tracing: Have error path in predicate_parse() free its allocated memory
[linux-2.6-block.git] / kernel / kexec_core.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
2965faa5
DY
2/*
3 * kexec.c - kexec system call core code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
2965faa5
DY
5 */
6
de90a6bc 7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2965faa5
DY
8
9#include <linux/capability.h>
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
15#include <linux/mutex.h>
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
20#include <linux/ioport.h>
21#include <linux/hardirq.h>
22#include <linux/elf.h>
23#include <linux/elfcore.h>
24#include <linux/utsname.h>
25#include <linux/numa.h>
26#include <linux/suspend.h>
27#include <linux/device.h>
28#include <linux/freezer.h>
29#include <linux/pm.h>
30#include <linux/cpu.h>
31#include <linux/uaccess.h>
32#include <linux/io.h>
33#include <linux/console.h>
34#include <linux/vmalloc.h>
35#include <linux/swap.h>
36#include <linux/syscore_ops.h>
37#include <linux/compiler.h>
38#include <linux/hugetlb.h>
c207aee4 39#include <linux/frame.h>
2965faa5
DY
40
41#include <asm/page.h>
42#include <asm/sections.h>
43
44#include <crypto/hash.h>
45#include <crypto/sha.h>
46#include "kexec_internal.h"
47
48DEFINE_MUTEX(kexec_mutex);
49
50/* Per cpu memory for storing cpu states in case of system crash. */
51note_buf_t __percpu *crash_notes;
52
2965faa5
DY
53/* Flag to indicate we are going to kexec a new kernel */
54bool kexec_in_progress = false;
55
56
57/* Location of the reserved area for the crash kernel */
58struct resource crashk_res = {
59 .name = "Crash kernel",
60 .start = 0,
61 .end = 0,
1a085d07
TK
62 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
63 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
64};
65struct resource crashk_low_res = {
66 .name = "Crash kernel",
67 .start = 0,
68 .end = 0,
1a085d07
TK
69 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 .desc = IORES_DESC_CRASH_KERNEL
2965faa5
DY
71};
72
73int kexec_should_crash(struct task_struct *p)
74{
75 /*
76 * If crash_kexec_post_notifiers is enabled, don't run
77 * crash_kexec() here yet, which must be run after panic
78 * notifiers in panic().
79 */
80 if (crash_kexec_post_notifiers)
81 return 0;
82 /*
83 * There are 4 panic() calls in do_exit() path, each of which
84 * corresponds to each of these 4 conditions.
85 */
86 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
87 return 1;
88 return 0;
89}
90
21db79e8
PT
91int kexec_crash_loaded(void)
92{
93 return !!kexec_crash_image;
94}
95EXPORT_SYMBOL_GPL(kexec_crash_loaded);
96
2965faa5
DY
97/*
98 * When kexec transitions to the new kernel there is a one-to-one
99 * mapping between physical and virtual addresses. On processors
100 * where you can disable the MMU this is trivial, and easy. For
101 * others it is still a simple predictable page table to setup.
102 *
103 * In that environment kexec copies the new kernel to its final
104 * resting place. This means I can only support memory whose
105 * physical address can fit in an unsigned long. In particular
106 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
107 * If the assembly stub has more restrictive requirements
108 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
109 * defined more restrictively in <asm/kexec.h>.
110 *
111 * The code for the transition from the current kernel to the
112 * the new kernel is placed in the control_code_buffer, whose size
113 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
114 * page of memory is necessary, but some architectures require more.
115 * Because this memory must be identity mapped in the transition from
116 * virtual to physical addresses it must live in the range
117 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
118 * modifiable.
119 *
120 * The assembly stub in the control code buffer is passed a linked list
121 * of descriptor pages detailing the source pages of the new kernel,
122 * and the destination addresses of those source pages. As this data
123 * structure is not used in the context of the current OS, it must
124 * be self-contained.
125 *
126 * The code has been made to work with highmem pages and will use a
127 * destination page in its final resting place (if it happens
128 * to allocate it). The end product of this is that most of the
129 * physical address space, and most of RAM can be used.
130 *
131 * Future directions include:
132 * - allocating a page table with the control code buffer identity
133 * mapped, to simplify machine_kexec and make kexec_on_panic more
134 * reliable.
135 */
136
137/*
138 * KIMAGE_NO_DEST is an impossible destination address..., for
139 * allocating pages whose destination address we do not care about.
140 */
141#define KIMAGE_NO_DEST (-1UL)
1730f146 142#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
2965faa5
DY
143
144static struct page *kimage_alloc_page(struct kimage *image,
145 gfp_t gfp_mask,
146 unsigned long dest);
147
148int sanity_check_segment_list(struct kimage *image)
149{
4caf9615 150 int i;
2965faa5 151 unsigned long nr_segments = image->nr_segments;
1730f146 152 unsigned long total_pages = 0;
ca79b0c2 153 unsigned long nr_pages = totalram_pages();
2965faa5
DY
154
155 /*
156 * Verify we have good destination addresses. The caller is
157 * responsible for making certain we don't attempt to load
158 * the new image into invalid or reserved areas of RAM. This
159 * just verifies it is an address we can use.
