tracing: Remove unused ftrace_cpu_disabled per cpu variable
[linux-2.6-block.git] / kernel / kexec_file.c
CommitLineData
a43cac0d
DY
1/*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
12#include <linux/capability.h>
13#include <linux/mm.h>
14#include <linux/file.h>
15#include <linux/slab.h>
16#include <linux/kexec.h>
17#include <linux/mutex.h>
18#include <linux/list.h>
19#include <crypto/hash.h>
20#include <crypto/sha.h>
21#include <linux/syscalls.h>
22#include <linux/vmalloc.h>
23#include "kexec_internal.h"
24
25/*
26 * Declare these symbols weak so that if architecture provides a purgatory,
27 * these will be overridden.
28 */
29char __weak kexec_purgatory[0];
30size_t __weak kexec_purgatory_size = 0;
31
32static int kexec_calculate_store_digests(struct kimage *image);
33
34static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
35{
36 struct fd f = fdget(fd);
37 int ret;
38 struct kstat stat;
39 loff_t pos;
40 ssize_t bytes = 0;
41
42 if (!f.file)
43 return -EBADF;
44
45 ret = vfs_getattr(&f.file->f_path, &stat);
46 if (ret)
47 goto out;
48
49 if (stat.size > INT_MAX) {
50 ret = -EFBIG;
51 goto out;
52 }
53
54 /* Don't hand 0 to vmalloc, it whines. */
55 if (stat.size == 0) {
56 ret = -EINVAL;
57 goto out;
58 }
59
60 *buf = vmalloc(stat.size);
61 if (!*buf) {
62 ret = -ENOMEM;
63 goto out;
64 }
65
66 pos = 0;
67 while (pos < stat.size) {
68 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
69 stat.size - pos);
70 if (bytes < 0) {
71 vfree(*buf);
72 ret = bytes;
73 goto out;
74 }
75
76 if (bytes == 0)
77 break;
78 pos += bytes;
79 }
80
81 if (pos != stat.size) {
82 ret = -EBADF;
83 vfree(*buf);
84 goto out;
85 }
86
87 *buf_len = pos;
88out:
89 fdput(f);
90 return ret;
91}
92
93/* Architectures can provide this probe function */
94int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
95 unsigned long buf_len)
96{
97 return -ENOEXEC;
98}
99
100void * __weak arch_kexec_kernel_image_load(struct kimage *image)
101{
102 return ERR_PTR(-ENOEXEC);
103}
104
105int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
106{
107 return -EINVAL;
108}
109
110int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
111 unsigned long buf_len)
112{
113 return -EKEYREJECTED;
114}
115
116/* Apply relocations of type RELA */
117int __weak
118arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
119 unsigned int relsec)
120{
121 pr_err("RELA relocation unsupported.\n");
122 return -ENOEXEC;
123}
124
125/* Apply relocations of type REL */
126int __weak
127arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
128 unsigned int relsec)
129{
130 pr_err("REL relocation unsupported.\n");
131 return -ENOEXEC;
132}
133
134/*
135 * Free up memory used by kernel, initrd, and command line. This is temporary
136 * memory allocation which is not needed any more after these buffers have
137 * been loaded into separate segments and have been copied elsewhere.
138 */
139void kimage_file_post_load_cleanup(struct kimage *image)
140{
141 struct purgatory_info *pi = &image->purgatory_info;
142
143 vfree(image->kernel_buf);
144 image->kernel_buf = NULL;
145
146 vfree(image->initrd_buf);
147 image->initrd_buf = NULL;
148
149 kfree(image->cmdline_buf);
150 image->cmdline_buf = NULL;
151
152 vfree(pi->purgatory_buf);
153 pi->purgatory_buf = NULL;
154
155 vfree(pi->sechdrs);
156 pi->sechdrs = NULL;
157
158 /* See if architecture has anything to cleanup post load */
159 arch_kimage_file_post_load_cleanup(image);
160
161 /*
162 * Above call should have called into bootloader to free up
163 * any data stored in kimage->image_loader_data. It should
164 * be ok now to free it up.
