rtc: hctosys: use function name in the error log
[linux-2.6-block.git] / kernel / locking / mutex.c
CommitLineData
6053ee3b 1/*
67a6de49 2 * kernel/locking/mutex.c
6053ee3b
IM
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
214e0aed 18 * Also see Documentation/locking/mutex-design.txt.
6053ee3b
IM
19 */
20#include <linux/mutex.h>
1b375dc3 21#include <linux/ww_mutex.h>
6053ee3b 22#include <linux/sched.h>
8bd75c77 23#include <linux/sched/rt.h>
9984de1a 24#include <linux/export.h>
6053ee3b
IM
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
9a11b49a 27#include <linux/debug_locks.h>
7a215f89 28#include <linux/osq_lock.h>
6053ee3b
IM
29
30/*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34#ifdef CONFIG_DEBUG_MUTEXES
35# include "mutex-debug.h"
36# include <asm-generic/mutex-null.h>
6f008e72
PZ
37/*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42# undef __mutex_slowpath_needs_to_unlock
43# define __mutex_slowpath_needs_to_unlock() 0
6053ee3b
IM
44#else
45# include "mutex.h"
46# include <asm/mutex.h>
47#endif
48
ef5d4707
IM
49void
50__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b
IM
51{
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
0d66bf6d 55 mutex_clear_owner(lock);
2bd2c92c 56#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4d9d951e 57 osq_lock_init(&lock->osq);
2bd2c92c 58#endif
6053ee3b 59
ef5d4707 60 debug_mutex_init(lock, name, key);
6053ee3b
IM
61}
62
63EXPORT_SYMBOL(__mutex_init);
64
e4564f79 65#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
66/*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
22d9fd34 72__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
6053ee3b 73
ef5dc121 74/**
6053ee3b
IM
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
139b6fd2 84 * memory where the mutex resides must not be freed with
6053ee3b
IM
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
b09d2501 95void __sched mutex_lock(struct mutex *lock)
6053ee3b 96{
c544bdb1 97 might_sleep();
6053ee3b
IM
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
6053ee3b
IM
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
0d66bf6d 103 mutex_set_owner(lock);
6053ee3b
IM
104}
105
106EXPORT_SYMBOL(mutex_lock);
e4564f79 107#endif
6053ee3b 108
76916515
DB
109static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 struct ww_acquire_ctx *ww_ctx)
111{
112#ifdef CONFIG_DEBUG_MUTEXES
113 /*
114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 * but released with a normal mutex_unlock in this call.
116 *
117 * This should never happen, always use ww_mutex_unlock.
118 */
119 DEBUG_LOCKS_WARN_ON(ww->ctx);
120
121 /*
122 * Not quite done after calling ww_acquire_done() ?
123 */
124 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125
126 if (ww_ctx->contending_lock) {
127 /*
128 * After -EDEADLK you tried to
129 * acquire a different ww_mutex? Bad!
130 */
131 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132
133 /*
134 * You called ww_mutex_lock after receiving -EDEADLK,
135 * but 'forgot' to unlock everything else first?
136 */
137 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 ww_ctx->contending_lock = NULL;
139 }
140
141 /*
142 * Naughty, using a different class will lead to undefined behavior!
143 */
144 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145#endif
146 ww_ctx->acquired++;
147}
148
149/*
4bd19084 150 * After acquiring lock with fastpath or when we lost out in contested
76916515
DB
151 * slowpath, set ctx and wake up any waiters so they can recheck.
152 *
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
155 */
156static __always_inline void
157ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 struct ww_acquire_ctx *ctx)
159{
160 unsigned long flags;
161 struct mutex_waiter *cur;
162
163 ww_mutex_lock_acquired(lock, ctx);
164
165 lock->ctx = ctx;
166
167 /*
168 * The lock->ctx update should be visible on all cores before
169 * the atomic read is done, otherwise contended waiters might be
170 * missed. The contended waiters will either see ww_ctx == NULL
171 * and keep spinning, or it will acquire wait_lock, add itself
172 * to waiter list and sleep.
173 */
174 smp_mb(); /* ^^^ */
175
176 /*
177 * Check if lock is contended, if not there is nobody to wake up
178 */
179 if (likely(atomic_read(&lock->base.count) == 0))
180 return;
181
182 /*
183 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 * so they can see the new lock->ctx.
