Fix FRV minimum slab/kmalloc alignment
[linux-block.git] / kernel / kgdb.c
CommitLineData
dc7d5527
JW
1/*
2 * KGDB stub.
3 *
4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5 *
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@suse.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2008 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15 *
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
22 *
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
25 *
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
29 */
30#include <linux/pid_namespace.h>
7c3078b6 31#include <linux/clocksource.h>
dc7d5527
JW
32#include <linux/interrupt.h>
33#include <linux/spinlock.h>
34#include <linux/console.h>
35#include <linux/threads.h>
36#include <linux/uaccess.h>
37#include <linux/kernel.h>
38#include <linux/module.h>
39#include <linux/ptrace.h>
40#include <linux/reboot.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/sched.h>
44#include <linux/sysrq.h>
45#include <linux/init.h>
46#include <linux/kgdb.h>
47#include <linux/pid.h>
48#include <linux/smp.h>
49#include <linux/mm.h>
50
51#include <asm/cacheflush.h>
52#include <asm/byteorder.h>
53#include <asm/atomic.h>
54#include <asm/system.h>
55
56static int kgdb_break_asap;
57
58struct kgdb_state {
59 int ex_vector;
60 int signo;
61 int err_code;
62 int cpu;
63 int pass_exception;
688b744d 64 unsigned long threadid;
dc7d5527
JW
65 long kgdb_usethreadid;
66 struct pt_regs *linux_regs;
67};
68
69static struct debuggerinfo_struct {
70 void *debuggerinfo;
71 struct task_struct *task;
72} kgdb_info[NR_CPUS];
73
74/**
75 * kgdb_connected - Is a host GDB connected to us?
76 */
77int kgdb_connected;
78EXPORT_SYMBOL_GPL(kgdb_connected);
79
80/* All the KGDB handlers are installed */
81static int kgdb_io_module_registered;
82
83/* Guard for recursive entry */
84static int exception_level;
85
86static struct kgdb_io *kgdb_io_ops;
87static DEFINE_SPINLOCK(kgdb_registration_lock);
88
89/* kgdb console driver is loaded */
90static int kgdb_con_registered;
91/* determine if kgdb console output should be used */
92static int kgdb_use_con;
93
94static int __init opt_kgdb_con(char *str)
95{
96 kgdb_use_con = 1;
97 return 0;
98}
99
100early_param("kgdbcon", opt_kgdb_con);
101
102module_param(kgdb_use_con, int, 0644);
103
104/*
105 * Holds information about breakpoints in a kernel. These breakpoints are
106 * added and removed by gdb.
107 */
108static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
109 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
110};
111
112/*
113 * The CPU# of the active CPU, or -1 if none:
114 */
115atomic_t kgdb_active = ATOMIC_INIT(-1);
116
117/*
118 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
119 * bootup code (which might not have percpu set up yet):
120 */
121static atomic_t passive_cpu_wait[NR_CPUS];
122static atomic_t cpu_in_kgdb[NR_CPUS];
123atomic_t kgdb_setting_breakpoint;
124
125struct task_struct *kgdb_usethread;
126struct task_struct *kgdb_contthread;
127
128int kgdb_single_step;
129
130/* Our I/O buffers. */
131static char remcom_in_buffer[BUFMAX];
132static char remcom_out_buffer[BUFMAX];
133
134/* Storage for the registers, in GDB format. */
135static unsigned long gdb_regs[(NUMREGBYTES +
136 sizeof(unsigned long) - 1) /
137 sizeof(unsigned long)];
138
139/* to keep track of the CPU which is doing the single stepping*/
140atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
141
142/*
143 * If you are debugging a problem where roundup (the collection of
144 * all other CPUs) is a problem [this should be extremely rare],
145 * then use the nokgdbroundup option to avoid roundup. In that case
146 * the other CPUs might interfere with your debugging context, so
147 * use this with care:
148 */
688b744d 149static int kgdb_do_roundup = 1;
dc7d5527
JW
150
151static int __init opt_nokgdbroundup(char *str)
152{
153 kgdb_do_roundup = 0;
154
155 return 0;
156}
157
158early_param("nokgdbroundup", opt_nokgdbroundup);
159
160/*
161 * Finally, some KGDB code :-)
162 */
163
164/*
165 * Weak aliases for breakpoint management,
166 * can be overriden by architectures when needed:
167 */
168int __weak kgdb_validate_break_address(unsigned long addr)
169{
170 char tmp_variable[BREAK_INSTR_SIZE];
171
172 return probe_kernel_read(tmp_variable, (char *)addr, BREAK_INSTR_SIZE);
173}
174
175int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
176{
177 int err;
178
179 err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
180 if (err)
181 return err;
182
183 return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
184 BREAK_INSTR_SIZE);
185}
186
187int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
188{
189 return probe_kernel_write((char *)addr,
190 (char *)bundle, BREAK_INSTR_SIZE);
191}
192
193unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
194{
195 return instruction_pointer(regs);
196}
197
198int __weak kgdb_arch_init(void)
199{
200 return 0;
201}
202
b4b8ac52
JW
203int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
204{
205 return 0;
206}
207
208void __weak
209kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
210{
211 return;
212}
213
dc7d5527
JW
214/**
215 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
216 * @regs: Current &struct pt_regs.
217 *
218 * This function will be called if the particular architecture must
219 * disable hardware debugging while it is processing gdb packets or
220 * handling exception.
