kgdb: kgdboc pl011 I/O module
[linux-2.6-block.git] / kernel / kgdb.c
CommitLineData
dc7d5527
JW
1/*
2 * KGDB stub.
3 *
4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5 *
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@suse.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2008 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15 *
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
22 *
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
25 *
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
29 */
30#include <linux/pid_namespace.h>
7c3078b6 31#include <linux/clocksource.h>
dc7d5527
JW
32#include <linux/interrupt.h>
33#include <linux/spinlock.h>
34#include <linux/console.h>
35#include <linux/threads.h>
36#include <linux/uaccess.h>
37#include <linux/kernel.h>
38#include <linux/module.h>
39#include <linux/ptrace.h>
40#include <linux/reboot.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/sched.h>
44#include <linux/sysrq.h>
45#include <linux/init.h>
46#include <linux/kgdb.h>
47#include <linux/pid.h>
48#include <linux/smp.h>
49#include <linux/mm.h>
50
51#include <asm/cacheflush.h>
52#include <asm/byteorder.h>
53#include <asm/atomic.h>
54#include <asm/system.h>
55
56static int kgdb_break_asap;
57
58struct kgdb_state {
59 int ex_vector;
60 int signo;
61 int err_code;
62 int cpu;
63 int pass_exception;
64 long threadid;
65 long kgdb_usethreadid;
66 struct pt_regs *linux_regs;
67};
68
69static struct debuggerinfo_struct {
70 void *debuggerinfo;
71 struct task_struct *task;
72} kgdb_info[NR_CPUS];
73
74/**
75 * kgdb_connected - Is a host GDB connected to us?
76 */
77int kgdb_connected;
78EXPORT_SYMBOL_GPL(kgdb_connected);
79
80/* All the KGDB handlers are installed */
81static int kgdb_io_module_registered;
82
83/* Guard for recursive entry */
84static int exception_level;
85
86static struct kgdb_io *kgdb_io_ops;
87static DEFINE_SPINLOCK(kgdb_registration_lock);
88
89/* kgdb console driver is loaded */
90static int kgdb_con_registered;
91/* determine if kgdb console output should be used */
92static int kgdb_use_con;
93
94static int __init opt_kgdb_con(char *str)
95{
96 kgdb_use_con = 1;
97 return 0;
98}
99
100early_param("kgdbcon", opt_kgdb_con);
101
102module_param(kgdb_use_con, int, 0644);
103
104/*
105 * Holds information about breakpoints in a kernel. These breakpoints are
106 * added and removed by gdb.
107 */
108static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
109 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
110};
111
112/*
113 * The CPU# of the active CPU, or -1 if none:
114 */
115atomic_t kgdb_active = ATOMIC_INIT(-1);
116
117/*
118 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
119 * bootup code (which might not have percpu set up yet):
120 */
121static atomic_t passive_cpu_wait[NR_CPUS];
122static atomic_t cpu_in_kgdb[NR_CPUS];
123atomic_t kgdb_setting_breakpoint;
124
125struct task_struct *kgdb_usethread;
126struct task_struct *kgdb_contthread;
127
128int kgdb_single_step;
129
130/* Our I/O buffers. */
131static char remcom_in_buffer[BUFMAX];
132static char remcom_out_buffer[BUFMAX];
133
134/* Storage for the registers, in GDB format. */
135static unsigned long gdb_regs[(NUMREGBYTES +
136 sizeof(unsigned long) - 1) /
137 sizeof(unsigned long)];
138
139/* to keep track of the CPU which is doing the single stepping*/
140atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
141
142/*
143 * If you are debugging a problem where roundup (the collection of
144 * all other CPUs) is a problem [this should be extremely rare],
145 * then use the nokgdbroundup option to avoid roundup. In that case
146 * the other CPUs might interfere with your debugging context, so
147 * use this with care:
148 */
149int kgdb_do_roundup = 1;
150
151static int __init opt_nokgdbroundup(char *str)
152{
153 kgdb_do_roundup = 0;
154
155 return 0;
156}
157
158early_param("nokgdbroundup", opt_nokgdbroundup);
159
160/*
161 * Finally, some KGDB code :-)
162 */
163
164/*
165 * Weak aliases for breakpoint management,
166 * can be overriden by architectures when needed:
167 */
168int __weak kgdb_validate_break_address(unsigned long addr)
169{
170 char tmp_variable[BREAK_INSTR_SIZE];
171
172 return probe_kernel_read(tmp_variable, (char *)addr, BREAK_INSTR_SIZE);
173}
174
175int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
176{
177 int err;
178
179 err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
180 if (err)
181 return err;
182
183 return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
184 BREAK_INSTR_SIZE);
185}
186
187int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
188{
189 return probe_kernel_write((char *)addr,
190 (char *)bundle, BREAK_INSTR_SIZE);
191}
192
193unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
194{
195 return instruction_pointer(regs);
196}
197
198int __weak kgdb_arch_init(void)
199{
200 return 0;
201}
202
b4b8ac52
JW
203int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
204{
205 return 0;
206}
207
208void __weak
209kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
210{
211 return;
212}
213
dc7d5527
JW
214/**
215 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
216 * @regs: Current &struct pt_regs.
217 *
218 * This function will be called if the particular architecture must
219 * disable hardware debugging while it is processing gdb packets or
220 * handling exception.
