rtmutex: Warn if trylock is called from hard/softirq context
[linux-2.6-block.git] / kernel / locking / rtmutex.c
CommitLineData
23f78d4a
IM
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
d07fe82c 10 *
214e0aed 11 * See Documentation/locking/rt-mutex-design.txt for details.
23f78d4a
IM
12 */
13#include <linux/spinlock.h>
9984de1a 14#include <linux/export.h>
23f78d4a 15#include <linux/sched.h>
8bd75c77 16#include <linux/sched/rt.h>
fb00aca4 17#include <linux/sched/deadline.h>
23f78d4a
IM
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
23f78d4a
IM
22/*
23 * lock->owner state tracking:
24 *
8161239a
LJ
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
23f78d4a 27 *
8161239a
LJ
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
23f78d4a
IM
34 *
35 * The fast atomic compare exchange based acquire and release is only
8161239a
LJ
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
23f78d4a 42 *
8161239a
LJ
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
23f78d4a
IM
47 */
48
bd197234 49static void
8161239a 50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
23f78d4a 51{
8161239a 52 unsigned long val = (unsigned long)owner;
23f78d4a
IM
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
70}
71
bd197234 72/*
cede8841
SAS
73 * We can speed up the acquire/release, if there's no debugging state to be
74 * set up.
bd197234 75 */
cede8841 76#ifndef CONFIG_DEBUG_RT_MUTEXES
bd197234
TG
77# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79{
80 unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82 do {
83 owner = *p;
84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85}
27e35715
TG
86
87/*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 __releases(lock->wait_lock)
95{
96 struct task_struct *owner = rt_mutex_owner(lock);
97
98 clear_rt_mutex_waiters(lock);
99 raw_spin_unlock(&lock->wait_lock);
100 /*
101 * If a new waiter comes in between the unlock and the cmpxchg
102 * we have two situations:
103 *
104 * unlock(wait_lock);
105 * lock(wait_lock);
106 * cmpxchg(p, owner, 0) == owner
107 * mark_rt_mutex_waiters(lock);
108 * acquire(lock);
109 * or:
110 *
111 * unlock(wait_lock);
112 * lock(wait_lock);
113 * mark_rt_mutex_waiters(lock);
114 *
115 * cmpxchg(p, owner, 0) != owner
116 * enqueue_waiter();
117 * unlock(wait_lock);
118 * lock(wait_lock);
119 * wake waiter();
120 * unlock(wait_lock);
121 * lock(wait_lock);
122 * acquire(lock);
123 */
124 return rt_mutex_cmpxchg(lock, owner, NULL);
125}
126
bd197234
TG
127#else
128# define rt_mutex_cmpxchg(l,c,n) (0)
129static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130{
131 lock->owner = (struct task_struct *)
132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133}
27e35715
TG
134
135/*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 __releases(lock->wait_lock)
140{
141 lock->owner = NULL;
142 raw_spin_unlock(&lock->wait_lock);
143 return true;
144}
bd197234
TG
145#endif
146
fb00aca4
PZ
147static inline int
148rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 struct rt_mutex_waiter *right)
150{
2d3d891d 151 if (left->prio < right->prio)
fb00aca4
PZ
152 return 1;
153
154 /*
2d3d891d
DF
155 * If both waiters have dl_prio(), we check the deadlines of the
156 * associated tasks.
157 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 * then right waiter has a dl_prio() too.
fb00aca4 159 */
2d3d891d 160 if (dl_prio(left->prio))
fb00aca4
PZ
161 return (left->task->dl.deadline < right->task->dl.deadline);
162
163 return 0;
164}
165
166static void
167rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168{
169 struct rb_node **link = &lock->waiters.rb_node;
170 struct rb_node *parent = NULL;
171 struct rt_mutex_waiter *entry;
172 int leftmost = 1;
173
174 while (*link) {
175 parent = *link;
176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 if (rt_mutex_waiter_less(waiter, entry)) {
178 link = &parent->rb_left;
179 } else {
180 link = &parent->rb_right;
181 leftmost = 0;
182 }
183 }
184
185 if (leftmost)
186 lock->waiters_leftmost = &waiter->tree_entry;
187
188 rb_link_node(&waiter->tree_entry, parent, link);
189 rb_insert_color(&waiter->tree_entry, &lock->waiters);
190}
191
192static void
193rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194{
195 if (RB_EMPTY_NODE(&waiter->tree_entry))
196 return;
197
198 if (lock->waiters_leftmost == &waiter->tree_entry)
199 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201 rb_erase(&waiter->tree_entry, &lock->waiters);
202 RB_CLEAR_NODE(&waiter->tree_entry);
203}
204
205static void
206rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207{
208 struct rb_node **link = &task->pi_waiters.rb_node;
209 struct rb_node *parent = NULL;
210 struct rt_mutex_waiter *entry;
211 int leftmost = 1;
212
213 while (*link) {
214 parent = *link;
215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 if (rt_mutex_waiter_less(waiter, entry)) {
217 link = &parent->rb_left;
218 } else {
219 link = &parent->rb_right;
220 leftmost = 0;
221 }
222 }
223
224 if (leftmost)
225 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227 rb_link_node(&waiter->pi_tree_entry, parent, link);
228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229}
230
231static void
232rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233{
234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 return;
236
237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 RB_CLEAR_NODE(&waiter->pi_tree_entry);
242}
243
23f78d4a 244/*
fb00aca4 245 * Calculate task priority from the waiter tree priority
23f78d4a 246 *
fb00aca4 247 * Return task->normal_prio when the waiter tree is empty or when
23f78d4a
IM
248 * the waiter is not allowed to do priority boosting
249 */
250int rt_mutex_getprio(struct task_struct *task)
251{
252 if (likely(!task_has_pi_waiters(task)))
253 return task->normal_prio;
254
2d3d891d 255 return min(task_top_pi_waiter(task)->prio,
23f78d4a
IM
256 task->normal_prio);
257}
258
2d3d891d
DF
259struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260{
261 if (likely(!task_has_pi_waiters(task)))
262 return NULL;
263
264 return task_top_pi_waiter(task)->task;
265}
266
c365c292
TG
267/*
268 * Called by sched_setscheduler() to check whether the priority change
269 * is overruled by a possible priority boosting.
270 */
271int rt_mutex_check_prio(struct task_struct *task, int newprio)
272{
273 if (!task_has_pi_waiters(task))
274 return 0;
275
276 return task_top_pi_waiter(task)->task->prio <= newprio;
277}
278
23f78d4a
IM
279/*
280 * Adjust the priority of a task, after its pi_waiters got modified.
281 *
282 * This can be both boosting and unboosting. task->pi_lock must be held.