221 */
222void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
223{
224}
225
226/*
227 * GDB remote protocol parser:
228 */
229
230static const char hexchars[] = "0123456789abcdef";
231
232static int hex(char ch)
233{
234 if ((ch >= 'a') && (ch <= 'f'))
235 return ch - 'a' + 10;
236 if ((ch >= '0') && (ch <= '9'))
237 return ch - '0';
238 if ((ch >= 'A') && (ch <= 'F'))
239 return ch - 'A' + 10;
240 return -1;
241}
242
243/* scan for the sequence $<data>#<checksum> */
244static void get_packet(char *buffer)
245{
246 unsigned char checksum;
247 unsigned char xmitcsum;
248 int count;
249 char ch;
250
251 do {
252 /*
253 * Spin and wait around for the start character, ignore all
254 * other characters:
255 */
256 while ((ch = (kgdb_io_ops->read_char())) != '$')
257 /* nothing */;
258
259 kgdb_connected = 1;
260 checksum = 0;
261 xmitcsum = -1;
262
263 count = 0;
264
265 /*
266 * now, read until a # or end of buffer is found:
267 */
268 while (count < (BUFMAX - 1)) {
269 ch = kgdb_io_ops->read_char();
270 if (ch == '#')
271 break;
272 checksum = checksum + ch;
273 buffer[count] = ch;
274 count = count + 1;
275 }
276 buffer[count] = 0;
277
278 if (ch == '#') {
279 xmitcsum = hex(kgdb_io_ops->read_char()) << 4;
280 xmitcsum += hex(kgdb_io_ops->read_char());
281
282 if (checksum != xmitcsum)
283 /* failed checksum */
284 kgdb_io_ops->write_char('-');
285 else
286 /* successful transfer */
287 kgdb_io_ops->write_char('+');
288 if (kgdb_io_ops->flush)
289 kgdb_io_ops->flush();
290 }
291 } while (checksum != xmitcsum);
292}
293
294/*
295 * Send the packet in buffer.
296 * Check for gdb connection if asked for.
297 */
298static void put_packet(char *buffer)
299{
300 unsigned char checksum;
301 int count;
302 char ch;
303
304 /*
305 * $<packet info>#<checksum>.
306 */
307 while (1) {
308 kgdb_io_ops->write_char('$');
309 checksum = 0;
310 count = 0;
311
312 while ((ch = buffer[count])) {
313 kgdb_io_ops->write_char(ch);
314 checksum += ch;
315 count++;
316 }
317
318 kgdb_io_ops->write_char('#');
319 kgdb_io_ops->write_char(hexchars[checksum >> 4]);
320 kgdb_io_ops->write_char(hexchars[checksum & 0xf]);
321 if (kgdb_io_ops->flush)
322 kgdb_io_ops->flush();
323
324 /* Now see what we get in reply. */
325 ch = kgdb_io_ops->read_char();
326
327 if (ch == 3)
328 ch = kgdb_io_ops->read_char();
329
330 /* If we get an ACK, we are done. */
331 if (ch == '+')
332 return;
333
334 /*
335 * If we get the start of another packet, this means
336 * that GDB is attempting to reconnect. We will NAK
337 * the packet being sent, and stop trying to send this
338 * packet.
339 */
340 if (ch == '$') {
341 kgdb_io_ops->write_char('-');
342 if (kgdb_io_ops->flush)
343 kgdb_io_ops->flush();
344 return;
345 }
346 }
347}
348
dc7d5527
JW
349/*
350 * Convert the memory pointed to by mem into hex, placing result in buf.
351 * Return a pointer to the last char put in buf (null). May return an error.
352 */
353int kgdb_mem2hex(char *mem, char *buf, int count)
354{
355 char *tmp;
356 int err;
357
358 /*
359 * We use the upper half of buf as an intermediate buffer for the
360 * raw memory copy. Hex conversion will work against this one.
361 */
362 tmp = buf + count;
363
364 err = probe_kernel_read(tmp, mem, count);
365 if (!err) {
366 while (count > 0) {
367 buf = pack_hex_byte(buf, *tmp);
368 tmp++;
369 count--;
370 }
371
372 *buf = 0;
373 }
374
375 return err;
376}
377
378/*
379 * Copy the binary array pointed to by buf into mem. Fix $, #, and
380 * 0x7d escaped with 0x7d. Return a pointer to the character after
381 * the last byte written.
382 */
383static int kgdb_ebin2mem(char *buf, char *mem, int count)
384{
385 int err = 0;
386 char c;
387
388 while (count-- > 0) {
389 c = *buf++;
390 if (c == 0x7d)
391 c = *buf++ ^ 0x20;
392
393 err = probe_kernel_write(mem, &c, 1);
394 if (err)
395 break;
396
397 mem++;
398 }
399
400 return err;
401}
402
403/*
404 * Convert the hex array pointed to by buf into binary to be placed in mem.
405 * Return a pointer to the character AFTER the last byte written.
406 * May return an error.
407 */
408int kgdb_hex2mem(char *buf, char *mem, int count)
409{
410 char *tmp_raw;
411 char *tmp_hex;
412
413 /*
414 * We use the upper half of buf as an intermediate buffer for the
415 * raw memory that is converted from hex.
416 */
417 tmp_raw = buf + count * 2;
418
419 tmp_hex = tmp_raw - 1;
420 while (tmp_hex >= buf) {
421 tmp_raw--;
422 *tmp_raw = hex(*tmp_hex--);
423 *tmp_raw |= hex(*tmp_hex--) << 4;
424 }
425
426 return probe_kernel_write(mem, tmp_raw, count);
427}
428
429/*
430 * While we find nice hex chars, build a long_val.
431 * Return number of chars processed.
432 */
688b744d 433int kgdb_hex2long(char **ptr, unsigned long *long_val)
dc7d5527
JW
434{
435 int hex_val;
436 int num = 0;
437
438 *long_val = 0;
439
440 while (**ptr) {
441 hex_val = hex(**ptr);
442 if (hex_val < 0)
443 break;
444
445 *long_val = (*long_val << 4) | hex_val;
446 num++;
447 (*ptr)++;
448 }
449
450 return num;
451}
452
453/* Write memory due to an 'M' or 'X' packet. */
454static int write_mem_msg(int binary)
455{
456 char *ptr = &remcom_in_buffer[1];
457 unsigned long addr;
458 unsigned long length;
459 int err;
460
461 if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
462 kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
463 if (binary)
464 err = kgdb_ebin2mem(ptr, (char *)addr, length);
465 else
466 err = kgdb_hex2mem(ptr, (char *)addr, length);
467 if (err)
468 return err;
469 if (CACHE_FLUSH_IS_SAFE)
470 flush_icache_range(addr, addr + length + 1);
471 return 0;
472 }
473
474 return -EINVAL;
475}
476
477static void error_packet(char *pkt, int error)
478{
479 error = -error;
480 pkt[0] = 'E';
481 pkt[1] = hexchars[(error / 10)];
482 pkt[2] = hexchars[(error % 10)];
483 pkt[3] = '\0';
484}
485
486/*
487 * Thread ID accessors. We represent a flat TID space to GDB, where
488 * the per CPU idle threads (which under Linux all have PID 0) are
489 * remapped to negative TIDs.