165 */
166 kfree(image->image_loader_data);
167 image->image_loader_data = NULL;
168}
169
170/*
171 * In file mode list of segments is prepared by kernel. Copy relevant
172 * data from user space, do error checking, prepare segment list
173 */
174static int
175kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
176 const char __user *cmdline_ptr,
177 unsigned long cmdline_len, unsigned flags)
178{
179 int ret = 0;
180 void *ldata;
181
182 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
183 &image->kernel_buf_len);
184 if (ret)
185 return ret;
186
187 /* Call arch image probe handlers */
188 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
189 image->kernel_buf_len);
190
191 if (ret)
192 goto out;
193
194#ifdef CONFIG_KEXEC_VERIFY_SIG
195 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
196 image->kernel_buf_len);
197 if (ret) {
198 pr_debug("kernel signature verification failed.\n");
199 goto out;
200 }
201 pr_debug("kernel signature verification successful.\n");
202#endif
203 /* It is possible that there no initramfs is being loaded */
204 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
205 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
206 &image->initrd_buf_len);
207 if (ret)
208 goto out;
209 }
210
211 if (cmdline_len) {
212 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
213 if (!image->cmdline_buf) {
214 ret = -ENOMEM;
215 goto out;
216 }
217
218 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
219 cmdline_len);
220 if (ret) {
221 ret = -EFAULT;
222 goto out;
223 }
224
225 image->cmdline_buf_len = cmdline_len;
226
227 /* command line should be a string with last byte null */
228 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
229 ret = -EINVAL;
230 goto out;
231 }
232 }
233
234 /* Call arch image load handlers */
235 ldata = arch_kexec_kernel_image_load(image);
236
237 if (IS_ERR(ldata)) {
238 ret = PTR_ERR(ldata);
239 goto out;
240 }
241
242 image->image_loader_data = ldata;
243out:
244 /* In case of error, free up all allocated memory in this function */
245 if (ret)
246 kimage_file_post_load_cleanup(image);
247 return ret;
248}
249
250static int
251kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
252 int initrd_fd, const char __user *cmdline_ptr,
253 unsigned long cmdline_len, unsigned long flags)
254{
255 int ret;
256 struct kimage *image;
257 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
258
259 image = do_kimage_alloc_init();
260 if (!image)
261 return -ENOMEM;
262
263 image->file_mode = 1;
264
265 if (kexec_on_panic) {
266 /* Enable special crash kernel control page alloc policy. */
267 image->control_page = crashk_res.start;
268 image->type = KEXEC_TYPE_CRASH;
269 }
270
271 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
272 cmdline_ptr, cmdline_len, flags);
273 if (ret)
274 goto out_free_image;
275
276 ret = sanity_check_segment_list(image);
277 if (ret)
278 goto out_free_post_load_bufs;
279
280 ret = -ENOMEM;
281 image->control_code_page = kimage_alloc_control_pages(image,
282 get_order(KEXEC_CONTROL_PAGE_SIZE));
283 if (!image->control_code_page) {
284 pr_err("Could not allocate control_code_buffer\n");
285 goto out_free_post_load_bufs;
286 }
287
288 if (!kexec_on_panic) {
289 image->swap_page = kimage_alloc_control_pages(image, 0);
290 if (!image->swap_page) {
291 pr_err("Could not allocate swap buffer\n");
292 goto out_free_control_pages;
293 }
294 }
295
296 *rimage = image;
297 return 0;
298out_free_control_pages:
299 kimage_free_page_list(&image->control_pages);
300out_free_post_load_bufs:
301 kimage_file_post_load_cleanup(image);
302out_free_image:
303 kfree(image);
304 return ret;
305}
306
307SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
308 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
309 unsigned long, flags)
310{
311 int ret = 0, i;
312 struct kimage **dest_image, *image;
313
314 /* We only trust the superuser with rebooting the system. */
315 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
316 return -EPERM;
317
318 /* Make sure we have a legal set of flags */
319 if (flags != (flags & KEXEC_FILE_FLAGS))
320 return -EINVAL;
321
322 image = NULL;
323
324 if (!mutex_trylock(&kexec_mutex))
325 return -EBUSY;
326
327 dest_image = &kexec_image;
328 if (flags & KEXEC_FILE_ON_CRASH)
329 dest_image = &kexec_crash_image;
330
331 if (flags & KEXEC_FILE_UNLOAD)
332 goto exchange;
333
334 /*
335 * In case of crash, new kernel gets loaded in reserved region. It is
336 * same memory where old crash kernel might be loaded. Free any
337 * current crash dump kernel before we corrupt it.