283 */
bd197234 284static void __rt_mutex_adjust_prio(struct task_struct *task)
23f78d4a
IM
285{
286 int prio = rt_mutex_getprio(task);
287
2d3d891d 288 if (task->prio != prio || dl_prio(prio))
23f78d4a
IM
289 rt_mutex_setprio(task, prio);
290}
291
292/*
293 * Adjust task priority (undo boosting). Called from the exit path of
294 * rt_mutex_slowunlock() and rt_mutex_slowlock().
295 *
296 * (Note: We do this outside of the protection of lock->wait_lock to
297 * allow the lock to be taken while or before we readjust the priority
298 * of task. We do not use the spin_xx_mutex() variants here as we are
299 * outside of the debug path.)
300 */
301static void rt_mutex_adjust_prio(struct task_struct *task)
302{
303 unsigned long flags;
304
1d615482 305 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 306 __rt_mutex_adjust_prio(task);
1d615482 307 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
308}
309
8930ed80
TG
310/*
311 * Deadlock detection is conditional:
312 *
313 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
314 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
315 *
316 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
317 * conducted independent of the detect argument.
318 *
319 * If the waiter argument is NULL this indicates the deboost path and
320 * deadlock detection is disabled independent of the detect argument
321 * and the config settings.
322 */
323static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
324 enum rtmutex_chainwalk chwalk)
325{
326 /*
327 * This is just a wrapper function for the following call,
328 * because debug_rt_mutex_detect_deadlock() smells like a magic
329 * debug feature and I wanted to keep the cond function in the
330 * main source file along with the comments instead of having
331 * two of the same in the headers.
332 */
333 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
334}
335
23f78d4a
IM
336/*
337 * Max number of times we'll walk the boosting chain:
338 */
339int max_lock_depth = 1024;
340
82084984
TG
341static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
342{
343 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
344}
345
23f78d4a
IM
346/*
347 * Adjust the priority chain. Also used for deadlock detection.
348 * Decreases task's usage by one - may thus free the task.
0c106173 349 *
82084984
TG
350 * @task: the task owning the mutex (owner) for which a chain walk is
351 * probably needed
e6beaa36 352 * @chwalk: do we have to carry out deadlock detection?
82084984
TG
353 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
354 * things for a task that has just got its priority adjusted, and
355 * is waiting on a mutex)
356 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
357 * we dropped its pi_lock. Is never dereferenced, only used for
358 * comparison to detect lock chain changes.
0c106173 359 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
82084984
TG
360 * its priority to the mutex owner (can be NULL in the case
361 * depicted above or if the top waiter is gone away and we are
362 * actually deboosting the owner)
363 * @top_task: the current top waiter
0c106173 364 *
23f78d4a 365 * Returns 0 or -EDEADLK.
3eb65aea
TG
366 *
367 * Chain walk basics and protection scope
368 *
369 * [R] refcount on task
370 * [P] task->pi_lock held
371 * [L] rtmutex->wait_lock held
372 *
373 * Step Description Protected by
374 * function arguments:
375 * @task [R]
376 * @orig_lock if != NULL @top_task is blocked on it
377 * @next_lock Unprotected. Cannot be
378 * dereferenced. Only used for
379 * comparison.
380 * @orig_waiter if != NULL @top_task is blocked on it
381 * @top_task current, or in case of proxy
382 * locking protected by calling
383 * code
384 * again:
385 * loop_sanity_check();
386 * retry:
387 * [1] lock(task->pi_lock); [R] acquire [P]
388 * [2] waiter = task->pi_blocked_on; [P]
389 * [3] check_exit_conditions_1(); [P]
390 * [4] lock = waiter->lock; [P]
391 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
392 * unlock(task->pi_lock); release [P]
393 * goto retry;
394 * }
395 * [6] check_exit_conditions_2(); [P] + [L]
396 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
397 * [8] unlock(task->pi_lock); release [P]
398 * put_task_struct(task); release [R]
399 * [9] check_exit_conditions_3(); [L]
400 * [10] task = owner(lock); [L]
401 * get_task_struct(task); [L] acquire [R]
402 * lock(task->pi_lock); [L] acquire [P]
403 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
404 * [12] check_exit_conditions_4(); [P] + [L]
405 * [13] unlock(task->pi_lock); release [P]
406 * unlock(lock->wait_lock); release [L]
407 * goto again;
23f78d4a 408 */
bd197234 409static int rt_mutex_adjust_prio_chain(struct task_struct *task,
8930ed80 410 enum rtmutex_chainwalk chwalk,
bd197234 411 struct rt_mutex *orig_lock,
82084984 412 struct rt_mutex *next_lock,
bd197234
TG
413 struct rt_mutex_waiter *orig_waiter,
414 struct task_struct *top_task)
23f78d4a 415{
23f78d4a 416 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
a57594a1 417 struct rt_mutex_waiter *prerequeue_top_waiter;
8930ed80 418 int ret = 0, depth = 0;
a57594a1 419 struct rt_mutex *lock;
8930ed80 420 bool detect_deadlock;
23f78d4a 421 unsigned long flags;
67792e2c 422 bool requeue = true;
23f78d4a 423
8930ed80 424 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
23f78d4a
IM
425
426 /*
427 * The (de)boosting is a step by step approach with a lot of
428 * pitfalls. We want this to be preemptible and we want hold a
429 * maximum of two locks per step. So we have to check
430 * carefully whether things change under us.
431 */
432 again:
3eb65aea
TG
433 /*
434 * We limit the lock chain length for each invocation.
435 */
23f78d4a
IM
436 if (++depth > max_lock_depth) {
437 static int prev_max;
438
439 /*
440 * Print this only once. If the admin changes the limit,
441 * print a new message when reaching the limit again.
442 */
443 if (prev_max != max_lock_depth) {
444 prev_max = max_lock_depth;
445 printk(KERN_WARNING "Maximum lock depth %d reached "
446 "task: %s (%d)\n", max_lock_depth,
ba25f9dc 447 top_task->comm, task_pid_nr(top_task));
23f78d4a
IM
448 }
449 put_task_struct(task);
450
3d5c9340 451 return -EDEADLK;
23f78d4a 452 }
3eb65aea
TG
453
454 /*
455 * We are fully preemptible here and only hold the refcount on
456 * @task. So everything can have changed under us since the
457 * caller or our own code below (goto retry/again) dropped all
458 * locks.
459 */
23f78d4a
IM
460 retry:
461 /*
3eb65aea 462 * [1] Task cannot go away as we did a get_task() before !
23f78d4a 463 */
1d615482 464 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 465
3eb65aea
TG
466 /*
467 * [2] Get the waiter on which @task is blocked on.
468 */
23f78d4a 469 waiter = task->pi_blocked_on;
3eb65aea
TG
470
471 /*
472 * [3] check_exit_conditions_1() protected by task->pi_lock.
473 */
474
23f78d4a
IM
475 /*
476 * Check whether the end of the boosting chain has been
477 * reached or the state of the chain has changed while we
478 * dropped the locks.