160 *
161 * Since the kernel does everything in page size chunks ensure
162 * the destination addresses are page aligned. Too many
163 * special cases crop of when we don't do this. The most
164 * insidious is getting overlapping destination addresses
165 * simply because addresses are changed to page size
166 * granularity.
167 */
2965faa5
DY
168 for (i = 0; i < nr_segments; i++) {
169 unsigned long mstart, mend;
170
171 mstart = image->segment[i].mem;
172 mend = mstart + image->segment[i].memsz;
465d3777
RK
173 if (mstart > mend)
174 return -EADDRNOTAVAIL;
2965faa5 175 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
4caf9615 176 return -EADDRNOTAVAIL;
2965faa5 177 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
4caf9615 178 return -EADDRNOTAVAIL;
2965faa5
DY
179 }
180
181 /* Verify our destination addresses do not overlap.
182 * If we alloed overlapping destination addresses
183 * through very weird things can happen with no
184 * easy explanation as one segment stops on another.
185 */
2965faa5
DY
186 for (i = 0; i < nr_segments; i++) {
187 unsigned long mstart, mend;
188 unsigned long j;
189
190 mstart = image->segment[i].mem;
191 mend = mstart + image->segment[i].memsz;
192 for (j = 0; j < i; j++) {
193 unsigned long pstart, pend;
194
195 pstart = image->segment[j].mem;
196 pend = pstart + image->segment[j].memsz;
197 /* Do the segments overlap ? */
198 if ((mend > pstart) && (mstart < pend))
4caf9615 199 return -EINVAL;
2965faa5
DY
200 }
201 }
202
203 /* Ensure our buffer sizes are strictly less than
204 * our memory sizes. This should always be the case,
205 * and it is easier to check up front than to be surprised
206 * later on.
207 */
2965faa5
DY
208 for (i = 0; i < nr_segments; i++) {
209 if (image->segment[i].bufsz > image->segment[i].memsz)
4caf9615 210 return -EINVAL;
2965faa5
DY
211 }
212
1730f146 213 /*
214 * Verify that no more than half of memory will be consumed. If the
215 * request from userspace is too large, a large amount of time will be
216 * wasted allocating pages, which can cause a soft lockup.
217 */
218 for (i = 0; i < nr_segments; i++) {
3d6357de 219 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
1730f146 220 return -EINVAL;
221
222 total_pages += PAGE_COUNT(image->segment[i].memsz);
223 }
224
3d6357de 225 if (total_pages > nr_pages / 2)
1730f146 226 return -EINVAL;
227
2965faa5
DY
228 /*
229 * Verify we have good destination addresses. Normally
230 * the caller is responsible for making certain we don't
231 * attempt to load the new image into invalid or reserved
232 * areas of RAM. But crash kernels are preloaded into a
233 * reserved area of ram. We must ensure the addresses
234 * are in the reserved area otherwise preloading the
235 * kernel could corrupt things.
236 */
237
238 if (image->type == KEXEC_TYPE_CRASH) {
2965faa5
DY
239 for (i = 0; i < nr_segments; i++) {
240 unsigned long mstart, mend;
241
242 mstart = image->segment[i].mem;
243 mend = mstart + image->segment[i].memsz - 1;
244 /* Ensure we are within the crash kernel limits */
43546d86
RK
245 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
246 (mend > phys_to_boot_phys(crashk_res.end)))
4caf9615 247 return -EADDRNOTAVAIL;
2965faa5
DY
248 }
249 }
250
251 return 0;
252}
253
254struct kimage *do_kimage_alloc_init(void)
255{
256 struct kimage *image;
257
258 /* Allocate a controlling structure */
259 image = kzalloc(sizeof(*image), GFP_KERNEL);
260 if (!image)
261 return NULL;
262
263 image->head = 0;
264 image->entry = &image->head;
265 image->last_entry = &image->head;
266 image->control_page = ~0; /* By default this does not apply */
267 image->type = KEXEC_TYPE_DEFAULT;
268
269 /* Initialize the list of control pages */
270 INIT_LIST_HEAD(&image->control_pages);
271
272 /* Initialize the list of destination pages */
273 INIT_LIST_HEAD(&image->dest_pages);
274
275 /* Initialize the list of unusable pages */
276 INIT_LIST_HEAD(&image->unusable_pages);
277
278 return image;
279}
280
281int kimage_is_destination_range(struct kimage *image,
282 unsigned long start,
283 unsigned long end)
284{
285 unsigned long i;
286
287 for (i = 0; i < image->nr_segments; i++) {
288 unsigned long mstart, mend;
289
290 mstart = image->segment[i].mem;
291 mend = mstart + image->segment[i].memsz;
292 if ((end > mstart) && (start < mend))
293 return 1;
294 }
295
296 return 0;
297}
