_OFF ||
891 !counter->hw_event.pinned)
892 continue;
893 if (counter->cpu != -1 && counter->cpu != cpu)
894 continue;
895
896 if (group_can_go_on(counter, cpuctx, 1))
897 group_sched_in(counter, cpuctx, ctx, cpu);
898
899 /*
900 * If this pinned group hasn't been scheduled,
901 * put it in error state.
902 */
53cfbf59
PM
903 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
904 update_group_times(counter);
3b6f9e5c 905 counter->state = PERF_COUNTER_STATE_ERROR;
53cfbf59 906 }
3b6f9e5c
PM
907 }
908
04289bb9 909 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c
PM
910 /*
911 * Ignore counters in OFF or ERROR state, and
912 * ignore pinned counters since we did them already.
913 */
914 if (counter->state <= PERF_COUNTER_STATE_OFF ||
915 counter->hw_event.pinned)
916 continue;
917
04289bb9
IM
918 /*
919 * Listen to the 'cpu' scheduling filter constraint
920 * of counters:
921 */
0793a61d
TG
922 if (counter->cpu != -1 && counter->cpu != cpu)
923 continue;
924
3b6f9e5c 925 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
dd0e6ba2
PM
926 if (group_sched_in(counter, cpuctx, ctx, cpu))
927 can_add_hw = 0;
3b6f9e5c 928 }
0793a61d 929 }
3cbed429 930 hw_perf_restore(flags);
d859e29f 931 out:
0793a61d 932 spin_unlock(&ctx->lock);
235c7fc7
IM
933}
934
935/*
936 * Called from scheduler to add the counters of the current task
937 * with interrupts disabled.
938 *
939 * We restore the counter value and then enable it.
940 *
941 * This does not protect us against NMI, but enable()
942 * sets the enabled bit in the control field of counter _before_
943 * accessing the counter control register. If a NMI hits, then it will
944 * keep the counter running.
945 */
946void perf_counter_task_sched_in(struct task_struct *task, int cpu)
947{
948 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
949 struct perf_counter_context *ctx = &task->perf_counter_ctx;
04289bb9 950
235c7fc7 951 __perf_counter_sched_in(ctx, cpuctx, cpu);
0793a61d
TG
952 cpuctx->task_ctx = ctx;
953}
954
235c7fc7
IM
955static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
956{
957 struct perf_counter_context *ctx = &cpuctx->ctx;
958
959 __perf_counter_sched_in(ctx, cpuctx, cpu);
960}
961
1d1c7ddb
IM
962int perf_counter_task_disable(void)
963{
964 struct task_struct *curr = current;
965 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
966 struct perf_counter *counter;
aa9c4c0f 967 unsigned long flags;
1d1c7ddb
IM
968 u64 perf_flags;
969 int cpu;
970
971 if (likely(!ctx->nr_counters))
972 return 0;
973
849691a6 974 local_irq_save(flags);
1d1c7ddb
IM
975 cpu = smp_processor_id();
976
977 perf_counter_task_sched_out(curr, cpu);
978
979 spin_lock(&ctx->lock);
980
981 /*
982 * Disable all the counters:
983 */
984 perf_flags = hw_perf_save_disable();
985
3b6f9e5c 986 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
53cfbf59
PM
987 if (counter->state != PERF_COUNTER_STATE_ERROR) {
988 update_group_times(counter);
3b6f9e5c 989 counter->state = PERF_COUNTER_STATE_OFF;
53cfbf59 990 }
3b6f9e5c 991 }
9b51f66d 992
1d1c7ddb
IM
993 hw_perf_restore(perf_flags);
994
849691a6 995 spin_unlock_irqrestore(&ctx->lock, flags);
1d1c7ddb
IM
996
997 return 0;
998}
999
1000int perf_counter_task_enable(void)
1001{
1002 struct task_struct *curr = current;
1003 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1004 struct perf_counter *counter;
aa9c4c0f 1005 unsigned long flags;
1d1c7ddb
IM
1006 u64 perf_flags;
1007 int cpu;
1008
1009 if (likely(!ctx->nr_counters))
1010 return 0;
1011
849691a6 1012 local_irq_save(flags);
1d1c7ddb
IM
1013 cpu = smp_processor_id();
1014
235c7fc7
IM
1015 perf_counter_task_sched_out(curr, cpu);
1016
1d1c7ddb
IM
1017 spin_lock(&ctx->lock);
1018
1019 /*
1020 * Disable all the counters:
1021 */
1022 perf_flags = hw_perf_save_disable();
1023
1024 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c 1025 if (counter->state > PERF_COUNTER_STATE_OFF)
1d1c7ddb 1026 continue;
6a930700 1027 counter->state = PERF_COUNTER_STATE_INACTIVE;
4af4998b
PZ
1028 counter->tstamp_enabled =
1029 ctx->time - counter->total_time_enabled;
aa9c4c0f 1030 counter->hw_event.disabled = 0;
1d1c7ddb
IM
1031 }
1032 hw_perf_restore(perf_flags);
1033
1034 spin_unlock(&ctx->lock);
1035
1036 perf_counter_task_sched_in(curr, cpu);
1037
849691a6 1038 local_irq_restore(flags);
1d1c7ddb
IM
1039
1040 return 0;
1041}
1042
235c7fc7
IM
1043/*
1044 * Round-robin a context's counters:
1045 */
1046static void rotate_ctx(struct perf_counter_context *ctx)
0793a61d 1047{
0793a61d 1048 struct perf_counter *counter;
5c92d124 1049 u64 perf_flags;
0793a61d 1050
235c7fc7 1051 if (!ctx->nr_counters)
0793a61d
TG
1052 return;
1053
0793a61d 1054 spin_lock(&ctx->lock);
0793a61d 1055 /*
04289bb9 1056 * Rotate the first entry last (works just fine for group counters too):
0793a61d 1057 */
01b2838c 1058 perf_flags = hw_perf_save_disable();
04289bb9 1059 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
75564232 1060 list_move_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
1061 break;
1062 }
01b2838c 1063 hw_perf_restore(perf_flags);
0793a61d
TG
1064
1065 spin_unlock(&ctx->lock);
235c7fc7
IM
1066}
1067
1068void perf_counter_task_tick(struct task_struct *curr, int cpu)
1069{
1070 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1071 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1072 const int rotate_percpu = 0;
1073
1074 if (rotate_percpu)
1075 perf_counter_cpu_sched_out(cpuctx);
1076 perf_counter_task_sched_out(curr, cpu);
0793a61d 1077
235c7fc7
IM
1078 if (rotate_percpu)
1079 rotate_ctx(&cpuctx->ctx);
1080 rotate_ctx(ctx);
1081
1082 if (rotate_percpu)
1083 perf_counter_cpu_sched_in(cpuctx, cpu);
0793a61d
TG
1084 perf_counter_task_sched_in(curr, cpu);
1085}
1086
0793a61d
TG
1087/*
1088 * Cross CPU call to read the hardware counter
1089 */
7671581f 1090static void __read(void *info)
0793a61d 1091{
621a01ea 1092 struct perf_counter *counter = info;
53cfbf59 1093 struct perf_counter_context *ctx = counter->ctx;
aa9c4c0f 1094 unsigned long flags;
621a01ea 1095
849691a6 1096 local_irq_save(flags);
53cfbf59 1097 if (ctx->is_active)
4af4998b 1098 update_context_time(ctx);
7671581f 1099 counter->hw_ops->read(counter);
53cfbf59 1100 update_counter_times(counter);
849691a6 1101 local_irq_restore(flags);
0793a61d
TG
1102}
1103
04289bb9 1104static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
1105{
1106 /*
1107 * If counter is enabled and currently active on a CPU, update the
1108 * value in the counter structure:
1109 */
6a930700 1110 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d 1111 smp_call_function_single(counter->oncpu,
7671581f 1112 __read, counter, 1);
53cfbf59
PM
1113 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114 update_counter_times(counter);
0793a61d
TG
1115 }
1116
ee06094f 1117 return atomic64_read(&counter->count);
0793a61d
TG
1118}
1119
0793a61d
TG
1120static void put_context(struct perf_counter_context *ctx)
1121{
1122 if (ctx->task)
1123 put_task_struct(ctx->task);
1124}
1125
1126static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1127{
1128 struct perf_cpu_context *cpuctx;
1129 struct perf_counter_context *ctx;
1130 struct task_struct *task;
1131
1132 /*
1133 * If cpu is not a wildcard then this is a percpu counter:
1134 */
1135 if (cpu != -1) {
1136 /* Must be root to operate on a CPU counter: */
1ccd1549 1137 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
0793a61d
TG
1138 return ERR_PTR(-EACCES);
1139
1140 if (cpu < 0 || cpu > num_possible_cpus())
1141 return ERR_PTR(-EINVAL);
1142
1143 /*
1144 * We could be clever and allow to attach a counter to an
1145 * offline CPU and activate it when the CPU comes up, but
1146 * that's for later.
1147 */
1148 if (!cpu_isset(cpu, cpu_online_map))
1149 return ERR_PTR(-ENODEV);
1150
1151 cpuctx = &per_cpu(perf_cpu_context, cpu);
1152 ctx = &cpuctx->ctx;
1153
0793a61d
TG
1154 return ctx;
1155 }
1156
1157 rcu_read_lock();
1158 if (!pid)
1159 task = current;
1160 else
1161 task = find_task_by_vpid(pid);
1162 if (task)
1163 get_task_struct(task);
1164 rcu_read_unlock();
1165
1166 if (!task)
1167 return ERR_PTR(-ESRCH);
1168
1169 ctx = &task->perf_counter_ctx;
1170 ctx->task = task;
1171
1172 /* Reuse ptrace permission checks for now. */
1173 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1174 put_context(ctx);
1175 return ERR_PTR(-EACCES);
1176 }
1177
1178 return ctx;
1179}
1180
592903cd
PZ
1181static void free_counter_rcu(struct rcu_head *head)
1182{
1183 struct perf_counter *counter;
1184
1185 counter = container_of(head, struct perf_counter, rcu_head);
1186 kfree(counter);
1187}
1188
925d519a
PZ
1189static void perf_pending_sync(struct perf_counter *counter);
1190
f1600952
PZ
1191static void free_counter(struct perf_counter *counter)
1192{
925d519a
PZ
1193 perf_pending_sync(counter);
1194
9ee318a7
PZ
1195 if (counter->hw_event.mmap)
1196 atomic_dec(&nr_mmap_tracking);
1197 if (counter->hw_event.munmap)
1198 atomic_dec(&nr_munmap_tracking);
1199 if (counter->hw_event.comm)
1200 atomic_dec(&nr_comm_tracking);
1201
e077df4f
PZ
1202 if (counter->destroy)
1203 counter->destroy(counter);
1204
f1600952
PZ
1205 call_rcu(&counter->rcu_head, free_counter_rcu);
1206}
1207
0793a61d
TG
1208/*
1209 * Called when the last reference to the file is gone.