221 */
222void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
223{
224}
225
226/*
227 * GDB remote protocol parser:
228 */
229
230static const char hexchars[] = "0123456789abcdef";
231
232static int hex(char ch)
233{
234 if ((ch >= 'a') && (ch <= 'f'))
235 return ch - 'a' + 10;
236 if ((ch >= '0') && (ch <= '9'))
237 return ch - '0';
238 if ((ch >= 'A') && (ch <= 'F'))
239 return ch - 'A' + 10;
240 return -1;
241}
242
243/* scan for the sequence $<data>#<checksum> */
244static void get_packet(char *buffer)
245{
246 unsigned char checksum;
247 unsigned char xmitcsum;
248 int count;
249 char ch;
250
251 do {
252 /*
253 * Spin and wait around for the start character, ignore all
254 * other characters:
255 */
256 while ((ch = (kgdb_io_ops->read_char())) != '$')
257 /* nothing */;
258
259 kgdb_connected = 1;
260 checksum = 0;
261 xmitcsum = -1;
262
263 count = 0;
264
265 /*
266 * now, read until a # or end of buffer is found:
267 */
268 while (count < (BUFMAX - 1)) {
269 ch = kgdb_io_ops->read_char();
270 if (ch == '#')
271 break;
272 checksum = checksum + ch;
273 buffer[count] = ch;
274 count = count + 1;
275 }
276 buffer[count] = 0;
277
278 if (ch == '#') {
279 xmitcsum = hex(kgdb_io_ops->read_char()) << 4;
280 xmitcsum += hex(kgdb_io_ops->read_char());
281
282 if (checksum != xmitcsum)
283 /* failed checksum */
284 kgdb_io_ops->write_char('-');
285 else
286 /* successful transfer */
287 kgdb_io_ops->write_char('+');
288 if (kgdb_io_ops->flush)
289 kgdb_io_ops->flush();
290 }
291 } while (checksum != xmitcsum);
292}
293
294/*
295 * Send the packet in buffer.
296 * Check for gdb connection if asked for.
297 */
298static void put_packet(char *buffer)
299{
300 unsigned char checksum;
301 int count;
302 char ch;
303
304 /*
305 * $<packet info>#<checksum>.
306 */
307 while (1) {
308 kgdb_io_ops->write_char('$');
309 checksum = 0;
310 count = 0;
311
312 while ((ch = buffer[count])) {
313 kgdb_io_ops->write_char(ch);
314 checksum += ch;
315 count++;
316 }
317
318 kgdb_io_ops->write_char('#');
319 kgdb_io_ops->write_char(hexchars[checksum >> 4]);
320 kgdb_io_ops->write_char(hexchars[checksum & 0xf]);
321 if (kgdb_io_ops->flush)
322 kgdb_io_ops->flush();
323
324 /* Now see what we get in reply. */
325 ch = kgdb_io_ops->read_char();
326
327 if (ch == 3)
328 ch = kgdb_io_ops->read_char();
329
330 /* If we get an ACK, we are done. */
331 if (ch == '+')
332 return;
333
334 /*
335 * If we get the start of another packet, this means
336 * that GDB is attempting to reconnect. We will NAK
337 * the packet being sent, and stop trying to send this
338 * packet.
339 */
340 if (ch == '$') {
341 kgdb_io_ops->write_char('-');
342 if (kgdb_io_ops->flush)
343 kgdb_io_ops->flush();
344 return;
345 }
346 }
347}
348
349static char *pack_hex_byte(char *pkt, u8 byte)
350{
351 *pkt++ = hexchars[byte >> 4];
352 *pkt++ = hexchars[byte & 0xf];
353
354 return pkt;
355}
356
357/*
358 * Convert the memory pointed to by mem into hex, placing result in buf.
359 * Return a pointer to the last char put in buf (null). May return an error.
360 */
361int kgdb_mem2hex(char *mem, char *buf, int count)
362{
363 char *tmp;
364 int err;
365
366 /*
367 * We use the upper half of buf as an intermediate buffer for the
368 * raw memory copy. Hex conversion will work against this one.
369 */
370 tmp = buf + count;
371
372 err = probe_kernel_read(tmp, mem, count);
373 if (!err) {
374 while (count > 0) {
375 buf = pack_hex_byte(buf, *tmp);
376 tmp++;
377 count--;
378 }
379
380 *buf = 0;
381 }
382
383 return err;
384}
385
386/*
387 * Copy the binary array pointed to by buf into mem. Fix $, #, and
388 * 0x7d escaped with 0x7d. Return a pointer to the character after
389 * the last byte written.
390 */
391static int kgdb_ebin2mem(char *buf, char *mem, int count)
392{
393 int err = 0;
394 char c;
395
396 while (count-- > 0) {
397 c = *buf++;
398 if (c == 0x7d)
399 c = *buf++ ^ 0x20;
400
401 err = probe_kernel_write(mem, &c, 1);
402 if (err)
403 break;
404
405 mem++;
406 }
407
408 return err;
409}
410
411/*
412 * Convert the hex array pointed to by buf into binary to be placed in mem.
413 * Return a pointer to the character AFTER the last byte written.
414 * May return an error.
415 */
416int kgdb_hex2mem(char *buf, char *mem, int count)
417{
418 char *tmp_raw;
419 char *tmp_hex;
420
421 /*
422 * We use the upper half of buf as an intermediate buffer for the
423 * raw memory that is converted from hex.
424 */
425 tmp_raw = buf + count * 2;
426
427 tmp_hex = tmp_raw - 1;
428 while (tmp_hex >= buf) {
429 tmp_raw--;
430 *tmp_raw = hex(*tmp_hex--);
431 *tmp_raw |= hex(*tmp_hex--) << 4;
432 }
433
434 return probe_kernel_write(mem, tmp_raw, count);
435}
436
437/*
438 * While we find nice hex chars, build a long_val.
439 * Return number of chars processed.
440 */
441int kgdb_hex2long(char **ptr, long *long_val)
442{
443 int hex_val;
444 int num = 0;
445
446 *long_val = 0;
447
448 while (**ptr) {
449 hex_val = hex(**ptr);
450 if (hex_val < 0)
451 break;
452
453 *long_val = (*long_val << 4) | hex_val;
454 num++;
455 (*ptr)++;
456 }
457
458 return num;
459}
460
461/* Write memory due to an 'M' or 'X' packet. */
462static int write_mem_msg(int binary)
463{
464 char *ptr = &remcom_in_buffer[1];
465 unsigned long addr;
466 unsigned long length;
467 int err;
468
469 if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
470 kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
471 if (binary)
472 err = kgdb_ebin2mem(ptr, (char *)addr, length);
473 else
474 err = kgdb_hex2mem(ptr, (char *)addr, length);
475 if (err)
476 return err;
477 if (CACHE_FLUSH_IS_SAFE)
478 flush_icache_range(addr, addr + length + 1);
479 return 0;
480 }
481
482 return -EINVAL;
483}
484
485static void error_packet(char *pkt, int error)
486{
487 error = -error;
488 pkt[0] = 'E';
489 pkt[1] = hexchars[(error / 10)];
490 pkt[2] = hexchars[(error % 10)];
491 pkt[3] = '\0';
492}
493
494/*
495 * Thread ID accessors. We represent a flat TID space to GDB, where
496 * the per CPU idle threads (which under Linux all have PID 0) are
497 * remapped to negative TIDs.