298
299static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300{
301 struct page *pages;
302
bba4ed01 303 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
2965faa5
DY
304 if (pages) {
305 unsigned int count, i;
306
307 pages->mapping = NULL;
308 set_page_private(pages, order);
309 count = 1 << order;
310 for (i = 0; i < count; i++)
311 SetPageReserved(pages + i);
bba4ed01
TL
312
313 arch_kexec_post_alloc_pages(page_address(pages), count,
314 gfp_mask);
315
316 if (gfp_mask & __GFP_ZERO)
317 for (i = 0; i < count; i++)
318 clear_highpage(pages + i);
2965faa5
DY
319 }
320
321 return pages;
322}
323
324static void kimage_free_pages(struct page *page)
325{
326 unsigned int order, count, i;
327
328 order = page_private(page);
329 count = 1 << order;
bba4ed01
TL
330
331 arch_kexec_pre_free_pages(page_address(page), count);
332
2965faa5
DY
333 for (i = 0; i < count; i++)
334 ClearPageReserved(page + i);
335 __free_pages(page, order);
336}
337
338void kimage_free_page_list(struct list_head *list)
339{
2b24692b 340 struct page *page, *next;
2965faa5 341
2b24692b 342 list_for_each_entry_safe(page, next, list, lru) {
2965faa5
DY
343 list_del(&page->lru);
344 kimage_free_pages(page);
345 }
346}
347
348static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
349 unsigned int order)
350{
351 /* Control pages are special, they are the intermediaries
352 * that are needed while we copy the rest of the pages
353 * to their final resting place. As such they must
354 * not conflict with either the destination addresses
355 * or memory the kernel is already using.
356 *
357 * The only case where we really need more than one of
358 * these are for architectures where we cannot disable
359 * the MMU and must instead generate an identity mapped
360 * page table for all of the memory.
361 *
362 * At worst this runs in O(N) of the image size.
363 */
364 struct list_head extra_pages;
365 struct page *pages;
366 unsigned int count;
367
368 count = 1 << order;
369 INIT_LIST_HEAD(&extra_pages);
370
371 /* Loop while I can allocate a page and the page allocated
372 * is a destination page.
373 */
374 do {
375 unsigned long pfn, epfn, addr, eaddr;
376
377 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
378 if (!pages)
379 break;
43546d86 380 pfn = page_to_boot_pfn(pages);
2965faa5
DY
381 epfn = pfn + count;
382 addr = pfn << PAGE_SHIFT;
383 eaddr = epfn << PAGE_SHIFT;
384 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
385 kimage_is_destination_range(image, addr, eaddr)) {
386 list_add(&pages->lru, &extra_pages);
387 pages = NULL;
388 }
389 } while (!pages);
390
391 if (pages) {
392 /* Remember the allocated page... */
393 list_add(&pages->lru, &image->control_pages);
394
395 /* Because the page is already in it's destination
396 * location we will never allocate another page at
397 * that address. Therefore kimage_alloc_pages
398 * will not return it (again) and we don't need
399 * to give it an entry in image->segment[].
400 */
401 }
402 /* Deal with the destination pages I have inadvertently allocated.
403 *
404 * Ideally I would convert multi-page allocations into single
405 * page allocations, and add everything to image->dest_pages.
406 *
407 * For now it is simpler to just free the pages.
408 */
409 kimage_free_page_list(&extra_pages);
410
411 return pages;
412}
413
414static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
415 unsigned int order)
416{
417 /* Control pages are special, they are the intermediaries
418 * that are needed while we copy the rest of the pages
419 * to their final resting place. As such they must
420 * not conflict with either the destination addresses
421 * or memory the kernel is already using.
422 *
423 * Control pages are also the only pags we must allocate
424 * when loading a crash kernel. All of the other pages
425 * are specified by the segments and we just memcpy
426 * into them directly.
427 *
428 * The only case where we really need more than one of
429 * these are for architectures where we cannot disable
430 * the MMU and must instead generate an identity mapped
431 * page table for all of the memory.
432 *
433 * Given the low demand this implements a very simple
434 * allocator that finds the first hole of the appropriate
435 * size in the reserved memory region, and allocates all
436 * of the memory up to and including the hole.