1210 */
1211static int perf_release(struct inode *inode, struct file *file)
1212{
1213 struct perf_counter *counter = file->private_data;
1214 struct perf_counter_context *ctx = counter->ctx;
1215
1216 file->private_data = NULL;
1217
d859e29f 1218 mutex_lock(&ctx->mutex);
0793a61d
TG
1219 mutex_lock(&counter->mutex);
1220
04289bb9 1221 perf_counter_remove_from_context(counter);
0793a61d
TG
1222
1223 mutex_unlock(&counter->mutex);
d859e29f 1224 mutex_unlock(&ctx->mutex);
0793a61d 1225
f1600952 1226 free_counter(counter);
5af75917 1227 put_context(ctx);
0793a61d
TG
1228
1229 return 0;
1230}
1231
1232/*
1233 * Read the performance counter - simple non blocking version for now
1234 */
1235static ssize_t
1236perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1237{
53cfbf59
PM
1238 u64 values[3];
1239 int n;
0793a61d 1240
3b6f9e5c
PM
1241 /*
1242 * Return end-of-file for a read on a counter that is in
1243 * error state (i.e. because it was pinned but it couldn't be
1244 * scheduled on to the CPU at some point).
1245 */
1246 if (counter->state == PERF_COUNTER_STATE_ERROR)
1247 return 0;
1248
0793a61d 1249 mutex_lock(&counter->mutex);
53cfbf59
PM
1250 values[0] = perf_counter_read(counter);
1251 n = 1;
1252 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 values[n++] = counter->total_time_enabled +
1254 atomic64_read(&counter->child_total_time_enabled);
1255 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 values[n++] = counter->total_time_running +
1257 atomic64_read(&counter->child_total_time_running);
0793a61d
TG
1258 mutex_unlock(&counter->mutex);
1259
53cfbf59
PM
1260 if (count < n * sizeof(u64))
1261 return -EINVAL;
1262 count = n * sizeof(u64);
1263
1264 if (copy_to_user(buf, values, count))
1265 return -EFAULT;
1266
1267 return count;
0793a61d
TG
1268}
1269
0793a61d
TG
1270static ssize_t
1271perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1272{
1273 struct perf_counter *counter = file->private_data;
1274
7b732a75 1275 return perf_read_hw(counter, buf, count);
0793a61d
TG
1276}
1277
1278static unsigned int perf_poll(struct file *file, poll_table *wait)
1279{
1280 struct perf_counter *counter = file->private_data;
c7138f37
PZ
1281 struct perf_mmap_data *data;
1282 unsigned int events;
1283
1284 rcu_read_lock();
1285 data = rcu_dereference(counter->data);
1286 if (data)
1287 events = atomic_xchg(&data->wakeup, 0);
1288 else
1289 events = POLL_HUP;
1290 rcu_read_unlock();
0793a61d
TG
1291
1292 poll_wait(file, &counter->waitq, wait);
1293
0793a61d
TG
1294 return events;
1295}
1296
d859e29f
PM
1297static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1298{
1299 struct perf_counter *counter = file->private_data;
1300 int err = 0;
1301
1302 switch (cmd) {
1303 case PERF_COUNTER_IOC_ENABLE:
1304 perf_counter_enable_family(counter);
1305 break;
1306 case PERF_COUNTER_IOC_DISABLE:
1307 perf_counter_disable_family(counter);
1308 break;
79f14641
PZ
1309 case PERF_COUNTER_IOC_REFRESH:
1310 perf_counter_refresh(counter, arg);
1311 break;
d859e29f
PM
1312 default:
1313 err = -ENOTTY;
1314 }
1315 return err;
1316}
1317
38ff667b
PZ
1318/*
1319 * Callers need to ensure there can be no nesting of this function, otherwise
1320 * the seqlock logic goes bad. We can not serialize this because the arch
1321 * code calls this from NMI context.
1322 */
1323void perf_counter_update_userpage(struct perf_counter *counter)
37d81828 1324{
38ff667b
PZ
1325 struct perf_mmap_data *data;
1326 struct perf_counter_mmap_page *userpg;
1327
1328 rcu_read_lock();
1329 data = rcu_dereference(counter->data);
1330 if (!data)
1331 goto unlock;
1332
1333 userpg = data->user_page;
37d81828 1334
7b732a75
PZ
1335 /*
1336 * Disable preemption so as to not let the corresponding user-space
1337 * spin too long if we get preempted.
1338 */
1339 preempt_disable();
37d81828 1340 ++userpg->lock;
92f22a38 1341 barrier();
37d81828
PM
1342 userpg->index = counter->hw.idx;
1343 userpg->offset = atomic64_read(&counter->count);
1344 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1345 userpg->offset -= atomic64_read(&counter->hw.prev_count);
7b732a75 1346
92f22a38 1347 barrier();
37d81828 1348 ++userpg->lock;
7b732a75 1349 preempt_enable();
38ff667b 1350unlock:
7b732a75 1351 rcu_read_unlock();
37d81828
PM
1352}
1353
1354static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1355{
1356 struct perf_counter *counter = vma->vm_file->private_data;
7b732a75
PZ
1357 struct perf_mmap_data *data;
1358 int ret = VM_FAULT_SIGBUS;
1359
1360 rcu_read_lock();
1361 data = rcu_dereference(counter->data);
1362 if (!data)
1363 goto unlock;
1364
1365 if (vmf->pgoff == 0) {
1366 vmf->page = virt_to_page(data->user_page);
1367 } else {
1368 int nr = vmf->pgoff - 1;
37d81828 1369
7b732a75
PZ
1370 if ((unsigned)nr > data->nr_pages)
1371 goto unlock;
37d81828 1372
7b732a75
PZ
1373 vmf->page = virt_to_page(data->data_pages[nr]);
1374 }
37d81828 1375 get_page(vmf->page);
7b732a75
PZ
1376 ret = 0;
1377unlock:
1378 rcu_read_unlock();
1379
1380 return ret;
1381}
1382
1383static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1384{
1385 struct perf_mmap_data *data;
1386 unsigned long size;
1387 int i;
1388
1389 WARN_ON(atomic_read(&counter->mmap_count));
1390
1391 size = sizeof(struct perf_mmap_data);
1392 size += nr_pages * sizeof(void *);
1393
1394 data = kzalloc(size, GFP_KERNEL);
1395 if (!data)
1396 goto fail;
1397
1398 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1399 if (!data->user_page)
1400 goto fail_user_page;
1401
1402 for (i = 0; i < nr_pages; i++) {
1403 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1404 if (!data->data_pages[i])
1405 goto fail_data_pages;
1406 }
1407
1408 data->nr_pages = nr_pages;
1409
1410 rcu_assign_pointer(counter->data, data);
1411
37d81828 1412 return 0;
7b732a75
PZ
1413
1414fail_data_pages:
1415 for (i--; i >= 0; i--)
1416 free_page((unsigned long)data->data_pages[i]);
1417
1418 free_page((unsigned long)data->user_page);
1419
1420fail_user_page:
1421 kfree(data);
1422
1423fail:
1424 return -ENOMEM;
1425}
1426
1427static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1428{
1429 struct perf_mmap_data *data = container_of(rcu_head,
1430 struct perf_mmap_data, rcu_head);
1431 int i;
1432
1433 free_page((unsigned long)data->user_page);
1434 for (i = 0; i < data->nr_pages; i++)
1435 free_page((unsigned long)data->data_pages[i]);
1436 kfree(data);
1437}
1438
1439static void perf_mmap_data_free(struct perf_counter *counter)
1440{
1441 struct perf_mmap_data *data = counter->data;
1442
1443 WARN_ON(atomic_read(&counter->mmap_count));
1444
1445 rcu_assign_pointer(counter->data, NULL);
1446 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1447}
1448
1449static void perf_mmap_open(struct vm_area_struct *vma)
1450{
1451 struct perf_counter *counter = vma->vm_file->private_data;
1452
1453 atomic_inc(&counter->mmap_count);
1454}
1455
1456static void perf_mmap_close(struct vm_area_struct *vma)
1457{
1458 struct perf_counter *counter = vma->vm_file->private_data;
1459
1460 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1461 &counter->mmap_mutex)) {
ebb3c4c4 1462 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
7b732a75
PZ
1463 perf_mmap_data_free(counter);
1464 mutex_unlock(&counter->mmap_mutex);
1465 }
37d81828
PM
1466}
1467
1468static struct vm_operations_struct perf_mmap_vmops = {
ebb3c4c4 1469 .open = perf_mmap_open,
7b732a75 1470 .close = perf_mmap_close,
37d81828
PM
1471 .fault = perf_mmap_fault,
1472};
1473
1474static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1475{
1476 struct perf_counter *counter = file->private_data;
7b732a75
PZ
1477 unsigned long vma_size;
1478 unsigned long nr_pages;
1479 unsigned long locked, lock_limit;
1480 int ret = 0;
37d81828
PM
1481
1482 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1483 return -EINVAL;
7b732a75
PZ
1484
1485 vma_size = vma->vm_end - vma->vm_start;
1486 nr_pages = (vma_size / PAGE_SIZE) - 1;
1487
7730d865
PZ
1488 /*
1489 * If we have data pages ensure they're a power-of-two number, so we
1490 * can do bitmasks instead of modulo.