498 */
499
500#define BUF_THREAD_ID_SIZE 16
501
502static char *pack_threadid(char *pkt, unsigned char *id)
503{
504 char *limit;
505
506 limit = pkt + BUF_THREAD_ID_SIZE;
507 while (pkt < limit)
508 pkt = pack_hex_byte(pkt, *id++);
509
510 return pkt;
511}
512
513static void int_to_threadref(unsigned char *id, int value)
514{
515 unsigned char *scan;
516 int i = 4;
517
518 scan = (unsigned char *)id;
519 while (i--)
520 *scan++ = 0;
521 *scan++ = (value >> 24) & 0xff;
522 *scan++ = (value >> 16) & 0xff;
523 *scan++ = (value >> 8) & 0xff;
524 *scan++ = (value & 0xff);
525}
526
527static struct task_struct *getthread(struct pt_regs *regs, int tid)
528{
529 /*
530 * Non-positive TIDs are remapped idle tasks:
531 */
532 if (tid <= 0)
533 return idle_task(-tid);
534
535 /*
536 * find_task_by_pid_ns() does not take the tasklist lock anymore
537 * but is nicely RCU locked - hence is a pretty resilient
538 * thing to use:
539 */
540 return find_task_by_pid_ns(tid, &init_pid_ns);
541}
542
543/*
544 * CPU debug state control:
545 */
546
547#ifdef CONFIG_SMP
548static void kgdb_wait(struct pt_regs *regs)
549{
550 unsigned long flags;
551 int cpu;
552
553 local_irq_save(flags);
554 cpu = raw_smp_processor_id();
555 kgdb_info[cpu].debuggerinfo = regs;
556 kgdb_info[cpu].task = current;
557 /*
558 * Make sure the above info reaches the primary CPU before
559 * our cpu_in_kgdb[] flag setting does:
560 */
561 smp_wmb();
562 atomic_set(&cpu_in_kgdb[cpu], 1);
563
564 /*
565 * The primary CPU must be active to enter here, but this is
566 * guard in case the primary CPU had not been selected if
567 * this was an entry via nmi.
568 */
569 while (atomic_read(&kgdb_active) == -1)
570 cpu_relax();
571
572 /* Wait till primary CPU goes completely into the debugger. */
573 while (!atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)]))
574 cpu_relax();
575
576 /* Wait till primary CPU is done with debugging */
577 while (atomic_read(&passive_cpu_wait[cpu]))
578 cpu_relax();
579
580 kgdb_info[cpu].debuggerinfo = NULL;
581 kgdb_info[cpu].task = NULL;
582
583 /* fix up hardware debug registers on local cpu */
584 if (arch_kgdb_ops.correct_hw_break)
585 arch_kgdb_ops.correct_hw_break();
586
587 /* Signal the primary CPU that we are done: */
588 atomic_set(&cpu_in_kgdb[cpu], 0);
7c3078b6 589 clocksource_touch_watchdog();
dc7d5527
JW
590 local_irq_restore(flags);
591}
592#endif
593
594/*
595 * Some architectures need cache flushes when we set/clear a
596 * breakpoint:
597 */
598static void kgdb_flush_swbreak_addr(unsigned long addr)
599{
600 if (!CACHE_FLUSH_IS_SAFE)
601 return;
602
603 if (current->mm) {
604 flush_cache_range(current->mm->mmap_cache,
605 addr, addr + BREAK_INSTR_SIZE);
606 } else {
607 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
608 }
609}
610
611/*
612 * SW breakpoint management:
613 */
614static int kgdb_activate_sw_breakpoints(void)
615{
616 unsigned long addr;
617 int error = 0;
618 int i;
619
620 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
621 if (kgdb_break[i].state != BP_SET)
622 continue;
623
624 addr = kgdb_break[i].bpt_addr;
625 error = kgdb_arch_set_breakpoint(addr,
626 kgdb_break[i].saved_instr);
627 if (error)
628 return error;
629
630 kgdb_flush_swbreak_addr(addr);
631 kgdb_break[i].state = BP_ACTIVE;
632 }
633 return 0;
634}
635
636static int kgdb_set_sw_break(unsigned long addr)
637{
638 int err = kgdb_validate_break_address(addr);
639 int breakno = -1;
640 int i;
641
642 if (err)
643 return err;
644
645 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
646 if ((kgdb_break[i].state == BP_SET) &&
647 (kgdb_break[i].bpt_addr == addr))
648 return -EEXIST;
649 }
650 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
651 if (kgdb_break[i].state == BP_REMOVED &&
652 kgdb_break[i].bpt_addr == addr) {
653 breakno = i;
654 break;
655 }
656 }
657
658 if (breakno == -1) {
659 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
660 if (kgdb_break[i].state == BP_UNDEFINED) {
661 breakno = i;
662 break;
663 }
664 }
665 }
666
667 if (breakno == -1)
668 return -E2BIG;
669
670 kgdb_break[breakno].state = BP_SET;
671 kgdb_break[breakno].type = BP_BREAKPOINT;
672 kgdb_break[breakno].bpt_addr = addr;
673
674 return 0;
675}
676
677static int kgdb_deactivate_sw_breakpoints(void)
678{
679 unsigned long addr;
680 int error = 0;
681 int i;
682
683 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
684 if (kgdb_break[i].state != BP_ACTIVE)
685 continue;
686 addr = kgdb_break[i].bpt_addr;
687 error = kgdb_arch_remove_breakpoint(addr,
688 kgdb_break[i].saved_instr);
