kexec: remove KMSG_DUMP_KEXEC
[linux-2.6-block.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
c59ede7b 9#include <linux/capability.h>
dc009d92
EB
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
8c5a1cf0 15#include <linux/mutex.h>
dc009d92
EB
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
dc009d92 20#include <linux/ioport.h>
6e274d14 21#include <linux/hardirq.h>
85916f81
MD
22#include <linux/elf.h>
23#include <linux/elfcore.h>
273b281f 24#include <generated/utsrelease.h>
fd59d231
KO
25#include <linux/utsname.h>
26#include <linux/numa.h>
3ab83521
HY
27#include <linux/suspend.h>
28#include <linux/device.h>
89081d17
HY
29#include <linux/freezer.h>
30#include <linux/pm.h>
31#include <linux/cpu.h>
32#include <linux/console.h>
5f41b8cd 33#include <linux/vmalloc.h>
06a7f711 34#include <linux/swap.h>
19234c08 35#include <linux/syscore_ops.h>
6e274d14 36
dc009d92
EB
37#include <asm/page.h>
38#include <asm/uaccess.h>
39#include <asm/io.h>
40#include <asm/system.h>
fd59d231 41#include <asm/sections.h>
dc009d92 42
cc571658 43/* Per cpu memory for storing cpu states in case of system crash. */
43cf38eb 44note_buf_t __percpu *crash_notes;
cc571658 45
fd59d231 46/* vmcoreinfo stuff */
edb79a21 47static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
fd59d231 48u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
d768281e
KO
49size_t vmcoreinfo_size;
50size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
fd59d231 51
dc009d92
EB
52/* Location of the reserved area for the crash kernel */
53struct resource crashk_res = {
54 .name = "Crash kernel",
55 .start = 0,
56 .end = 0,
57 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
58};
59
6e274d14
AN
60int kexec_should_crash(struct task_struct *p)
61{
b460cbc5 62 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
6e274d14
AN
63 return 1;
64 return 0;
65}
66
dc009d92
EB
67/*
68 * When kexec transitions to the new kernel there is a one-to-one
69 * mapping between physical and virtual addresses. On processors
70 * where you can disable the MMU this is trivial, and easy. For
71 * others it is still a simple predictable page table to setup.
72 *
73 * In that environment kexec copies the new kernel to its final
74 * resting place. This means I can only support memory whose
75 * physical address can fit in an unsigned long. In particular
76 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
77 * If the assembly stub has more restrictive requirements
78 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
79 * defined more restrictively in <asm/kexec.h>.
80 *
81 * The code for the transition from the current kernel to the
82 * the new kernel is placed in the control_code_buffer, whose size
163f6876 83 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
dc009d92
EB
84 * page of memory is necessary, but some architectures require more.
85 * Because this memory must be identity mapped in the transition from
86 * virtual to physical addresses it must live in the range
87 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
88 * modifiable.
89 *
90 * The assembly stub in the control code buffer is passed a linked list
91 * of descriptor pages detailing the source pages of the new kernel,
92 * and the destination addresses of those source pages. As this data
93 * structure is not used in the context of the current OS, it must
94 * be self-contained.
95 *
96 * The code has been made to work with highmem pages and will use a
97 * destination page in its final resting place (if it happens
98 * to allocate it). The end product of this is that most of the
99 * physical address space, and most of RAM can be used.
100 *
101 * Future directions include:
102 * - allocating a page table with the control code buffer identity
103 * mapped, to simplify machine_kexec and make kexec_on_panic more
104 * reliable.
105 */
106
107/*
108 * KIMAGE_NO_DEST is an impossible destination address..., for
109 * allocating pages whose destination address we do not care about.