479 */
8161239a 480 if (!waiter)
23f78d4a
IM
481 goto out_unlock_pi;
482
1a539a87
TG
483 /*
484 * Check the orig_waiter state. After we dropped the locks,
8161239a 485 * the previous owner of the lock might have released the lock.
1a539a87 486 */
8161239a 487 if (orig_waiter && !rt_mutex_owner(orig_lock))
1a539a87
TG
488 goto out_unlock_pi;
489
82084984
TG
490 /*
491 * We dropped all locks after taking a refcount on @task, so
492 * the task might have moved on in the lock chain or even left
493 * the chain completely and blocks now on an unrelated lock or
494 * on @orig_lock.
495 *
496 * We stored the lock on which @task was blocked in @next_lock,
497 * so we can detect the chain change.
498 */
499 if (next_lock != waiter->lock)
500 goto out_unlock_pi;
501
1a539a87
TG
502 /*
503 * Drop out, when the task has no waiters. Note,
504 * top_waiter can be NULL, when we are in the deboosting
505 * mode!
506 */
397335f0
TG
507 if (top_waiter) {
508 if (!task_has_pi_waiters(task))
509 goto out_unlock_pi;
510 /*
511 * If deadlock detection is off, we stop here if we
67792e2c
TG
512 * are not the top pi waiter of the task. If deadlock
513 * detection is enabled we continue, but stop the
514 * requeueing in the chain walk.
397335f0 515 */
67792e2c
TG
516 if (top_waiter != task_top_pi_waiter(task)) {
517 if (!detect_deadlock)
518 goto out_unlock_pi;
519 else
520 requeue = false;
521 }
397335f0 522 }
23f78d4a
IM
523
524 /*
67792e2c
TG
525 * If the waiter priority is the same as the task priority
526 * then there is no further priority adjustment necessary. If
527 * deadlock detection is off, we stop the chain walk. If its
528 * enabled we continue, but stop the requeueing in the chain
529 * walk.
23f78d4a 530 */
67792e2c
TG
531 if (waiter->prio == task->prio) {
532 if (!detect_deadlock)
533 goto out_unlock_pi;
534 else
535 requeue = false;
536 }
23f78d4a 537
3eb65aea
TG
538 /*
539 * [4] Get the next lock
540 */
23f78d4a 541 lock = waiter->lock;
3eb65aea
TG
542 /*
543 * [5] We need to trylock here as we are holding task->pi_lock,
544 * which is the reverse lock order versus the other rtmutex
545 * operations.
546 */
d209d74d 547 if (!raw_spin_trylock(&lock->wait_lock)) {
1d615482 548 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
549 cpu_relax();
550 goto retry;
551 }
552
397335f0 553 /*
3eb65aea
TG
554 * [6] check_exit_conditions_2() protected by task->pi_lock and
555 * lock->wait_lock.
556 *
397335f0
TG
557 * Deadlock detection. If the lock is the same as the original
558 * lock which caused us to walk the lock chain or if the
559 * current lock is owned by the task which initiated the chain
560 * walk, we detected a deadlock.
561 */
95e02ca9 562 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
8930ed80 563 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
d209d74d 564 raw_spin_unlock(&lock->wait_lock);
3d5c9340 565 ret = -EDEADLK;
23f78d4a
IM
566 goto out_unlock_pi;
567 }
568
67792e2c
TG
569 /*
570 * If we just follow the lock chain for deadlock detection, no
571 * need to do all the requeue operations. To avoid a truckload
572 * of conditionals around the various places below, just do the
573 * minimum chain walk checks.
574 */
575 if (!requeue) {
576 /*
577 * No requeue[7] here. Just release @task [8]
578 */
579 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
580 put_task_struct(task);
581
582 /*
583 * [9] check_exit_conditions_3 protected by lock->wait_lock.
584 * If there is no owner of the lock, end of chain.
585 */
586 if (!rt_mutex_owner(lock)) {
587 raw_spin_unlock(&lock->wait_lock);
588 return 0;
589 }
590
591 /* [10] Grab the next task, i.e. owner of @lock */
592 task = rt_mutex_owner(lock);
593 get_task_struct(task);
594 raw_spin_lock_irqsave(&task->pi_lock, flags);
595
596 /*
597 * No requeue [11] here. We just do deadlock detection.
598 *
599 * [12] Store whether owner is blocked
600 * itself. Decision is made after dropping the locks
601 */
602 next_lock = task_blocked_on_lock(task);
603 /*
604 * Get the top waiter for the next iteration
605 */
606 top_waiter = rt_mutex_top_waiter(lock);
607
608 /* [13] Drop locks */
609 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
610 raw_spin_unlock(&lock->wait_lock);
611
612 /* If owner is not blocked, end of chain. */
613 if (!next_lock)
614 goto out_put_task;
615 goto again;
616 }
617
a57594a1
TG
618 /*
619 * Store the current top waiter before doing the requeue
620 * operation on @lock. We need it for the boost/deboost
621 * decision below.
622 */
623 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
23f78d4a 624
3eb65aea 625 /* [7] Requeue the waiter in the lock waiter list. */
fb00aca4 626 rt_mutex_dequeue(lock, waiter);
2d3d891d 627 waiter->prio = task->prio;
fb00aca4 628 rt_mutex_enqueue(lock, waiter);
23f78d4a 629
3eb65aea 630 /* [8] Release the task */
1d615482 631 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
2ffa5a5c
TG
632 put_task_struct(task);
633
a57594a1 634 /*
3eb65aea
TG
635 * [9] check_exit_conditions_3 protected by lock->wait_lock.
636 *
a57594a1
TG
637 * We must abort the chain walk if there is no lock owner even
638 * in the dead lock detection case, as we have nothing to
639 * follow here. This is the end of the chain we are walking.
640 */
8161239a
LJ
641 if (!rt_mutex_owner(lock)) {
642 /*
3eb65aea
TG
643 * If the requeue [7] above changed the top waiter,
644 * then we need to wake the new top waiter up to try
645 * to get the lock.
8161239a 646 */
a57594a1 647 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
8161239a
LJ
648 wake_up_process(rt_mutex_top_waiter(lock)->task);
649 raw_spin_unlock(&lock->wait_lock);
2ffa5a5c 650 return 0;
8161239a 651 }
23f78d4a 652
3eb65aea 653 /* [10] Grab the next task, i.e. the owner of @lock */
23f78d4a 654 task = rt_mutex_owner(lock);
db630637 655 get_task_struct(task);
1d615482 656 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 657
3eb65aea 658 /* [11] requeue the pi waiters if necessary */
23f78d4a 659 if (waiter == rt_mutex_top_waiter(lock)) {
a57594a1
TG
660 /*
661 * The waiter became the new top (highest priority)
662 * waiter on the lock. Replace the previous top waiter
663 * in the owner tasks pi waiters list with this waiter
664 * and adjust the priority of the owner.