1491 */
1492 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
1493 return -EINVAL;
1494
7b732a75 1495 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
1496 return -EINVAL;
1497
7b732a75
PZ
1498 if (vma->vm_pgoff != 0)
1499 return -EINVAL;
37d81828 1500
ebb3c4c4
PZ
1501 mutex_lock(&counter->mmap_mutex);
1502 if (atomic_inc_not_zero(&counter->mmap_count)) {
1503 if (nr_pages != counter->data->nr_pages)
1504 ret = -EINVAL;
1505 goto unlock;
1506 }
1507
1508 locked = vma->vm_mm->locked_vm;
1509 locked += nr_pages + 1;
7b732a75
PZ
1510
1511 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1512 lock_limit >>= PAGE_SHIFT;
1513
ebb3c4c4
PZ
1514 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1515 ret = -EPERM;
1516 goto unlock;
1517 }
7b732a75
PZ
1518
1519 WARN_ON(counter->data);
1520 ret = perf_mmap_data_alloc(counter, nr_pages);
ebb3c4c4
PZ
1521 if (ret)
1522 goto unlock;
1523
1524 atomic_set(&counter->mmap_count, 1);
1525 vma->vm_mm->locked_vm += nr_pages + 1;
1526unlock:
7b732a75 1527 mutex_unlock(&counter->mmap_mutex);
37d81828
PM
1528
1529 vma->vm_flags &= ~VM_MAYWRITE;
1530 vma->vm_flags |= VM_RESERVED;
1531 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
1532
1533 return ret;
37d81828
PM
1534}
1535
3c446b3d
PZ
1536static int perf_fasync(int fd, struct file *filp, int on)
1537{
1538 struct perf_counter *counter = filp->private_data;
1539 struct inode *inode = filp->f_path.dentry->d_inode;
1540 int retval;
1541
1542 mutex_lock(&inode->i_mutex);
1543 retval = fasync_helper(fd, filp, on, &counter->fasync);
1544 mutex_unlock(&inode->i_mutex);
1545
1546 if (retval < 0)
1547 return retval;
1548
1549 return 0;
1550}
1551
0793a61d
TG
1552static const struct file_operations perf_fops = {
1553 .release = perf_release,
1554 .read = perf_read,
1555 .poll = perf_poll,
d859e29f
PM
1556 .unlocked_ioctl = perf_ioctl,
1557 .compat_ioctl = perf_ioctl,
37d81828 1558 .mmap = perf_mmap,
3c446b3d 1559 .fasync = perf_fasync,
0793a61d
TG
1560};
1561
925d519a
PZ
1562/*
1563 * Perf counter wakeup
1564 *
1565 * If there's data, ensure we set the poll() state and publish everything
1566 * to user-space before waking everybody up.
1567 */
1568
1569void perf_counter_wakeup(struct perf_counter *counter)
1570{
1571 struct perf_mmap_data *data;
1572
1573 rcu_read_lock();
1574 data = rcu_dereference(counter->data);
1575 if (data) {
3c446b3d 1576 atomic_set(&data->wakeup, POLL_IN);
38ff667b
PZ
1577 /*
1578 * Ensure all data writes are issued before updating the
1579 * user-space data head information. The matching rmb()
1580 * will be in userspace after reading this value.
1581 */
1582 smp_wmb();
1583 data->user_page->data_head = atomic_read(&data->head);
925d519a
PZ
1584 }
1585 rcu_read_unlock();
1586
1587 wake_up_all(&counter->waitq);
4c9e2542
PZ
1588
1589 if (counter->pending_kill) {
1590 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1591 counter->pending_kill = 0;
1592 }
925d519a
PZ
1593}
1594
1595/*
1596 * Pending wakeups
1597 *
1598 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1599 *
1600 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1601 * single linked list and use cmpxchg() to add entries lockless.
1602 */
1603
79f14641
PZ
1604static void perf_pending_counter(struct perf_pending_entry *entry)
1605{
1606 struct perf_counter *counter = container_of(entry,
1607 struct perf_counter, pending);
1608
1609 if (counter->pending_disable) {
1610 counter->pending_disable = 0;
1611 perf_counter_disable(counter);
1612 }
1613
1614 if (counter->pending_wakeup) {
1615 counter->pending_wakeup = 0;
1616 perf_counter_wakeup(counter);
1617 }
1618}
1619
671dec5d 1620#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
925d519a 1621
671dec5d 1622static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
925d519a
PZ
1623 PENDING_TAIL,
1624};
1625
671dec5d
PZ
1626static void perf_pending_queue(struct perf_pending_entry *entry,
1627 void (*func)(struct perf_pending_entry *))
925d519a 1628{
671dec5d 1629 struct perf_pending_entry **head;
925d519a 1630
671dec5d 1631 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
925d519a
PZ
1632 return;
1633
671dec5d
PZ
1634 entry->func = func;
1635
1636 head = &get_cpu_var(perf_pending_head);
925d519a
PZ
1637
1638 do {
671dec5d
PZ
1639 entry->next = *head;
1640 } while (cmpxchg(head, entry->next, entry) != entry->next);
925d519a
PZ
1641
1642 set_perf_counter_pending();
1643
671dec5d 1644 put_cpu_var(perf_pending_head);
925d519a
PZ
1645}
1646
1647static int __perf_pending_run(void)
1648{
671dec5d 1649 struct perf_pending_entry *list;
925d519a
PZ
1650 int nr = 0;
1651
671dec5d 1652 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
925d519a 1653 while (list != PENDING_TAIL) {
671dec5d
PZ
1654 void (*func)(struct perf_pending_entry *);
1655 struct perf_pending_entry *entry = list;
925d519a
PZ
1656
1657 list = list->next;
1658
671dec5d
PZ
1659 func = entry->func;
1660 entry->next = NULL;
925d519a
PZ
1661 /*
1662 * Ensure we observe the unqueue before we issue the wakeup,
1663 * so that we won't be waiting forever.
1664 * -- see perf_not_pending().
1665 */
1666 smp_wmb();
1667
671dec5d 1668 func(entry);
925d519a
PZ
1669 nr++;
1670 }
1671
1672 return nr;
1673}
1674
1675static inline int perf_not_pending(struct perf_counter *counter)
1676{
1677 /*
1678 * If we flush on whatever cpu we run, there is a chance we don't
1679 * need to wait.
1680 */
1681 get_cpu();
1682 __perf_pending_run();
1683 put_cpu();
1684
1685 /*
1686 * Ensure we see the proper queue state before going to sleep
1687 * so that we do not miss the wakeup. -- see perf_pending_handle()
1688 */
1689 smp_rmb();
671dec5d 1690 return counter->pending.next == NULL;
925d519a
PZ
1691}
1692
1693static void perf_pending_sync(struct perf_counter *counter)
1694{
1695 wait_event(counter->waitq, perf_not_pending(counter));
1696}
1697
1698void perf_counter_do_pending(void)
1699{
1700 __perf_pending_run();
1701}
1702
394ee076
PZ
1703/*
1704 * Callchain support -- arch specific
1705 */
1706
9c03d88e 1707__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
394ee076
PZ
1708{
1709 return NULL;
1710}
1711
0322cd6e
PZ
1712/*
1713 * Output
1714 */
1715
b9cacc7b
PZ
1716struct perf_output_handle {
1717 struct perf_counter *counter;
1718 struct perf_mmap_data *data;
1719 unsigned int offset;
63e35b25 1720 unsigned int head;
b9cacc7b 1721 int wakeup;
78d613eb 1722 int nmi;
4c9e2542 1723 int overflow;
b9cacc7b
PZ
1724};
1725
78d613eb
PZ
1726static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1727{
671dec5d 1728 if (handle->nmi) {
79f14641 1729 handle->counter->pending_wakeup = 1;
671dec5d 1730 perf_pending_queue(&handle->counter->pending,
79f14641 1731 perf_pending_counter);
671dec5d 1732 } else
78d613eb
PZ
1733 perf_counter_wakeup(handle->counter);
1734}
1735
b9cacc7b 1736static int perf_output_begin(struct perf_output_handle *handle,
78d613eb 1737 struct perf_counter *counter, unsigned int size,
4c9e2542 1738 int nmi, int overflow)
0322cd6e 1739{
7b732a75 1740 struct perf_mmap_data *data;
b9cacc7b 1741 unsigned int offset, head;
0322cd6e 1742
7b732a75 1743 rcu_read_lock();
7b732a75
PZ
1744 data = rcu_dereference(counter->data);
1745 if (!data)
1746 goto out;
1747
4c9e2542
PZ
1748 handle->counter = counter;
1749 handle->nmi = nmi;
1750 handle->overflow = overflow;
78d613eb 1751
7b732a75 1752 if (!data->nr_pages)
78d613eb 1753 goto fail;
7b732a75 1754
7b732a75
PZ
1755 do {
1756 offset = head = atomic_read(&data->head);
c7138f37 1757 head += size;
7b732a75
PZ
1758 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1759
b9cacc7b
PZ
1760 handle->data = data;
1761 handle->offset = offset;
63e35b25 1762 handle->head = head;
b9cacc7b 1763 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
0322cd6e 1764
b9cacc7b 1765 return 0;
7b732a75 1766
78d613eb
PZ
1767fail:
1768 __perf_output_wakeup(handle);
b9cacc7b
PZ
1769out:
1770 rcu_read_unlock();
7b732a75 1771
b9cacc7b
PZ
1772 return -ENOSPC;
1773}
7b732a75 1774
b9cacc7b
PZ
1775static void perf_output_copy(struct perf_output_handle *handle,
1776 void *buf, unsigned int len)
1777{
1778 unsigned int pages_mask;
1779 unsigned int offset;
1780 unsigned int size;
1781 void **pages;
1782
1783 offset = handle->offset;
1784 pages_mask = handle->data->nr_pages - 1;
1785 pages = handle->data->data_pages;
1786
1787 do {
1788 unsigned int page_offset;
1789 int nr;
1790
1791 nr = (offset >> PAGE_SHIFT) & pages_mask;
1792 page_offset = offset & (PAGE_SIZE - 1);
1793 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1794
1795 memcpy(pages[nr] + page_offset, buf, size);
1796
1797 len -= size;
1798 buf += size;
1799 offset += size;
1800 } while (len);
1801
1802 handle->offset = offset;
63e35b25
PZ
1803
1804 WARN_ON_ONCE(handle->offset > handle->head);
b9cacc7b
PZ
1805}
1806
5c148194
PZ
1807#define perf_output_put(handle, x) \
1808 perf_output_copy((handle), &(x), sizeof(x))
1809
78d613eb 1810static void perf_output_end(struct perf_output_handle *handle)
b9cacc7b 1811{
c457810a
PZ
1812 int wakeup_events = handle->counter->hw_event.wakeup_events;
1813
4c9e2542 1814 if (handle->overflow && wakeup_events) {
c457810a
PZ
1815 int events = atomic_inc_return(&handle->data->events);
1816 if (events >= wakeup_events) {
1817 atomic_sub(wakeup_events, &handle->data->events);
1818 __perf_output_wakeup(handle);
1819 }
1820 } else if (handle->wakeup)
78d613eb 1821 __perf_output_wakeup(handle);
7b732a75 1822 rcu_read_unlock();
b9cacc7b
PZ
1823}
1824
f6c7d5fe 1825static void perf_counter_output(struct perf_counter *counter,
78f13e95 1826 int nmi, struct pt_regs *regs, u64 addr)
7b732a75 1827{
5ed00415 1828 int ret;
8a057d84 1829 u64 record_type = counter->hw_event.record_type;
5ed00415
PZ
1830 struct perf_output_handle handle;
1831 struct perf_event_header header;
1832 u64 ip;
5c148194 1833 struct {
ea5d20cf 1834 u32 pid, tid;
5ed00415 1835 } tid_entry;
8a057d84
PZ
1836 struct {
1837 u64 event;
1838 u64 counter;
1839 } group_entry;
394ee076
PZ
1840 struct perf_callchain_entry *callchain = NULL;
1841 int callchain_size = 0;
339f7c90 1842 u64 time;
7b732a75 1843
6b6e5486 1844 header.type = 0;
5ed00415 1845 header.size = sizeof(header);
7b732a75 1846
6b6e5486
PZ
1847 header.misc = PERF_EVENT_MISC_OVERFLOW;
1848 header.misc |= user_mode(regs) ?