110 */
111#define KIMAGE_NO_DEST (-1UL)
112
72414d3f
MS
113static int kimage_is_destination_range(struct kimage *image,
114 unsigned long start, unsigned long end);
115static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 116 gfp_t gfp_mask,
72414d3f 117 unsigned long dest);
dc009d92
EB
118
119static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
120 unsigned long nr_segments,
121 struct kexec_segment __user *segments)
dc009d92
EB
122{
123 size_t segment_bytes;
124 struct kimage *image;
125 unsigned long i;
126 int result;
127
128 /* Allocate a controlling structure */
129 result = -ENOMEM;
4668edc3 130 image = kzalloc(sizeof(*image), GFP_KERNEL);
72414d3f 131 if (!image)
dc009d92 132 goto out;
72414d3f 133
dc009d92
EB
134 image->head = 0;
135 image->entry = &image->head;
136 image->last_entry = &image->head;
137 image->control_page = ~0; /* By default this does not apply */
138 image->start = entry;
139 image->type = KEXEC_TYPE_DEFAULT;
140
141 /* Initialize the list of control pages */
142 INIT_LIST_HEAD(&image->control_pages);
143
144 /* Initialize the list of destination pages */
145 INIT_LIST_HEAD(&image->dest_pages);
146
25985edc 147 /* Initialize the list of unusable pages */
dc009d92
EB
148 INIT_LIST_HEAD(&image->unuseable_pages);
149
150 /* Read in the segments */
151 image->nr_segments = nr_segments;
152 segment_bytes = nr_segments * sizeof(*segments);
153 result = copy_from_user(image->segment, segments, segment_bytes);
f65a03f6
DC
154 if (result) {
155 result = -EFAULT;
dc009d92 156 goto out;
f65a03f6 157 }
dc009d92
EB
158
159 /*
160 * Verify we have good destination addresses. The caller is
161 * responsible for making certain we don't attempt to load
162 * the new image into invalid or reserved areas of RAM. This
163 * just verifies it is an address we can use.
164 *
165 * Since the kernel does everything in page size chunks ensure
b595076a 166 * the destination addresses are page aligned. Too many
dc009d92
EB
167 * special cases crop of when we don't do this. The most
168 * insidious is getting overlapping destination addresses
169 * simply because addresses are changed to page size
170 * granularity.
171 */
172 result = -EADDRNOTAVAIL;
173 for (i = 0; i < nr_segments; i++) {
174 unsigned long mstart, mend;
72414d3f 175
dc009d92
EB
176 mstart = image->segment[i].mem;
177 mend = mstart + image->segment[i].memsz;
178 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
179 goto out;
180 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
181 goto out;
182 }
183
184 /* Verify our destination addresses do not overlap.
185 * If we alloed overlapping destination addresses
186 * through very weird things can happen with no
187 * easy explanation as one segment stops on another.
188 */
189 result = -EINVAL;
72414d3f 190 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
191 unsigned long mstart, mend;
192 unsigned long j;
72414d3f 193
dc009d92
EB
194 mstart = image->segment[i].mem;
195 mend = mstart + image->segment[i].memsz;
72414d3f 196 for (j = 0; j < i; j++) {
dc009d92
EB
197 unsigned long pstart, pend;
198 pstart = image->segment[j].mem;
199 pend = pstart + image->segment[j].memsz;
200 /* Do the segments overlap ? */
201 if ((mend > pstart) && (mstart < pend))
202 goto out;
203 }
204 }
205
206 /* Ensure our buffer sizes are strictly less than
207 * our memory sizes. This should always be the case,
208 * and it is easier to check up front than to be surprised
209 * later on.
210 */
211 result = -EINVAL;
72414d3f 212 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
213 if (image->segment[i].bufsz > image->segment[i].memsz)
214 goto out;
215 }
216
dc009d92 217 result = 0;
72414d3f
MS
218out:
219 if (result == 0)
dc009d92 220 *rimage = image;
72414d3f 221 else
dc009d92 222 kfree(image);
72414d3f 223
dc009d92
EB
224 return result;
225
226}
227
228static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
229 unsigned long nr_segments,
230 struct kexec_segment __user *segments)
dc009d92
EB
231{
232 int result;
233 struct kimage *image;
234
235 /* Allocate and initialize a controlling structure */
236 image = NULL;
237 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 238 if (result)
dc009d92 239 goto out;
72414d3f 240
dc009d92
EB
241 *rimage = image;
242
243 /*
244 * Find a location for the control code buffer, and add it
245 * the vector of segments so that it's pages will also be
246 * counted as destination pages.
247 */
248 result = -ENOMEM;
249 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 250 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92
EB
251 if (!image->control_code_page) {
252 printk(KERN_ERR "Could not allocate control_code_buffer\n");
253 goto out;
254 }
255
3ab83521
HY
256 image->swap_page = kimage_alloc_control_pages(image, 0);
257 if (!image->swap_page) {
258 printk(KERN_ERR "Could not allocate swap buffer\n");
259 goto out;
260 }
261
dc009d92
EB
262 result = 0;
263 out:
72414d3f 264 if (result == 0)
dc009d92 265 *rimage = image;
72414d3f 266 else
dc009d92 267 kfree(image);
72414d3f 268
dc009d92
EB
269 return result;
270}
271
272static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
72414d3f 273 unsigned long nr_segments,
314b6a4d 274 struct kexec_segment __user *segments)
dc009d92
EB
275{
276 int result;
277 struct kimage *image;
278 unsigned long i;
279
280 image = NULL;
281 /* Verify we have a valid entry point */
282 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
283 result = -EADDRNOTAVAIL;
284 goto out;
285 }
286
287 /* Allocate and initialize a controlling structure */
288 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 289 if (result)
dc009d92 290 goto out;
dc009d92
EB
291
292 /* Enable the special crash kernel control page
293 * allocation policy.