665 */
666 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
fb00aca4 667 rt_mutex_enqueue_pi(task, waiter);
23f78d4a
IM
668 __rt_mutex_adjust_prio(task);
669
a57594a1
TG
670 } else if (prerequeue_top_waiter == waiter) {
671 /*
672 * The waiter was the top waiter on the lock, but is
673 * no longer the top prority waiter. Replace waiter in
674 * the owner tasks pi waiters list with the new top
675 * (highest priority) waiter and adjust the priority
676 * of the owner.
677 * The new top waiter is stored in @waiter so that
678 * @waiter == @top_waiter evaluates to true below and
679 * we continue to deboost the rest of the chain.
680 */
fb00aca4 681 rt_mutex_dequeue_pi(task, waiter);
23f78d4a 682 waiter = rt_mutex_top_waiter(lock);
fb00aca4 683 rt_mutex_enqueue_pi(task, waiter);
23f78d4a 684 __rt_mutex_adjust_prio(task);
a57594a1
TG
685 } else {
686 /*
687 * Nothing changed. No need to do any priority
688 * adjustment.
689 */
23f78d4a
IM
690 }
691
82084984 692 /*
3eb65aea
TG
693 * [12] check_exit_conditions_4() protected by task->pi_lock
694 * and lock->wait_lock. The actual decisions are made after we
695 * dropped the locks.
696 *
82084984
TG
697 * Check whether the task which owns the current lock is pi
698 * blocked itself. If yes we store a pointer to the lock for
699 * the lock chain change detection above. After we dropped
700 * task->pi_lock next_lock cannot be dereferenced anymore.
701 */
702 next_lock = task_blocked_on_lock(task);
a57594a1
TG
703 /*
704 * Store the top waiter of @lock for the end of chain walk
705 * decision below.
706 */
23f78d4a 707 top_waiter = rt_mutex_top_waiter(lock);
3eb65aea
TG
708
709 /* [13] Drop the locks */
710 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
d209d74d 711 raw_spin_unlock(&lock->wait_lock);
23f78d4a 712
82084984 713 /*
3eb65aea
TG
714 * Make the actual exit decisions [12], based on the stored
715 * values.
716 *
82084984
TG
717 * We reached the end of the lock chain. Stop right here. No
718 * point to go back just to figure that out.
719 */
720 if (!next_lock)
721 goto out_put_task;
722
a57594a1
TG
723 /*
724 * If the current waiter is not the top waiter on the lock,
725 * then we can stop the chain walk here if we are not in full
726 * deadlock detection mode.
727 */
23f78d4a
IM
728 if (!detect_deadlock && waiter != top_waiter)
729 goto out_put_task;
730
731 goto again;
732
733 out_unlock_pi:
1d615482 734 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
735 out_put_task:
736 put_task_struct(task);
36c8b586 737
23f78d4a
IM
738 return ret;
739}
740
23f78d4a
IM
741/*
742 * Try to take an rt-mutex
743 *
23f78d4a 744 * Must be called with lock->wait_lock held.
8161239a 745 *
358c331f
TG
746 * @lock: The lock to be acquired.
747 * @task: The task which wants to acquire the lock
748 * @waiter: The waiter that is queued to the lock's wait list if the
749 * callsite called task_blocked_on_lock(), otherwise NULL
23f78d4a 750 */
8161239a 751static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
358c331f 752 struct rt_mutex_waiter *waiter)
23f78d4a 753{
358c331f
TG
754 unsigned long flags;
755
23f78d4a 756 /*
358c331f
TG
757 * Before testing whether we can acquire @lock, we set the
758 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
759 * other tasks which try to modify @lock into the slow path
760 * and they serialize on @lock->wait_lock.
23f78d4a 761 *
358c331f
TG
762 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
763 * as explained at the top of this file if and only if:
23f78d4a 764 *
358c331f
TG
765 * - There is a lock owner. The caller must fixup the
766 * transient state if it does a trylock or leaves the lock
767 * function due to a signal or timeout.
768 *
769 * - @task acquires the lock and there are no other
770 * waiters. This is undone in rt_mutex_set_owner(@task) at
771 * the end of this function.
23f78d4a
IM
772 */
773 mark_rt_mutex_waiters(lock);
774
358c331f
TG
775 /*
776 * If @lock has an owner, give up.
777 */
8161239a 778 if (rt_mutex_owner(lock))
23f78d4a
IM
779 return 0;
780
8161239a 781 /*
358c331f
TG
782 * If @waiter != NULL, @task has already enqueued the waiter
783 * into @lock waiter list. If @waiter == NULL then this is a
784 * trylock attempt.
8161239a 785 */
358c331f
TG
786 if (waiter) {
787 /*
788 * If waiter is not the highest priority waiter of
789 * @lock, give up.
790 */
791 if (waiter != rt_mutex_top_waiter(lock))
792 return 0;
8161239a 793
358c331f
TG
794 /*
795 * We can acquire the lock. Remove the waiter from the
796 * lock waiters list.
797 */
798 rt_mutex_dequeue(lock, waiter);
8161239a 799
358c331f 800 } else {
8161239a 801 /*
358c331f
TG
802 * If the lock has waiters already we check whether @task is
803 * eligible to take over the lock.
804 *
805 * If there are no other waiters, @task can acquire
806 * the lock. @task->pi_blocked_on is NULL, so it does
807 * not need to be dequeued.
8161239a
LJ
808 */
809 if (rt_mutex_has_waiters(lock)) {
358c331f
TG
810 /*
811 * If @task->prio is greater than or equal to
812 * the top waiter priority (kernel view),
813 * @task lost.
814 */
815 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
816 return 0;
817
818 /*
819 * The current top waiter stays enqueued. We
820 * don't have to change anything in the lock
821 * waiters order.
822 */
823 } else {
824 /*
825 * No waiters. Take the lock without the
826 * pi_lock dance.@task->pi_blocked_on is NULL
827 * and we have no waiters to enqueue in @task
828 * pi waiters list.
829 */
830 goto takeit;
8161239a 831 }
8161239a
LJ
832 }
833
358c331f
TG
834 /*
835 * Clear @task->pi_blocked_on. Requires protection by
836 * @task->pi_lock. Redundant operation for the @waiter == NULL
837 * case, but conditionals are more expensive than a redundant
838 * store.
839 */
840 raw_spin_lock_irqsave(&task->pi_lock, flags);
841 task->pi_blocked_on = NULL;
842 /*
843 * Finish the lock acquisition. @task is the new owner. If
844 * other waiters exist we have to insert the highest priority
845 * waiter into @task->pi_waiters list.
846 */
847 if (rt_mutex_has_waiters(lock))
848 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
849 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
850
851takeit:
23f78d4a 852 /* We got the lock. */
9a11b49a 853 debug_rt_mutex_lock(lock);
23f78d4a 854
358c331f
TG
855 /*
856 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
857 * are still waiters or clears it.