338 */
339 if (flags & KEXEC_FILE_ON_CRASH)
340 kimage_free(xchg(&kexec_crash_image, NULL));
341
342 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
343 cmdline_len, flags);
344 if (ret)
345 goto out;
346
347 ret = machine_kexec_prepare(image);
348 if (ret)
349 goto out;
350
351 ret = kexec_calculate_store_digests(image);
352 if (ret)
353 goto out;
354
355 for (i = 0; i < image->nr_segments; i++) {
356 struct kexec_segment *ksegment;
357
358 ksegment = &image->segment[i];
359 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
360 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
361 ksegment->memsz);
362
363 ret = kimage_load_segment(image, &image->segment[i]);
364 if (ret)
365 goto out;
366 }
367
368 kimage_terminate(image);
369
370 /*
371 * Free up any temporary buffers allocated which are not needed
372 * after image has been loaded
373 */
374 kimage_file_post_load_cleanup(image);
375exchange:
376 image = xchg(dest_image, image);
377out:
378 mutex_unlock(&kexec_mutex);
379 kimage_free(image);
380 return ret;
381}
382
383static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
384 struct kexec_buf *kbuf)
385{
386 struct kimage *image = kbuf->image;
387 unsigned long temp_start, temp_end;
388
389 temp_end = min(end, kbuf->buf_max);
390 temp_start = temp_end - kbuf->memsz;
391
392 do {
393 /* align down start */
394 temp_start = temp_start & (~(kbuf->buf_align - 1));
395
396 if (temp_start < start || temp_start < kbuf->buf_min)
397 return 0;
398
399 temp_end = temp_start + kbuf->memsz - 1;
400
401 /*
402 * Make sure this does not conflict with any of existing
403 * segments
404 */
405 if (kimage_is_destination_range(image, temp_start, temp_end)) {
406 temp_start = temp_start - PAGE_SIZE;
407 continue;
408 }
409
410 /* We found a suitable memory range */
411 break;
412 } while (1);
413
414 /* If we are here, we found a suitable memory range */
415 kbuf->mem = temp_start;
416
417 /* Success, stop navigating through remaining System RAM ranges */
418 return 1;
419}
420
421static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
422 struct kexec_buf *kbuf)
423{
424 struct kimage *image = kbuf->image;
425 unsigned long temp_start, temp_end;
426
427 temp_start = max(start, kbuf->buf_min);
428
429 do {
430 temp_start = ALIGN(temp_start, kbuf->buf_align);
431 temp_end = temp_start + kbuf->memsz - 1;
432
433 if (temp_end > end || temp_end > kbuf->buf_max)
434 return 0;
435 /*
436 * Make sure this does not conflict with any of existing
437 * segments
438 */
439 if (kimage_is_destination_range(image, temp_start, temp_end)) {
440 temp_start = temp_start + PAGE_SIZE;
441 continue;
442 }
443
444 /* We found a suitable memory range */
445 break;
446 } while (1);
447
448 /* If we are here, we found a suitable memory range */
449 kbuf->mem = temp_start;
450
451 /* Success, stop navigating through remaining System RAM ranges */
452 return 1;
453}
454
455static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
456{
457 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
458 unsigned long sz = end - start + 1;
459
460 /* Returning 0 will take to next memory range */
461 if (sz < kbuf->memsz)
462 return 0;
463
464 if (end < kbuf->buf_min || start > kbuf->buf_max)
465 return 0;
466
467 /*
468 * Allocate memory top down with-in ram range. Otherwise bottom up
469 * allocation.
470 */
471 if (kbuf->top_down)
472 return locate_mem_hole_top_down(start, end, kbuf);
473 return locate_mem_hole_bottom_up(start, end, kbuf);
474}
475
476/*
477 * Helper function for placing a buffer in a kexec segment. This assumes
478 * that kexec_mutex is held.