689 if (error)
690 return error;
691
692 kgdb_flush_swbreak_addr(addr);
693 kgdb_break[i].state = BP_SET;
694 }
695 return 0;
696}
697
698static int kgdb_remove_sw_break(unsigned long addr)
699{
700 int i;
701
702 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
703 if ((kgdb_break[i].state == BP_SET) &&
704 (kgdb_break[i].bpt_addr == addr)) {
705 kgdb_break[i].state = BP_REMOVED;
706 return 0;
707 }
708 }
709 return -ENOENT;
710}
711
712int kgdb_isremovedbreak(unsigned long addr)
713{
714 int i;
715
716 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
717 if ((kgdb_break[i].state == BP_REMOVED) &&
718 (kgdb_break[i].bpt_addr == addr))
719 return 1;
720 }
721 return 0;
722}
723
724int remove_all_break(void)
725{
726 unsigned long addr;
727 int error;
728 int i;
729
730 /* Clear memory breakpoints. */
731 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
732 if (kgdb_break[i].state != BP_SET)
733 continue;
734 addr = kgdb_break[i].bpt_addr;
735 error = kgdb_arch_remove_breakpoint(addr,
736 kgdb_break[i].saved_instr);
737 if (error)
738 return error;
739 kgdb_break[i].state = BP_REMOVED;
740 }
741
742 /* Clear hardware breakpoints. */
743 if (arch_kgdb_ops.remove_all_hw_break)
744 arch_kgdb_ops.remove_all_hw_break();
745
746 return 0;
747}
748
749/*
750 * Remap normal tasks to their real PID, idle tasks to -1 ... -NR_CPUs:
751 */
752static inline int shadow_pid(int realpid)
753{
754 if (realpid)
755 return realpid;
756
757 return -1-raw_smp_processor_id();
758}
759
760static char gdbmsgbuf[BUFMAX + 1];
761
762static void kgdb_msg_write(const char *s, int len)
763{
764 char *bufptr;
765 int wcount;
766 int i;
767
768 /* 'O'utput */
769 gdbmsgbuf[0] = 'O';
770
771 /* Fill and send buffers... */
772 while (len > 0) {
773 bufptr = gdbmsgbuf + 1;
774
775 /* Calculate how many this time */
776 if ((len << 1) > (BUFMAX - 2))
777 wcount = (BUFMAX - 2) >> 1;
778 else
779 wcount = len;
780
781 /* Pack in hex chars */
782 for (i = 0; i < wcount; i++)
783 bufptr = pack_hex_byte(bufptr, s[i]);
784 *bufptr = '\0';
785
786 /* Move up */
787 s += wcount;
788 len -= wcount;
789
790 /* Write packet */
791 put_packet(gdbmsgbuf);
792 }
793}
794
795/*
796 * Return true if there is a valid kgdb I/O module. Also if no
797 * debugger is attached a message can be printed to the console about
798 * waiting for the debugger to attach.
799 *
800 * The print_wait argument is only to be true when called from inside
801 * the core kgdb_handle_exception, because it will wait for the
802 * debugger to attach.
803 */
804static int kgdb_io_ready(int print_wait)
805{
806 if (!kgdb_io_ops)
807 return 0;
808 if (kgdb_connected)
809 return 1;
810 if (atomic_read(&kgdb_setting_breakpoint))
811 return 1;
812 if (print_wait)
813 printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
814 return 1;
815}
816
817/*
818 * All the functions that start with gdb_cmd are the various
819 * operations to implement the handlers for the gdbserial protocol
820 * where KGDB is communicating with an external debugger
821 */
822
823/* Handle the '?' status packets */
824static void gdb_cmd_status(struct kgdb_state *ks)
825{
826 /*
827 * We know that this packet is only sent
828 * during initial connect. So to be safe,
829 * we clear out our breakpoints now in case
830 * GDB is reconnecting.
831 */
832 remove_all_break();
833
834 remcom_out_buffer[0] = 'S';
835 pack_hex_byte(&remcom_out_buffer[1], ks->signo);
836}
837
838/* Handle the 'g' get registers request */
839static void gdb_cmd_getregs(struct kgdb_state *ks)
840{
841 struct task_struct *thread;
842 void *local_debuggerinfo;
843 int i;
844
845 thread = kgdb_usethread;
846 if (!thread) {
847 thread = kgdb_info[ks->cpu].task;
848 local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
849 } else {
850 local_debuggerinfo = NULL;
851 for (i = 0; i < NR_CPUS; i++) {
852 /*
853 * Try to find the task on some other
854 * or possibly this node if we do not
855 * find the matching task then we try
856 * to approximate the results.
857 */
858 if (thread == kgdb_info[i].task)
859 local_debuggerinfo = kgdb_info[i].debuggerinfo;
860 }
861 }
862
863 /*
864 * All threads that don't have debuggerinfo should be
865 * in __schedule() sleeping, since all other CPUs
866 * are in kgdb_wait, and thus have debuggerinfo.
867 */
868 if (local_debuggerinfo) {
869 pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
870 } else {
871 /*
872 * Pull stuff saved during switch_to; nothing
873 * else is accessible (or even particularly
874 * relevant).
875 *
876 * This should be enough for a stack trace.