437 */
438 unsigned long hole_start, hole_end, size;
439 struct page *pages;
440
441 pages = NULL;
442 size = (1 << order) << PAGE_SHIFT;
443 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
444 hole_end = hole_start + size - 1;
445 while (hole_end <= crashk_res.end) {
446 unsigned long i;
447
8e53c073 448 cond_resched();
449
2965faa5
DY
450 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
451 break;
452 /* See if I overlap any of the segments */
453 for (i = 0; i < image->nr_segments; i++) {
454 unsigned long mstart, mend;
455
456 mstart = image->segment[i].mem;
457 mend = mstart + image->segment[i].memsz - 1;
458 if ((hole_end >= mstart) && (hole_start <= mend)) {
459 /* Advance the hole to the end of the segment */
460 hole_start = (mend + (size - 1)) & ~(size - 1);
461 hole_end = hole_start + size - 1;
462 break;
463 }
464 }
465 /* If I don't overlap any segments I have found my hole! */
466 if (i == image->nr_segments) {
467 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
04e9949b 468 image->control_page = hole_end;
2965faa5
DY
469 break;
470 }
471 }
2965faa5 472
9cf38d55
LJ
473 /* Ensure that these pages are decrypted if SME is enabled. */
474 if (pages)
475 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
476
2965faa5
DY
477 return pages;
478}
479
480
481struct page *kimage_alloc_control_pages(struct kimage *image,
482 unsigned int order)
483{
484 struct page *pages = NULL;
485
486 switch (image->type) {
487 case KEXEC_TYPE_DEFAULT:
488 pages = kimage_alloc_normal_control_pages(image, order);
489 break;
490 case KEXEC_TYPE_CRASH:
491 pages = kimage_alloc_crash_control_pages(image, order);
492 break;
493 }
494
495 return pages;
496}
497
1229384f
XP
498int kimage_crash_copy_vmcoreinfo(struct kimage *image)
499{
500 struct page *vmcoreinfo_page;
501 void *safecopy;
502
503 if (image->type != KEXEC_TYPE_CRASH)
504 return 0;
505
506 /*
507 * For kdump, allocate one vmcoreinfo safe copy from the
508 * crash memory. as we have arch_kexec_protect_crashkres()
509 * after kexec syscall, we naturally protect it from write
510 * (even read) access under kernel direct mapping. But on
511 * the other hand, we still need to operate it when crash
512 * happens to generate vmcoreinfo note, hereby we rely on
513 * vmap for this purpose.
514 */
515 vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
516 if (!vmcoreinfo_page) {
517 pr_warn("Could not allocate vmcoreinfo buffer\n");
518 return -ENOMEM;
519 }
520 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
521 if (!safecopy) {
522 pr_warn("Could not vmap vmcoreinfo buffer\n");
523 return -ENOMEM;
524 }
525
526 image->vmcoreinfo_data_copy = safecopy;
527 crash_update_vmcoreinfo_safecopy(safecopy);
528
529 return 0;
530}
531
2965faa5
DY
532static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
533{
534 if (*image->entry != 0)
535 image->entry++;
536
537 if (image->entry == image->last_entry) {
538 kimage_entry_t *ind_page;
539 struct page *page;
540
541 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
542 if (!page)
543 return -ENOMEM;
544
545 ind_page = page_address(page);
43546d86 546 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
2965faa5
DY
547 image->entry = ind_page;
548 image->last_entry = ind_page +
549 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
550 }
551 *image->entry = entry;
552 image->entry++;
553 *image->entry = 0;
554
555 return 0;
556}
557
558static int kimage_set_destination(struct kimage *image,
559 unsigned long destination)
560{
561 int result;
562
563 destination &= PAGE_MASK;
564 result = kimage_add_entry(image, destination | IND_DESTINATION);
565
566 return result;
567}
568
569
570static int kimage_add_page(struct kimage *image, unsigned long page)
571{
572 int result;
573
574 page &= PAGE_MASK;
575 result = kimage_add_entry(image, page | IND_SOURCE);
576
577 return result;
578}
579
580
581static void kimage_free_extra_pages(struct kimage *image)
582{
583 /* Walk through and free any extra destination pages I may have */
584 kimage_free_page_list(&image->dest_pages);
585
586 /* Walk through and free any unusable pages I have cached */
587 kimage_free_page_list(&image->unusable_pages);
588
589}
590void kimage_terminate(struct kimage *image)
591{
592 if (*image->entry != 0)
593 image->entry++;
594
595 *image->entry = IND_DONE;
596}
597
598#define for_each_kimage_entry(image, ptr, entry) \
599 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
600 ptr = (entry & IND_INDIRECTION) ? \
43546d86 601 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
2965faa5
DY
602
603static void kimage_free_entry(kimage_entry_t entry)
604{
605 struct page *page;
606
43546d86 607 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
2965faa5
DY
608 kimage_free_pages(page);
609}
610
611void kimage_free(struct kimage *image)
612{
613 kimage_entry_t *ptr, entry;
614 kimage_entry_t ind = 0;
615
616 if (!image)
617 return;
618
1229384f
XP
619 if (image->vmcoreinfo_data_copy) {
620 crash_update_vmcoreinfo_safecopy(NULL);
621 vunmap(image->vmcoreinfo_data_copy);
622 }
623
2965faa5
DY
624 kimage_free_extra_pages(image);
625 for_each_kimage_entry(image, ptr, entry) {
626 if (entry & IND_INDIRECTION) {
627 /* Free the previous indirection page */
628 if (ind & IND_INDIRECTION)
629 kimage_free_entry(ind);
630 /* Save this indirection page until we are
631 * done with it.