490 */
491
492#define BUF_THREAD_ID_SIZE 16
493
494static char *pack_threadid(char *pkt, unsigned char *id)
495{
496 char *limit;
497
498 limit = pkt + BUF_THREAD_ID_SIZE;
499 while (pkt < limit)
500 pkt = pack_hex_byte(pkt, *id++);
501
502 return pkt;
503}
504
505static void int_to_threadref(unsigned char *id, int value)
506{
507 unsigned char *scan;
508 int i = 4;
509
510 scan = (unsigned char *)id;
511 while (i--)
512 *scan++ = 0;
513 *scan++ = (value >> 24) & 0xff;
514 *scan++ = (value >> 16) & 0xff;
515 *scan++ = (value >> 8) & 0xff;
516 *scan++ = (value & 0xff);
517}
518
519static struct task_struct *getthread(struct pt_regs *regs, int tid)
520{
521 /*
522 * Non-positive TIDs are remapped idle tasks:
523 */
524 if (tid <= 0)
525 return idle_task(-tid);
526
527 /*
528 * find_task_by_pid_ns() does not take the tasklist lock anymore
529 * but is nicely RCU locked - hence is a pretty resilient
530 * thing to use:
531 */
532 return find_task_by_pid_ns(tid, &init_pid_ns);
533}
534
535/*
536 * CPU debug state control:
537 */
538
539#ifdef CONFIG_SMP
540static void kgdb_wait(struct pt_regs *regs)
541{
542 unsigned long flags;
543 int cpu;
544
545 local_irq_save(flags);
546 cpu = raw_smp_processor_id();
547 kgdb_info[cpu].debuggerinfo = regs;
548 kgdb_info[cpu].task = current;
549 /*
550 * Make sure the above info reaches the primary CPU before
551 * our cpu_in_kgdb[] flag setting does:
552 */
553 smp_wmb();
554 atomic_set(&cpu_in_kgdb[cpu], 1);
555
dc7d5527
JW
556 /* Wait till primary CPU is done with debugging */
557 while (atomic_read(&passive_cpu_wait[cpu]))
558 cpu_relax();
559
560 kgdb_info[cpu].debuggerinfo = NULL;
561 kgdb_info[cpu].task = NULL;
562
563 /* fix up hardware debug registers on local cpu */
564 if (arch_kgdb_ops.correct_hw_break)
565 arch_kgdb_ops.correct_hw_break();
566
567 /* Signal the primary CPU that we are done: */
568 atomic_set(&cpu_in_kgdb[cpu], 0);
7c3078b6 569 clocksource_touch_watchdog();
dc7d5527
JW
570 local_irq_restore(flags);
571}
572#endif
573
574/*
575 * Some architectures need cache flushes when we set/clear a
576 * breakpoint:
577 */
578static void kgdb_flush_swbreak_addr(unsigned long addr)
579{
580 if (!CACHE_FLUSH_IS_SAFE)
581 return;
582
737a460f 583 if (current->mm && current->mm->mmap_cache) {
dc7d5527
JW
584 flush_cache_range(current->mm->mmap_cache,
585 addr, addr + BREAK_INSTR_SIZE);
dc7d5527 586 }
1a9a3e76
JW
587 /* Force flush instruction cache if it was outside the mm */
588 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
dc7d5527
JW
589}
590
591/*
592 * SW breakpoint management:
593 */
594static int kgdb_activate_sw_breakpoints(void)
595{
596 unsigned long addr;
597 int error = 0;
598 int i;
599
600 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
601 if (kgdb_break[i].state != BP_SET)
602 continue;
603
604 addr = kgdb_break[i].bpt_addr;
605 error = kgdb_arch_set_breakpoint(addr,
606 kgdb_break[i].saved_instr);
607 if (error)
608 return error;
609
610 kgdb_flush_swbreak_addr(addr);
611 kgdb_break[i].state = BP_ACTIVE;
612 }
613 return 0;
614}
615
616static int kgdb_set_sw_break(unsigned long addr)
617{
618 int err = kgdb_validate_break_address(addr);
619 int breakno = -1;
620 int i;
621
622 if (err)
623 return err;
624
625 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
626 if ((kgdb_break[i].state == BP_SET) &&
627 (kgdb_break[i].bpt_addr == addr))
628 return -EEXIST;
629 }
630 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
631 if (kgdb_break[i].state == BP_REMOVED &&
632 kgdb_break[i].bpt_addr == addr) {
633 breakno = i;
634 break;
635 }
636 }
637
638 if (breakno == -1) {
639 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
640 if (kgdb_break[i].state == BP_UNDEFINED) {
641 breakno = i;
642 break;
643 }
644 }
645 }
646
647 if (breakno == -1)
648 return -E2BIG;
649
650 kgdb_break[breakno].state = BP_SET;
651 kgdb_break[breakno].type = BP_BREAKPOINT;
652 kgdb_break[breakno].bpt_addr = addr;
653
654 return 0;
655}
656
657static int kgdb_deactivate_sw_breakpoints(void)
658{
659 unsigned long addr;
660 int error = 0;
661 int i;
662
663 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
664 if (kgdb_break[i].state != BP_ACTIVE)
665 continue;
666 addr = kgdb_break[i].bpt_addr;
667 error = kgdb_arch_remove_breakpoint(addr,
668 kgdb_break[i].saved_instr);
669 if (error)
670 return error;
671
672 kgdb_flush_swbreak_addr(addr);
673 kgdb_break[i].state = BP_SET;
674 }
675 return 0;
676}
677
678static int kgdb_remove_sw_break(unsigned long addr)
679{
680 int i;
681