6fab0192
PZ
1849 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1850
8a057d84
PZ
1851 if (record_type & PERF_RECORD_IP) {
1852 ip = instruction_pointer(regs);
6b6e5486 1853 header.type |= PERF_RECORD_IP;
8a057d84
PZ
1854 header.size += sizeof(ip);
1855 }
ea5d20cf 1856
8a057d84 1857 if (record_type & PERF_RECORD_TID) {
ea5d20cf 1858 /* namespace issues */
5ed00415
PZ
1859 tid_entry.pid = current->group_leader->pid;
1860 tid_entry.tid = current->pid;
1861
6b6e5486 1862 header.type |= PERF_RECORD_TID;
5ed00415
PZ
1863 header.size += sizeof(tid_entry);
1864 }
1865
4d855457
PZ
1866 if (record_type & PERF_RECORD_TIME) {
1867 /*
1868 * Maybe do better on x86 and provide cpu_clock_nmi()
1869 */
1870 time = sched_clock();
1871
1872 header.type |= PERF_RECORD_TIME;
1873 header.size += sizeof(u64);
1874 }
1875
78f13e95
PZ
1876 if (record_type & PERF_RECORD_ADDR) {
1877 header.type |= PERF_RECORD_ADDR;
1878 header.size += sizeof(u64);
1879 }
1880
8a057d84 1881 if (record_type & PERF_RECORD_GROUP) {
6b6e5486 1882 header.type |= PERF_RECORD_GROUP;
8a057d84
PZ
1883 header.size += sizeof(u64) +
1884 counter->nr_siblings * sizeof(group_entry);
1885 }
1886
1887 if (record_type & PERF_RECORD_CALLCHAIN) {
394ee076
PZ
1888 callchain = perf_callchain(regs);
1889
1890 if (callchain) {
9c03d88e 1891 callchain_size = (1 + callchain->nr) * sizeof(u64);
394ee076 1892
6b6e5486 1893 header.type |= PERF_RECORD_CALLCHAIN;
394ee076
PZ
1894 header.size += callchain_size;
1895 }
1896 }
1897
4c9e2542 1898 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
5ed00415
PZ
1899 if (ret)
1900 return;
ea5d20cf 1901
5ed00415 1902 perf_output_put(&handle, header);
5c148194 1903
8a057d84
PZ
1904 if (record_type & PERF_RECORD_IP)
1905 perf_output_put(&handle, ip);
5c148194 1906
8a057d84
PZ
1907 if (record_type & PERF_RECORD_TID)
1908 perf_output_put(&handle, tid_entry);
5c148194 1909
4d855457
PZ
1910 if (record_type & PERF_RECORD_TIME)
1911 perf_output_put(&handle, time);
1912
78f13e95
PZ
1913 if (record_type & PERF_RECORD_ADDR)
1914 perf_output_put(&handle, addr);
1915
8a057d84
PZ
1916 if (record_type & PERF_RECORD_GROUP) {
1917 struct perf_counter *leader, *sub;
1918 u64 nr = counter->nr_siblings;
5c148194 1919
8a057d84 1920 perf_output_put(&handle, nr);
0322cd6e 1921
8a057d84
PZ
1922 leader = counter->group_leader;
1923 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1924 if (sub != counter)
1925 sub->hw_ops->read(sub);
7b732a75 1926
8a057d84
PZ
1927 group_entry.event = sub->hw_event.config;
1928 group_entry.counter = atomic64_read(&sub->count);
7b732a75 1929
8a057d84
PZ
1930 perf_output_put(&handle, group_entry);
1931 }
0322cd6e 1932 }
5c148194 1933
8a057d84
PZ
1934 if (callchain)
1935 perf_output_copy(&handle, callchain, callchain_size);
0322cd6e 1936
8a057d84 1937 perf_output_end(&handle);
0322cd6e
PZ
1938}
1939
8d1b2d93
PZ
1940/*
1941 * comm tracking
1942 */
1943
1944struct perf_comm_event {
1945 struct task_struct *task;
1946 char *comm;
1947 int comm_size;
1948
1949 struct {
1950 struct perf_event_header header;
1951
1952 u32 pid;
1953 u32 tid;
1954 } event;
1955};
1956
1957static void perf_counter_comm_output(struct perf_counter *counter,
1958 struct perf_comm_event *comm_event)
1959{
1960 struct perf_output_handle handle;
1961 int size = comm_event->event.header.size;
1962 int ret = perf_output_begin(&handle, counter, size, 0, 0);
1963
1964 if (ret)
1965 return;
1966
1967 perf_output_put(&handle, comm_event->event);
1968 perf_output_copy(&handle, comm_event->comm,
1969 comm_event->comm_size);
1970 perf_output_end(&handle);
1971}
1972
1973static int perf_counter_comm_match(struct perf_counter *counter,
1974 struct perf_comm_event *comm_event)
1975{
1976 if (counter->hw_event.comm &&
1977 comm_event->event.header.type == PERF_EVENT_COMM)
1978 return 1;
1979
1980 return 0;
1981}
1982
1983static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
1984 struct perf_comm_event *comm_event)
1985{
1986 struct perf_counter *counter;
1987
1988 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1989 return;
1990
1991 rcu_read_lock();
1992 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1993 if (perf_counter_comm_match(counter, comm_event))
1994 perf_counter_comm_output(counter, comm_event);
1995 }
1996 rcu_read_unlock();
1997}
1998
1999static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2000{
2001 struct perf_cpu_context *cpuctx;
2002 unsigned int size;
2003 char *comm = comm_event->task->comm;
2004
888fcee0 2005 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
2006
2007 comm_event->comm = comm;
2008 comm_event->comm_size = size;
2009
2010 comm_event->event.header.size = sizeof(comm_event->event) + size;
2011
2012 cpuctx = &get_cpu_var(perf_cpu_context);
2013 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2014 put_cpu_var(perf_cpu_context);
2015
2016 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2017}
2018
2019void perf_counter_comm(struct task_struct *task)
2020{
9ee318a7
PZ
2021 struct perf_comm_event comm_event;
2022
2023 if (!atomic_read(&nr_comm_tracking))
2024 return;
2025
2026 comm_event = (struct perf_comm_event){
8d1b2d93
PZ
2027 .task = task,
2028 .event = {
2029 .header = { .type = PERF_EVENT_COMM, },
2030 .pid = task->group_leader->pid,
2031 .tid = task->pid,
2032 },
2033 };
2034
2035 perf_counter_comm_event(&comm_event);
2036}
2037
0a4a9391
PZ
2038/*
2039 * mmap tracking
2040 */
2041
2042struct perf_mmap_event {
2043 struct file *file;
2044 char *file_name;
2045 int file_size;
2046
2047 struct {
2048 struct perf_event_header header;
2049
2050 u32 pid;
2051 u32 tid;
2052 u64 start;
2053 u64 len;
2054 u64 pgoff;
2055 } event;
2056};
2057
2058static void perf_counter_mmap_output(struct perf_counter *counter,
2059 struct perf_mmap_event *mmap_event)
2060{
2061 struct perf_output_handle handle;
2062 int size = mmap_event->event.header.size;
4c9e2542 2063 int ret = perf_output_begin(&handle, counter, size, 0, 0);
0a4a9391
PZ
2064
2065 if (ret)
2066 return;
2067
2068 perf_output_put(&handle, mmap_event->event);
2069 perf_output_copy(&handle, mmap_event->file_name,
2070 mmap_event->file_size);
78d613eb 2071 perf_output_end(&handle);
0a4a9391
PZ
2072}
2073
2074static int perf_counter_mmap_match(struct perf_counter *counter,
2075 struct perf_mmap_event *mmap_event)
2076{
2077 if (counter->hw_event.mmap &&
2078 mmap_event->event.header.type == PERF_EVENT_MMAP)
2079 return 1;
2080
2081 if (counter->hw_event.munmap &&
2082 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2083 return 1;
2084
2085 return 0;
2086}
2087
2088static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2089 struct perf_mmap_event *mmap_event)
2090{
2091 struct perf_counter *counter;
2092
2093 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2094 return;
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2098 if (perf_counter_mmap_match(counter, mmap_event))
2099 perf_counter_mmap_output(counter, mmap_event);
2100 }
2101 rcu_read_unlock();
2102}
2103
2104static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2105{
2106 struct perf_cpu_context *cpuctx;
2107 struct file *file = mmap_event->file;
2108 unsigned int size;
2109 char tmp[16];
2110 char *buf = NULL;
2111 char *name;
2112
2113 if (file) {
2114 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2115 if (!buf) {
2116 name = strncpy(tmp, "//enomem", sizeof(tmp));
2117 goto got_name;
2118 }
d3d21c41 2119 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
2120 if (IS_ERR(name)) {
2121 name = strncpy(tmp, "//toolong", sizeof(tmp));
2122 goto got_name;
2123 }
2124 } else {
2125 name = strncpy(tmp, "//anon", sizeof(tmp));
2126 goto got_name;
2127 }
2128
2129got_name:
888fcee0 2130 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
2131
2132 mmap_event->file_name = name;
2133 mmap_event->file_size = size;
2134
2135 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2136
2137 cpuctx = &get_cpu_var(perf_cpu_context);
2138 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2139 put_cpu_var(perf_cpu_context);
2140
2141 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2142
2143 kfree(buf);
2144}
2145
2146void perf_counter_mmap(unsigned long addr, unsigned long len,
2147 unsigned long pgoff, struct file *file)
2148{
9ee318a7
PZ
2149 struct perf_mmap_event mmap_event;
2150
2151 if (!atomic_read(&nr_mmap_tracking))
2152 return;
2153
2154 mmap_event = (struct perf_mmap_event){
0a4a9391
PZ
2155 .file = file,
2156 .event = {
2157 .header = { .type = PERF_EVENT_MMAP, },
2158 .pid = current->group_leader->pid,
2159 .tid = current->pid,
2160 .start = addr,
2161 .len = len,
2162 .pgoff = pgoff,
2163 },
2164 };
2165
2166 perf_counter_mmap_event(&mmap_event);
2167}
2168
2169void perf_counter_munmap(unsigned long addr, unsigned long len,
2170 unsigned long pgoff, struct file *file)
2171{
9ee318a7
PZ
2172 struct perf_mmap_event mmap_event;
2173
2174 if (!atomic_read(&nr_munmap_tracking))
2175 return;
2176
2177 mmap_event = (struct perf_mmap_event){
0a4a9391
PZ
2178 .file = file,
2179 .event = {
2180 .header = { .type = PERF_EVENT_MUNMAP, },
2181 .pid = current->group_leader->pid,
2182 .tid = current->pid,
2183 .start = addr,
2184 .len = len,
2185 .pgoff = pgoff,
2186 },
2187 };
2188
2189 perf_counter_mmap_event(&mmap_event);
2190}
2191
f6c7d5fe
PZ
2192/*
2193 * Generic counter overflow handling.