294 */
295 image->control_page = crashk_res.start;
296 image->type = KEXEC_TYPE_CRASH;
297
298 /*
299 * Verify we have good destination addresses. Normally
300 * the caller is responsible for making certain we don't
301 * attempt to load the new image into invalid or reserved
302 * areas of RAM. But crash kernels are preloaded into a
303 * reserved area of ram. We must ensure the addresses
304 * are in the reserved area otherwise preloading the
305 * kernel could corrupt things.
306 */
307 result = -EADDRNOTAVAIL;
308 for (i = 0; i < nr_segments; i++) {
309 unsigned long mstart, mend;
72414d3f 310
dc009d92 311 mstart = image->segment[i].mem;
50cccc69 312 mend = mstart + image->segment[i].memsz - 1;
dc009d92
EB
313 /* Ensure we are within the crash kernel limits */
314 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
315 goto out;
316 }
317
dc009d92
EB
318 /*
319 * Find a location for the control code buffer, and add
320 * the vector of segments so that it's pages will also be
321 * counted as destination pages.
322 */
323 result = -ENOMEM;
324 image->control_code_page = kimage_alloc_control_pages(image,
163f6876 325 get_order(KEXEC_CONTROL_PAGE_SIZE));
dc009d92
EB
326 if (!image->control_code_page) {
327 printk(KERN_ERR "Could not allocate control_code_buffer\n");
328 goto out;
329 }
330
331 result = 0;
72414d3f
MS
332out:
333 if (result == 0)
dc009d92 334 *rimage = image;
72414d3f 335 else
dc009d92 336 kfree(image);
72414d3f 337
dc009d92
EB
338 return result;
339}
340
72414d3f
MS
341static int kimage_is_destination_range(struct kimage *image,
342 unsigned long start,
343 unsigned long end)
dc009d92
EB
344{
345 unsigned long i;
346
347 for (i = 0; i < image->nr_segments; i++) {
348 unsigned long mstart, mend;
72414d3f 349
dc009d92 350 mstart = image->segment[i].mem;
72414d3f
MS
351 mend = mstart + image->segment[i].memsz;
352 if ((end > mstart) && (start < mend))
dc009d92 353 return 1;
dc009d92 354 }
72414d3f 355
dc009d92
EB
356 return 0;
357}
358
9796fdd8 359static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
360{
361 struct page *pages;
72414d3f 362
dc009d92
EB
363 pages = alloc_pages(gfp_mask, order);
364 if (pages) {
365 unsigned int count, i;
366 pages->mapping = NULL;
4c21e2f2 367 set_page_private(pages, order);
dc009d92 368 count = 1 << order;
72414d3f 369 for (i = 0; i < count; i++)
dc009d92 370 SetPageReserved(pages + i);
dc009d92 371 }
72414d3f 372
dc009d92
EB
373 return pages;
374}
375
376static void kimage_free_pages(struct page *page)
377{
378 unsigned int order, count, i;
72414d3f 379
4c21e2f2 380 order = page_private(page);
dc009d92 381 count = 1 << order;
72414d3f 382 for (i = 0; i < count; i++)
dc009d92 383 ClearPageReserved(page + i);
dc009d92
EB
384 __free_pages(page, order);
385}
386
387static void kimage_free_page_list(struct list_head *list)
388{
389 struct list_head *pos, *next;
72414d3f 390
dc009d92
EB
391 list_for_each_safe(pos, next, list) {
392 struct page *page;
393
394 page = list_entry(pos, struct page, lru);
395 list_del(&page->lru);
dc009d92
EB
396 kimage_free_pages(page);
397 }
398}
399
72414d3f
MS
400static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
401 unsigned int order)
dc009d92
EB
402{
403 /* Control pages are special, they are the intermediaries
404 * that are needed while we copy the rest of the pages
405 * to their final resting place. As such they must
406 * not conflict with either the destination addresses
407 * or memory the kernel is already using.
408 *
409 * The only case where we really need more than one of
410 * these are for architectures where we cannot disable
411 * the MMU and must instead generate an identity mapped
412 * page table for all of the memory.
413 *
414 * At worst this runs in O(N) of the image size.
415 */
416 struct list_head extra_pages;
417 struct page *pages;
418 unsigned int count;
419
420 count = 1 << order;
421 INIT_LIST_HEAD(&extra_pages);
422
423 /* Loop while I can allocate a page and the page allocated
424 * is a destination page.