185 */
186 spin_lock_mutex(&lock->base.wait_lock, flags);
187 list_for_each_entry(cur, &lock->base.wait_list, list) {
188 debug_mutex_wake_waiter(&lock->base, cur);
189 wake_up_process(cur->task);
190 }
191 spin_unlock_mutex(&lock->base.wait_lock, flags);
192}
193
4bd19084
DB
194/*
195 * After acquiring lock in the slowpath set ctx and wake up any
196 * waiters so they can recheck.
197 *
198 * Callers must hold the mutex wait_lock.
199 */
200static __always_inline void
201ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202 struct ww_acquire_ctx *ctx)
203{
204 struct mutex_waiter *cur;
205
206 ww_mutex_lock_acquired(lock, ctx);
207 lock->ctx = ctx;
208
209 /*
210 * Give any possible sleeping processes the chance to wake up,
211 * so they can recheck if they have to back off.
212 */
213 list_for_each_entry(cur, &lock->base.wait_list, list) {
214 debug_mutex_wake_waiter(&lock->base, cur);
215 wake_up_process(cur->task);
216 }
217}
76916515 218
41fcb9f2 219#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
41fcb9f2
WL
220/*
221 * Look out! "owner" is an entirely speculative pointer
222 * access and not reliable.
223 */
224static noinline
be1f7bf2 225bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
41fcb9f2 226{
01ac33c1 227 bool ret = true;
be1f7bf2 228
41fcb9f2 229 rcu_read_lock();
01ac33c1 230 while (lock->owner == owner) {
be1f7bf2
JL
231 /*
232 * Ensure we emit the owner->on_cpu, dereference _after_
01ac33c1
JL
233 * checking lock->owner still matches owner. If that fails,
234 * owner might point to freed memory. If it still matches,
be1f7bf2
JL
235 * the rcu_read_lock() ensures the memory stays valid.
236 */
237 barrier();
238
239 if (!owner->on_cpu || need_resched()) {
240 ret = false;
241 break;
242 }
41fcb9f2 243
3a6bfbc9 244 cpu_relax_lowlatency();
41fcb9f2
WL
245 }
246 rcu_read_unlock();
247
be1f7bf2 248 return ret;
41fcb9f2 249}
2bd2c92c
WL
250
251/*
252 * Initial check for entering the mutex spinning loop
253 */
254static inline int mutex_can_spin_on_owner(struct mutex *lock)
255{
1e40c2ed 256 struct task_struct *owner;
2bd2c92c
WL
257 int retval = 1;
258
46af29e4
JL
259 if (need_resched())
260 return 0;
261
2bd2c92c 262 rcu_read_lock();
4d3199e4 263 owner = READ_ONCE(lock->owner);
1e40c2ed
PZ
264 if (owner)
265 retval = owner->on_cpu;
2bd2c92c
WL
266 rcu_read_unlock();
267 /*
268 * if lock->owner is not set, the mutex owner may have just acquired
269 * it and not set the owner yet or the mutex has been released.
270 */
271 return retval;
272}
76916515
DB
273
274/*
275 * Atomically try to take the lock when it is available
276 */
277static inline bool mutex_try_to_acquire(struct mutex *lock)
278{
279 return !mutex_is_locked(lock) &&
280 (atomic_cmpxchg(&lock->count, 1, 0) == 1);
281}
282
283/*
284 * Optimistic spinning.
285 *
286 * We try to spin for acquisition when we find that the lock owner
287 * is currently running on a (different) CPU and while we don't
288 * need to reschedule. The rationale is that if the lock owner is
289 * running, it is likely to release the lock soon.
290 *
291 * Since this needs the lock owner, and this mutex implementation
292 * doesn't track the owner atomically in the lock field, we need to
293 * track it non-atomically.
294 *
295 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
296 * to serialize everything.
297 *
298 * The mutex spinners are queued up using MCS lock so that only one
299 * spinner can compete for the mutex. However, if mutex spinning isn't
300 * going to happen, there is no point in going through the lock/unlock
301 * overhead.
302 *
303 * Returns true when the lock was taken, otherwise false, indicating
304 * that we need to jump to the slowpath and sleep.