632 */
633 ind = entry;
634 } else if (entry & IND_SOURCE)
635 kimage_free_entry(entry);
636 }
637 /* Free the final indirection page */
638 if (ind & IND_INDIRECTION)
639 kimage_free_entry(ind);
640
641 /* Handle any machine specific cleanup */
642 machine_kexec_cleanup(image);
643
644 /* Free the kexec control pages... */
645 kimage_free_page_list(&image->control_pages);
646
647 /*
648 * Free up any temporary buffers allocated. This might hit if
649 * error occurred much later after buffer allocation.
650 */
651 if (image->file_mode)
652 kimage_file_post_load_cleanup(image);
653
654 kfree(image);
655}
656
657static kimage_entry_t *kimage_dst_used(struct kimage *image,
658 unsigned long page)
659{
660 kimage_entry_t *ptr, entry;
661 unsigned long destination = 0;
662
663 for_each_kimage_entry(image, ptr, entry) {
664 if (entry & IND_DESTINATION)
665 destination = entry & PAGE_MASK;
666 else if (entry & IND_SOURCE) {
667 if (page == destination)
668 return ptr;
669 destination += PAGE_SIZE;
670 }
671 }
672
673 return NULL;
674}
675
676static struct page *kimage_alloc_page(struct kimage *image,
677 gfp_t gfp_mask,
678 unsigned long destination)
679{
680 /*
681 * Here we implement safeguards to ensure that a source page
682 * is not copied to its destination page before the data on
683 * the destination page is no longer useful.
684 *
685 * To do this we maintain the invariant that a source page is
686 * either its own destination page, or it is not a
687 * destination page at all.
688 *
689 * That is slightly stronger than required, but the proof
690 * that no problems will not occur is trivial, and the
691 * implementation is simply to verify.
692 *
693 * When allocating all pages normally this algorithm will run
694 * in O(N) time, but in the worst case it will run in O(N^2)
695 * time. If the runtime is a problem the data structures can
696 * be fixed.
697 */
698 struct page *page;
699 unsigned long addr;
700
701 /*
702 * Walk through the list of destination pages, and see if I
703 * have a match.
704 */
705 list_for_each_entry(page, &image->dest_pages, lru) {
43546d86 706 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
2965faa5
DY
707 if (addr == destination) {
708 list_del(&page->lru);
709 return page;
710 }
711 }
712 page = NULL;
713 while (1) {
714 kimage_entry_t *old;
715
716 /* Allocate a page, if we run out of memory give up */
717 page = kimage_alloc_pages(gfp_mask, 0);
718 if (!page)
719 return NULL;
720 /* If the page cannot be used file it away */
43546d86 721 if (page_to_boot_pfn(page) >
2965faa5
DY
722 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
723 list_add(&page->lru, &image->unusable_pages);
724 continue;
725 }
43546d86 726 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
2965faa5
DY
727
728 /* If it is the destination page we want use it */
729 if (addr == destination)
730 break;
731
732 /* If the page is not a destination page use it */
733 if (!kimage_is_destination_range(image, addr,
734 addr + PAGE_SIZE))
735 break;
736
737 /*
738 * I know that the page is someones destination page.
739 * See if there is already a source page for this
740 * destination page. And if so swap the source pages.
741 */
742 old = kimage_dst_used(image, addr);
743 if (old) {
744 /* If so move it */
745 unsigned long old_addr;
746 struct page *old_page;
747
748 old_addr = *old & PAGE_MASK;
43546d86 749 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
2965faa5
DY
750 copy_highpage(page, old_page);
751 *old = addr | (*old & ~PAGE_MASK);
752
753 /* The old page I have found cannot be a
754 * destination page, so return it if it's
755 * gfp_flags honor the ones passed in.