858 */
8161239a 859 rt_mutex_set_owner(lock, task);
23f78d4a 860
8161239a 861 rt_mutex_deadlock_account_lock(lock, task);
23f78d4a
IM
862
863 return 1;
864}
865
866/*
867 * Task blocks on lock.
868 *
869 * Prepare waiter and propagate pi chain
870 *
871 * This must be called with lock->wait_lock held.
872 */
873static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
874 struct rt_mutex_waiter *waiter,
8dac456a 875 struct task_struct *task,
8930ed80 876 enum rtmutex_chainwalk chwalk)
23f78d4a 877{
36c8b586 878 struct task_struct *owner = rt_mutex_owner(lock);
23f78d4a 879 struct rt_mutex_waiter *top_waiter = waiter;
82084984 880 struct rt_mutex *next_lock;
db630637 881 int chain_walk = 0, res;
82084984 882 unsigned long flags;
23f78d4a 883
397335f0
TG
884 /*
885 * Early deadlock detection. We really don't want the task to
886 * enqueue on itself just to untangle the mess later. It's not
887 * only an optimization. We drop the locks, so another waiter
888 * can come in before the chain walk detects the deadlock. So
889 * the other will detect the deadlock and return -EDEADLOCK,
890 * which is wrong, as the other waiter is not in a deadlock
891 * situation.
892 */
3d5c9340 893 if (owner == task)
397335f0
TG
894 return -EDEADLK;
895
1d615482 896 raw_spin_lock_irqsave(&task->pi_lock, flags);
8dac456a
DH
897 __rt_mutex_adjust_prio(task);
898 waiter->task = task;
23f78d4a 899 waiter->lock = lock;
2d3d891d 900 waiter->prio = task->prio;
23f78d4a
IM
901
902 /* Get the top priority waiter on the lock */
903 if (rt_mutex_has_waiters(lock))
904 top_waiter = rt_mutex_top_waiter(lock);
fb00aca4 905 rt_mutex_enqueue(lock, waiter);
23f78d4a 906
8dac456a 907 task->pi_blocked_on = waiter;
23f78d4a 908
1d615482 909 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a 910
8161239a
LJ
911 if (!owner)
912 return 0;
913
82084984 914 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 915 if (waiter == rt_mutex_top_waiter(lock)) {
fb00aca4
PZ
916 rt_mutex_dequeue_pi(owner, top_waiter);
917 rt_mutex_enqueue_pi(owner, waiter);
23f78d4a
IM
918
919 __rt_mutex_adjust_prio(owner);
db630637
SR
920 if (owner->pi_blocked_on)
921 chain_walk = 1;
8930ed80 922 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
db630637 923 chain_walk = 1;
82084984 924 }
db630637 925
82084984
TG
926 /* Store the lock on which owner is blocked or NULL */
927 next_lock = task_blocked_on_lock(owner);
928
929 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
930 /*
931 * Even if full deadlock detection is on, if the owner is not
932 * blocked itself, we can avoid finding this out in the chain
933 * walk.
934 */
935 if (!chain_walk || !next_lock)
23f78d4a
IM
936 return 0;
937
db630637
SR
938 /*
939 * The owner can't disappear while holding a lock,
940 * so the owner struct is protected by wait_lock.
941 * Gets dropped in rt_mutex_adjust_prio_chain()!
942 */
943 get_task_struct(owner);
944
d209d74d 945 raw_spin_unlock(&lock->wait_lock);
23f78d4a 946
8930ed80 947 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
82084984 948 next_lock, waiter, task);
23f78d4a 949
d209d74d 950 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
951
952 return res;
953}
954
955/*
956 * Wake up the next waiter on the lock.
957 *
27e35715
TG
958 * Remove the top waiter from the current tasks pi waiter list and
959 * wake it up.
23f78d4a
IM
960 *
961 * Called with lock->wait_lock held.
962 */
963static void wakeup_next_waiter(struct rt_mutex *lock)
964{
965 struct rt_mutex_waiter *waiter;
23f78d4a
IM
966 unsigned long flags;
967
1d615482 968 raw_spin_lock_irqsave(&current->pi_lock, flags);
23f78d4a
IM
969
970 waiter = rt_mutex_top_waiter(lock);
23f78d4a
IM
971
972 /*
973 * Remove it from current->pi_waiters. We do not adjust a
974 * possible priority boost right now. We execute wakeup in the
975 * boosted mode and go back to normal after releasing
976 * lock->wait_lock.
977 */
fb00aca4 978 rt_mutex_dequeue_pi(current, waiter);
23f78d4a 979
27e35715
TG
980 /*
981 * As we are waking up the top waiter, and the waiter stays
982 * queued on the lock until it gets the lock, this lock
983 * obviously has waiters. Just set the bit here and this has
984 * the added benefit of forcing all new tasks into the
985 * slow path making sure no task of lower priority than
986 * the top waiter can steal this lock.
987 */
988 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
23f78d4a 989
1d615482 990 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 991
27e35715
TG
992 /*
993 * It's safe to dereference waiter as it cannot go away as
994 * long as we hold lock->wait_lock. The waiter task needs to
995 * acquire it in order to dequeue the waiter.
996 */
8161239a 997 wake_up_process(waiter->task);
23f78d4a
IM
998}
999
1000/*
8161239a 1001 * Remove a waiter from a lock and give up
23f78d4a 1002 *
8161239a
LJ
1003 * Must be called with lock->wait_lock held and
1004 * have just failed to try_to_take_rt_mutex().
23f78d4a 1005 */
bd197234
TG
1006static void remove_waiter(struct rt_mutex *lock,
1007 struct rt_mutex_waiter *waiter)
23f78d4a 1008{
1ca7b860 1009 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
36c8b586 1010 struct task_struct *owner = rt_mutex_owner(lock);
1ca7b860 1011 struct rt_mutex *next_lock;
23f78d4a
IM
1012 unsigned long flags;
1013
1d615482 1014 raw_spin_lock_irqsave(&current->pi_lock, flags);
fb00aca4 1015 rt_mutex_dequeue(lock, waiter);
23f78d4a 1016 current->pi_blocked_on = NULL;
1d615482 1017 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 1018
1ca7b860
TG
1019 /*
1020 * Only update priority if the waiter was the highest priority
1021 * waiter of the lock and there is an owner to update.
1022 */
1023 if (!owner || !is_top_waiter)
8161239a
LJ
1024 return;
1025
1ca7b860 1026 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 1027
1ca7b860 1028 rt_mutex_dequeue_pi(owner, waiter);
23f78d4a 1029
1ca7b860
TG
1030 if (rt_mutex_has_waiters(lock))
1031 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
23f78d4a 1032
1ca7b860 1033 __rt_mutex_adjust_prio(owner);
23f78d4a 1034
1ca7b860
TG
1035 /* Store the lock on which owner is blocked or NULL */
1036 next_lock = task_blocked_on_lock(owner);
db630637 1037
1ca7b860 1038 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
23f78d4a 1039
1ca7b860
TG
1040 /*
1041 * Don't walk the chain, if the owner task is not blocked
1042 * itself.