305 */
306static bool mutex_optimistic_spin(struct mutex *lock,
307 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
308{
309 struct task_struct *task = current;
310
311 if (!mutex_can_spin_on_owner(lock))
312 goto done;
313
e42f678a
DB
314 /*
315 * In order to avoid a stampede of mutex spinners trying to
316 * acquire the mutex all at once, the spinners need to take a
317 * MCS (queued) lock first before spinning on the owner field.
318 */
76916515
DB
319 if (!osq_lock(&lock->osq))
320 goto done;
321
322 while (true) {
323 struct task_struct *owner;
324
325 if (use_ww_ctx && ww_ctx->acquired > 0) {
326 struct ww_mutex *ww;
327
328 ww = container_of(lock, struct ww_mutex, base);
329 /*
330 * If ww->ctx is set the contents are undefined, only
331 * by acquiring wait_lock there is a guarantee that
332 * they are not invalid when reading.
333 *
334 * As such, when deadlock detection needs to be
335 * performed the optimistic spinning cannot be done.
336 */
4d3199e4 337 if (READ_ONCE(ww->ctx))
76916515
DB
338 break;
339 }
340
341 /*
342 * If there's an owner, wait for it to either
343 * release the lock or go to sleep.
344 */
4d3199e4 345 owner = READ_ONCE(lock->owner);
76916515
DB
346 if (owner && !mutex_spin_on_owner(lock, owner))
347 break;
348
349 /* Try to acquire the mutex if it is unlocked. */
350 if (mutex_try_to_acquire(lock)) {
351 lock_acquired(&lock->dep_map, ip);
352
353 if (use_ww_ctx) {
354 struct ww_mutex *ww;
355 ww = container_of(lock, struct ww_mutex, base);
356
357 ww_mutex_set_context_fastpath(ww, ww_ctx);
358 }
359
360 mutex_set_owner(lock);
361 osq_unlock(&lock->osq);
362 return true;
363 }
364
365 /*
366 * When there's no owner, we might have preempted between the
367 * owner acquiring the lock and setting the owner field. If
368 * we're an RT task that will live-lock because we won't let
369 * the owner complete.
370 */
371 if (!owner && (need_resched() || rt_task(task)))
372 break;
373
374 /*
375 * The cpu_relax() call is a compiler barrier which forces
376 * everything in this loop to be re-loaded. We don't need
377 * memory barriers as we'll eventually observe the right
378 * values at the cost of a few extra spins.
379 */
380 cpu_relax_lowlatency();
381 }
382
383 osq_unlock(&lock->osq);
384done:
385 /*
386 * If we fell out of the spin path because of need_resched(),
387 * reschedule now, before we try-lock the mutex. This avoids getting
388 * scheduled out right after we obtained the mutex.
389 */
6f942a1f
PZ
390 if (need_resched()) {
391 /*
392 * We _should_ have TASK_RUNNING here, but just in case
393 * we do not, make it so, otherwise we might get stuck.
394 */
395 __set_current_state(TASK_RUNNING);
76916515 396 schedule_preempt_disabled();
6f942a1f 397 }
76916515
DB
398
399 return false;
400}
401#else
402static bool mutex_optimistic_spin(struct mutex *lock,
403 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
404{
405 return false;
406}
41fcb9f2
WL
407#endif
408
22d9fd34
AK
409__visible __used noinline
410void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
6053ee3b 411
ef5dc121 412/**
6053ee3b
IM
413 * mutex_unlock - release the mutex
414 * @lock: the mutex to be released
415 *
416 * Unlock a mutex that has been locked by this task previously.
417 *
418 * This function must not be used in interrupt context. Unlocking
419 * of a not locked mutex is not allowed.
420 *
421 * This function is similar to (but not equivalent to) up().
422 */
7ad5b3a5 423void __sched mutex_unlock(struct mutex *lock)
6053ee3b
IM
424{
425 /*
426 * The unlocking fastpath is the 0->1 transition from 'locked'
427 * into 'unlocked' state:
6053ee3b 428 */
0d66bf6d
PZ
429#ifndef CONFIG_DEBUG_MUTEXES
430 /*
431 * When debugging is enabled we must not clear the owner before time,
432 * the slow path will always be taken, and that clears the owner field
433 * after verifying that it was indeed current.