756 */
757 if (!(gfp_mask & __GFP_HIGHMEM) &&
758 PageHighMem(old_page)) {
759 kimage_free_pages(old_page);
760 continue;
761 }
762 addr = old_addr;
763 page = old_page;
764 break;
765 }
766 /* Place the page on the destination list, to be used later */
767 list_add(&page->lru, &image->dest_pages);
768 }
769
770 return page;
771}
772
773static int kimage_load_normal_segment(struct kimage *image,
774 struct kexec_segment *segment)
775{
776 unsigned long maddr;
777 size_t ubytes, mbytes;
778 int result;
779 unsigned char __user *buf = NULL;
780 unsigned char *kbuf = NULL;
781
782 result = 0;
783 if (image->file_mode)
784 kbuf = segment->kbuf;
785 else
786 buf = segment->buf;
787 ubytes = segment->bufsz;
788 mbytes = segment->memsz;
789 maddr = segment->mem;
790
791 result = kimage_set_destination(image, maddr);
792 if (result < 0)
793 goto out;
794
795 while (mbytes) {
796 struct page *page;
797 char *ptr;
798 size_t uchunk, mchunk;
799
800 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
801 if (!page) {
802 result = -ENOMEM;
803 goto out;
804 }
43546d86 805 result = kimage_add_page(image, page_to_boot_pfn(page)
2965faa5
DY
806 << PAGE_SHIFT);
807 if (result < 0)
808 goto out;
809
810 ptr = kmap(page);
811 /* Start with a clear page */
812 clear_page(ptr);
813 ptr += maddr & ~PAGE_MASK;
814 mchunk = min_t(size_t, mbytes,
815 PAGE_SIZE - (maddr & ~PAGE_MASK));
816 uchunk = min(ubytes, mchunk);
817
818 /* For file based kexec, source pages are in kernel memory */
819 if (image->file_mode)
820 memcpy(ptr, kbuf, uchunk);
821 else
822 result = copy_from_user(ptr, buf, uchunk);
823 kunmap(page);
824 if (result) {
825 result = -EFAULT;
826 goto out;
827 }
828 ubytes -= uchunk;
829 maddr += mchunk;
830 if (image->file_mode)
831 kbuf += mchunk;
832 else
833 buf += mchunk;
834 mbytes -= mchunk;
a8311f64
JF
835
836 cond_resched();
2965faa5
DY
837 }
838out:
839 return result;
840}
841
842static int kimage_load_crash_segment(struct kimage *image,
843 struct kexec_segment *segment)
844{
845 /* For crash dumps kernels we simply copy the data from
846 * user space to it's destination.
847 * We do things a page at a time for the sake of kmap.
848 */
849 unsigned long maddr;
850 size_t ubytes, mbytes;
851 int result;
852 unsigned char __user *buf = NULL;
853 unsigned char *kbuf = NULL;
854
855 result = 0;
856 if (image->file_mode)
857 kbuf = segment->kbuf;
858 else
859 buf = segment->buf;
860 ubytes = segment->bufsz;
861 mbytes = segment->memsz;
862 maddr = segment->mem;
863 while (mbytes) {
864 struct page *page;
865 char *ptr;
866 size_t uchunk, mchunk;
867
43546d86 868 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
2965faa5
DY
869 if (!page) {
870 result = -ENOMEM;
871 goto out;
872 }
9cf38d55 873 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
2965faa5
DY
874 ptr = kmap(page);
875 ptr += maddr & ~PAGE_MASK;
876 mchunk = min_t(size_t, mbytes,
877 PAGE_SIZE - (maddr & ~PAGE_MASK));
878 uchunk = min(ubytes, mchunk);
879 if (mchunk > uchunk) {
880 /* Zero the trailing part of the page */
881 memset(ptr + uchunk, 0, mchunk - uchunk);
882 }
883
884 /* For file based kexec, source pages are in kernel memory */
885 if (image->file_mode)
886 memcpy(ptr, kbuf, uchunk);
887 else
888 result = copy_from_user(ptr, buf, uchunk);
889 kexec_flush_icache_page(page);
890 kunmap(page);
9cf38d55 891 arch_kexec_pre_free_pages(page_address(page), 1);
2965faa5
DY
892 if (result) {
893 result = -EFAULT;
894 goto out;
895 }
896 ubytes -= uchunk;
897 maddr += mchunk;
898 if (image->file_mode)
899 kbuf += mchunk;
900 else
901 buf += mchunk;
902 mbytes -= mchunk;
a8311f64
JF
903
904 cond_resched();
2965faa5
DY
905 }
906out:
907 return result;
908}
909
910int kimage_load_segment(struct kimage *image,
911 struct kexec_segment *segment)
912{
913 int result = -ENOMEM;
914
915 switch (image->type) {
916 case KEXEC_TYPE_DEFAULT:
917 result = kimage_load_normal_segment(image, segment);
918 break;
919 case KEXEC_TYPE_CRASH:
920 result = kimage_load_crash_segment(image, segment);
921 break;
922 }
923
924 return result;
925}
926
927struct kimage *kexec_image;
928struct kimage *kexec_crash_image;
929int kexec_load_disabled;
930
7bbee5ca
HK
931/*
932 * No panic_cpu check version of crash_kexec(). This function is called
933 * only when panic_cpu holds the current CPU number; this is the only CPU
934 * which processes crash_kexec routines.