479 */
480int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
481 unsigned long memsz, unsigned long buf_align,
482 unsigned long buf_min, unsigned long buf_max,
483 bool top_down, unsigned long *load_addr)
484{
485
486 struct kexec_segment *ksegment;
487 struct kexec_buf buf, *kbuf;
488 int ret;
489
490 /* Currently adding segment this way is allowed only in file mode */
491 if (!image->file_mode)
492 return -EINVAL;
493
494 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
495 return -EINVAL;
496
497 /*
498 * Make sure we are not trying to add buffer after allocating
499 * control pages. All segments need to be placed first before
500 * any control pages are allocated. As control page allocation
501 * logic goes through list of segments to make sure there are
502 * no destination overlaps.
503 */
504 if (!list_empty(&image->control_pages)) {
505 WARN_ON(1);
506 return -EINVAL;
507 }
508
509 memset(&buf, 0, sizeof(struct kexec_buf));
510 kbuf = &buf;
511 kbuf->image = image;
512 kbuf->buffer = buffer;
513 kbuf->bufsz = bufsz;
514
515 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
516 kbuf->buf_align = max(buf_align, PAGE_SIZE);
517 kbuf->buf_min = buf_min;
518 kbuf->buf_max = buf_max;
519 kbuf->top_down = top_down;
520
521 /* Walk the RAM ranges and allocate a suitable range for the buffer */
522 if (image->type == KEXEC_TYPE_CRASH)
523 ret = walk_iomem_res("Crash kernel",
524 IORESOURCE_MEM | IORESOURCE_BUSY,
525 crashk_res.start, crashk_res.end, kbuf,
526 locate_mem_hole_callback);
527 else
528 ret = walk_system_ram_res(0, -1, kbuf,
529 locate_mem_hole_callback);
530 if (ret != 1) {
531 /* A suitable memory range could not be found for buffer */
532 return -EADDRNOTAVAIL;
533 }
534
535 /* Found a suitable memory range */
536 ksegment = &image->segment[image->nr_segments];
537 ksegment->kbuf = kbuf->buffer;
538 ksegment->bufsz = kbuf->bufsz;
539 ksegment->mem = kbuf->mem;
540 ksegment->memsz = kbuf->memsz;
541 image->nr_segments++;
542 *load_addr = ksegment->mem;
543 return 0;
544}
545
546/* Calculate and store the digest of segments */
547static int kexec_calculate_store_digests(struct kimage *image)
548{
549 struct crypto_shash *tfm;
550 struct shash_desc *desc;
551 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
552 size_t desc_size, nullsz;
553 char *digest;
554 void *zero_buf;
555 struct kexec_sha_region *sha_regions;
556 struct purgatory_info *pi = &image->purgatory_info;
557
558 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
559 zero_buf_sz = PAGE_SIZE;
560
561 tfm = crypto_alloc_shash("sha256", 0, 0);
562 if (IS_ERR(tfm)) {
563 ret = PTR_ERR(tfm);
564 goto out;
565 }
566
567 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
568 desc = kzalloc(desc_size, GFP_KERNEL);
569 if (!desc) {
570 ret = -ENOMEM;
571 goto out_free_tfm;
572 }
573
574 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
575 sha_regions = vzalloc(sha_region_sz);
576 if (!sha_regions)
577 goto out_free_desc;
578
579 desc->tfm = tfm;
580 desc->flags = 0;
581
582 ret = crypto_shash_init(desc);
583 if (ret < 0)
584 goto out_free_sha_regions;
585
586 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
587 if (!digest) {
588 ret = -ENOMEM;
589 goto out_free_sha_regions;
590 }
591
592 for (j = i = 0; i < image->nr_segments; i++) {
593 struct kexec_segment *ksegment;
594
595 ksegment = &image->segment[i];
596 /*
597 * Skip purgatory as it will be modified once we put digest
598 * info in purgatory.
599 */
600 if (ksegment->kbuf == pi->purgatory_buf)
601 continue;
602
603 ret = crypto_shash_update(desc, ksegment->kbuf,
604 ksegment->bufsz);
605 if (ret)
606 break;
607
608 /*
609 * Assume rest of the buffer is filled with zero and
610 * update digest accordingly.