2194 */
2195
2196int perf_counter_overflow(struct perf_counter *counter,
78f13e95 2197 int nmi, struct pt_regs *regs, u64 addr)
f6c7d5fe 2198{
79f14641
PZ
2199 int events = atomic_read(&counter->event_limit);
2200 int ret = 0;
2201
4c9e2542 2202 counter->pending_kill = POLL_IN;
79f14641
PZ
2203 if (events && atomic_dec_and_test(&counter->event_limit)) {
2204 ret = 1;
4c9e2542 2205 counter->pending_kill = POLL_HUP;
79f14641
PZ
2206 if (nmi) {
2207 counter->pending_disable = 1;
2208 perf_pending_queue(&counter->pending,
2209 perf_pending_counter);
2210 } else
2211 perf_counter_disable(counter);
2212 }
2213
78f13e95 2214 perf_counter_output(counter, nmi, regs, addr);
79f14641 2215 return ret;
f6c7d5fe
PZ
2216}
2217
15dbf27c
PZ
2218/*
2219 * Generic software counter infrastructure
2220 */
2221
2222static void perf_swcounter_update(struct perf_counter *counter)
2223{
2224 struct hw_perf_counter *hwc = &counter->hw;
2225 u64 prev, now;
2226 s64 delta;
2227
2228again:
2229 prev = atomic64_read(&hwc->prev_count);
2230 now = atomic64_read(&hwc->count);
2231 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2232 goto again;
2233
2234 delta = now - prev;
2235
2236 atomic64_add(delta, &counter->count);
2237 atomic64_sub(delta, &hwc->period_left);
2238}
2239
2240static void perf_swcounter_set_period(struct perf_counter *counter)
2241{
2242 struct hw_perf_counter *hwc = &counter->hw;
2243 s64 left = atomic64_read(&hwc->period_left);
2244 s64 period = hwc->irq_period;
2245
2246 if (unlikely(left <= -period)) {
2247 left = period;
2248 atomic64_set(&hwc->period_left, left);
2249 }
2250
2251 if (unlikely(left <= 0)) {
2252 left += period;
2253 atomic64_add(period, &hwc->period_left);
2254 }
2255
2256 atomic64_set(&hwc->prev_count, -left);
2257 atomic64_set(&hwc->count, -left);
2258}
2259
d6d020e9
PZ
2260static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2261{
f6c7d5fe 2262 enum hrtimer_restart ret = HRTIMER_RESTART;
d6d020e9
PZ
2263 struct perf_counter *counter;
2264 struct pt_regs *regs;
2265
2266 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2267 counter->hw_ops->read(counter);
2268
2269 regs = get_irq_regs();
2270 /*
2271 * In case we exclude kernel IPs or are somehow not in interrupt
2272 * context, provide the next best thing, the user IP.
2273 */
2274 if ((counter->hw_event.exclude_kernel || !regs) &&
2275 !counter->hw_event.exclude_user)
2276 regs = task_pt_regs(current);
2277
f6c7d5fe 2278 if (regs) {
78f13e95 2279 if (perf_counter_overflow(counter, 0, regs, 0))
f6c7d5fe
PZ
2280 ret = HRTIMER_NORESTART;
2281 }
d6d020e9
PZ
2282
2283 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2284
f6c7d5fe 2285 return ret;
d6d020e9
PZ
2286}
2287
2288static void perf_swcounter_overflow(struct perf_counter *counter,
78f13e95 2289 int nmi, struct pt_regs *regs, u64 addr)
d6d020e9 2290{
b8e83514
PZ
2291 perf_swcounter_update(counter);
2292 perf_swcounter_set_period(counter);
78f13e95 2293 if (perf_counter_overflow(counter, nmi, regs, addr))
f6c7d5fe
PZ
2294 /* soft-disable the counter */
2295 ;
2296
d6d020e9
PZ
2297}
2298
15dbf27c 2299static int perf_swcounter_match(struct perf_counter *counter,
b8e83514
PZ
2300 enum perf_event_types type,
2301 u32 event, struct pt_regs *regs)
15dbf27c
PZ
2302{
2303 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2304 return 0;
2305
f4a2deb4 2306 if (perf_event_raw(&counter->hw_event))
b8e83514
PZ
2307 return 0;
2308
f4a2deb4 2309 if (perf_event_type(&counter->hw_event) != type)
15dbf27c
PZ
2310 return 0;
2311
f4a2deb4 2312 if (perf_event_id(&counter->hw_event) != event)
15dbf27c
PZ
2313 return 0;
2314
2315 if (counter->hw_event.exclude_user && user_mode(regs))
2316 return 0;
2317
2318 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2319 return 0;
2320
2321 return 1;
2322}
2323
d6d020e9 2324static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
78f13e95 2325 int nmi, struct pt_regs *regs, u64 addr)
d6d020e9
PZ
2326{
2327 int neg = atomic64_add_negative(nr, &counter->hw.count);
2328 if (counter->hw.irq_period && !neg)
78f13e95 2329 perf_swcounter_overflow(counter, nmi, regs, addr);
d6d020e9
PZ
2330}
2331
15dbf27c 2332static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
b8e83514 2333 enum perf_event_types type, u32 event,
78f13e95
PZ
2334 u64 nr, int nmi, struct pt_regs *regs,
2335 u64 addr)
15dbf27c
PZ
2336{
2337 struct perf_counter *counter;
15dbf27c 2338
01ef09d9 2339 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
15dbf27c
PZ
2340 return;
2341
592903cd
PZ
2342 rcu_read_lock();
2343 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
b8e83514 2344 if (perf_swcounter_match(counter, type, event, regs))
78f13e95 2345 perf_swcounter_add(counter, nr, nmi, regs, addr);
15dbf27c 2346 }
592903cd 2347 rcu_read_unlock();
15dbf27c
PZ
2348}
2349
96f6d444
PZ
2350static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2351{
2352 if (in_nmi())
2353 return &cpuctx->recursion[3];
2354
2355 if (in_irq())
2356 return &cpuctx->recursion[2];
2357
2358 if (in_softirq())
2359 return &cpuctx->recursion[1];
2360
2361 return &cpuctx->recursion[0];
2362}
2363
b8e83514 2364static void __perf_swcounter_event(enum perf_event_types type, u32 event,
78f13e95
PZ
2365 u64 nr, int nmi, struct pt_regs *regs,
2366 u64 addr)
15dbf27c
PZ
2367{
2368 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
96f6d444
PZ
2369 int *recursion = perf_swcounter_recursion_context(cpuctx);
2370
2371 if (*recursion)
2372 goto out;
2373
2374 (*recursion)++;
2375 barrier();
15dbf27c 2376
78f13e95
PZ
2377 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2378 nr, nmi, regs, addr);
b8e83514
PZ
2379 if (cpuctx->task_ctx) {
2380 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
78f13e95 2381 nr, nmi, regs, addr);
b8e83514 2382 }
15dbf27c 2383
96f6d444
PZ
2384 barrier();
2385 (*recursion)--;
2386
2387out:
15dbf27c
PZ
2388 put_cpu_var(perf_cpu_context);
2389}
2390
78f13e95
PZ
2391void
2392perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
b8e83514 2393{
78f13e95 2394 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
b8e83514
PZ
2395}
2396
15dbf27c
PZ
2397static void perf_swcounter_read(struct perf_counter *counter)
2398{
2399 perf_swcounter_update(counter);
2400}
2401
2402static int perf_swcounter_enable(struct perf_counter *counter)
2403{
2404 perf_swcounter_set_period(counter);
2405 return 0;
2406}
2407
2408static void perf_swcounter_disable(struct perf_counter *counter)
2409{
2410 perf_swcounter_update(counter);
2411}
2412
ac17dc8e
PZ
2413static const struct hw_perf_counter_ops perf_ops_generic = {
2414 .enable = perf_swcounter_enable,
2415 .disable = perf_swcounter_disable,
2416 .read = perf_swcounter_read,
2417};
2418
15dbf27c
PZ
2419/*
2420 * Software counter: cpu wall time clock
2421 */
2422
9abf8a08
PM
2423static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2424{
2425 int cpu = raw_smp_processor_id();
2426 s64 prev;
2427 u64 now;
2428
2429 now = cpu_clock(cpu);
2430 prev = atomic64_read(&counter->hw.prev_count);
2431 atomic64_set(&counter->hw.prev_count, now);