682 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
683 if ((kgdb_break[i].state == BP_SET) &&
684 (kgdb_break[i].bpt_addr == addr)) {
685 kgdb_break[i].state = BP_REMOVED;
686 return 0;
687 }
688 }
689 return -ENOENT;
690}
691
692int kgdb_isremovedbreak(unsigned long addr)
693{
694 int i;
695
696 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
697 if ((kgdb_break[i].state == BP_REMOVED) &&
698 (kgdb_break[i].bpt_addr == addr))
699 return 1;
700 }
701 return 0;
702}
703
688b744d 704static int remove_all_break(void)
dc7d5527
JW
705{
706 unsigned long addr;
707 int error;
708 int i;
709
710 /* Clear memory breakpoints. */
711 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
737a460f
JW
712 if (kgdb_break[i].state != BP_ACTIVE)
713 goto setundefined;
dc7d5527
JW
714 addr = kgdb_break[i].bpt_addr;
715 error = kgdb_arch_remove_breakpoint(addr,
716 kgdb_break[i].saved_instr);
717 if (error)
737a460f
JW
718 printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n",
719 addr);
720setundefined:
721 kgdb_break[i].state = BP_UNDEFINED;
dc7d5527
JW
722 }
723
724 /* Clear hardware breakpoints. */
725 if (arch_kgdb_ops.remove_all_hw_break)
726 arch_kgdb_ops.remove_all_hw_break();
727
728 return 0;
729}
730
731/*
732 * Remap normal tasks to their real PID, idle tasks to -1 ... -NR_CPUs:
733 */
734static inline int shadow_pid(int realpid)
735{
736 if (realpid)
737 return realpid;
738
739 return -1-raw_smp_processor_id();
740}
741
742static char gdbmsgbuf[BUFMAX + 1];
743
744static void kgdb_msg_write(const char *s, int len)
745{
746 char *bufptr;
747 int wcount;
748 int i;
749
750 /* 'O'utput */
751 gdbmsgbuf[0] = 'O';
752
753 /* Fill and send buffers... */
754 while (len > 0) {
755 bufptr = gdbmsgbuf + 1;
756
757 /* Calculate how many this time */
758 if ((len << 1) > (BUFMAX - 2))
759 wcount = (BUFMAX - 2) >> 1;
760 else
761 wcount = len;
762
763 /* Pack in hex chars */
764 for (i = 0; i < wcount; i++)
765 bufptr = pack_hex_byte(bufptr, s[i]);
766 *bufptr = '\0';
767
768 /* Move up */
769 s += wcount;
770 len -= wcount;
771
772 /* Write packet */
773 put_packet(gdbmsgbuf);
774 }
775}
776
777/*
778 * Return true if there is a valid kgdb I/O module. Also if no
779 * debugger is attached a message can be printed to the console about
780 * waiting for the debugger to attach.
781 *
782 * The print_wait argument is only to be true when called from inside
783 * the core kgdb_handle_exception, because it will wait for the
784 * debugger to attach.
785 */
786static int kgdb_io_ready(int print_wait)
787{
788 if (!kgdb_io_ops)
789 return 0;
790 if (kgdb_connected)
791 return 1;
792 if (atomic_read(&kgdb_setting_breakpoint))
793 return 1;
794 if (print_wait)
795 printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
796 return 1;
797}
798
799/*
800 * All the functions that start with gdb_cmd are the various
801 * operations to implement the handlers for the gdbserial protocol
802 * where KGDB is communicating with an external debugger
803 */
804
805/* Handle the '?' status packets */
806static void gdb_cmd_status(struct kgdb_state *ks)
807{
808 /*
809 * We know that this packet is only sent
810 * during initial connect. So to be safe,
811 * we clear out our breakpoints now in case
812 * GDB is reconnecting.
813 */
814 remove_all_break();
815
816 remcom_out_buffer[0] = 'S';
817 pack_hex_byte(&remcom_out_buffer[1], ks->signo);
818}
819
820/* Handle the 'g' get registers request */
821static void gdb_cmd_getregs(struct kgdb_state *ks)
822{
823 struct task_struct *thread;
824 void *local_debuggerinfo;
825 int i;
826
827 thread = kgdb_usethread;
828 if (!thread) {
829 thread = kgdb_info[ks->cpu].task;
830 local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
831 } else {
832 local_debuggerinfo = NULL;
833 for (i = 0; i < NR_CPUS; i++) {
834 /*
835 * Try to find the task on some other
836 * or possibly this node if we do not
837 * find the matching task then we try
838 * to approximate the results.
839 */
840 if (thread == kgdb_info[i].task)
841 local_debuggerinfo = kgdb_info[i].debuggerinfo;
842 }
843 }
844
845 /*
846 * All threads that don't have debuggerinfo should be
847 * in __schedule() sleeping, since all other CPUs
848 * are in kgdb_wait, and thus have debuggerinfo.
849 */
850 if (local_debuggerinfo) {
851 pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
852 } else {
853 /*
854 * Pull stuff saved during switch_to; nothing
855 * else is accessible (or even particularly
856 * relevant).
857 *
858 * This should be enough for a stack trace.