1043 */
82084984 1044 if (!next_lock)
23f78d4a
IM
1045 return;
1046
db630637
SR
1047 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1048 get_task_struct(owner);
1049
d209d74d 1050 raw_spin_unlock(&lock->wait_lock);
23f78d4a 1051
8930ed80
TG
1052 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1053 next_lock, NULL, current);
23f78d4a 1054
d209d74d 1055 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1056}
1057
95e02ca9
TG
1058/*
1059 * Recheck the pi chain, in case we got a priority setting
1060 *
1061 * Called from sched_setscheduler
1062 */
1063void rt_mutex_adjust_pi(struct task_struct *task)
1064{
1065 struct rt_mutex_waiter *waiter;
82084984 1066 struct rt_mutex *next_lock;
95e02ca9
TG
1067 unsigned long flags;
1068
1d615482 1069 raw_spin_lock_irqsave(&task->pi_lock, flags);
95e02ca9
TG
1070
1071 waiter = task->pi_blocked_on;
2d3d891d
DF
1072 if (!waiter || (waiter->prio == task->prio &&
1073 !dl_prio(task->prio))) {
1d615482 1074 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9
TG
1075 return;
1076 }
82084984 1077 next_lock = waiter->lock;
1d615482 1078 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9 1079
db630637
SR
1080 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1081 get_task_struct(task);
82084984 1082
8930ed80
TG
1083 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1084 next_lock, NULL, task);
95e02ca9
TG
1085}
1086
8dac456a
DH
1087/**
1088 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1089 * @lock: the rt_mutex to take
1090 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1091 * or TASK_UNINTERRUPTIBLE)
1092 * @timeout: the pre-initialized and started timer, or NULL for none
1093 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a
DH
1094 *
1095 * lock->wait_lock must be held by the caller.
23f78d4a
IM
1096 */
1097static int __sched
8dac456a
DH
1098__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1099 struct hrtimer_sleeper *timeout,
8161239a 1100 struct rt_mutex_waiter *waiter)
23f78d4a 1101{
23f78d4a
IM
1102 int ret = 0;
1103
23f78d4a
IM
1104 for (;;) {
1105 /* Try to acquire the lock: */
8161239a 1106 if (try_to_take_rt_mutex(lock, current, waiter))
23f78d4a
IM
1107 break;
1108
1109 /*
1110 * TASK_INTERRUPTIBLE checks for signals and
1111 * timeout. Ignored otherwise.
1112 */
1113 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1114 /* Signal pending? */
1115 if (signal_pending(current))
1116 ret = -EINTR;
1117 if (timeout && !timeout->task)
1118 ret = -ETIMEDOUT;
1119 if (ret)
1120 break;
1121 }
1122
d209d74d 1123 raw_spin_unlock(&lock->wait_lock);
23f78d4a 1124
8dac456a 1125 debug_rt_mutex_print_deadlock(waiter);
23f78d4a 1126
8161239a 1127 schedule_rt_mutex(lock);
23f78d4a 1128
d209d74d 1129 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1130 set_current_state(state);
1131 }
1132
afffc6c1 1133 __set_current_state(TASK_RUNNING);
8dac456a
DH
1134 return ret;
1135}
1136
3d5c9340
TG
1137static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1138 struct rt_mutex_waiter *w)
1139{
1140 /*
1141 * If the result is not -EDEADLOCK or the caller requested
1142 * deadlock detection, nothing to do here.
1143 */
1144 if (res != -EDEADLOCK || detect_deadlock)
1145 return;
1146
1147 /*
1148 * Yell lowdly and stop the task right here.
1149 */
1150 rt_mutex_print_deadlock(w);
1151 while (1) {
1152 set_current_state(TASK_INTERRUPTIBLE);
1153 schedule();
1154 }
1155}
1156
8dac456a
DH
1157/*
1158 * Slow path lock function:
1159 */
1160static int __sched
1161rt_mutex_slowlock(struct rt_mutex *lock, int state,
1162 struct hrtimer_sleeper *timeout,
8930ed80 1163 enum rtmutex_chainwalk chwalk)
8dac456a
DH
1164{
1165 struct rt_mutex_waiter waiter;
1166 int ret = 0;
1167
1168 debug_rt_mutex_init_waiter(&waiter);
fb00aca4
PZ
1169 RB_CLEAR_NODE(&waiter.pi_tree_entry);
1170 RB_CLEAR_NODE(&waiter.tree_entry);
8dac456a 1171
d209d74d 1172 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
1173
1174 /* Try to acquire the lock again: */
8161239a 1175 if (try_to_take_rt_mutex(lock, current, NULL)) {
d209d74d 1176 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1177 return 0;
1178 }
1179
1180 set_current_state(state);
1181
1182 /* Setup the timer, when timeout != NULL */
1183 if (unlikely(timeout)) {
1184 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1185 if (!hrtimer_active(&timeout->timer))
1186 timeout->task = NULL;
1187 }
1188
8930ed80 1189 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
8161239a
LJ
1190
1191 if (likely(!ret))
afffc6c1 1192 /* sleep on the mutex */
8161239a 1193 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
8dac456a 1194
3d5c9340 1195 if (unlikely(ret)) {
9d3e2d02 1196 __set_current_state(TASK_RUNNING);
8d1e5a1a
SAS
1197 if (rt_mutex_has_waiters(lock))
1198 remove_waiter(lock, &waiter);
8930ed80 1199 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
3d5c9340 1200 }
23f78d4a
IM
1201
1202 /*
1203 * try_to_take_rt_mutex() sets the waiter bit
1204 * unconditionally. We might have to fix that up.
1205 */
1206 fixup_rt_mutex_waiters(lock);
1207
d209d74d 1208 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1209
1210 /* Remove pending timer: */
1211 if (unlikely(timeout))
1212 hrtimer_cancel(&timeout->timer);
1213
23f78d4a
IM
1214 debug_rt_mutex_free_waiter(&waiter);
1215
1216 return ret;
1217}
1218
1219/*
1220 * Slow path try-lock function:
1221 */
88f2b4c1 1222static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
23f78d4a 1223{
88f2b4c1
TG
1224 int ret;
1225
1226 /*
1227 * If the lock already has an owner we fail to get the lock.
1228 * This can be done without taking the @lock->wait_lock as
1229 * it is only being read, and this is a trylock anyway.
1230 */
1231 if (rt_mutex_owner(lock))
1232 return 0;
23f78d4a 1233
88f2b4c1
TG
1234 /*
1235 * The mutex has currently no owner. Lock the wait lock and
1236 * try to acquire the lock.
1237 */
d209d74d 1238 raw_spin_lock(&lock->wait_lock);
23f78d4a 1239
88f2b4c1 1240 ret = try_to_take_rt_mutex(lock, current, NULL);
23f78d4a 1241
88f2b4c1
TG
1242 /*
1243 * try_to_take_rt_mutex() sets the lock waiters bit
1244 * unconditionally. Clean this up.