877 */
878 sleeping_thread_to_gdb_regs(gdb_regs, thread);
879 }
880 kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
881}
882
883/* Handle the 'G' set registers request */
884static void gdb_cmd_setregs(struct kgdb_state *ks)
885{
886 kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
887
888 if (kgdb_usethread && kgdb_usethread != current) {
889 error_packet(remcom_out_buffer, -EINVAL);
890 } else {
891 gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
892 strcpy(remcom_out_buffer, "OK");
893 }
894}
895
896/* Handle the 'm' memory read bytes */
897static void gdb_cmd_memread(struct kgdb_state *ks)
898{
899 char *ptr = &remcom_in_buffer[1];
900 unsigned long length;
901 unsigned long addr;
902 int err;
903
904 if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
905 kgdb_hex2long(&ptr, &length) > 0) {
906 err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
907 if (err)
908 error_packet(remcom_out_buffer, err);
909 } else {
910 error_packet(remcom_out_buffer, -EINVAL);
911 }
912}
913
914/* Handle the 'M' memory write bytes */
915static void gdb_cmd_memwrite(struct kgdb_state *ks)
916{
917 int err = write_mem_msg(0);
918
919 if (err)
920 error_packet(remcom_out_buffer, err);
921 else
922 strcpy(remcom_out_buffer, "OK");
923}
924
925/* Handle the 'X' memory binary write bytes */
926static void gdb_cmd_binwrite(struct kgdb_state *ks)
927{
928 int err = write_mem_msg(1);
929
930 if (err)
931 error_packet(remcom_out_buffer, err);
932 else
933 strcpy(remcom_out_buffer, "OK");
934}
935
936/* Handle the 'D' or 'k', detach or kill packets */
937static void gdb_cmd_detachkill(struct kgdb_state *ks)
938{
939 int error;
940
941 /* The detach case */
942 if (remcom_in_buffer[0] == 'D') {
943 error = remove_all_break();
944 if (error < 0) {
945 error_packet(remcom_out_buffer, error);
946 } else {
947 strcpy(remcom_out_buffer, "OK");
948 kgdb_connected = 0;
949 }
950 put_packet(remcom_out_buffer);
951 } else {
952 /*
953 * Assume the kill case, with no exit code checking,
954 * trying to force detach the debugger:
955 */
956 remove_all_break();
957 kgdb_connected = 0;
958 }
959}
960
961/* Handle the 'R' reboot packets */
962static int gdb_cmd_reboot(struct kgdb_state *ks)
963{
964 /* For now, only honor R0 */
965 if (strcmp(remcom_in_buffer, "R0") == 0) {
966 printk(KERN_CRIT "Executing emergency reboot\n");
967 strcpy(remcom_out_buffer, "OK");
968 put_packet(remcom_out_buffer);
969
970 /*
971 * Execution should not return from
972 * machine_emergency_restart()
973 */
974 machine_emergency_restart();
975 kgdb_connected = 0;
976
977 return 1;
978 }
979 return 0;
980}
981
982/* Handle the 'q' query packets */
983static void gdb_cmd_query(struct kgdb_state *ks)
984{
985 struct task_struct *thread;
986 unsigned char thref[8];
987 char *ptr;
988 int i;
989
990 switch (remcom_in_buffer[1]) {
991 case 's':
992 case 'f':
993 if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) {
994 error_packet(remcom_out_buffer, -EINVAL);
995 break;
996 }
997
998 if (remcom_in_buffer[1] == 'f')
999 ks->threadid = 1;
1000
1001 remcom_out_buffer[0] = 'm';
1002 ptr = remcom_out_buffer + 1;
1003
1004 for (i = 0; i < 17; ks->threadid++) {
1005 thread = getthread(ks->linux_regs, ks->threadid);
1006 if (thread) {
1007 int_to_threadref(thref, ks->threadid);
1008 pack_threadid(ptr, thref);
1009 ptr += BUF_THREAD_ID_SIZE;
1010 *(ptr++) = ',';
1011 i++;
1012 }
1013 }
1014 *(--ptr) = '\0';
1015 break;
1016
1017 case 'C':
1018 /* Current thread id */
1019 strcpy(remcom_out_buffer, "QC");
1020 ks->threadid = shadow_pid(current->pid);
1021 int_to_threadref(thref, ks->threadid);
1022 pack_threadid(remcom_out_buffer + 2, thref);
1023 break;
1024 case 'T':
1025 if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) {
1026 error_packet(remcom_out_buffer, -EINVAL);
1027 break;
1028 }
1029 ks->threadid = 0;
1030 ptr = remcom_in_buffer + 17;
1031 kgdb_hex2long(&ptr, &ks->threadid);
1032 if (!getthread(ks->linux_regs, ks->threadid)) {
1033 error_packet(remcom_out_buffer, -EINVAL);
1034 break;
1035 }
1036 if (ks->threadid > 0) {
1037 kgdb_mem2hex(getthread(ks->linux_regs,
1038 ks->threadid)->comm,
1039 remcom_out_buffer, 16);
1040 } else {
1041 static char tmpstr[23 + BUF_THREAD_ID_SIZE];
1042
1043 sprintf(tmpstr, "Shadow task %d for pid 0",
1044 (int)(-ks->threadid-1));
1045 kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
1046 }
1047 break;
1048 }
1049}
1050
1051/* Handle the 'H' task query packets */
1052static void gdb_cmd_task(struct kgdb_state *ks)
1053{
1054 struct task_struct *thread;
1055 char *ptr;
1056
1057 switch (remcom_in_buffer[1]) {
1058 case 'g':
1059 ptr = &remcom_in_buffer[2];
1060 kgdb_hex2long(&ptr, &ks->threadid);
1061 thread = getthread(ks->linux_regs, ks->threadid);
1062 if (!thread && ks->threadid > 0) {
1063 error_packet(remcom_out_buffer, -EINVAL);
1064 break;
1065 }
1066 kgdb_usethread = thread;
1067 ks->kgdb_usethreadid = ks->threadid;
1068 strcpy(remcom_out_buffer, "OK");
1069 break;
1070 case 'c':
1071 ptr = &remcom_in_buffer[2];
1072 kgdb_hex2long(&ptr, &ks->threadid);
1073 if (!ks->threadid) {
1074 kgdb_contthread = NULL;
1075 } else {
1076 thread = getthread(ks->linux_regs, ks->threadid);
1077 if (!thread && ks->threadid > 0) {
1078 error_packet(remcom_out_buffer, -EINVAL);
1079 break;
1080 }
1081 kgdb_contthread = thread;
1082 }
1083 strcpy(remcom_out_buffer, "OK");
1084 break;
1085 }
1086}
1087
1088/* Handle the 'T' thread query packets */
1089static void gdb_cmd_thread(struct kgdb_state *ks)
1090{
1091 char *ptr = &remcom_in_buffer[1];
1092 struct task_struct *thread;
1093
1094 kgdb_hex2long(&ptr, &ks->threadid);
1095 thread = getthread(ks->linux_regs, ks->threadid);
1096 if (thread)
1097 strcpy(remcom_out_buffer, "OK");
1098 else
1099 error_packet(remcom_out_buffer, -EINVAL);
1100}
1101
1102/* Handle the 'z' or 'Z' breakpoint remove or set packets */
1103static void gdb_cmd_break(struct kgdb_state *ks)
1104{
1105 /*
1106 * Since GDB-5.3, it's been drafted that '0' is a software
1107 * breakpoint, '1' is a hardware breakpoint, so let's do that.