434 */
435 mutex_clear_owner(lock);
436#endif
6053ee3b
IM
437 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
438}
439
440EXPORT_SYMBOL(mutex_unlock);
441
040a0a37
ML
442/**
443 * ww_mutex_unlock - release the w/w mutex
444 * @lock: the mutex to be released
445 *
446 * Unlock a mutex that has been locked by this task previously with any of the
447 * ww_mutex_lock* functions (with or without an acquire context). It is
448 * forbidden to release the locks after releasing the acquire context.
449 *
450 * This function must not be used in interrupt context. Unlocking
451 * of a unlocked mutex is not allowed.
452 */
453void __sched ww_mutex_unlock(struct ww_mutex *lock)
454{
455 /*
456 * The unlocking fastpath is the 0->1 transition from 'locked'
457 * into 'unlocked' state:
458 */
459 if (lock->ctx) {
460#ifdef CONFIG_DEBUG_MUTEXES
461 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
462#endif
463 if (lock->ctx->acquired > 0)
464 lock->ctx->acquired--;
465 lock->ctx = NULL;
466 }
467
468#ifndef CONFIG_DEBUG_MUTEXES
469 /*
470 * When debugging is enabled we must not clear the owner before time,
471 * the slow path will always be taken, and that clears the owner field
472 * after verifying that it was indeed current.
473 */
474 mutex_clear_owner(&lock->base);
475#endif
476 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
477}
478EXPORT_SYMBOL(ww_mutex_unlock);
479
480static inline int __sched
63dc47e9 481__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37
ML
482{
483 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
4d3199e4 484 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
040a0a37
ML
485
486 if (!hold_ctx)
487 return 0;
488
489 if (unlikely(ctx == hold_ctx))
490 return -EALREADY;
491
492 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
493 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
494#ifdef CONFIG_DEBUG_MUTEXES
495 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
496 ctx->contending_lock = ww;
497#endif
498 return -EDEADLK;
499 }
500
501 return 0;
502}
503
6053ee3b
IM
504/*
505 * Lock a mutex (possibly interruptible), slowpath:
506 */
040a0a37 507static __always_inline int __sched
e4564f79 508__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 509 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 510 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b
IM
511{
512 struct task_struct *task = current;
513 struct mutex_waiter waiter;
1fb00c6c 514 unsigned long flags;
040a0a37 515 int ret;
6053ee3b 516
41719b03 517 preempt_disable();
e4c70a66 518 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027 519
76916515
DB
520 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
521 /* got the lock, yay! */
522 preempt_enable();
523 return 0;
0d66bf6d 524 }
76916515 525
1fb00c6c 526 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 527
1e820c96
JL
528 /*
529 * Once more, try to acquire the lock. Only try-lock the mutex if
0d968dd8 530 * it is unlocked to reduce unnecessary xchg() operations.
1e820c96 531 */
0d968dd8 532 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
ec83f425
DB
533 goto skip_wait;
534
9a11b49a 535 debug_mutex_lock_common(lock, &waiter);
c9f4f06d 536 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
6053ee3b
IM
537
538 /* add waiting tasks to the end of the waitqueue (FIFO): */
539 list_add_tail(&waiter.list, &lock->wait_list);
540 waiter.task = task;
541
e4564f79 542 lock_contended(&lock->dep_map, ip);
4fe87745 543
6053ee3b
IM
544 for (;;) {
545 /*
546 * Lets try to take the lock again - this is needed even if
547 * we get here for the first time (shortly after failing to
548 * acquire the lock), to make sure that we get a wakeup once
549 * it's unlocked. Later on, if we sleep, this is the
550 * operation that gives us the lock. We xchg it to -1, so
551 * that when we release the lock, we properly wake up the
1e820c96
JL
552 * other waiters. We only attempt the xchg if the count is
553 * non-negative in order to avoid unnecessary xchg operations:
6053ee3b 554 */
1e820c96 555 if (atomic_read(&lock->count) >= 0 &&
ec83f425 556 (atomic_xchg(&lock->count, -1) == 1))
6053ee3b
IM
557 break;
558
559 /*
560 * got a signal? (This code gets eliminated in the
561 * TASK_UNINTERRUPTIBLE case.)