2432 atomic64_add(now - prev, &counter->count);
2433}
2434
d6d020e9
PZ
2435static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2436{
2437 struct hw_perf_counter *hwc = &counter->hw;
2438 int cpu = raw_smp_processor_id();
2439
2440 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
039fc91e
PZ
2441 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2442 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 2443 if (hwc->irq_period) {
d6d020e9
PZ
2444 __hrtimer_start_range_ns(&hwc->hrtimer,
2445 ns_to_ktime(hwc->irq_period), 0,
2446 HRTIMER_MODE_REL, 0);
2447 }
2448
2449 return 0;
2450}
2451
5c92d124
IM
2452static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2453{
d6d020e9 2454 hrtimer_cancel(&counter->hw.hrtimer);
9abf8a08 2455 cpu_clock_perf_counter_update(counter);
5c92d124
IM
2456}
2457
2458static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2459{
9abf8a08 2460 cpu_clock_perf_counter_update(counter);
5c92d124
IM
2461}
2462
2463static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
7671581f
IM
2464 .enable = cpu_clock_perf_counter_enable,
2465 .disable = cpu_clock_perf_counter_disable,
2466 .read = cpu_clock_perf_counter_read,
5c92d124
IM
2467};
2468
15dbf27c
PZ
2469/*
2470 * Software counter: task time clock
2471 */
2472
e30e08f6 2473static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
aa9c4c0f 2474{
e30e08f6 2475 u64 prev;
8cb391e8
IM
2476 s64 delta;
2477
a39d6f25 2478 prev = atomic64_xchg(&counter->hw.prev_count, now);
8cb391e8 2479 delta = now - prev;
8cb391e8 2480 atomic64_add(delta, &counter->count);
bae43c99
IM
2481}
2482
95cdd2e7 2483static int task_clock_perf_counter_enable(struct perf_counter *counter)
8cb391e8 2484{
d6d020e9 2485 struct hw_perf_counter *hwc = &counter->hw;
a39d6f25
PZ
2486 u64 now;
2487
a39d6f25 2488 now = counter->ctx->time;
d6d020e9 2489
a39d6f25 2490 atomic64_set(&hwc->prev_count, now);
039fc91e
PZ
2491 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2492 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 2493 if (hwc->irq_period) {
d6d020e9
PZ
2494 __hrtimer_start_range_ns(&hwc->hrtimer,
2495 ns_to_ktime(hwc->irq_period), 0,
2496 HRTIMER_MODE_REL, 0);
2497 }
95cdd2e7
IM
2498
2499 return 0;
8cb391e8
IM
2500}
2501
2502static void task_clock_perf_counter_disable(struct perf_counter *counter)
bae43c99 2503{
d6d020e9 2504 hrtimer_cancel(&counter->hw.hrtimer);
e30e08f6
PZ
2505 task_clock_perf_counter_update(counter, counter->ctx->time);
2506
d6d020e9 2507}
aa9c4c0f 2508
d6d020e9
PZ
2509static void task_clock_perf_counter_read(struct perf_counter *counter)
2510{
e30e08f6
PZ
2511 u64 time;
2512
2513 if (!in_nmi()) {
2514 update_context_time(counter->ctx);
2515 time = counter->ctx->time;
2516 } else {
2517 u64 now = perf_clock();
2518 u64 delta = now - counter->ctx->timestamp;
2519 time = counter->ctx->time + delta;
2520 }
2521
2522 task_clock_perf_counter_update(counter, time);
bae43c99
IM
2523}
2524
2525static const struct hw_perf_counter_ops perf_ops_task_clock = {
7671581f
IM
2526 .enable = task_clock_perf_counter_enable,
2527 .disable = task_clock_perf_counter_disable,
2528 .read = task_clock_perf_counter_read,
bae43c99
IM
2529};
2530
15dbf27c
PZ
2531/*
2532 * Software counter: cpu migrations
2533 */
2534
23a185ca 2535static inline u64 get_cpu_migrations(struct perf_counter *counter)
6c594c21 2536{
23a185ca
PM
2537 struct task_struct *curr = counter->ctx->task;
2538
2539 if (curr)
2540 return curr->se.nr_migrations;
2541 return cpu_nr_migrations(smp_processor_id());
6c594c21
IM
2542}
2543
2544static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2545{
2546 u64 prev, now;
2547 s64 delta;
2548
2549 prev = atomic64_read(&counter->hw.prev_count);
23a185ca 2550 now = get_cpu_migrations(counter);
6c594c21
IM
2551
2552 atomic64_set(&counter->hw.prev_count, now);
2553
2554 delta = now - prev;
6c594c21
IM
2555
2556 atomic64_add(delta, &counter->count);
2557}
2558
2559static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2560{
2561 cpu_migrations_perf_counter_update(counter);
2562}
2563
95cdd2e7 2564static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
6c594c21 2565{
c07c99b6
PM
2566 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2567 atomic64_set(&counter->hw.prev_count,
2568 get_cpu_migrations(counter));
95cdd2e7 2569 return 0;
6c594c21
IM
2570}
2571
2572static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2573{
2574 cpu_migrations_perf_counter_update(counter);
2575}
2576
2577static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
7671581f
IM
2578 .enable = cpu_migrations_perf_counter_enable,
2579 .disable = cpu_migrations_perf_counter_disable,
2580 .read = cpu_migrations_perf_counter_read,
6c594c21
IM
2581};
2582
e077df4f
PZ
2583#ifdef CONFIG_EVENT_PROFILE
2584void perf_tpcounter_event(int event_id)
2585{
b8e83514
PZ
2586 struct pt_regs *regs = get_irq_regs();
2587
2588 if (!regs)
2589 regs = task_pt_regs(current);
2590
78f13e95 2591 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
e077df4f 2592}
ff7b1b4f 2593EXPORT_SYMBOL_GPL(perf_tpcounter_event);
e077df4f
PZ
2594
2595extern int ftrace_profile_enable(int);
2596extern void ftrace_profile_disable(int);
2597
2598static void tp_perf_counter_destroy(struct perf_counter *counter)
2599{
f4a2deb4 2600 ftrace_profile_disable(perf_event_id(&counter->hw_event));
e077df4f
PZ
2601}
2602
2603static const struct hw_perf_counter_ops *
2604tp_perf_counter_init(struct perf_counter *counter)
2605{
f4a2deb4 2606 int event_id = perf_event_id(&counter->hw_event);
e077df4f
PZ
2607 int ret;
2608
2609 ret = ftrace_profile_enable(event_id);
2610 if (ret)
2611 return NULL;
2612
2613 counter->destroy = tp_perf_counter_destroy;
b8e83514 2614 counter->hw.irq_period = counter->hw_event.irq_period;
e077df4f
PZ
2615
2616 return &perf_ops_generic;
2617}
2618#else
2619static const struct hw_perf_counter_ops *
2620tp_perf_counter_init(struct perf_counter *counter)
2621{
2622 return NULL;
2623}
2624#endif
2625
5c92d124
IM
2626static const struct hw_perf_counter_ops *
2627sw_perf_counter_init(struct perf_counter *counter)
2628{
15dbf27c 2629 struct perf_counter_hw_event *hw_event = &counter->hw_event;
5c92d124 2630 const struct hw_perf_counter_ops *hw_ops = NULL;
15dbf27c 2631 struct hw_perf_counter *hwc = &counter->hw;
5c92d124 2632
0475f9ea
PM
2633 /*
2634 * Software counters (currently) can't in general distinguish
2635 * between user, kernel and hypervisor events.
2636 * However, context switches and cpu migrations are considered
2637 * to be kernel events, and page faults are never hypervisor
2638 * events.
2639 */
f4a2deb4 2640 switch (perf_event_id(&counter->hw_event)) {
5c92d124 2641 case PERF_COUNT_CPU_CLOCK:
d6d020e9
PZ
2642 hw_ops = &perf_ops_cpu_clock;
2643
2644 if (hw_event->irq_period && hw_event->irq_period < 10000)
2645 hw_event->irq_period = 10000;
5c92d124 2646 break;
bae43c99 2647 case PERF_COUNT_TASK_CLOCK:
23a185ca
PM
2648 /*
2649 * If the user instantiates this as a per-cpu counter,
2650 * use the cpu_clock counter instead.