859 */
860 sleeping_thread_to_gdb_regs(gdb_regs, thread);
861 }
862 kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
863}
864
865/* Handle the 'G' set registers request */
866static void gdb_cmd_setregs(struct kgdb_state *ks)
867{
868 kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
869
870 if (kgdb_usethread && kgdb_usethread != current) {
871 error_packet(remcom_out_buffer, -EINVAL);
872 } else {
873 gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
874 strcpy(remcom_out_buffer, "OK");
875 }
876}
877
878/* Handle the 'm' memory read bytes */
879static void gdb_cmd_memread(struct kgdb_state *ks)
880{
881 char *ptr = &remcom_in_buffer[1];
882 unsigned long length;
883 unsigned long addr;
884 int err;
885
886 if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
887 kgdb_hex2long(&ptr, &length) > 0) {
888 err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
889 if (err)
890 error_packet(remcom_out_buffer, err);
891 } else {
892 error_packet(remcom_out_buffer, -EINVAL);
893 }
894}
895
896/* Handle the 'M' memory write bytes */
897static void gdb_cmd_memwrite(struct kgdb_state *ks)
898{
899 int err = write_mem_msg(0);
900
901 if (err)
902 error_packet(remcom_out_buffer, err);
903 else
904 strcpy(remcom_out_buffer, "OK");
905}
906
907/* Handle the 'X' memory binary write bytes */
908static void gdb_cmd_binwrite(struct kgdb_state *ks)
909{
910 int err = write_mem_msg(1);
911
912 if (err)
913 error_packet(remcom_out_buffer, err);
914 else
915 strcpy(remcom_out_buffer, "OK");
916}
917
918/* Handle the 'D' or 'k', detach or kill packets */
919static void gdb_cmd_detachkill(struct kgdb_state *ks)
920{
921 int error;
922
923 /* The detach case */
924 if (remcom_in_buffer[0] == 'D') {
925 error = remove_all_break();
926 if (error < 0) {
927 error_packet(remcom_out_buffer, error);
928 } else {
929 strcpy(remcom_out_buffer, "OK");
930 kgdb_connected = 0;
931 }
932 put_packet(remcom_out_buffer);
933 } else {
934 /*
935 * Assume the kill case, with no exit code checking,
936 * trying to force detach the debugger:
937 */
938 remove_all_break();
939 kgdb_connected = 0;
940 }
941}
942
943/* Handle the 'R' reboot packets */
944static int gdb_cmd_reboot(struct kgdb_state *ks)
945{
946 /* For now, only honor R0 */
947 if (strcmp(remcom_in_buffer, "R0") == 0) {
948 printk(KERN_CRIT "Executing emergency reboot\n");
949 strcpy(remcom_out_buffer, "OK");
950 put_packet(remcom_out_buffer);
951
952 /*
953 * Execution should not return from
954 * machine_emergency_restart()
955 */
956 machine_emergency_restart();
957 kgdb_connected = 0;
958
959 return 1;
960 }
961 return 0;
962}
963
964/* Handle the 'q' query packets */
965static void gdb_cmd_query(struct kgdb_state *ks)
966{
967 struct task_struct *thread;
968 unsigned char thref[8];
969 char *ptr;
970 int i;
971
972 switch (remcom_in_buffer[1]) {
973 case 's':
974 case 'f':
975 if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) {
976 error_packet(remcom_out_buffer, -EINVAL);
977 break;
978 }
979
980 if (remcom_in_buffer[1] == 'f')
981 ks->threadid = 1;
982
983 remcom_out_buffer[0] = 'm';
984 ptr = remcom_out_buffer + 1;
985
986 for (i = 0; i < 17; ks->threadid++) {
987 thread = getthread(ks->linux_regs, ks->threadid);
988 if (thread) {
989 int_to_threadref(thref, ks->threadid);
990 pack_threadid(ptr, thref);
991 ptr += BUF_THREAD_ID_SIZE;
992 *(ptr++) = ',';
993 i++;
994 }
995 }
996 *(--ptr) = '\0';
997 break;
998
999 case 'C':
1000 /* Current thread id */
1001 strcpy(remcom_out_buffer, "QC");
1002 ks->threadid = shadow_pid(current->pid);
1003 int_to_threadref(thref, ks->threadid);
1004 pack_threadid(remcom_out_buffer + 2, thref);
1005 break;
1006 case 'T':
1007 if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) {
1008 error_packet(remcom_out_buffer, -EINVAL);
1009 break;
1010 }
1011 ks->threadid = 0;
1012 ptr = remcom_in_buffer + 17;
1013 kgdb_hex2long(&ptr, &ks->threadid);
1014 if (!getthread(ks->linux_regs, ks->threadid)) {
1015 error_packet(remcom_out_buffer, -EINVAL);
1016 break;
1017 }
1018 if (ks->threadid > 0) {
1019 kgdb_mem2hex(getthread(ks->linux_regs,
1020 ks->threadid)->comm,
1021 remcom_out_buffer, 16);
1022 } else {
1023 static char tmpstr[23 + BUF_THREAD_ID_SIZE];
1024
1025 sprintf(tmpstr, "Shadow task %d for pid 0",
1026 (int)(-ks->threadid-1));
1027 kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
1028 }
1029 break;
1030 }
1031}
1032
1033/* Handle the 'H' task query packets */
1034static void gdb_cmd_task(struct kgdb_state *ks)
1035{
1036 struct task_struct *thread;
1037 char *ptr;
1038
1039 switch (remcom_in_buffer[1]) {
1040 case 'g':
1041 ptr = &remcom_in_buffer[2];
1042 kgdb_hex2long(&ptr, &ks->threadid);
1043 thread = getthread(ks->linux_regs, ks->threadid);
1044 if (!thread && ks->threadid > 0) {
1045 error_packet(remcom_out_buffer, -EINVAL);
1046 break;
1047 }
1048 kgdb_usethread = thread;
1049 ks->kgdb_usethreadid = ks->threadid;
1050 strcpy(remcom_out_buffer, "OK");
1051 break;
1052 case 'c':
1053 ptr = &remcom_in_buffer[2];
1054 kgdb_hex2long(&ptr, &ks->threadid);
1055 if (!ks->threadid) {
1056 kgdb_contthread = NULL;
1057 } else {
1058 thread = getthread(ks->linux_regs, ks->threadid);
1059 if (!thread && ks->threadid > 0) {
1060 error_packet(remcom_out_buffer, -EINVAL);
1061 break;
1062 }
1063 kgdb_contthread = thread;
1064 }
1065 strcpy(remcom_out_buffer, "OK");
1066 break;
1067 }
1068}
1069
1070/* Handle the 'T' thread query packets */
1071static void gdb_cmd_thread(struct kgdb_state *ks)
1072{
1073 char *ptr = &remcom_in_buffer[1];
1074 struct task_struct *thread;
1075
1076 kgdb_hex2long(&ptr, &ks->threadid);
1077 thread = getthread(ks->linux_regs, ks->threadid);
1078 if (thread)
1079 strcpy(remcom_out_buffer, "OK");
1080 else
1081 error_packet(remcom_out_buffer, -EINVAL);
1082}
1083
1084/* Handle the 'z' or 'Z' breakpoint remove or set packets */
1085static void gdb_cmd_break(struct kgdb_state *ks)
1086{
1087 /*
1088 * Since GDB-5.3, it's been drafted that '0' is a software
1089 * breakpoint, '1' is a hardware breakpoint, so let's do that.