935 */
c207aee4 936void __noclone __crash_kexec(struct pt_regs *regs)
2965faa5
DY
937{
938 /* Take the kexec_mutex here to prevent sys_kexec_load
939 * running on one cpu from replacing the crash kernel
940 * we are using after a panic on a different cpu.
941 *
942 * If the crash kernel was not located in a fixed area
943 * of memory the xchg(&kexec_crash_image) would be
944 * sufficient. But since I reuse the memory...
945 */
946 if (mutex_trylock(&kexec_mutex)) {
947 if (kexec_crash_image) {
948 struct pt_regs fixed_regs;
949
950 crash_setup_regs(&fixed_regs, regs);
951 crash_save_vmcoreinfo();
952 machine_crash_shutdown(&fixed_regs);
953 machine_kexec(kexec_crash_image);
954 }
955 mutex_unlock(&kexec_mutex);
956 }
957}
c207aee4 958STACK_FRAME_NON_STANDARD(__crash_kexec);
2965faa5 959
7bbee5ca
HK
960void crash_kexec(struct pt_regs *regs)
961{
962 int old_cpu, this_cpu;
963
964 /*
965 * Only one CPU is allowed to execute the crash_kexec() code as with
966 * panic(). Otherwise parallel calls of panic() and crash_kexec()
967 * may stop each other. To exclude them, we use panic_cpu here too.
968 */
969 this_cpu = raw_smp_processor_id();
970 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
971 if (old_cpu == PANIC_CPU_INVALID) {
972 /* This is the 1st CPU which comes here, so go ahead. */
f92bac3b 973 printk_safe_flush_on_panic();
7bbee5ca
HK
974 __crash_kexec(regs);
975
976 /*
977 * Reset panic_cpu to allow another panic()/crash_kexec()
978 * call.
979 */
980 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
981 }
982}
983
2965faa5
DY
984size_t crash_get_memory_size(void)
985{
986 size_t size = 0;
987
988 mutex_lock(&kexec_mutex);
989 if (crashk_res.end != crashk_res.start)
990 size = resource_size(&crashk_res);
991 mutex_unlock(&kexec_mutex);
992 return size;
993}
994
995void __weak crash_free_reserved_phys_range(unsigned long begin,
996 unsigned long end)
997{
998 unsigned long addr;
999
1000 for (addr = begin; addr < end; addr += PAGE_SIZE)
43546d86 1001 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
2965faa5
DY
1002}
1003
1004int crash_shrink_memory(unsigned long new_size)
1005{
1006 int ret = 0;
1007 unsigned long start, end;
1008 unsigned long old_size;
1009 struct resource *ram_res;
1010
1011 mutex_lock(&kexec_mutex);
1012
1013 if (kexec_crash_image) {
1014 ret = -ENOENT;
1015 goto unlock;
1016 }
1017 start = crashk_res.start;
1018 end = crashk_res.end;
1019 old_size = (end == 0) ? 0 : end - start + 1;
1020 if (new_size >= old_size) {
1021 ret = (new_size == old_size) ? 0 : -EINVAL;
1022 goto unlock;
1023 }
1024
1025 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1026 if (!ram_res) {
1027 ret = -ENOMEM;
1028 goto unlock;
1029 }
1030
1031 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1032 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1033
2965faa5
DY
1034 crash_free_reserved_phys_range(end, crashk_res.end);
1035
1036 if ((start == end) && (crashk_res.parent != NULL))
1037 release_resource(&crashk_res);
1038
1039 ram_res->start = end;
1040 ram_res->end = crashk_res.end;
1a085d07 1041 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2965faa5
DY
1042 ram_res->name = "System RAM";
1043
1044 crashk_res.end = end - 1;
1045
1046 insert_resource(&iomem_resource, ram_res);
2965faa5
DY
1047
1048unlock:
1049 mutex_unlock(&kexec_mutex);
1050 return ret;
1051}
1052
2965faa5
DY
1053void crash_save_cpu(struct pt_regs *regs, int cpu)
1054{
1055 struct elf_prstatus prstatus;
1056 u32 *buf;
1057
1058 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1059 return;
1060
1061 /* Using ELF notes here is opportunistic.
1062 * I need a well defined structure format
1063 * for the data I pass, and I need tags
1064 * on the data to indicate what information I have
1065 * squirrelled away. ELF notes happen to provide
1066 * all of that, so there is no need to invent something new.