2651 */
2652 if (counter->ctx->task)
2653 hw_ops = &perf_ops_task_clock;
2654 else
2655 hw_ops = &perf_ops_cpu_clock;
d6d020e9
PZ
2656
2657 if (hw_event->irq_period && hw_event->irq_period < 10000)
2658 hw_event->irq_period = 10000;
bae43c99 2659 break;
e06c61a8 2660 case PERF_COUNT_PAGE_FAULTS:
ac17dc8e
PZ
2661 case PERF_COUNT_PAGE_FAULTS_MIN:
2662 case PERF_COUNT_PAGE_FAULTS_MAJ:
5d6a27d8 2663 case PERF_COUNT_CONTEXT_SWITCHES:
4a0deca6 2664 hw_ops = &perf_ops_generic;
5d6a27d8 2665 break;
6c594c21 2666 case PERF_COUNT_CPU_MIGRATIONS:
0475f9ea
PM
2667 if (!counter->hw_event.exclude_kernel)
2668 hw_ops = &perf_ops_cpu_migrations;
6c594c21 2669 break;
5c92d124 2670 }
15dbf27c
PZ
2671
2672 if (hw_ops)
2673 hwc->irq_period = hw_event->irq_period;
2674
5c92d124
IM
2675 return hw_ops;
2676}
2677
0793a61d
TG
2678/*
2679 * Allocate and initialize a counter structure
2680 */
2681static struct perf_counter *
04289bb9
IM
2682perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2683 int cpu,
23a185ca 2684 struct perf_counter_context *ctx,
9b51f66d
IM
2685 struct perf_counter *group_leader,
2686 gfp_t gfpflags)
0793a61d 2687{
5c92d124 2688 const struct hw_perf_counter_ops *hw_ops;
621a01ea 2689 struct perf_counter *counter;
d5d2bc0d 2690 long err;
0793a61d 2691
9b51f66d 2692 counter = kzalloc(sizeof(*counter), gfpflags);
0793a61d 2693 if (!counter)
d5d2bc0d 2694 return ERR_PTR(-ENOMEM);
0793a61d 2695
04289bb9
IM
2696 /*
2697 * Single counters are their own group leaders, with an
2698 * empty sibling list:
2699 */
2700 if (!group_leader)
2701 group_leader = counter;
2702
0793a61d 2703 mutex_init(&counter->mutex);
04289bb9 2704 INIT_LIST_HEAD(&counter->list_entry);
592903cd 2705 INIT_LIST_HEAD(&counter->event_entry);
04289bb9 2706 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
2707 init_waitqueue_head(&counter->waitq);
2708
7b732a75
PZ
2709 mutex_init(&counter->mmap_mutex);
2710
d859e29f
PM
2711 INIT_LIST_HEAD(&counter->child_list);
2712
9f66a381
IM
2713 counter->cpu = cpu;
2714 counter->hw_event = *hw_event;
04289bb9 2715 counter->group_leader = group_leader;
621a01ea 2716 counter->hw_ops = NULL;
23a185ca 2717 counter->ctx = ctx;
621a01ea 2718
235c7fc7 2719 counter->state = PERF_COUNTER_STATE_INACTIVE;
a86ed508
IM
2720 if (hw_event->disabled)
2721 counter->state = PERF_COUNTER_STATE_OFF;
2722
5c92d124 2723 hw_ops = NULL;
b8e83514 2724
f4a2deb4 2725 if (perf_event_raw(hw_event)) {
b8e83514 2726 hw_ops = hw_perf_counter_init(counter);
f4a2deb4
PZ
2727 goto done;
2728 }
2729
2730 switch (perf_event_type(hw_event)) {
b8e83514 2731 case PERF_TYPE_HARDWARE:
5c92d124 2732 hw_ops = hw_perf_counter_init(counter);
b8e83514
PZ
2733 break;
2734
2735 case PERF_TYPE_SOFTWARE:
2736 hw_ops = sw_perf_counter_init(counter);
2737 break;
2738
2739 case PERF_TYPE_TRACEPOINT:
2740 hw_ops = tp_perf_counter_init(counter);
2741 break;
2742 }
d5d2bc0d
PM
2743done:
2744 err = 0;
2745 if (!hw_ops)
2746 err = -EINVAL;
2747 else if (IS_ERR(hw_ops))
2748 err = PTR_ERR(hw_ops);
5c92d124 2749
d5d2bc0d 2750 if (err) {
621a01ea 2751 kfree(counter);
d5d2bc0d 2752 return ERR_PTR(err);
621a01ea 2753 }
d5d2bc0d 2754
621a01ea 2755 counter->hw_ops = hw_ops;
0793a61d 2756
9ee318a7
PZ
2757 if (counter->hw_event.mmap)
2758 atomic_inc(&nr_mmap_tracking);
2759 if (counter->hw_event.munmap)
2760 atomic_inc(&nr_munmap_tracking);
2761 if (counter->hw_event.comm)
2762 atomic_inc(&nr_comm_tracking);
2763
0793a61d
TG
2764 return counter;
2765}
2766
2767/**
2743a5b0 2768 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
9f66a381
IM
2769 *
2770 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 2771 * @pid: target pid
9f66a381
IM
2772 * @cpu: target cpu
2773 * @group_fd: group leader counter fd
0793a61d 2774 */
2743a5b0 2775SYSCALL_DEFINE5(perf_counter_open,
f3dfd265 2776 const struct perf_counter_hw_event __user *, hw_event_uptr,
2743a5b0 2777 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 2778{
04289bb9 2779 struct perf_counter *counter, *group_leader;
9f66a381 2780 struct perf_counter_hw_event hw_event;
04289bb9 2781 struct perf_counter_context *ctx;
9b51f66d 2782 struct file *counter_file = NULL;
04289bb9
IM
2783 struct file *group_file = NULL;
2784 int fput_needed = 0;
9b51f66d 2785 int fput_needed2 = 0;
0793a61d
TG
2786 int ret;
2787
2743a5b0
PM
2788 /* for future expandability... */
2789 if (flags)
2790 return -EINVAL;
2791
9f66a381 2792 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
2793 return -EFAULT;
2794
04289bb9 2795 /*
ccff286d
IM
2796 * Get the target context (task or percpu):
2797 */
2798 ctx = find_get_context(pid, cpu);
2799 if (IS_ERR(ctx))
2800 return PTR_ERR(ctx);
2801
2802 /*
2803 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
2804 */
2805 group_leader = NULL;
2806 if (group_fd != -1) {
2807 ret = -EINVAL;
2808 group_file = fget_light(group_fd, &fput_needed);
2809 if (!group_file)
ccff286d 2810 goto err_put_context;
04289bb9 2811 if (group_file->f_op != &perf_fops)
ccff286d 2812 goto err_put_context;
04289bb9
IM
2813
2814 group_leader = group_file->private_data;
2815 /*
ccff286d
IM
2816 * Do not allow a recursive hierarchy (this new sibling
2817 * becoming part of another group-sibling):
2818 */
2819 if (group_leader->group_leader != group_leader)
2820 goto err_put_context;
2821 /*
2822 * Do not allow to attach to a group in a different
2823 * task or CPU context:
04289bb9 2824 */
ccff286d
IM
2825 if (group_leader->ctx != ctx)
2826 goto err_put_context;
3b6f9e5c
PM
2827 /*
2828 * Only a group leader can be exclusive or pinned
2829 */
2830 if (hw_event.exclusive || hw_event.pinned)
2831 goto err_put_context;
04289bb9
IM
2832 }
2833
23a185ca
PM
2834 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2835 GFP_KERNEL);
d5d2bc0d
PM
2836 ret = PTR_ERR(counter);
2837 if (IS_ERR(counter))
0793a61d
TG
2838 goto err_put_context;
2839
0793a61d
TG
2840 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2841 if (ret < 0)
9b51f66d
IM
2842 goto err_free_put_context;
2843
2844 counter_file = fget_light(ret, &fput_needed2);
2845 if (!counter_file)
2846 goto err_free_put_context;
2847
2848 counter->filp = counter_file;
d859e29f 2849 mutex_lock(&ctx->mutex);
9b51f66d 2850 perf_install_in_context(ctx, counter, cpu);
d859e29f 2851 mutex_unlock(&ctx->mutex);
9b51f66d
IM
2852
2853 fput_light(counter_file, fput_needed2);
0793a61d 2854
04289bb9
IM
2855out_fput:
2856 fput_light(group_file, fput_needed);
2857
0793a61d
TG
2858 return ret;
2859
9b51f66d 2860err_free_put_context:
0793a61d
TG
2861 kfree(counter);
2862
2863err_put_context:
2864 put_context(ctx);
2865
04289bb9 2866 goto out_fput;
0793a61d
TG
2867}
2868
9b51f66d
IM
2869/*
2870 * Initialize the perf_counter context in a task_struct:
2871 */
2872static void
2873__perf_counter_init_context(struct perf_counter_context *ctx,
2874 struct task_struct *task)
2875{
2876 memset(ctx, 0, sizeof(*ctx));
2877 spin_lock_init(&ctx->lock);
d859e29f 2878 mutex_init(&ctx->mutex);
9b51f66d 2879 INIT_LIST_HEAD(&ctx->counter_list);
592903cd 2880 INIT_LIST_HEAD(&ctx->event_list);
9b51f66d
IM
2881 ctx->task = task;
2882}
2883
2884/*
2885 * inherit a counter from parent task to child task:
2886 */
d859e29f 2887static struct perf_counter *
9b51f66d
IM
2888inherit_counter(struct perf_counter *parent_counter,
2889 struct task_struct *parent,
2890 struct perf_counter_context *parent_ctx,
2891 struct task_struct *child,
d859e29f 2892 struct perf_counter *group_leader,
9b51f66d
IM
2893 struct perf_counter_context *child_ctx)
2894{
2895 struct perf_counter *child_counter;
2896
d859e29f
PM
2897 /*
2898 * Instead of creating recursive hierarchies of counters,
2899 * we link inherited counters back to the original parent,
2900 * which has a filp for sure, which we use as the reference
2901 * count:
2902 */
2903 if (parent_counter->parent)
2904 parent_counter = parent_counter->parent;
2905
9b51f66d 2906 child_counter = perf_counter_alloc(&parent_counter->hw_event,
23a185ca
PM
2907 parent_counter->cpu, child_ctx,
2908 group_leader, GFP_KERNEL);
d5d2bc0d
PM
2909 if (IS_ERR(child_counter))
2910 return child_counter;
9b51f66d
IM
2911
2912 /*
2913 * Link it up in the child's context:
2914 */
9b51f66d 2915 child_counter->task = child;
53cfbf59 2916 add_counter_to_ctx(child_counter, child_ctx);
9b51f66d
IM
2917
2918 child_counter->parent = parent_counter;
9b51f66d
IM
2919 /*
2920 * inherit into child's child as well:
2921 */
2922 child_counter->hw_event.inherit = 1;
2923
2924 /*
2925 * Get a reference to the parent filp - we will fput it
2926 * when the child counter exits. This is safe to do because
2927 * we are in the parent and we know that the filp still
2928 * exists and has a nonzero count:
2929 */
2930 atomic_long_inc(&parent_counter->filp->f_count);
2931
d859e29f
PM
2932 /*
2933 * Link this into the parent counter's child list
2934 */
2935 mutex_lock(&parent_counter->mutex);
2936 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2937
2938 /*
2939 * Make the child state follow the state of the parent counter,
2940 * not its hw_event.disabled bit. We hold the parent's mutex,
2941 * so we won't race with perf_counter_{en,dis}able_family.
2942 */
2943 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2944 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2945 else
2946 child_counter->state = PERF_COUNTER_STATE_OFF;
2947
2948 mutex_unlock(&parent_counter->mutex);
2949
2950 return child_counter;
2951}
2952
2953static int inherit_group(struct perf_counter *parent_counter,
2954 struct task_struct *parent,
2955 struct perf_counter_context *parent_ctx,
2956 struct task_struct *child,
2957 struct perf_counter_context *child_ctx)
2958{
2959 struct perf_counter *leader;
2960 struct perf_counter *sub;
d5d2bc0d 2961 struct perf_counter *child_ctr;
d859e29f
PM
2962
2963 leader = inherit_counter(parent_counter, parent, parent_ctx,
2964 child, NULL, child_ctx);
d5d2bc0d
PM
2965 if (IS_ERR(leader))
2966 return PTR_ERR(leader);
d859e29f 2967 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
d5d2bc0d
PM
2968 child_ctr = inherit_counter(sub, parent, parent_ctx,
2969 child, leader, child_ctx);
2970 if (IS_ERR(child_ctr))
2971 return PTR_ERR(child_ctr);
d859e29f 2972 }
9b51f66d
IM
2973 return 0;
2974}
2975
d859e29f
PM
2976static void sync_child_counter(struct perf_counter *child_counter,
2977 struct perf_counter *parent_counter)
2978{
2979 u64 parent_val, child_val;
2980
2981 parent_val = atomic64_read(&parent_counter->count);
2982 child_val = atomic64_read(&child_counter->count);
2983
2984 /*
2985 * Add back the child's count to the parent's count:
2986 */
2987 atomic64_add(child_val, &parent_counter->count);
53cfbf59
PM
2988 atomic64_add(child_counter->total_time_enabled,
2989 &parent_counter->child_total_time_enabled);
2990 atomic64_add(child_counter->total_time_running,
2991 &parent_counter->child_total_time_running);
d859e29f
PM
2992
2993 /*
2994 * Remove this counter from the parent's list
2995 */
2996 mutex_lock(&parent_counter->mutex);
2997 list_del_init(&child_counter->child_list);
2998 mutex_unlock(&parent_counter->mutex);
2999
3000 /*
3001 * Release the parent counter, if this was the last
3002 * reference to it.