562 */
6ad36762 563 if (unlikely(signal_pending_state(state, task))) {
040a0a37
ML
564 ret = -EINTR;
565 goto err;
566 }
6053ee3b 567
b0267507 568 if (use_ww_ctx && ww_ctx->acquired > 0) {
63dc47e9 569 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
040a0a37
ML
570 if (ret)
571 goto err;
6053ee3b 572 }
040a0a37 573
6053ee3b
IM
574 __set_task_state(task, state);
575
25985edc 576 /* didn't get the lock, go to sleep: */
1fb00c6c 577 spin_unlock_mutex(&lock->wait_lock, flags);
bd2f5536 578 schedule_preempt_disabled();
1fb00c6c 579 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 580 }
51587bcf
DB
581 __set_task_state(task, TASK_RUNNING);
582
ec83f425
DB
583 mutex_remove_waiter(lock, &waiter, current_thread_info());
584 /* set it to 0 if there are no waiters left: */
585 if (likely(list_empty(&lock->wait_list)))
586 atomic_set(&lock->count, 0);
587 debug_mutex_free_waiter(&waiter);
6053ee3b 588
ec83f425
DB
589skip_wait:
590 /* got the lock - cleanup and rejoice! */
c7e78cff 591 lock_acquired(&lock->dep_map, ip);
0d66bf6d 592 mutex_set_owner(lock);
6053ee3b 593
b0267507 594 if (use_ww_ctx) {
ec83f425 595 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
4bd19084 596 ww_mutex_set_context_slowpath(ww, ww_ctx);
040a0a37
ML
597 }
598
1fb00c6c 599 spin_unlock_mutex(&lock->wait_lock, flags);
41719b03 600 preempt_enable();
6053ee3b 601 return 0;
040a0a37
ML
602
603err:
604 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
605 spin_unlock_mutex(&lock->wait_lock, flags);
606 debug_mutex_free_waiter(&waiter);
607 mutex_release(&lock->dep_map, 1, ip);
608 preempt_enable();
609 return ret;
6053ee3b
IM
610}
611
ef5d4707
IM
612#ifdef CONFIG_DEBUG_LOCK_ALLOC
613void __sched
614mutex_lock_nested(struct mutex *lock, unsigned int subclass)
615{
616 might_sleep();
040a0a37 617 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 618 subclass, NULL, _RET_IP_, NULL, 0);
ef5d4707
IM
619}
620
621EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 622
e4c70a66
PZ
623void __sched
624_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
625{
626 might_sleep();
040a0a37 627 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 628 0, nest, _RET_IP_, NULL, 0);
e4c70a66
PZ
629}
630
631EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
632
ad776537
LH
633int __sched
634mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
635{
636 might_sleep();
040a0a37 637 return __mutex_lock_common(lock, TASK_KILLABLE,
b0267507 638 subclass, NULL, _RET_IP_, NULL, 0);
ad776537
LH
639}
640EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
641
d63a5a74
N
642int __sched
643mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
644{
645 might_sleep();
0d66bf6d 646 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
b0267507 647 subclass, NULL, _RET_IP_, NULL, 0);
d63a5a74
N
648}
649
650EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 651
23010027
DV
652static inline int
653ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
654{
655#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
656 unsigned tmp;
657
658 if (ctx->deadlock_inject_countdown-- == 0) {
659 tmp = ctx->deadlock_inject_interval;
660 if (tmp > UINT_MAX/4)
661 tmp = UINT_MAX;
662 else
663 tmp = tmp*2 + tmp + tmp/2;
664
665 ctx->deadlock_inject_interval = tmp;
666 ctx->deadlock_inject_countdown = tmp;
667 ctx->contending_lock = lock;
668
669 ww_mutex_unlock(lock);
670
671 return -EDEADLK;
672 }
673#endif
674
675 return 0;
676}
040a0a37
ML
677
678int __sched
679__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
680{
23010027
DV
681 int ret;
682
040a0a37 683 might_sleep();
23010027 684 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
b0267507 685 0, &ctx->dep_map, _RET_IP_, ctx, 1);
85f48961 686 if (!ret && ctx->acquired > 1)
23010027
DV
687 return ww_mutex_deadlock_injection(lock, ctx);
688
689 return ret;
040a0a37
ML
690}
691EXPORT_SYMBOL_GPL(__ww_mutex_lock);
692
693int __sched
694__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
695{
23010027
DV
696 int ret;
697
040a0a37 698 might_sleep();
23010027 699 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
b0267507 700 0, &ctx->dep_map, _RET_IP_, ctx, 1);
23010027 701
85f48961 702 if (!ret && ctx->acquired > 1)
23010027
DV
703 return ww_mutex_deadlock_injection(lock, ctx);
704
705 return ret;
040a0a37
ML
706}
707EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
708
ef5d4707
IM
709#endif
710
6053ee3b
IM
711/*
712 * Release the lock, slowpath:
713 */
7ad5b3a5 714static inline void
242489cf 715__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
6053ee3b 716{
1fb00c6c 717 unsigned long flags;
6053ee3b 718
6053ee3b 719 /*
42fa566b
DB
720 * As a performance measurement, release the lock before doing other
721 * wakeup related duties to follow. This allows other tasks to acquire
722 * the lock sooner, while still handling cleanups in past unlock calls.