425 */
426 do {
427 unsigned long pfn, epfn, addr, eaddr;
72414d3f 428
dc009d92
EB
429 pages = kimage_alloc_pages(GFP_KERNEL, order);
430 if (!pages)
431 break;
432 pfn = page_to_pfn(pages);
433 epfn = pfn + count;
434 addr = pfn << PAGE_SHIFT;
435 eaddr = epfn << PAGE_SHIFT;
436 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 437 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
438 list_add(&pages->lru, &extra_pages);
439 pages = NULL;
440 }
72414d3f
MS
441 } while (!pages);
442
dc009d92
EB
443 if (pages) {
444 /* Remember the allocated page... */
445 list_add(&pages->lru, &image->control_pages);
446
447 /* Because the page is already in it's destination
448 * location we will never allocate another page at
449 * that address. Therefore kimage_alloc_pages
450 * will not return it (again) and we don't need
451 * to give it an entry in image->segment[].
452 */
453 }
454 /* Deal with the destination pages I have inadvertently allocated.
455 *
456 * Ideally I would convert multi-page allocations into single
25985edc 457 * page allocations, and add everything to image->dest_pages.
dc009d92
EB
458 *
459 * For now it is simpler to just free the pages.
460 */
461 kimage_free_page_list(&extra_pages);
dc009d92 462
72414d3f 463 return pages;
dc009d92
EB
464}
465
72414d3f
MS
466static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
467 unsigned int order)
dc009d92
EB
468{
469 /* Control pages are special, they are the intermediaries
470 * that are needed while we copy the rest of the pages
471 * to their final resting place. As such they must
472 * not conflict with either the destination addresses
473 * or memory the kernel is already using.
474 *
475 * Control pages are also the only pags we must allocate
476 * when loading a crash kernel. All of the other pages
477 * are specified by the segments and we just memcpy
478 * into them directly.
479 *
480 * The only case where we really need more than one of
481 * these are for architectures where we cannot disable
482 * the MMU and must instead generate an identity mapped
483 * page table for all of the memory.
484 *
485 * Given the low demand this implements a very simple
486 * allocator that finds the first hole of the appropriate
487 * size in the reserved memory region, and allocates all
488 * of the memory up to and including the hole.
489 */
490 unsigned long hole_start, hole_end, size;
491 struct page *pages;
72414d3f 492
dc009d92
EB
493 pages = NULL;
494 size = (1 << order) << PAGE_SHIFT;
495 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
496 hole_end = hole_start + size - 1;
72414d3f 497 while (hole_end <= crashk_res.end) {
dc009d92 498 unsigned long i;
72414d3f 499
3d214fae 500 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
dc009d92 501 break;
72414d3f 502 if (hole_end > crashk_res.end)
dc009d92 503 break;
dc009d92 504 /* See if I overlap any of the segments */
72414d3f 505 for (i = 0; i < image->nr_segments; i++) {
dc009d92 506 unsigned long mstart, mend;
72414d3f 507
dc009d92
EB
508 mstart = image->segment[i].mem;
509 mend = mstart + image->segment[i].memsz - 1;
510 if ((hole_end >= mstart) && (hole_start <= mend)) {
511 /* Advance the hole to the end of the segment */
512 hole_start = (mend + (size - 1)) & ~(size - 1);
513 hole_end = hole_start + size - 1;
514 break;
515 }
516 }
517 /* If I don't overlap any segments I have found my hole! */
518 if (i == image->nr_segments) {
519 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
520 break;
521 }
522 }
72414d3f 523 if (pages)
dc009d92 524 image->control_page = hole_end;
72414d3f 525
dc009d92
EB
526 return pages;
527}
528
529
72414d3f
MS
530struct page *kimage_alloc_control_pages(struct kimage *image,
531 unsigned int order)
dc009d92
EB
532{
533 struct page *pages = NULL;
72414d3f
MS
534
535 switch (image->type) {
dc009d92
EB
536 case KEXEC_TYPE_DEFAULT:
537 pages = kimage_alloc_normal_control_pages(image, order);
538 break;
539 case KEXEC_TYPE_CRASH:
540 pages = kimage_alloc_crash_control_pages(image, order);
541 break;
542 }
72414d3f 543
dc009d92
EB
544 return pages;
545}
546
547static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
548{
72414d3f 549 if (*image->entry != 0)
dc009d92 550 image->entry++;
72414d3f 551
dc009d92
EB
552 if (image->entry == image->last_entry) {