1108 */
1109 char *bpt_type = &remcom_in_buffer[1];
1110 char *ptr = &remcom_in_buffer[2];
1111 unsigned long addr;
1112 unsigned long length;
1113 int error = 0;
1114
1115 if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
1116 /* Unsupported */
1117 if (*bpt_type > '4')
1118 return;
1119 } else {
1120 if (*bpt_type != '0' && *bpt_type != '1')
1121 /* Unsupported. */
1122 return;
1123 }
1124
1125 /*
1126 * Test if this is a hardware breakpoint, and
1127 * if we support it:
1128 */
1129 if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
1130 /* Unsupported. */
1131 return;
1132
1133 if (*(ptr++) != ',') {
1134 error_packet(remcom_out_buffer, -EINVAL);
1135 return;
1136 }
1137 if (!kgdb_hex2long(&ptr, &addr)) {
1138 error_packet(remcom_out_buffer, -EINVAL);
1139 return;
1140 }
1141 if (*(ptr++) != ',' ||
1142 !kgdb_hex2long(&ptr, &length)) {
1143 error_packet(remcom_out_buffer, -EINVAL);
1144 return;
1145 }
1146
1147 if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
1148 error = kgdb_set_sw_break(addr);
1149 else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
1150 error = kgdb_remove_sw_break(addr);
1151 else if (remcom_in_buffer[0] == 'Z')
1152 error = arch_kgdb_ops.set_hw_breakpoint(addr,
64e9ee30 1153 (int)length, *bpt_type - '0');
dc7d5527
JW
1154 else if (remcom_in_buffer[0] == 'z')
1155 error = arch_kgdb_ops.remove_hw_breakpoint(addr,
64e9ee30 1156 (int) length, *bpt_type - '0');
dc7d5527
JW
1157
1158 if (error == 0)
1159 strcpy(remcom_out_buffer, "OK");
1160 else
1161 error_packet(remcom_out_buffer, error);
1162}
1163
1164/* Handle the 'C' signal / exception passing packets */
1165static int gdb_cmd_exception_pass(struct kgdb_state *ks)
1166{
1167 /* C09 == pass exception
1168 * C15 == detach kgdb, pass exception
1169 */
1170 if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
1171
1172 ks->pass_exception = 1;
1173 remcom_in_buffer[0] = 'c';
1174
1175 } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
1176
1177 ks->pass_exception = 1;
1178 remcom_in_buffer[0] = 'D';
1179 remove_all_break();
1180 kgdb_connected = 0;
1181 return 1;
1182
1183 } else {
1184 error_packet(remcom_out_buffer, -EINVAL);
1185 return 0;
1186 }
1187
1188 /* Indicate fall through */
1189 return -1;
1190}
1191
1192/*
1193 * This function performs all gdbserial command procesing
1194 */
1195static int gdb_serial_stub(struct kgdb_state *ks)
1196{
1197 int error = 0;
1198 int tmp;
1199
1200 /* Clear the out buffer. */
1201 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1202
1203 if (kgdb_connected) {
1204 unsigned char thref[8];
1205 char *ptr;
1206
1207 /* Reply to host that an exception has occurred */
1208 ptr = remcom_out_buffer;
1209 *ptr++ = 'T';
1210 ptr = pack_hex_byte(ptr, ks->signo);
1211 ptr += strlen(strcpy(ptr, "thread:"));
1212 int_to_threadref(thref, shadow_pid(current->pid));
1213 ptr = pack_threadid(ptr, thref);
1214 *ptr++ = ';';
1215 put_packet(remcom_out_buffer);
1216 }
1217
1218 kgdb_usethread = kgdb_info[ks->cpu].task;
1219 ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
1220 ks->pass_exception = 0;
1221
1222 while (1) {
1223 error = 0;
1224
1225 /* Clear the out buffer. */
1226 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1227
1228 get_packet(remcom_in_buffer);
1229
1230 switch (remcom_in_buffer[0]) {
1231 case '?': /* gdbserial status */
1232 gdb_cmd_status(ks);
1233 break;
1234 case 'g': /* return the value of the CPU registers */
1235 gdb_cmd_getregs(ks);
1236 break;
1237 case 'G': /* set the value of the CPU registers - return OK */
1238 gdb_cmd_setregs(ks);
1239 break;
1240 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
1241 gdb_cmd_memread(ks);
1242 break;
1243 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1244 gdb_cmd_memwrite(ks);
1245 break;
1246 case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1247 gdb_cmd_binwrite(ks);
1248 break;
1249 /* kill or detach. KGDB should treat this like a
1250 * continue.
1251 */
1252 case 'D': /* Debugger detach */
1253 case 'k': /* Debugger detach via kill */
1254 gdb_cmd_detachkill(ks);
1255 goto default_handle;
1256 case 'R': /* Reboot */
1257 if (gdb_cmd_reboot(ks))
1258 goto default_handle;
1259 break;
1260 case 'q': /* query command */
1261 gdb_cmd_query(ks);
1262 break;
1263 case 'H': /* task related */
1264 gdb_cmd_task(ks);
1265 break;
1266 case 'T': /* Query thread status */
1267 gdb_cmd_thread(ks);
1268 break;
1269 case 'z': /* Break point remove */
1270 case 'Z': /* Break point set */
1271 gdb_cmd_break(ks);
1272 break;
1273 case 'C': /* Exception passing */
1274 tmp = gdb_cmd_exception_pass(ks);
1275 if (tmp > 0)
1276 goto default_handle;
1277 if (tmp == 0)
1278 break;
1279 /* Fall through on tmp < 0 */
1280 case 'c': /* Continue packet */
1281 case 's': /* Single step packet */
1282 if (kgdb_contthread && kgdb_contthread != current) {
1283 /* Can't switch threads in kgdb */
1284 error_packet(remcom_out_buffer, -EINVAL);
1285 break;
1286 }
1287 kgdb_activate_sw_breakpoints();
1288 /* Fall through to default processing */
1289 default:
1290default_handle:
1291 error = kgdb_arch_handle_exception(ks->ex_vector,
1292 ks->signo,
1293 ks->err_code,
1294 remcom_in_buffer,
1295 remcom_out_buffer,
1296 ks->linux_regs);
1297 /*
1298 * Leave cmd processing on error, detach,
1299 * kill, continue, or single step.