723 * This can be done as we do not enforce strict equivalence between the
724 * mutex counter and wait_list.
725 *
726 *
727 * Some architectures leave the lock unlocked in the fastpath failure
6053ee3b 728 * case, others need to leave it locked. In the later case we have to
42fa566b 729 * unlock it here - as the lock counter is currently 0 or negative.
6053ee3b
IM
730 */
731 if (__mutex_slowpath_needs_to_unlock())
732 atomic_set(&lock->count, 1);
733
1d8fe7dc
JL
734 spin_lock_mutex(&lock->wait_lock, flags);
735 mutex_release(&lock->dep_map, nested, _RET_IP_);
736 debug_mutex_unlock(lock);
737
6053ee3b
IM
738 if (!list_empty(&lock->wait_list)) {
739 /* get the first entry from the wait-list: */
740 struct mutex_waiter *waiter =
741 list_entry(lock->wait_list.next,
742 struct mutex_waiter, list);
743
744 debug_mutex_wake_waiter(lock, waiter);
745
746 wake_up_process(waiter->task);
747 }
748
1fb00c6c 749 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
750}
751
9a11b49a
IM
752/*
753 * Release the lock, slowpath:
754 */
22d9fd34 755__visible void
9a11b49a
IM
756__mutex_unlock_slowpath(atomic_t *lock_count)
757{
242489cf
DB
758 struct mutex *lock = container_of(lock_count, struct mutex, count);
759
760 __mutex_unlock_common_slowpath(lock, 1);
9a11b49a
IM
761}
762
e4564f79 763#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
764/*
765 * Here come the less common (and hence less performance-critical) APIs:
766 * mutex_lock_interruptible() and mutex_trylock().
767 */
7ad5b3a5 768static noinline int __sched
a41b56ef 769__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 770
7ad5b3a5 771static noinline int __sched
a41b56ef 772__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 773
ef5dc121
RD
774/**
775 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
776 * @lock: the mutex to be acquired
777 *
778 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
779 * been acquired or sleep until the mutex becomes available. If a
780 * signal arrives while waiting for the lock then this function
781 * returns -EINTR.
782 *
783 * This function is similar to (but not equivalent to) down_interruptible().
784 */
7ad5b3a5 785int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 786{
0d66bf6d
PZ
787 int ret;
788
c544bdb1 789 might_sleep();
a41b56ef
ML
790 ret = __mutex_fastpath_lock_retval(&lock->count);
791 if (likely(!ret)) {
0d66bf6d 792 mutex_set_owner(lock);
a41b56ef
ML
793 return 0;
794 } else
795 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
796}
797
798EXPORT_SYMBOL(mutex_lock_interruptible);
799
7ad5b3a5 800int __sched mutex_lock_killable(struct mutex *lock)
ad776537 801{
0d66bf6d
PZ
802 int ret;
803
ad776537 804 might_sleep();
a41b56ef
ML
805 ret = __mutex_fastpath_lock_retval(&lock->count);
806 if (likely(!ret)) {
0d66bf6d 807 mutex_set_owner(lock);
a41b56ef
ML
808 return 0;
809 } else
810 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
811}
812EXPORT_SYMBOL(mutex_lock_killable);
813
22d9fd34 814__visible void __sched
e4564f79
PZ
815__mutex_lock_slowpath(atomic_t *lock_count)
816{
817 struct mutex *lock = container_of(lock_count, struct mutex, count);
818
040a0a37 819 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
b0267507 820 NULL, _RET_IP_, NULL, 0);
e4564f79
PZ
821}
822
7ad5b3a5 823static noinline int __sched
a41b56ef 824__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 825{
040a0a37 826 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
b0267507 827 NULL, _RET_IP_, NULL, 0);
ad776537
LH
828}
829
7ad5b3a5 830static noinline int __sched
a41b56ef 831__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 832{
040a0a37 833 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
b0267507 834 NULL, _RET_IP_, NULL, 0);
040a0a37
ML
835}
836
837static noinline int __sched
838__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