553 kimage_entry_t *ind_page;
554 struct page *page;
72414d3f 555
dc009d92 556 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 557 if (!page)
dc009d92 558 return -ENOMEM;
72414d3f 559
dc009d92
EB
560 ind_page = page_address(page);
561 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
562 image->entry = ind_page;
72414d3f
MS
563 image->last_entry = ind_page +
564 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
565 }
566 *image->entry = entry;
567 image->entry++;
568 *image->entry = 0;
72414d3f 569
dc009d92
EB
570 return 0;
571}
572
72414d3f
MS
573static int kimage_set_destination(struct kimage *image,
574 unsigned long destination)
dc009d92
EB
575{
576 int result;
577
578 destination &= PAGE_MASK;
579 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 580 if (result == 0)
dc009d92 581 image->destination = destination;
72414d3f 582
dc009d92
EB
583 return result;
584}
585
586
587static int kimage_add_page(struct kimage *image, unsigned long page)
588{
589 int result;
590
591 page &= PAGE_MASK;
592 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 593 if (result == 0)
dc009d92 594 image->destination += PAGE_SIZE;
72414d3f 595
dc009d92
EB
596 return result;
597}
598
599
600static void kimage_free_extra_pages(struct kimage *image)
601{
602 /* Walk through and free any extra destination pages I may have */
603 kimage_free_page_list(&image->dest_pages);
604
25985edc 605 /* Walk through and free any unusable pages I have cached */
dc009d92
EB
606 kimage_free_page_list(&image->unuseable_pages);
607
608}
7fccf032 609static void kimage_terminate(struct kimage *image)
dc009d92 610{
72414d3f 611 if (*image->entry != 0)
dc009d92 612 image->entry++;
72414d3f 613
dc009d92 614 *image->entry = IND_DONE;
dc009d92
EB
615}
616
617#define for_each_kimage_entry(image, ptr, entry) \
618 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
619 ptr = (entry & IND_INDIRECTION)? \
620 phys_to_virt((entry & PAGE_MASK)): ptr +1)
621
622static void kimage_free_entry(kimage_entry_t entry)
623{
624 struct page *page;
625
626 page = pfn_to_page(entry >> PAGE_SHIFT);
627 kimage_free_pages(page);
628}
629
630static void kimage_free(struct kimage *image)
631{
632 kimage_entry_t *ptr, entry;
633 kimage_entry_t ind = 0;
634
635 if (!image)
636 return;
72414d3f 637
dc009d92
EB
638 kimage_free_extra_pages(image);
639 for_each_kimage_entry(image, ptr, entry) {
640 if (entry & IND_INDIRECTION) {
641 /* Free the previous indirection page */
72414d3f 642 if (ind & IND_INDIRECTION)
dc009d92 643 kimage_free_entry(ind);
dc009d92
EB
644 /* Save this indirection page until we are
645 * done with it.
646 */
647 ind = entry;
648 }
72414d3f 649 else if (entry & IND_SOURCE)
dc009d92 650 kimage_free_entry(entry);
dc009d92
EB
651 }
652 /* Free the final indirection page */
72414d3f 653 if (ind & IND_INDIRECTION)
dc009d92 654 kimage_free_entry(ind);
dc009d92
EB
655
656 /* Handle any machine specific cleanup */
657 machine_kexec_cleanup(image);
658
659 /* Free the kexec control pages... */
660 kimage_free_page_list(&image->control_pages);
661 kfree(image);
662}
663
72414d3f
MS
664static kimage_entry_t *kimage_dst_used(struct kimage *image,
665 unsigned long page)
dc009d92
EB
666{
667 kimage_entry_t *ptr, entry;
668 unsigned long destination = 0;
669
670 for_each_kimage_entry(image, ptr, entry) {
72414d3f 671 if (entry & IND_DESTINATION)
dc009d92 672 destination = entry & PAGE_MASK;
dc009d92 673 else if (entry & IND_SOURCE) {
72414d3f 674 if (page == destination)
dc009d92 675 return ptr;
dc009d92
EB
676 destination += PAGE_SIZE;
677 }
678 }
72414d3f 679
314b6a4d 680 return NULL;
dc009d92
EB
681}
682
72414d3f 683static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 684 gfp_t gfp_mask,
72414d3f 685 unsigned long destination)
dc009d92
EB
686{
687 /*
688 * Here we implement safeguards to ensure that a source page
689 * is not copied to its destination page before the data on
690 * the destination page is no longer useful.
691 *
692 * To do this we maintain the invariant that a source page is
693 * either its own destination page, or it is not a
694 * destination page at all.
695 *
696 * That is slightly stronger than required, but the proof
697 * that no problems will not occur is trivial, and the
698 * implementation is simply to verify.