1067 */
1068 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1069 if (!buf)
1070 return;
1071 memset(&prstatus, 0, sizeof(prstatus));
1072 prstatus.pr_pid = current->pid;
1073 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1074 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1075 &prstatus, sizeof(prstatus));
1076 final_note(buf);
1077}
1078
1079static int __init crash_notes_memory_init(void)
1080{
1081 /* Allocate memory for saving cpu registers. */
bbb78b8f
BH
1082 size_t size, align;
1083
1084 /*
1085 * crash_notes could be allocated across 2 vmalloc pages when percpu
1086 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1087 * pages are also on 2 continuous physical pages. In this case the
1088 * 2nd part of crash_notes in 2nd page could be lost since only the
1089 * starting address and size of crash_notes are exported through sysfs.
1090 * Here round up the size of crash_notes to the nearest power of two
1091 * and pass it to __alloc_percpu as align value. This can make sure
1092 * crash_notes is allocated inside one physical page.
1093 */
1094 size = sizeof(note_buf_t);
1095 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1096
1097 /*
1098 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1099 * definitely will be in 2 pages with that.
1100 */
1101 BUILD_BUG_ON(size > PAGE_SIZE);
1102
1103 crash_notes = __alloc_percpu(size, align);
2965faa5 1104 if (!crash_notes) {
de90a6bc 1105 pr_warn("Memory allocation for saving cpu register states failed\n");
2965faa5
DY
1106 return -ENOMEM;
1107 }
1108 return 0;
1109}
1110subsys_initcall(crash_notes_memory_init);
1111
1112
2965faa5
DY
1113/*
1114 * Move into place and start executing a preloaded standalone
1115 * executable. If nothing was preloaded return an error.
1116 */
1117int kernel_kexec(void)
1118{
1119 int error = 0;
1120
1121 if (!mutex_trylock(&kexec_mutex))
1122 return -EBUSY;
1123 if (!kexec_image) {
1124 error = -EINVAL;
1125 goto Unlock;
1126 }
1127
1128#ifdef CONFIG_KEXEC_JUMP
1129 if (kexec_image->preserve_context) {
1130 lock_system_sleep();
1131 pm_prepare_console();
1132 error = freeze_processes();
1133 if (error) {
1134 error = -EBUSY;
1135 goto Restore_console;
1136 }
1137 suspend_console();
1138 error = dpm_suspend_start(PMSG_FREEZE);
1139 if (error)
1140 goto Resume_console;
1141 /* At this point, dpm_suspend_start() has been called,
1142 * but *not* dpm_suspend_end(). We *must* call
1143 * dpm_suspend_end() now. Otherwise, drivers for
1144 * some devices (e.g. interrupt controllers) become
1145 * desynchronized with the actual state of the
1146 * hardware at resume time, and evil weirdness ensues.
1147 */
1148 error = dpm_suspend_end(PMSG_FREEZE);
1149 if (error)
1150 goto Resume_devices;
2f1a6fbb 1151 error = suspend_disable_secondary_cpus();
2965faa5
DY
1152 if (error)
1153 goto Enable_cpus;
1154 local_irq_disable();
1155 error = syscore_suspend();
1156 if (error)
1157 goto Enable_irqs;
1158 } else
1159#endif
1160 {
1161 kexec_in_progress = true;
1162 kernel_restart_prepare(NULL);
1163 migrate_to_reboot_cpu();
1164
1165 /*
1166 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1167 * no further code needs to use CPU hotplug (which is true in
1168 * the reboot case). However, the kexec path depends on using
1169 * CPU hotplug again; so re-enable it here.
1170 */
1171 cpu_hotplug_enable();
1172 pr_emerg("Starting new kernel\n");
1173 machine_shutdown();
1174 }
1175
1176 machine_kexec(kexec_image);
1177
1178#ifdef CONFIG_KEXEC_JUMP
1179 if (kexec_image->preserve_context) {
1180 syscore_resume();
1181 Enable_irqs:
1182 local_irq_enable();
1183 Enable_cpus:
2f1a6fbb 1184 suspend_enable_secondary_cpus();
2965faa5
DY
1185 dpm_resume_start(PMSG_RESTORE);
1186 Resume_devices:
1187 dpm_resume_end(PMSG_RESTORE);
1188 Resume_console:
1189 resume_console();
1190 thaw_processes();
1191 Restore_console:
1192 pm_restore_console();
1193 unlock_system_sleep();
1194 }
1195#endif
1196
1197 Unlock:
1198 mutex_unlock(&kexec_mutex);
1199 return error;
1200}
1201
1202/*
7a0058ec
XP
1203 * Protection mechanism for crashkernel reserved memory after
1204 * the kdump kernel is loaded.
2965faa5
DY
1205 *
1206 * Provide an empty default implementation here -- architecture
1207 * code may override this
1208 */
9b492cf5
XP
1209void __weak arch_kexec_protect_crashkres(void)
1210{}
1211
1212void __weak arch_kexec_unprotect_crashkres(void)
1213{}