3003 */
3004 fput(parent_counter->filp);
3005}
3006
9b51f66d
IM
3007static void
3008__perf_counter_exit_task(struct task_struct *child,
3009 struct perf_counter *child_counter,
3010 struct perf_counter_context *child_ctx)
3011{
3012 struct perf_counter *parent_counter;
d859e29f 3013 struct perf_counter *sub, *tmp;
9b51f66d
IM
3014
3015 /*
235c7fc7
IM
3016 * If we do not self-reap then we have to wait for the
3017 * child task to unschedule (it will happen for sure),
3018 * so that its counter is at its final count. (This
3019 * condition triggers rarely - child tasks usually get
3020 * off their CPU before the parent has a chance to
3021 * get this far into the reaping action)
9b51f66d 3022 */
235c7fc7
IM
3023 if (child != current) {
3024 wait_task_inactive(child, 0);
3025 list_del_init(&child_counter->list_entry);
53cfbf59 3026 update_counter_times(child_counter);
235c7fc7 3027 } else {
0cc0c027 3028 struct perf_cpu_context *cpuctx;
235c7fc7
IM
3029 unsigned long flags;
3030 u64 perf_flags;
3031
3032 /*
3033 * Disable and unlink this counter.
3034 *
3035 * Be careful about zapping the list - IRQ/NMI context
3036 * could still be processing it:
3037 */
849691a6 3038 local_irq_save(flags);
235c7fc7 3039 perf_flags = hw_perf_save_disable();
0cc0c027
IM
3040
3041 cpuctx = &__get_cpu_var(perf_cpu_context);
3042
d859e29f 3043 group_sched_out(child_counter, cpuctx, child_ctx);
53cfbf59 3044 update_counter_times(child_counter);
0cc0c027 3045
235c7fc7 3046 list_del_init(&child_counter->list_entry);
0cc0c027 3047
235c7fc7 3048 child_ctx->nr_counters--;
9b51f66d 3049
235c7fc7 3050 hw_perf_restore(perf_flags);
849691a6 3051 local_irq_restore(flags);
235c7fc7 3052 }
9b51f66d
IM
3053
3054 parent_counter = child_counter->parent;
3055 /*
3056 * It can happen that parent exits first, and has counters
3057 * that are still around due to the child reference. These
3058 * counters need to be zapped - but otherwise linger.
3059 */
d859e29f
PM
3060 if (parent_counter) {
3061 sync_child_counter(child_counter, parent_counter);
3062 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3063 list_entry) {
4bcf349a 3064 if (sub->parent) {
d859e29f 3065 sync_child_counter(sub, sub->parent);
f1600952 3066 free_counter(sub);
4bcf349a 3067 }
d859e29f 3068 }
f1600952 3069 free_counter(child_counter);
4bcf349a 3070 }
9b51f66d
IM
3071}
3072
3073/*
d859e29f 3074 * When a child task exits, feed back counter values to parent counters.
9b51f66d 3075 *
d859e29f 3076 * Note: we may be running in child context, but the PID is not hashed
9b51f66d
IM
3077 * anymore so new counters will not be added.
3078 */
3079void perf_counter_exit_task(struct task_struct *child)
3080{
3081 struct perf_counter *child_counter, *tmp;
3082 struct perf_counter_context *child_ctx;
3083
3084 child_ctx = &child->perf_counter_ctx;
3085
3086 if (likely(!child_ctx->nr_counters))
3087 return;
3088
3089 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3090 list_entry)
3091 __perf_counter_exit_task(child, child_counter, child_ctx);
3092}
3093
3094/*
3095 * Initialize the perf_counter context in task_struct
3096 */
3097void perf_counter_init_task(struct task_struct *child)
3098{
3099 struct perf_counter_context *child_ctx, *parent_ctx;
d859e29f 3100 struct perf_counter *counter;
9b51f66d 3101 struct task_struct *parent = current;
9b51f66d
IM
3102
3103 child_ctx = &child->perf_counter_ctx;
3104 parent_ctx = &parent->perf_counter_ctx;
3105
3106 __perf_counter_init_context(child_ctx, child);
3107
3108 /*
3109 * This is executed from the parent task context, so inherit
3110 * counters that have been marked for cloning:
3111 */
3112
3113 if (likely(!parent_ctx->nr_counters))
3114 return;
3115
3116 /*
3117 * Lock the parent list. No need to lock the child - not PID
3118 * hashed yet and not running, so nobody can access it.
3119 */
d859e29f 3120 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
3121
3122 /*
3123 * We dont have to disable NMIs - we are only looking at
3124 * the list, not manipulating it:
3125 */
3126 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
d859e29f 3127 if (!counter->hw_event.inherit)
9b51f66d
IM
3128 continue;
3129
d859e29f 3130 if (inherit_group(counter, parent,
9b51f66d
IM
3131 parent_ctx, child, child_ctx))
3132 break;
3133 }
3134
d859e29f 3135 mutex_unlock(&parent_ctx->mutex);
9b51f66d
IM
3136}
3137
04289bb9 3138static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 3139{
04289bb9 3140 struct perf_cpu_context *cpuctx;
0793a61d 3141
04289bb9
IM
3142 cpuctx = &per_cpu(perf_cpu_context, cpu);
3143 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
3144
3145 mutex_lock(&perf_resource_mutex);
04289bb9 3146 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 3147 mutex_unlock(&perf_resource_mutex);
04289bb9 3148
01d0287f 3149 hw_perf_counter_setup(cpu);
0793a61d
TG
3150}
3151
3152#ifdef CONFIG_HOTPLUG_CPU
04289bb9 3153static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
3154{
3155 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3156 struct perf_counter_context *ctx = &cpuctx->ctx;
3157 struct perf_counter *counter, *tmp;
3158
04289bb9
IM
3159 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3160 __perf_counter_remove_from_context(counter);
0793a61d 3161}
04289bb9 3162static void perf_counter_exit_cpu(int cpu)
0793a61d 3163{
d859e29f
PM
3164 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3165 struct perf_counter_context *ctx = &cpuctx->ctx;
3166
3167 mutex_lock(&ctx->mutex);
04289bb9 3168 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
d859e29f 3169 mutex_unlock(&ctx->mutex);
0793a61d
TG
3170}
3171#else
04289bb9 3172static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
3173#endif
3174
3175static int __cpuinit
3176perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3177{
3178 unsigned int cpu = (long)hcpu;
3179
3180 switch (action) {
3181
3182 case CPU_UP_PREPARE:
3183 case CPU_UP_PREPARE_FROZEN:
04289bb9 3184 perf_counter_init_cpu(cpu);
0793a61d
TG
3185 break;
3186
3187 case CPU_DOWN_PREPARE:
3188 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 3189 perf_counter_exit_cpu(cpu);
0793a61d
TG
3190 break;
3191
3192 default:
3193 break;
3194 }
3195
3196 return NOTIFY_OK;
3197}
3198
3199static struct notifier_block __cpuinitdata perf_cpu_nb = {
3200 .notifier_call = perf_cpu_notify,
3201};
3202
3203static int __init perf_counter_init(void)
3204{
3205 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3206 (void *)(long)smp_processor_id());
3207 register_cpu_notifier(&perf_cpu_nb);
3208
3209 return 0;
3210}
3211early_initcall(perf_counter_init);
3212
3213static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3214{
3215 return sprintf(buf, "%d\n", perf_reserved_percpu);
3216}
3217
3218static ssize_t
3219perf_set_reserve_percpu(struct sysdev_class *class,
3220 const char *buf,
3221 size_t count)
3222{
3223 struct perf_cpu_context *cpuctx;
3224 unsigned long val;
3225 int err, cpu, mpt;
3226
3227 err = strict_strtoul(buf, 10, &val);
3228 if (err)
3229 return err;
3230 if (val > perf_max_counters)
3231 return -EINVAL;
3232
3233 mutex_lock(&perf_resource_mutex);
3234 perf_reserved_percpu = val;
3235 for_each_online_cpu(cpu) {
3236 cpuctx = &per_cpu(perf_cpu_context, cpu);
3237 spin_lock_irq(&cpuctx->ctx.lock);
3238 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3239 perf_max_counters - perf_reserved_percpu);
3240 cpuctx->max_pertask = mpt;
3241 spin_unlock_irq(&cpuctx->ctx.lock);
3242 }
3243 mutex_unlock(&perf_resource_mutex);
3244
3245 return count;
3246}
3247
3248static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3249{
3250 return sprintf(buf, "%d\n", perf_overcommit);
3251}
3252
3253static ssize_t
3254perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3255{
3256 unsigned long val;
3257 int err;
3258
3259 err = strict_strtoul(buf, 10, &val);
3260 if (err)
3261 return err;
3262 if (val > 1)
3263 return -EINVAL;
3264
3265 mutex_lock(&perf_resource_mutex);
3266 perf_overcommit = val;
3267 mutex_unlock(&perf_resource_mutex);
3268
3269 return count;
3270}
3271
3272static SYSDEV_CLASS_ATTR(
3273 reserve_percpu,
3274 0644,
3275 perf_show_reserve_percpu,
3276 perf_set_reserve_percpu
3277 );
3278
3279static SYSDEV_CLASS_ATTR(
3280 overcommit,
3281 0644,
3282 perf_show_overcommit,
3283 perf_set_overcommit
3284 );
3285
3286static struct attribute *perfclass_attrs[] = {
3287 &attr_reserve_percpu.attr,
3288 &attr_overcommit.attr,
3289 NULL
3290};
3291
3292static struct attribute_group perfclass_attr_group = {
3293 .attrs = perfclass_attrs,
3294 .name = "perf_counters",
3295};
3296
3297static int __init perf_counter_sysfs_init(void)
3298{
3299 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3300 &perfclass_attr_group);
3301}
3302device_initcall(perf_counter_sysfs_init);