1300 */
1301 if (error >= 0 || remcom_in_buffer[0] == 'D' ||
1302 remcom_in_buffer[0] == 'k') {
1303 error = 0;
1304 goto kgdb_exit;
1305 }
1306
1307 }
1308
1309 /* reply to the request */
1310 put_packet(remcom_out_buffer);
1311 }
1312
1313kgdb_exit:
1314 if (ks->pass_exception)
1315 error = 1;
1316 return error;
1317}
1318
1319static int kgdb_reenter_check(struct kgdb_state *ks)
1320{
1321 unsigned long addr;
1322
1323 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
1324 return 0;
1325
1326 /* Panic on recursive debugger calls: */
1327 exception_level++;
1328 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
1329 kgdb_deactivate_sw_breakpoints();
1330
1331 /*
1332 * If the break point removed ok at the place exception
1333 * occurred, try to recover and print a warning to the end
1334 * user because the user planted a breakpoint in a place that
1335 * KGDB needs in order to function.
1336 */
1337 if (kgdb_remove_sw_break(addr) == 0) {
1338 exception_level = 0;
1339 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1340 kgdb_activate_sw_breakpoints();
67baf94c
JW
1341 printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n",
1342 addr);
dc7d5527
JW
1343 WARN_ON_ONCE(1);
1344
1345 return 1;
1346 }
1347 remove_all_break();
1348 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1349
1350 if (exception_level > 1) {
1351 dump_stack();
1352 panic("Recursive entry to debugger");
1353 }
1354
1355 printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
1356 dump_stack();
1357 panic("Recursive entry to debugger");
1358
1359 return 1;
1360}
1361
1362/*
1363 * kgdb_handle_exception() - main entry point from a kernel exception
1364 *
1365 * Locking hierarchy:
1366 * interface locks, if any (begin_session)
1367 * kgdb lock (kgdb_active)
1368 */
1369int
1370kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
1371{
1372 struct kgdb_state kgdb_var;
1373 struct kgdb_state *ks = &kgdb_var;
1374 unsigned long flags;
1375 int error = 0;
1376 int i, cpu;
1377
1378 ks->cpu = raw_smp_processor_id();
1379 ks->ex_vector = evector;
1380 ks->signo = signo;
1381 ks->ex_vector = evector;
1382 ks->err_code = ecode;
1383 ks->kgdb_usethreadid = 0;
1384 ks->linux_regs = regs;
1385
1386 if (kgdb_reenter_check(ks))
1387 return 0; /* Ouch, double exception ! */
1388
1389acquirelock:
1390 /*
1391 * Interrupts will be restored by the 'trap return' code, except when
1392 * single stepping.
1393 */
1394 local_irq_save(flags);
1395
1396 cpu = raw_smp_processor_id();
1397
1398 /*
1399 * Acquire the kgdb_active lock:
1400 */
1401 while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1)
1402 cpu_relax();
1403
1404 /*
1405 * Do not start the debugger connection on this CPU if the last
1406 * instance of the exception handler wanted to come into the
1407 * debugger on a different CPU via a single step
1408 */
1409 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
1410 atomic_read(&kgdb_cpu_doing_single_step) != cpu) {
1411
1412 atomic_set(&kgdb_active, -1);
7c3078b6 1413 clocksource_touch_watchdog();
dc7d5527
JW
1414 local_irq_restore(flags);
1415
1416 goto acquirelock;
1417 }
1418
1419 if (!kgdb_io_ready(1)) {
1420 error = 1;
1421 goto kgdb_restore; /* No I/O connection, so resume the system */
1422 }
1423
1424 /*
1425 * Don't enter if we have hit a removed breakpoint.
1426 */
1427 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
1428 goto kgdb_restore;
1429
1430 /* Call the I/O driver's pre_exception routine */
1431 if (kgdb_io_ops->pre_exception)
1432 kgdb_io_ops->pre_exception();
1433
1434 kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs;
1435 kgdb_info[ks->cpu].task = current;
1436
1437 kgdb_disable_hw_debug(ks->linux_regs);
1438
1439 /*
1440 * Get the passive CPU lock which will hold all the non-primary
1441 * CPU in a spin state while the debugger is active
1442 */
1443 if (!kgdb_single_step || !kgdb_contthread) {
1444 for (i = 0; i < NR_CPUS; i++)
1445 atomic_set(&passive_cpu_wait[i], 1);
1446 }
1447
1448#ifdef CONFIG_SMP
1449 /* Signal the other CPUs to enter kgdb_wait() */
1450 if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup)
1451 kgdb_roundup_cpus(flags);
1452#endif
1453
1454 /*
1455 * spin_lock code is good enough as a barrier so we don't
1456 * need one here:
1457 */
1458 atomic_set(&cpu_in_kgdb[ks->cpu], 1);
1459
1460 /*
1461 * Wait for the other CPUs to be notified and be waiting for us:
1462 */
1463 for_each_online_cpu(i) {
1464 while (!atomic_read(&cpu_in_kgdb[i]))
1465 cpu_relax();
1466 }
1467
1468 /*
1469 * At this point the primary processor is completely
1470 * in the debugger and all secondary CPUs are quiescent
1471 */
1472 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1473 kgdb_deactivate_sw_breakpoints();
1474 kgdb_single_step = 0;
1475 kgdb_contthread = NULL;
1476 exception_level = 0;
1477
1478 /* Talk to debugger with gdbserial protocol */
1479 error = gdb_serial_stub(ks);
1480
1481 /* Call the I/O driver's post_exception routine */
1482 if (kgdb_io_ops->post_exception)
1483 kgdb_io_ops->post_exception();
1484
1485 kgdb_info[ks->cpu].debuggerinfo = NULL;
1486 kgdb_info[ks->cpu].task = NULL;
1487 atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1488
1489 if (!kgdb_single_step || !kgdb_contthread) {
1490 for (i = NR_CPUS-1; i >= 0; i--)
1491 atomic_set(&passive_cpu_wait[i], 0);
1492 /*
1493 * Wait till all the CPUs have quit
1494 * from the debugger.