1090 */
1091 char *bpt_type = &remcom_in_buffer[1];
1092 char *ptr = &remcom_in_buffer[2];
1093 unsigned long addr;
1094 unsigned long length;
1095 int error = 0;
1096
1097 if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
1098 /* Unsupported */
1099 if (*bpt_type > '4')
1100 return;
1101 } else {
1102 if (*bpt_type != '0' && *bpt_type != '1')
1103 /* Unsupported. */
1104 return;
1105 }
1106
1107 /*
1108 * Test if this is a hardware breakpoint, and
1109 * if we support it:
1110 */
1111 if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
1112 /* Unsupported. */
1113 return;
1114
1115 if (*(ptr++) != ',') {
1116 error_packet(remcom_out_buffer, -EINVAL);
1117 return;
1118 }
1119 if (!kgdb_hex2long(&ptr, &addr)) {
1120 error_packet(remcom_out_buffer, -EINVAL);
1121 return;
1122 }
1123 if (*(ptr++) != ',' ||
1124 !kgdb_hex2long(&ptr, &length)) {
1125 error_packet(remcom_out_buffer, -EINVAL);
1126 return;
1127 }
1128
1129 if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
1130 error = kgdb_set_sw_break(addr);
1131 else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
1132 error = kgdb_remove_sw_break(addr);
1133 else if (remcom_in_buffer[0] == 'Z')
1134 error = arch_kgdb_ops.set_hw_breakpoint(addr,
64e9ee30 1135 (int)length, *bpt_type - '0');
dc7d5527
JW
1136 else if (remcom_in_buffer[0] == 'z')
1137 error = arch_kgdb_ops.remove_hw_breakpoint(addr,
64e9ee30 1138 (int) length, *bpt_type - '0');
dc7d5527
JW
1139
1140 if (error == 0)
1141 strcpy(remcom_out_buffer, "OK");
1142 else
1143 error_packet(remcom_out_buffer, error);
1144}
1145
1146/* Handle the 'C' signal / exception passing packets */
1147static int gdb_cmd_exception_pass(struct kgdb_state *ks)
1148{
1149 /* C09 == pass exception
1150 * C15 == detach kgdb, pass exception
1151 */
1152 if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
1153
1154 ks->pass_exception = 1;
1155 remcom_in_buffer[0] = 'c';
1156
1157 } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
1158
1159 ks->pass_exception = 1;
1160 remcom_in_buffer[0] = 'D';
1161 remove_all_break();
1162 kgdb_connected = 0;
1163 return 1;
1164
1165 } else {
1166 error_packet(remcom_out_buffer, -EINVAL);
1167 return 0;
1168 }
1169
1170 /* Indicate fall through */
1171 return -1;
1172}
1173
1174/*
1175 * This function performs all gdbserial command procesing
1176 */
1177static int gdb_serial_stub(struct kgdb_state *ks)
1178{
1179 int error = 0;
1180 int tmp;
1181
1182 /* Clear the out buffer. */
1183 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1184
1185 if (kgdb_connected) {
1186 unsigned char thref[8];
1187 char *ptr;
1188
1189 /* Reply to host that an exception has occurred */
1190 ptr = remcom_out_buffer;
1191 *ptr++ = 'T';
1192 ptr = pack_hex_byte(ptr, ks->signo);
1193 ptr += strlen(strcpy(ptr, "thread:"));
1194 int_to_threadref(thref, shadow_pid(current->pid));
1195 ptr = pack_threadid(ptr, thref);
1196 *ptr++ = ';';
1197 put_packet(remcom_out_buffer);
1198 }
1199
1200 kgdb_usethread = kgdb_info[ks->cpu].task;
1201 ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
1202 ks->pass_exception = 0;
1203
1204 while (1) {
1205 error = 0;
1206
1207 /* Clear the out buffer. */
1208 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1209
1210 get_packet(remcom_in_buffer);
1211
1212 switch (remcom_in_buffer[0]) {
1213 case '?': /* gdbserial status */
1214 gdb_cmd_status(ks);
1215 break;
1216 case 'g': /* return the value of the CPU registers */
1217 gdb_cmd_getregs(ks);
1218 break;
1219 case 'G': /* set the value of the CPU registers - return OK */
1220 gdb_cmd_setregs(ks);
1221 break;
1222 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
1223 gdb_cmd_memread(ks);
1224 break;
1225 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1226 gdb_cmd_memwrite(ks);
1227 break;
1228 case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1229 gdb_cmd_binwrite(ks);
1230 break;
1231 /* kill or detach. KGDB should treat this like a
1232 * continue.
1233 */
1234 case 'D': /* Debugger detach */
1235 case 'k': /* Debugger detach via kill */
1236 gdb_cmd_detachkill(ks);
1237 goto default_handle;
1238 case 'R': /* Reboot */
1239 if (gdb_cmd_reboot(ks))
1240 goto default_handle;
1241 break;
1242 case 'q': /* query command */
1243 gdb_cmd_query(ks);
1244 break;
1245 case 'H': /* task related */
1246 gdb_cmd_task(ks);
1247 break;
1248 case 'T': /* Query thread status */
1249 gdb_cmd_thread(ks);
1250 break;
1251 case 'z': /* Break point remove */
1252 case 'Z': /* Break point set */
1253 gdb_cmd_break(ks);
1254 break;
1255 case 'C': /* Exception passing */
1256 tmp = gdb_cmd_exception_pass(ks);
1257 if (tmp > 0)
1258 goto default_handle;
1259 if (tmp == 0)
1260 break;
1261 /* Fall through on tmp < 0 */
1262 case 'c': /* Continue packet */
1263 case 's': /* Single step packet */
1264 if (kgdb_contthread && kgdb_contthread != current) {
1265 /* Can't switch threads in kgdb */
1266 error_packet(remcom_out_buffer, -EINVAL);
1267 break;
1268 }
1269 kgdb_activate_sw_breakpoints();
1270 /* Fall through to default processing */
1271 default:
1272default_handle:
1273 error = kgdb_arch_handle_exception(ks->ex_vector,
1274 ks->signo,
1275 ks->err_code,
1276 remcom_in_buffer,
1277 remcom_out_buffer,
1278 ks->linux_regs);
1279 /*
1280 * Leave cmd processing on error, detach,
1281 * kill, continue, or single step.