699 *
700 * When allocating all pages normally this algorithm will run
701 * in O(N) time, but in the worst case it will run in O(N^2)
702 * time. If the runtime is a problem the data structures can
703 * be fixed.
704 */
705 struct page *page;
706 unsigned long addr;
707
708 /*
709 * Walk through the list of destination pages, and see if I
710 * have a match.
711 */
712 list_for_each_entry(page, &image->dest_pages, lru) {
713 addr = page_to_pfn(page) << PAGE_SHIFT;
714 if (addr == destination) {
715 list_del(&page->lru);
716 return page;
717 }
718 }
719 page = NULL;
720 while (1) {
721 kimage_entry_t *old;
722
723 /* Allocate a page, if we run out of memory give up */
724 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 725 if (!page)
314b6a4d 726 return NULL;
dc009d92 727 /* If the page cannot be used file it away */
72414d3f
MS
728 if (page_to_pfn(page) >
729 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
dc009d92
EB
730 list_add(&page->lru, &image->unuseable_pages);
731 continue;
732 }
733 addr = page_to_pfn(page) << PAGE_SHIFT;
734
735 /* If it is the destination page we want use it */
736 if (addr == destination)
737 break;
738
739 /* If the page is not a destination page use it */
72414d3f
MS
740 if (!kimage_is_destination_range(image, addr,
741 addr + PAGE_SIZE))
dc009d92
EB
742 break;
743
744 /*
745 * I know that the page is someones destination page.
746 * See if there is already a source page for this
747 * destination page. And if so swap the source pages.
748 */
749 old = kimage_dst_used(image, addr);
750 if (old) {
751 /* If so move it */
752 unsigned long old_addr;
753 struct page *old_page;
754
755 old_addr = *old & PAGE_MASK;
756 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
757 copy_highpage(page, old_page);
758 *old = addr | (*old & ~PAGE_MASK);
759
760 /* The old page I have found cannot be a
f9092f35
JS
761 * destination page, so return it if it's
762 * gfp_flags honor the ones passed in.
dc009d92 763 */
f9092f35
JS
764 if (!(gfp_mask & __GFP_HIGHMEM) &&
765 PageHighMem(old_page)) {
766 kimage_free_pages(old_page);
767 continue;
768 }
dc009d92
EB
769 addr = old_addr;
770 page = old_page;
771 break;
772 }
773 else {
774 /* Place the page on the destination list I
775 * will use it later.
776 */
777 list_add(&page->lru, &image->dest_pages);
778 }
779 }
72414d3f 780
dc009d92
EB
781 return page;
782}
783
784static int kimage_load_normal_segment(struct kimage *image,
72414d3f 785 struct kexec_segment *segment)
dc009d92
EB
786{
787 unsigned long maddr;
788 unsigned long ubytes, mbytes;
789 int result;
314b6a4d 790 unsigned char __user *buf;
dc009d92
EB
791
792 result = 0;
793 buf = segment->buf;
794 ubytes = segment->bufsz;
795 mbytes = segment->memsz;
796 maddr = segment->mem;
797
798 result = kimage_set_destination(image, maddr);
72414d3f 799 if (result < 0)
dc009d92 800 goto out;
72414d3f
MS
801
802 while (mbytes) {
dc009d92
EB
803 struct page *page;
804 char *ptr;
805 size_t uchunk, mchunk;
72414d3f 806
dc009d92 807 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
c80544dc 808 if (!page) {
dc009d92
EB
809 result = -ENOMEM;
810 goto out;
811 }
72414d3f
MS
812 result = kimage_add_page(image, page_to_pfn(page)
813 << PAGE_SHIFT);
814 if (result < 0)
dc009d92 815 goto out;
72414d3f 816
dc009d92
EB
817 ptr = kmap(page);
818 /* Start with a clear page */
3ecb01df 819 clear_page(ptr);
dc009d92
EB
820 ptr += maddr & ~PAGE_MASK;
821 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 822 if (mchunk > mbytes)
dc009d92 823 mchunk = mbytes;
72414d3f 824
dc009d92 825 uchunk = mchunk;
72414d3f 826 if (uchunk > ubytes)
dc009d92 827 uchunk = ubytes;
72414d3f 828
dc009d92
EB
829 result = copy_from_user(ptr, buf, uchunk);
830 kunmap(page);
831 if (result) {
f65a03f6 832 result = -EFAULT;
dc009d92
EB
833 goto out;
834 }
835 ubytes -= uchunk;
836 maddr += mchunk;
837 buf += mchunk;
838 mbytes -= mchunk;
839 }
72414d3f 840out:
dc009d92
EB
841 return result;
842}
843
844static int kimage_load_crash_segment(struct kimage *image,
72414d3f 845 struct kexec_segment *segment)
dc009d92
EB
846{
847 /* For crash dumps kernels we simply copy the data from
848 * user space to it's destination.