611 */
612 nullsz = ksegment->memsz - ksegment->bufsz;
613 while (nullsz) {
614 unsigned long bytes = nullsz;
615
616 if (bytes > zero_buf_sz)
617 bytes = zero_buf_sz;
618 ret = crypto_shash_update(desc, zero_buf, bytes);
619 if (ret)
620 break;
621 nullsz -= bytes;
622 }
623
624 if (ret)
625 break;
626
627 sha_regions[j].start = ksegment->mem;
628 sha_regions[j].len = ksegment->memsz;
629 j++;
630 }
631
632 if (!ret) {
633 ret = crypto_shash_final(desc, digest);
634 if (ret)
635 goto out_free_digest;
636 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
637 sha_regions, sha_region_sz, 0);
638 if (ret)
639 goto out_free_digest;
640
641 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
642 digest, SHA256_DIGEST_SIZE, 0);
643 if (ret)
644 goto out_free_digest;
645 }
646
647out_free_digest:
648 kfree(digest);
649out_free_sha_regions:
650 vfree(sha_regions);
651out_free_desc:
652 kfree(desc);
653out_free_tfm:
654 kfree(tfm);
655out:
656 return ret;
657}
658
659/* Actually load purgatory. Lot of code taken from kexec-tools */
660static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
661 unsigned long max, int top_down)
662{
663 struct purgatory_info *pi = &image->purgatory_info;
664 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
665 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
666 unsigned char *buf_addr, *src;
667 int i, ret = 0, entry_sidx = -1;
668 const Elf_Shdr *sechdrs_c;
669 Elf_Shdr *sechdrs = NULL;
670 void *purgatory_buf = NULL;
671
672 /*
673 * sechdrs_c points to section headers in purgatory and are read
674 * only. No modifications allowed.
675 */
676 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
677
678 /*
679 * We can not modify sechdrs_c[] and its fields. It is read only.
680 * Copy it over to a local copy where one can store some temporary
681 * data and free it at the end. We need to modify ->sh_addr and
682 * ->sh_offset fields to keep track of permanent and temporary
683 * locations of sections.
684 */
685 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
686 if (!sechdrs)
687 return -ENOMEM;
688
689 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
690
691 /*
692 * We seem to have multiple copies of sections. First copy is which
693 * is embedded in kernel in read only section. Some of these sections
694 * will be copied to a temporary buffer and relocated. And these
695 * sections will finally be copied to their final destination at
696 * segment load time.
697 *
698 * Use ->sh_offset to reflect section address in memory. It will
699 * point to original read only copy if section is not allocatable.
700 * Otherwise it will point to temporary copy which will be relocated.
701 *
702 * Use ->sh_addr to contain final address of the section where it
703 * will go during execution time.
704 */
705 for (i = 0; i < pi->ehdr->e_shnum; i++) {
706 if (sechdrs[i].sh_type == SHT_NOBITS)
707 continue;
708
709 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
710 sechdrs[i].sh_offset;
711 }
712
713 /*
714 * Identify entry point section and make entry relative to section
715 * start.
716 */
717 entry = pi->ehdr->e_entry;
718 for (i = 0; i < pi->ehdr->e_shnum; i++) {
719 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
720 continue;
721
722 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
723 continue;
724
725 /* Make entry section relative */
726 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
727 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
728 pi->ehdr->e_entry)) {
729 entry_sidx = i;
730 entry -= sechdrs[i].sh_addr;
731 break;
732 }
733 }
734
735 /* Determine how much memory is needed to load relocatable object. */
736 buf_align = 1;
737 bss_align = 1;
738 buf_sz = 0;
739 bss_sz = 0;
740
741 for (i = 0; i < pi->ehdr->e_shnum; i++) {
742 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
743 continue;
744