839{
840 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
b0267507 841 NULL, _RET_IP_, ctx, 1);
6053ee3b 842}
040a0a37
ML
843
844static noinline int __sched
845__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
846 struct ww_acquire_ctx *ctx)
847{
848 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
b0267507 849 NULL, _RET_IP_, ctx, 1);
040a0a37
ML
850}
851
e4564f79 852#endif
6053ee3b
IM
853
854/*
855 * Spinlock based trylock, we take the spinlock and check whether we
856 * can get the lock:
857 */
858static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
859{
860 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 861 unsigned long flags;
6053ee3b
IM
862 int prev;
863
72d5305d
JL
864 /* No need to trylock if the mutex is locked. */
865 if (mutex_is_locked(lock))
866 return 0;
867
1fb00c6c 868 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
869
870 prev = atomic_xchg(&lock->count, -1);
ef5d4707 871 if (likely(prev == 1)) {
0d66bf6d 872 mutex_set_owner(lock);
ef5d4707
IM
873 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
874 }
0d66bf6d 875
6053ee3b
IM
876 /* Set it back to 0 if there are no waiters: */
877 if (likely(list_empty(&lock->wait_list)))
878 atomic_set(&lock->count, 0);
879
1fb00c6c 880 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
881
882 return prev == 1;
883}
884
ef5dc121
RD
885/**
886 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
887 * @lock: the mutex to be acquired
888 *
889 * Try to acquire the mutex atomically. Returns 1 if the mutex
890 * has been acquired successfully, and 0 on contention.
891 *
892 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 893 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
894 * about this when converting semaphore users to mutexes.
895 *
896 * This function must not be used in interrupt context. The
897 * mutex must be released by the same task that acquired it.
898 */
7ad5b3a5 899int __sched mutex_trylock(struct mutex *lock)
6053ee3b 900{
0d66bf6d
PZ
901 int ret;
902
903 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
904 if (ret)
905 mutex_set_owner(lock);
906
907 return ret;
6053ee3b 908}
6053ee3b 909EXPORT_SYMBOL(mutex_trylock);
a511e3f9 910
040a0a37
ML
911#ifndef CONFIG_DEBUG_LOCK_ALLOC
912int __sched
913__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
914{
915 int ret;
916
917 might_sleep();
918
919 ret = __mutex_fastpath_lock_retval(&lock->base.count);
920
921 if (likely(!ret)) {
922 ww_mutex_set_context_fastpath(lock, ctx);
923 mutex_set_owner(&lock->base);
924 } else
925 ret = __ww_mutex_lock_slowpath(lock, ctx);
926 return ret;
927}
928EXPORT_SYMBOL(__ww_mutex_lock);
929
930int __sched
931__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
932{
933 int ret;
934
935 might_sleep();
936
937 ret = __mutex_fastpath_lock_retval(&lock->base.count);
938
939 if (likely(!ret)) {
940 ww_mutex_set_context_fastpath(lock, ctx);
941 mutex_set_owner(&lock->base);
942 } else
943 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
944 return ret;
945}
946EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
947
948#endif
949
a511e3f9
AM
950/**
951 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
952 * @cnt: the atomic which we are to dec
953 * @lock: the mutex to return holding if we dec to 0
954 *
955 * return true and hold lock if we dec to 0, return false otherwise
956 */
957int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
958{
959 /* dec if we can't possibly hit 0 */
960 if (atomic_add_unless(cnt, -1, 1))
961 return 0;
962 /* we might hit 0, so take the lock */
963 mutex_lock(lock);
964 if (!atomic_dec_and_test(cnt)) {
965 /* when we actually did the dec, we didn't hit 0 */
966 mutex_unlock(lock);
967 return 0;
968 }
969 /* we hit 0, and we hold the lock */
970 return 1;
971}
972EXPORT_SYMBOL(atomic_dec_and_mutex_lock);