849 * We do things a page at a time for the sake of kmap.
850 */
851 unsigned long maddr;
852 unsigned long ubytes, mbytes;
853 int result;
314b6a4d 854 unsigned char __user *buf;
dc009d92
EB
855
856 result = 0;
857 buf = segment->buf;
858 ubytes = segment->bufsz;
859 mbytes = segment->memsz;
860 maddr = segment->mem;
72414d3f 861 while (mbytes) {
dc009d92
EB
862 struct page *page;
863 char *ptr;
864 size_t uchunk, mchunk;
72414d3f 865
dc009d92 866 page = pfn_to_page(maddr >> PAGE_SHIFT);
c80544dc 867 if (!page) {
dc009d92
EB
868 result = -ENOMEM;
869 goto out;
870 }
871 ptr = kmap(page);
872 ptr += maddr & ~PAGE_MASK;
873 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 874 if (mchunk > mbytes)
dc009d92 875 mchunk = mbytes;
72414d3f 876
dc009d92
EB
877 uchunk = mchunk;
878 if (uchunk > ubytes) {
879 uchunk = ubytes;
880 /* Zero the trailing part of the page */
881 memset(ptr + uchunk, 0, mchunk - uchunk);
882 }
883 result = copy_from_user(ptr, buf, uchunk);
a7956113 884 kexec_flush_icache_page(page);
dc009d92
EB
885 kunmap(page);
886 if (result) {
f65a03f6 887 result = -EFAULT;
dc009d92
EB
888 goto out;
889 }
890 ubytes -= uchunk;
891 maddr += mchunk;
892 buf += mchunk;
893 mbytes -= mchunk;
894 }
72414d3f 895out:
dc009d92
EB
896 return result;
897}
898
899static int kimage_load_segment(struct kimage *image,
72414d3f 900 struct kexec_segment *segment)
dc009d92
EB
901{
902 int result = -ENOMEM;
72414d3f
MS
903
904 switch (image->type) {
dc009d92
EB
905 case KEXEC_TYPE_DEFAULT:
906 result = kimage_load_normal_segment(image, segment);
907 break;
908 case KEXEC_TYPE_CRASH:
909 result = kimage_load_crash_segment(image, segment);
910 break;
911 }
72414d3f 912
dc009d92
EB
913 return result;
914}
915
916/*
917 * Exec Kernel system call: for obvious reasons only root may call it.
918 *
919 * This call breaks up into three pieces.
920 * - A generic part which loads the new kernel from the current
921 * address space, and very carefully places the data in the
922 * allocated pages.
923 *
924 * - A generic part that interacts with the kernel and tells all of
925 * the devices to shut down. Preventing on-going dmas, and placing
926 * the devices in a consistent state so a later kernel can
927 * reinitialize them.
928 *
929 * - A machine specific part that includes the syscall number
930 * and the copies the image to it's final destination. And
931 * jumps into the image at entry.
932 *
933 * kexec does not sync, or unmount filesystems so if you need
934 * that to happen you need to do that yourself.
935 */
c330dda9
JM
936struct kimage *kexec_image;
937struct kimage *kexec_crash_image;
8c5a1cf0
AM
938
939static DEFINE_MUTEX(kexec_mutex);
dc009d92 940
754fe8d2
HC
941SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
942 struct kexec_segment __user *, segments, unsigned long, flags)
dc009d92
EB
943{
944 struct kimage **dest_image, *image;
dc009d92
EB
945 int result;
946
947 /* We only trust the superuser with rebooting the system. */
948 if (!capable(CAP_SYS_BOOT))
949 return -EPERM;
950
951 /*
952 * Verify we have a legal set of flags
953 * This leaves us room for future extensions.
954 */
955 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
956 return -EINVAL;
957
958 /* Verify we are on the appropriate architecture */
959 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
960 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 961 return -EINVAL;
dc009d92
EB
962
963 /* Put an artificial cap on the number
964 * of segments passed to kexec_load.
965 */
966 if (nr_segments > KEXEC_SEGMENT_MAX)
967 return -EINVAL;
968
969 image = NULL;
970 result = 0;
971
972 /* Because we write directly to the reserved memory
973 * region when loading crash kernels we need a mutex here to
974 * prevent multiple crash kernels from attempting to load
975 * simultaneously, and to prevent a crash kernel from loading
976 * over the top of a in use crash kernel.
977 *
978 * KISS: always take the mutex.