1245 */
1246 fixup_rt_mutex_waiters(lock);
23f78d4a 1247
d209d74d 1248 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1249
1250 return ret;
1251}
1252
1253/*
1254 * Slow path to release a rt-mutex:
1255 */
1256static void __sched
1257rt_mutex_slowunlock(struct rt_mutex *lock)
1258{
d209d74d 1259 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1260
1261 debug_rt_mutex_unlock(lock);
1262
1263 rt_mutex_deadlock_account_unlock(current);
1264
27e35715
TG
1265 /*
1266 * We must be careful here if the fast path is enabled. If we
1267 * have no waiters queued we cannot set owner to NULL here
1268 * because of:
1269 *
1270 * foo->lock->owner = NULL;
1271 * rtmutex_lock(foo->lock); <- fast path
1272 * free = atomic_dec_and_test(foo->refcnt);
1273 * rtmutex_unlock(foo->lock); <- fast path
1274 * if (free)
1275 * kfree(foo);
1276 * raw_spin_unlock(foo->lock->wait_lock);
1277 *
1278 * So for the fastpath enabled kernel:
1279 *
1280 * Nothing can set the waiters bit as long as we hold
1281 * lock->wait_lock. So we do the following sequence:
1282 *
1283 * owner = rt_mutex_owner(lock);
1284 * clear_rt_mutex_waiters(lock);
1285 * raw_spin_unlock(&lock->wait_lock);
1286 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1287 * return;
1288 * goto retry;
1289 *
1290 * The fastpath disabled variant is simple as all access to
1291 * lock->owner is serialized by lock->wait_lock:
1292 *
1293 * lock->owner = NULL;
1294 * raw_spin_unlock(&lock->wait_lock);
1295 */
1296 while (!rt_mutex_has_waiters(lock)) {
1297 /* Drops lock->wait_lock ! */
1298 if (unlock_rt_mutex_safe(lock) == true)
1299 return;
1300 /* Relock the rtmutex and try again */
1301 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1302 }
1303
27e35715
TG
1304 /*
1305 * The wakeup next waiter path does not suffer from the above
1306 * race. See the comments there.
1307 */
23f78d4a
IM
1308 wakeup_next_waiter(lock);
1309
d209d74d 1310 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1311
1312 /* Undo pi boosting if necessary: */
1313 rt_mutex_adjust_prio(current);
1314}
1315
1316/*
1317 * debug aware fast / slowpath lock,trylock,unlock
1318 *
1319 * The atomic acquire/release ops are compiled away, when either the
1320 * architecture does not support cmpxchg or when debugging is enabled.
1321 */
1322static inline int
1323rt_mutex_fastlock(struct rt_mutex *lock, int state,
23f78d4a
IM
1324 int (*slowfn)(struct rt_mutex *lock, int state,
1325 struct hrtimer_sleeper *timeout,
8930ed80 1326 enum rtmutex_chainwalk chwalk))
23f78d4a 1327{
c051b21f 1328 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
23f78d4a
IM
1329 rt_mutex_deadlock_account_lock(lock, current);
1330 return 0;
1331 } else
8930ed80 1332 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
23f78d4a
IM
1333}
1334
1335static inline int
1336rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
8930ed80
TG
1337 struct hrtimer_sleeper *timeout,
1338 enum rtmutex_chainwalk chwalk,
23f78d4a
IM
1339 int (*slowfn)(struct rt_mutex *lock, int state,
1340 struct hrtimer_sleeper *timeout,
8930ed80 1341 enum rtmutex_chainwalk chwalk))
23f78d4a 1342{
8930ed80
TG
1343 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1344 likely(rt_mutex_cmpxchg(lock, NULL, current))) {
23f78d4a
IM
1345 rt_mutex_deadlock_account_lock(lock, current);
1346 return 0;
1347 } else
8930ed80 1348 return slowfn(lock, state, timeout, chwalk);
23f78d4a
IM
1349}
1350
1351static inline int
1352rt_mutex_fasttrylock(struct rt_mutex *lock,
9a11b49a 1353 int (*slowfn)(struct rt_mutex *lock))
23f78d4a
IM
1354{
1355 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1356 rt_mutex_deadlock_account_lock(lock, current);
1357 return 1;
1358 }
9a11b49a 1359 return slowfn(lock);
23f78d4a
IM
1360}
1361
1362static inline void
1363rt_mutex_fastunlock(struct rt_mutex *lock,
1364 void (*slowfn)(struct rt_mutex *lock))
1365{
1366 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1367 rt_mutex_deadlock_account_unlock(current);
1368 else
1369 slowfn(lock);
1370}
1371
1372/**
1373 * rt_mutex_lock - lock a rt_mutex
1374 *
1375 * @lock: the rt_mutex to be locked
1376 */
1377void __sched rt_mutex_lock(struct rt_mutex *lock)
1378{
1379 might_sleep();
1380
c051b21f 1381 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
23f78d4a
IM
1382}
1383EXPORT_SYMBOL_GPL(rt_mutex_lock);
1384
1385/**
1386 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1387 *
c051b21f 1388 * @lock: the rt_mutex to be locked
23f78d4a
IM
1389 *
1390 * Returns:
c051b21f
TG
1391 * 0 on success
1392 * -EINTR when interrupted by a signal
23f78d4a 1393 */
c051b21f 1394int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
23f78d4a
IM
1395{
1396 might_sleep();
1397
c051b21f 1398 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
23f78d4a
IM
1399}
1400EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1401
c051b21f
TG
1402/*
1403 * Futex variant with full deadlock detection.
1404 */
1405int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1406 struct hrtimer_sleeper *timeout)
1407{
1408 might_sleep();
1409
8930ed80
TG
1410 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1411 RT_MUTEX_FULL_CHAINWALK,
c051b21f
TG
1412 rt_mutex_slowlock);
1413}
1414
23f78d4a 1415/**
23b94b96
LH
1416 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1417 * the timeout structure is provided
1418 * by the caller
23f78d4a 1419 *
c051b21f 1420 * @lock: the rt_mutex to be locked
23f78d4a 1421 * @timeout: timeout structure or NULL (no timeout)
23f78d4a
IM
1422 *
1423 * Returns:
c051b21f
TG
1424 * 0 on success
1425 * -EINTR when interrupted by a signal
3ac49a1c 1426 * -ETIMEDOUT when the timeout expired
23f78d4a
IM
1427 */
1428int
c051b21f 1429rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
23f78d4a
IM
1430{
1431 might_sleep();
1432
8930ed80
TG
1433 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1434 RT_MUTEX_MIN_CHAINWALK,
c051b21f 1435 rt_mutex_slowlock);
23f78d4a
IM
1436}
1437EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1438
1439/**
1440 * rt_mutex_trylock - try to lock a rt_mutex
1441 *
1442 * @lock: the rt_mutex to be locked
1443 *
6ce47fd9
TG
1444 * This function can only be called in thread context. It's safe to
1445 * call it from atomic regions, but not from hard interrupt or soft
1446 * interrupt context.