1282 */
1283 if (error >= 0 || remcom_in_buffer[0] == 'D' ||
1284 remcom_in_buffer[0] == 'k') {
1285 error = 0;
1286 goto kgdb_exit;
1287 }
1288
1289 }
1290
1291 /* reply to the request */
1292 put_packet(remcom_out_buffer);
1293 }
1294
1295kgdb_exit:
1296 if (ks->pass_exception)
1297 error = 1;
1298 return error;
1299}
1300
1301static int kgdb_reenter_check(struct kgdb_state *ks)
1302{
1303 unsigned long addr;
1304
1305 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
1306 return 0;
1307
1308 /* Panic on recursive debugger calls: */
1309 exception_level++;
1310 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
1311 kgdb_deactivate_sw_breakpoints();
1312
1313 /*
1314 * If the break point removed ok at the place exception
1315 * occurred, try to recover and print a warning to the end
1316 * user because the user planted a breakpoint in a place that
1317 * KGDB needs in order to function.
1318 */
1319 if (kgdb_remove_sw_break(addr) == 0) {
1320 exception_level = 0;
1321 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1322 kgdb_activate_sw_breakpoints();
67baf94c
JW
1323 printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n",
1324 addr);
dc7d5527
JW
1325 WARN_ON_ONCE(1);
1326
1327 return 1;
1328 }
1329 remove_all_break();
1330 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1331
1332 if (exception_level > 1) {
1333 dump_stack();
1334 panic("Recursive entry to debugger");
1335 }
1336
1337 printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
1338 dump_stack();
1339 panic("Recursive entry to debugger");
1340
1341 return 1;
1342}
1343
1344/*
1345 * kgdb_handle_exception() - main entry point from a kernel exception
1346 *
1347 * Locking hierarchy:
1348 * interface locks, if any (begin_session)
1349 * kgdb lock (kgdb_active)
1350 */
1351int
1352kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
1353{
1354 struct kgdb_state kgdb_var;
1355 struct kgdb_state *ks = &kgdb_var;
1356 unsigned long flags;
1357 int error = 0;
1358 int i, cpu;
1359
1360 ks->cpu = raw_smp_processor_id();
1361 ks->ex_vector = evector;
1362 ks->signo = signo;
1363 ks->ex_vector = evector;
1364 ks->err_code = ecode;
1365 ks->kgdb_usethreadid = 0;
1366 ks->linux_regs = regs;
1367
1368 if (kgdb_reenter_check(ks))
1369 return 0; /* Ouch, double exception ! */
1370
1371acquirelock:
1372 /*
1373 * Interrupts will be restored by the 'trap return' code, except when
1374 * single stepping.
1375 */
1376 local_irq_save(flags);
1377
1378 cpu = raw_smp_processor_id();
1379
1380 /*
1381 * Acquire the kgdb_active lock:
1382 */
1383 while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1)
1384 cpu_relax();
1385
1386 /*
1387 * Do not start the debugger connection on this CPU if the last
1388 * instance of the exception handler wanted to come into the
1389 * debugger on a different CPU via a single step
1390 */
1391 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
1392 atomic_read(&kgdb_cpu_doing_single_step) != cpu) {
1393
1394 atomic_set(&kgdb_active, -1);
7c3078b6 1395 clocksource_touch_watchdog();
dc7d5527
JW
1396 local_irq_restore(flags);
1397
1398 goto acquirelock;
1399 }
1400
1401 if (!kgdb_io_ready(1)) {
1402 error = 1;
1403 goto kgdb_restore; /* No I/O connection, so resume the system */
1404 }
1405
1406 /*
1407 * Don't enter if we have hit a removed breakpoint.
1408 */
1409 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
1410 goto kgdb_restore;
1411
1412 /* Call the I/O driver's pre_exception routine */
1413 if (kgdb_io_ops->pre_exception)
1414 kgdb_io_ops->pre_exception();
1415
1416 kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs;
1417 kgdb_info[ks->cpu].task = current;
1418
1419 kgdb_disable_hw_debug(ks->linux_regs);
1420
1421 /*
1422 * Get the passive CPU lock which will hold all the non-primary
1423 * CPU in a spin state while the debugger is active
1424 */
1425 if (!kgdb_single_step || !kgdb_contthread) {
1426 for (i = 0; i < NR_CPUS; i++)
1427 atomic_set(&passive_cpu_wait[i], 1);
1428 }
1429
dc7d5527
JW
1430 /*
1431 * spin_lock code is good enough as a barrier so we don't
1432 * need one here:
1433 */
1434 atomic_set(&cpu_in_kgdb[ks->cpu], 1);
1435
56fb7093
JW
1436#ifdef CONFIG_SMP
1437 /* Signal the other CPUs to enter kgdb_wait() */
1438 if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup)
1439 kgdb_roundup_cpus(flags);
1440#endif
1441
dc7d5527
JW
1442 /*
1443 * Wait for the other CPUs to be notified and be waiting for us:
1444 */
1445 for_each_online_cpu(i) {
1446 while (!atomic_read(&cpu_in_kgdb[i]))
1447 cpu_relax();
1448 }
1449
1450 /*
1451 * At this point the primary processor is completely
1452 * in the debugger and all secondary CPUs are quiescent
1453 */
1454 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1455 kgdb_deactivate_sw_breakpoints();
1456 kgdb_single_step = 0;
1457 kgdb_contthread = NULL;
1458 exception_level = 0;
1459
1460 /* Talk to debugger with gdbserial protocol */
1461 error = gdb_serial_stub(ks);
1462
1463 /* Call the I/O driver's post_exception routine */
1464 if (kgdb_io_ops->post_exception)
1465 kgdb_io_ops->post_exception();
1466
1467 kgdb_info[ks->cpu].debuggerinfo = NULL;
1468 kgdb_info[ks->cpu].task = NULL;
1469 atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1470
1471 if (!kgdb_single_step || !kgdb_contthread) {
1472 for (i = NR_CPUS-1; i >= 0; i--)
1473 atomic_set(&passive_cpu_wait[i], 0);
1474 /*
1475 * Wait till all the CPUs have quit
1476 * from the debugger.