745 align = sechdrs[i].sh_addralign;
746 if (sechdrs[i].sh_type != SHT_NOBITS) {
747 if (buf_align < align)
748 buf_align = align;
749 buf_sz = ALIGN(buf_sz, align);
750 buf_sz += sechdrs[i].sh_size;
751 } else {
752 /* bss section */
753 if (bss_align < align)
754 bss_align = align;
755 bss_sz = ALIGN(bss_sz, align);
756 bss_sz += sechdrs[i].sh_size;
757 }
758 }
759
760 /* Determine the bss padding required to align bss properly */
761 bss_pad = 0;
762 if (buf_sz & (bss_align - 1))
763 bss_pad = bss_align - (buf_sz & (bss_align - 1));
764
765 memsz = buf_sz + bss_pad + bss_sz;
766
767 /* Allocate buffer for purgatory */
768 purgatory_buf = vzalloc(buf_sz);
769 if (!purgatory_buf) {
770 ret = -ENOMEM;
771 goto out;
772 }
773
774 if (buf_align < bss_align)
775 buf_align = bss_align;
776
777 /* Add buffer to segment list */
778 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
779 buf_align, min, max, top_down,
780 &pi->purgatory_load_addr);
781 if (ret)
782 goto out;
783
784 /* Load SHF_ALLOC sections */
785 buf_addr = purgatory_buf;
786 load_addr = curr_load_addr = pi->purgatory_load_addr;
787 bss_addr = load_addr + buf_sz + bss_pad;
788
789 for (i = 0; i < pi->ehdr->e_shnum; i++) {
790 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
791 continue;
792
793 align = sechdrs[i].sh_addralign;
794 if (sechdrs[i].sh_type != SHT_NOBITS) {
795 curr_load_addr = ALIGN(curr_load_addr, align);
796 offset = curr_load_addr - load_addr;
797 /* We already modifed ->sh_offset to keep src addr */
798 src = (char *) sechdrs[i].sh_offset;
799 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
800
801 /* Store load address and source address of section */
802 sechdrs[i].sh_addr = curr_load_addr;
803
804 /*
805 * This section got copied to temporary buffer. Update
806 * ->sh_offset accordingly.
807 */
808 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
809
810 /* Advance to the next address */
811 curr_load_addr += sechdrs[i].sh_size;
812 } else {
813 bss_addr = ALIGN(bss_addr, align);
814 sechdrs[i].sh_addr = bss_addr;
815 bss_addr += sechdrs[i].sh_size;
816 }
817 }
818
819 /* Update entry point based on load address of text section */
820 if (entry_sidx >= 0)
821 entry += sechdrs[entry_sidx].sh_addr;
822
823 /* Make kernel jump to purgatory after shutdown */
824 image->start = entry;
825
826 /* Used later to get/set symbol values */
827 pi->sechdrs = sechdrs;
828
829 /*
830 * Used later to identify which section is purgatory and skip it
831 * from checksumming.
832 */
833 pi->purgatory_buf = purgatory_buf;
834 return ret;
835out:
836 vfree(sechdrs);
837 vfree(purgatory_buf);
838 return ret;
839}
840
841static int kexec_apply_relocations(struct kimage *image)
842{
843 int i, ret;
844 struct purgatory_info *pi = &image->purgatory_info;
845 Elf_Shdr *sechdrs = pi->sechdrs;
846
847 /* Apply relocations */
848 for (i = 0; i < pi->ehdr->e_shnum; i++) {
849 Elf_Shdr *section, *symtab;
850
851 if (sechdrs[i].sh_type != SHT_RELA &&
852 sechdrs[i].sh_type != SHT_REL)
853 continue;
854
855 /*
856 * For section of type SHT_RELA/SHT_REL,
857 * ->sh_link contains section header index of associated
858 * symbol table. And ->sh_info contains section header
859 * index of section to which relocations apply.
860 */
861 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
862 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
863 return -ENOEXEC;
864
865 section = &sechdrs[sechdrs[i].sh_info];
866 symtab = &sechdrs[sechdrs[i].sh_link];
867
868 if (!(section->sh_flags & SHF_ALLOC))
869 continue;
870
871 /*
872 * symtab->sh_link contain section header index of associated
873 * string table.
874 */
875 if (symtab->sh_link >= pi->ehdr->e_shnum)
876 /* Invalid section number? */
877 continue;
878
879 /*
880 * Respective architecture needs to provide support for applying
881 * relocations of type SHT_RELA/SHT_REL.