1447 *
23f78d4a
IM
1448 * Returns 1 on success and 0 on contention
1449 */
1450int __sched rt_mutex_trylock(struct rt_mutex *lock)
1451{
6ce47fd9
TG
1452 if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1453 return 0;
1454
23f78d4a
IM
1455 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1456}
1457EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1458
1459/**
1460 * rt_mutex_unlock - unlock a rt_mutex
1461 *
1462 * @lock: the rt_mutex to be unlocked
1463 */
1464void __sched rt_mutex_unlock(struct rt_mutex *lock)
1465{
1466 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1467}
1468EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1469
23b94b96 1470/**
23f78d4a
IM
1471 * rt_mutex_destroy - mark a mutex unusable
1472 * @lock: the mutex to be destroyed
1473 *
1474 * This function marks the mutex uninitialized, and any subsequent
1475 * use of the mutex is forbidden. The mutex must not be locked when
1476 * this function is called.
1477 */
1478void rt_mutex_destroy(struct rt_mutex *lock)
1479{
1480 WARN_ON(rt_mutex_is_locked(lock));
1481#ifdef CONFIG_DEBUG_RT_MUTEXES
1482 lock->magic = NULL;
1483#endif
1484}
1485
1486EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1487
1488/**
1489 * __rt_mutex_init - initialize the rt lock
1490 *
1491 * @lock: the rt lock to be initialized
1492 *
1493 * Initialize the rt lock to unlocked state.
1494 *
1495 * Initializing of a locked rt lock is not allowed
1496 */
1497void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1498{
1499 lock->owner = NULL;
d209d74d 1500 raw_spin_lock_init(&lock->wait_lock);
fb00aca4
PZ
1501 lock->waiters = RB_ROOT;
1502 lock->waiters_leftmost = NULL;
23f78d4a
IM
1503
1504 debug_rt_mutex_init(lock, name);
1505}
1506EXPORT_SYMBOL_GPL(__rt_mutex_init);
0cdbee99
IM
1507
1508/**
1509 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1510 * proxy owner
1511 *
1512 * @lock: the rt_mutex to be locked
1513 * @proxy_owner:the task to set as owner
1514 *
1515 * No locking. Caller has to do serializing itself
1516 * Special API call for PI-futex support
1517 */
1518void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1519 struct task_struct *proxy_owner)
1520{
1521 __rt_mutex_init(lock, NULL);
9a11b49a 1522 debug_rt_mutex_proxy_lock(lock, proxy_owner);
8161239a 1523 rt_mutex_set_owner(lock, proxy_owner);
0cdbee99
IM
1524 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1525}
1526
1527/**
1528 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1529 *
1530 * @lock: the rt_mutex to be locked
1531 *
1532 * No locking. Caller has to do serializing itself
1533 * Special API call for PI-futex support
1534 */
1535void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1536 struct task_struct *proxy_owner)
1537{
1538 debug_rt_mutex_proxy_unlock(lock);
8161239a 1539 rt_mutex_set_owner(lock, NULL);
0cdbee99
IM
1540 rt_mutex_deadlock_account_unlock(proxy_owner);
1541}
1542
8dac456a
DH
1543/**
1544 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1545 * @lock: the rt_mutex to take
1546 * @waiter: the pre-initialized rt_mutex_waiter
1547 * @task: the task to prepare
8dac456a
DH
1548 *
1549 * Returns:
1550 * 0 - task blocked on lock
1551 * 1 - acquired the lock for task, caller should wake it up
1552 * <0 - error
1553 *
1554 * Special API call for FUTEX_REQUEUE_PI support.
1555 */
1556int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1557 struct rt_mutex_waiter *waiter,
c051b21f 1558 struct task_struct *task)
8dac456a
DH
1559{
1560 int ret;
1561
d209d74d 1562 raw_spin_lock(&lock->wait_lock);
8dac456a 1563
8161239a 1564 if (try_to_take_rt_mutex(lock, task, NULL)) {
d209d74d 1565 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1566 return 1;
1567 }
1568
3d5c9340 1569 /* We enforce deadlock detection for futexes */
8930ed80
TG
1570 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1571 RT_MUTEX_FULL_CHAINWALK);
8dac456a 1572
8161239a 1573 if (ret && !rt_mutex_owner(lock)) {
8dac456a
DH
1574 /*
1575 * Reset the return value. We might have
1576 * returned with -EDEADLK and the owner
1577 * released the lock while we were walking the
1578 * pi chain. Let the waiter sort it out.
1579 */
1580 ret = 0;
1581 }
8161239a
LJ
1582
1583 if (unlikely(ret))
1584 remove_waiter(lock, waiter);
1585
d209d74d 1586 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1587
1588 debug_rt_mutex_print_deadlock(waiter);
1589
1590 return ret;
1591}
1592
0cdbee99
IM
1593/**
1594 * rt_mutex_next_owner - return the next owner of the lock
1595 *
1596 * @lock: the rt lock query
1597 *
1598 * Returns the next owner of the lock or NULL
1599 *
1600 * Caller has to serialize against other accessors to the lock
1601 * itself.
1602 *
1603 * Special API call for PI-futex support
1604 */
1605struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1606{
1607 if (!rt_mutex_has_waiters(lock))
1608 return NULL;
1609
1610 return rt_mutex_top_waiter(lock)->task;
1611}
8dac456a
DH
1612
1613/**
1614 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1615 * @lock: the rt_mutex we were woken on
1616 * @to: the timeout, null if none. hrtimer should already have
c051b21f 1617 * been started.
8dac456a 1618 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a
DH
1619 *
1620 * Complete the lock acquisition started our behalf by another thread.
1621 *
1622 * Returns:
1623 * 0 - success
c051b21f 1624 * <0 - error, one of -EINTR, -ETIMEDOUT
8dac456a
DH
1625 *
1626 * Special API call for PI-futex requeue support
1627 */
1628int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1629 struct hrtimer_sleeper *to,
c051b21f 1630 struct rt_mutex_waiter *waiter)
8dac456a
DH
1631{
1632 int ret;
1633
d209d74d 1634 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
1635
1636 set_current_state(TASK_INTERRUPTIBLE);
1637
afffc6c1 1638 /* sleep on the mutex */
8161239a 1639 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
8dac456a 1640
8161239a 1641 if (unlikely(ret))
8dac456a
DH
1642 remove_waiter(lock, waiter);
1643
1644 /*
1645 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1646 * have to fix that up.
1647 */
1648 fixup_rt_mutex_waiters(lock);
1649
d209d74d 1650 raw_spin_unlock(&lock->wait_lock);
8dac456a 1651
8dac456a
DH
1652 return ret;
1653}