1477 */
1478 for_each_online_cpu(i) {
1479 while (atomic_read(&cpu_in_kgdb[i]))
1480 cpu_relax();
1481 }
1482 }
1483
1484kgdb_restore:
1485 /* Free kgdb_active */
1486 atomic_set(&kgdb_active, -1);
7c3078b6 1487 clocksource_touch_watchdog();
dc7d5527
JW
1488 local_irq_restore(flags);
1489
1490 return error;
1491}
1492
1493int kgdb_nmicallback(int cpu, void *regs)
1494{
1495#ifdef CONFIG_SMP
1496 if (!atomic_read(&cpu_in_kgdb[cpu]) &&
56fb7093
JW
1497 atomic_read(&kgdb_active) != cpu &&
1498 atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)])) {
dc7d5527
JW
1499 kgdb_wait((struct pt_regs *)regs);
1500 return 0;
1501 }
1502#endif
1503 return 1;
1504}
1505
1506void kgdb_console_write(struct console *co, const char *s, unsigned count)
1507{
1508 unsigned long flags;
1509
1510 /* If we're debugging, or KGDB has not connected, don't try
1511 * and print. */
1512 if (!kgdb_connected || atomic_read(&kgdb_active) != -1)
1513 return;
1514
1515 local_irq_save(flags);
1516 kgdb_msg_write(s, count);
1517 local_irq_restore(flags);
1518}
1519
1520static struct console kgdbcons = {
1521 .name = "kgdb",
1522 .write = kgdb_console_write,
1523 .flags = CON_PRINTBUFFER | CON_ENABLED,
1524 .index = -1,
1525};
1526
1527#ifdef CONFIG_MAGIC_SYSRQ
1528static void sysrq_handle_gdb(int key, struct tty_struct *tty)
1529{
1530 if (!kgdb_io_ops) {
1531 printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
1532 return;
1533 }
1534 if (!kgdb_connected)
1535 printk(KERN_CRIT "Entering KGDB\n");
1536
1537 kgdb_breakpoint();
1538}
1539
1540static struct sysrq_key_op sysrq_gdb_op = {
1541 .handler = sysrq_handle_gdb,
1542 .help_msg = "Gdb",
1543 .action_msg = "GDB",
1544};
1545#endif
1546
1547static void kgdb_register_callbacks(void)
1548{
1549 if (!kgdb_io_module_registered) {
1550 kgdb_io_module_registered = 1;
1551 kgdb_arch_init();
1552#ifdef CONFIG_MAGIC_SYSRQ
1553 register_sysrq_key('g', &sysrq_gdb_op);
1554#endif
1555 if (kgdb_use_con && !kgdb_con_registered) {
1556 register_console(&kgdbcons);
1557 kgdb_con_registered = 1;
1558 }
1559 }
1560}
1561
1562static void kgdb_unregister_callbacks(void)
1563{
1564 /*
1565 * When this routine is called KGDB should unregister from the
1566 * panic handler and clean up, making sure it is not handling any
1567 * break exceptions at the time.
1568 */
1569 if (kgdb_io_module_registered) {
1570 kgdb_io_module_registered = 0;
1571 kgdb_arch_exit();
1572#ifdef CONFIG_MAGIC_SYSRQ
1573 unregister_sysrq_key('g', &sysrq_gdb_op);
1574#endif
1575 if (kgdb_con_registered) {
1576 unregister_console(&kgdbcons);
1577 kgdb_con_registered = 0;
1578 }
1579 }
1580}
1581
1582static void kgdb_initial_breakpoint(void)
1583{
1584 kgdb_break_asap = 0;
1585
1586 printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
1587 kgdb_breakpoint();
1588}
1589
1590/**
737a460f 1591 * kgdb_register_io_module - register KGDB IO module
dc7d5527
JW
1592 * @new_kgdb_io_ops: the io ops vector
1593 *
1594 * Register it with the KGDB core.
1595 */
1596int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops)
1597{
1598 int err;
1599
1600 spin_lock(&kgdb_registration_lock);
1601
1602 if (kgdb_io_ops) {
1603 spin_unlock(&kgdb_registration_lock);
1604
1605 printk(KERN_ERR "kgdb: Another I/O driver is already "
1606 "registered with KGDB.\n");
1607 return -EBUSY;
1608 }
1609
1610 if (new_kgdb_io_ops->init) {
1611 err = new_kgdb_io_ops->init();
1612 if (err) {
1613 spin_unlock(&kgdb_registration_lock);
1614 return err;
1615 }
1616 }
1617
1618 kgdb_io_ops = new_kgdb_io_ops;
1619
1620 spin_unlock(&kgdb_registration_lock);
1621
1622 printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
1623 new_kgdb_io_ops->name);
1624
1625 /* Arm KGDB now. */
1626 kgdb_register_callbacks();
1627
1628 if (kgdb_break_asap)
1629 kgdb_initial_breakpoint();
1630
1631 return 0;
1632}
1633EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1634
1635/**
1636 * kkgdb_unregister_io_module - unregister KGDB IO module
1637 * @old_kgdb_io_ops: the io ops vector
1638 *
1639 * Unregister it with the KGDB core.
1640 */
1641void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops)
1642{
1643 BUG_ON(kgdb_connected);
1644
1645 /*
1646 * KGDB is no longer able to communicate out, so
1647 * unregister our callbacks and reset state.
1648 */
1649 kgdb_unregister_callbacks();
1650
1651 spin_lock(&kgdb_registration_lock);
1652
1653 WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops);
1654 kgdb_io_ops = NULL;
1655
1656 spin_unlock(&kgdb_registration_lock);
1657
1658 printk(KERN_INFO
1659 "kgdb: Unregistered I/O driver %s, debugger disabled.\n",
1660 old_kgdb_io_ops->name);
1661}
1662EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1663
1664/**
1665 * kgdb_breakpoint - generate breakpoint exception
1666 *
1667 * This function will generate a breakpoint exception. It is used at the
1668 * beginning of a program to sync up with a debugger and can be used
1669 * otherwise as a quick means to stop program execution and "break" into
1670 * the debugger.
1671 */
1672void kgdb_breakpoint(void)
1673{
1674 atomic_set(&kgdb_setting_breakpoint, 1);
1675 wmb(); /* Sync point before breakpoint */
1676 arch_kgdb_breakpoint();
1677 wmb(); /* Sync point after breakpoint */
1678 atomic_set(&kgdb_setting_breakpoint, 0);
1679}
1680EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1681
1682static int __init opt_kgdb_wait(char *str)
1683{
1684 kgdb_break_asap = 1;
1685
1686 if (kgdb_io_module_registered)
1687 kgdb_initial_breakpoint();
1688
1689 return 0;
1690}
1691
1692early_param("kgdbwait", opt_kgdb_wait);