882 */
883 if (sechdrs[i].sh_type == SHT_RELA)
884 ret = arch_kexec_apply_relocations_add(pi->ehdr,
885 sechdrs, i);
886 else if (sechdrs[i].sh_type == SHT_REL)
887 ret = arch_kexec_apply_relocations(pi->ehdr,
888 sechdrs, i);
889 if (ret)
890 return ret;
891 }
892
893 return 0;
894}
895
896/* Load relocatable purgatory object and relocate it appropriately */
897int kexec_load_purgatory(struct kimage *image, unsigned long min,
898 unsigned long max, int top_down,
899 unsigned long *load_addr)
900{
901 struct purgatory_info *pi = &image->purgatory_info;
902 int ret;
903
904 if (kexec_purgatory_size <= 0)
905 return -EINVAL;
906
907 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
908 return -ENOEXEC;
909
910 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
911
912 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
913 || pi->ehdr->e_type != ET_REL
914 || !elf_check_arch(pi->ehdr)
915 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
916 return -ENOEXEC;
917
918 if (pi->ehdr->e_shoff >= kexec_purgatory_size
919 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
920 kexec_purgatory_size - pi->ehdr->e_shoff))
921 return -ENOEXEC;
922
923 ret = __kexec_load_purgatory(image, min, max, top_down);
924 if (ret)
925 return ret;
926
927 ret = kexec_apply_relocations(image);
928 if (ret)
929 goto out;
930
931 *load_addr = pi->purgatory_load_addr;
932 return 0;
933out:
934 vfree(pi->sechdrs);
935 vfree(pi->purgatory_buf);
936 return ret;
937}
938
939static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
940 const char *name)
941{
942 Elf_Sym *syms;
943 Elf_Shdr *sechdrs;
944 Elf_Ehdr *ehdr;
945 int i, k;
946 const char *strtab;
947
948 if (!pi->sechdrs || !pi->ehdr)
949 return NULL;
950
951 sechdrs = pi->sechdrs;
952 ehdr = pi->ehdr;
953
954 for (i = 0; i < ehdr->e_shnum; i++) {
955 if (sechdrs[i].sh_type != SHT_SYMTAB)
956 continue;
957
958 if (sechdrs[i].sh_link >= ehdr->e_shnum)
959 /* Invalid strtab section number */
960 continue;
961 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
962 syms = (Elf_Sym *)sechdrs[i].sh_offset;
963
964 /* Go through symbols for a match */
965 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
966 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
967 continue;
968
969 if (strcmp(strtab + syms[k].st_name, name) != 0)
970 continue;
971
972 if (syms[k].st_shndx == SHN_UNDEF ||
973 syms[k].st_shndx >= ehdr->e_shnum) {
974 pr_debug("Symbol: %s has bad section index %d.\n",
975 name, syms[k].st_shndx);
976 return NULL;
977 }
978
979 /* Found the symbol we are looking for */
980 return &syms[k];
981 }
982 }
983
984 return NULL;
985}
986
987void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
988{
989 struct purgatory_info *pi = &image->purgatory_info;
990 Elf_Sym *sym;
991 Elf_Shdr *sechdr;
992
993 sym = kexec_purgatory_find_symbol(pi, name);
994 if (!sym)
995 return ERR_PTR(-EINVAL);
996
997 sechdr = &pi->sechdrs[sym->st_shndx];
998
999 /*
1000 * Returns the address where symbol will finally be loaded after
1001 * kexec_load_segment()
1002 */
1003 return (void *)(sechdr->sh_addr + sym->st_value);
1004}
1005
1006/*
1007 * Get or set value of a symbol. If "get_value" is true, symbol value is
1008 * returned in buf otherwise symbol value is set based on value in buf.
1009 */
1010int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1011 void *buf, unsigned int size, bool get_value)
1012{
1013 Elf_Sym *sym;
1014 Elf_Shdr *sechdrs;
1015 struct purgatory_info *pi = &image->purgatory_info;
1016 char *sym_buf;
1017
1018 sym = kexec_purgatory_find_symbol(pi, name);
1019 if (!sym)
1020 return -EINVAL;
1021
1022 if (sym->st_size != size) {
1023 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1024 name, (unsigned long)sym->st_size, size);
1025 return -EINVAL;
1026 }
1027
1028 sechdrs = pi->sechdrs;
1029
1030 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1031 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1032 get_value ? "get" : "set");
1033 return -EINVAL;
1034 }
1035
1036 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1037 sym->st_value;
1038
1039 if (get_value)
1040 memcpy((void *)buf, sym_buf, size);
1041 else
1042 memcpy((void *)sym_buf, buf, size);
1043
1044 return 0;
1045}