1495 */
1496 for_each_online_cpu(i) {
1497 while (atomic_read(&cpu_in_kgdb[i]))
1498 cpu_relax();
1499 }
1500 }
1501
1502kgdb_restore:
1503 /* Free kgdb_active */
1504 atomic_set(&kgdb_active, -1);
7c3078b6 1505 clocksource_touch_watchdog();
dc7d5527
JW
1506 local_irq_restore(flags);
1507
1508 return error;
1509}
1510
1511int kgdb_nmicallback(int cpu, void *regs)
1512{
1513#ifdef CONFIG_SMP
1514 if (!atomic_read(&cpu_in_kgdb[cpu]) &&
1515 atomic_read(&kgdb_active) != cpu) {
1516 kgdb_wait((struct pt_regs *)regs);
1517 return 0;
1518 }
1519#endif
1520 return 1;
1521}
1522
1523void kgdb_console_write(struct console *co, const char *s, unsigned count)
1524{
1525 unsigned long flags;
1526
1527 /* If we're debugging, or KGDB has not connected, don't try
1528 * and print. */
1529 if (!kgdb_connected || atomic_read(&kgdb_active) != -1)
1530 return;
1531
1532 local_irq_save(flags);
1533 kgdb_msg_write(s, count);
1534 local_irq_restore(flags);
1535}
1536
1537static struct console kgdbcons = {
1538 .name = "kgdb",
1539 .write = kgdb_console_write,
1540 .flags = CON_PRINTBUFFER | CON_ENABLED,
1541 .index = -1,
1542};
1543
1544#ifdef CONFIG_MAGIC_SYSRQ
1545static void sysrq_handle_gdb(int key, struct tty_struct *tty)
1546{
1547 if (!kgdb_io_ops) {
1548 printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
1549 return;
1550 }
1551 if (!kgdb_connected)
1552 printk(KERN_CRIT "Entering KGDB\n");
1553
1554 kgdb_breakpoint();
1555}
1556
1557static struct sysrq_key_op sysrq_gdb_op = {
1558 .handler = sysrq_handle_gdb,
1559 .help_msg = "Gdb",
1560 .action_msg = "GDB",
1561};
1562#endif
1563
1564static void kgdb_register_callbacks(void)
1565{
1566 if (!kgdb_io_module_registered) {
1567 kgdb_io_module_registered = 1;
1568 kgdb_arch_init();
1569#ifdef CONFIG_MAGIC_SYSRQ
1570 register_sysrq_key('g', &sysrq_gdb_op);
1571#endif
1572 if (kgdb_use_con && !kgdb_con_registered) {
1573 register_console(&kgdbcons);
1574 kgdb_con_registered = 1;
1575 }
1576 }
1577}
1578
1579static void kgdb_unregister_callbacks(void)
1580{
1581 /*
1582 * When this routine is called KGDB should unregister from the
1583 * panic handler and clean up, making sure it is not handling any
1584 * break exceptions at the time.
1585 */
1586 if (kgdb_io_module_registered) {
1587 kgdb_io_module_registered = 0;
1588 kgdb_arch_exit();
1589#ifdef CONFIG_MAGIC_SYSRQ
1590 unregister_sysrq_key('g', &sysrq_gdb_op);
1591#endif
1592 if (kgdb_con_registered) {
1593 unregister_console(&kgdbcons);
1594 kgdb_con_registered = 0;
1595 }
1596 }
1597}
1598
1599static void kgdb_initial_breakpoint(void)
1600{
1601 kgdb_break_asap = 0;
1602
1603 printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
1604 kgdb_breakpoint();
1605}
1606
1607/**
1608 * kkgdb_register_io_module - register KGDB IO module
1609 * @new_kgdb_io_ops: the io ops vector
1610 *
1611 * Register it with the KGDB core.
1612 */
1613int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops)
1614{
1615 int err;
1616
1617 spin_lock(&kgdb_registration_lock);
1618
1619 if (kgdb_io_ops) {
1620 spin_unlock(&kgdb_registration_lock);
1621
1622 printk(KERN_ERR "kgdb: Another I/O driver is already "
1623 "registered with KGDB.\n");
1624 return -EBUSY;
1625 }
1626
1627 if (new_kgdb_io_ops->init) {
1628 err = new_kgdb_io_ops->init();
1629 if (err) {
1630 spin_unlock(&kgdb_registration_lock);
1631 return err;
1632 }
1633 }
1634
1635 kgdb_io_ops = new_kgdb_io_ops;
1636
1637 spin_unlock(&kgdb_registration_lock);
1638
1639 printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
1640 new_kgdb_io_ops->name);
1641
1642 /* Arm KGDB now. */
1643 kgdb_register_callbacks();
1644
1645 if (kgdb_break_asap)
1646 kgdb_initial_breakpoint();
1647
1648 return 0;
1649}
1650EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1651
1652/**
1653 * kkgdb_unregister_io_module - unregister KGDB IO module
1654 * @old_kgdb_io_ops: the io ops vector
1655 *
1656 * Unregister it with the KGDB core.
1657 */
1658void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops)
1659{
1660 BUG_ON(kgdb_connected);
1661
1662 /*
1663 * KGDB is no longer able to communicate out, so
1664 * unregister our callbacks and reset state.
1665 */
1666 kgdb_unregister_callbacks();
1667
1668 spin_lock(&kgdb_registration_lock);
1669
1670 WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops);
1671 kgdb_io_ops = NULL;
1672
1673 spin_unlock(&kgdb_registration_lock);
1674
1675 printk(KERN_INFO
1676 "kgdb: Unregistered I/O driver %s, debugger disabled.\n",
1677 old_kgdb_io_ops->name);
1678}
1679EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1680
1681/**
1682 * kgdb_breakpoint - generate breakpoint exception
1683 *
1684 * This function will generate a breakpoint exception. It is used at the
1685 * beginning of a program to sync up with a debugger and can be used
1686 * otherwise as a quick means to stop program execution and "break" into
1687 * the debugger.
1688 */
1689void kgdb_breakpoint(void)
1690{
1691 atomic_set(&kgdb_setting_breakpoint, 1);
1692 wmb(); /* Sync point before breakpoint */
1693 arch_kgdb_breakpoint();
1694 wmb(); /* Sync point after breakpoint */
1695 atomic_set(&kgdb_setting_breakpoint, 0);
1696}
1697EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1698
1699static int __init opt_kgdb_wait(char *str)
1700{
1701 kgdb_break_asap = 1;
1702
1703 if (kgdb_io_module_registered)
1704 kgdb_initial_breakpoint();
1705
1706 return 0;
1707}
1708
1709early_param("kgdbwait", opt_kgdb_wait);