979 */
8c5a1cf0 980 if (!mutex_trylock(&kexec_mutex))
dc009d92 981 return -EBUSY;
72414d3f 982
dc009d92 983 dest_image = &kexec_image;
72414d3f 984 if (flags & KEXEC_ON_CRASH)
dc009d92 985 dest_image = &kexec_crash_image;
dc009d92
EB
986 if (nr_segments > 0) {
987 unsigned long i;
72414d3f 988
dc009d92 989 /* Loading another kernel to reboot into */
72414d3f
MS
990 if ((flags & KEXEC_ON_CRASH) == 0)
991 result = kimage_normal_alloc(&image, entry,
992 nr_segments, segments);
dc009d92
EB
993 /* Loading another kernel to switch to if this one crashes */
994 else if (flags & KEXEC_ON_CRASH) {
995 /* Free any current crash dump kernel before
996 * we corrupt it.
997 */
998 kimage_free(xchg(&kexec_crash_image, NULL));
72414d3f
MS
999 result = kimage_crash_alloc(&image, entry,
1000 nr_segments, segments);
558df720 1001 crash_map_reserved_pages();
dc009d92 1002 }
72414d3f 1003 if (result)
dc009d92 1004 goto out;
72414d3f 1005
3ab83521
HY
1006 if (flags & KEXEC_PRESERVE_CONTEXT)
1007 image->preserve_context = 1;
dc009d92 1008 result = machine_kexec_prepare(image);
72414d3f 1009 if (result)
dc009d92 1010 goto out;
72414d3f
MS
1011
1012 for (i = 0; i < nr_segments; i++) {
dc009d92 1013 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 1014 if (result)
dc009d92 1015 goto out;
dc009d92 1016 }
7fccf032 1017 kimage_terminate(image);
558df720
MH
1018 if (flags & KEXEC_ON_CRASH)
1019 crash_unmap_reserved_pages();
dc009d92
EB
1020 }
1021 /* Install the new kernel, and Uninstall the old */
1022 image = xchg(dest_image, image);
1023
72414d3f 1024out:
8c5a1cf0 1025 mutex_unlock(&kexec_mutex);
dc009d92 1026 kimage_free(image);
72414d3f 1027
dc009d92
EB
1028 return result;
1029}
1030
558df720
MH
1031/*
1032 * Add and remove page tables for crashkernel memory
1033 *
1034 * Provide an empty default implementation here -- architecture
1035 * code may override this
1036 */
1037void __weak crash_map_reserved_pages(void)
1038{}
1039
1040void __weak crash_unmap_reserved_pages(void)
1041{}
1042
dc009d92
EB
1043#ifdef CONFIG_COMPAT
1044asmlinkage long compat_sys_kexec_load(unsigned long entry,
72414d3f
MS
1045 unsigned long nr_segments,
1046 struct compat_kexec_segment __user *segments,
1047 unsigned long flags)
dc009d92
EB
1048{
1049 struct compat_kexec_segment in;
1050 struct kexec_segment out, __user *ksegments;
1051 unsigned long i, result;
1052
1053 /* Don't allow clients that don't understand the native
1054 * architecture to do anything.
1055 */
72414d3f 1056 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1057 return -EINVAL;
dc009d92 1058
72414d3f 1059 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1060 return -EINVAL;
dc009d92
EB
1061
1062 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1063 for (i=0; i < nr_segments; i++) {
1064 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1065 if (result)
dc009d92 1066 return -EFAULT;
dc009d92
EB
1067
1068 out.buf = compat_ptr(in.buf);
1069 out.bufsz = in.bufsz;
1070 out.mem = in.mem;
1071 out.memsz = in.memsz;
1072
1073 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1074 if (result)
dc009d92 1075 return -EFAULT;
dc009d92
EB
1076 }
1077
1078 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1079}
1080#endif
1081
6e274d14 1082void crash_kexec(struct pt_regs *regs)
dc009d92 1083{
8c5a1cf0 1084 /* Take the kexec_mutex here to prevent sys_kexec_load
dc009d92
EB
1085 * running on one cpu from replacing the crash kernel
1086 * we are using after a panic on a different cpu.
1087 *
1088 * If the crash kernel was not located in a fixed area
1089 * of memory the xchg(&kexec_crash_image) would be
1090 * sufficient. But since I reuse the memory...
1091 */
8c5a1cf0 1092 if (mutex_trylock(&kexec_mutex)) {
c0ce7d08 1093 if (kexec_crash_image) {
e996e581 1094 struct pt_regs fixed_regs;
0f4bd46e 1095
e996e581 1096 crash_setup_regs(&fixed_regs, regs);
fd59d231 1097 crash_save_vmcoreinfo();
e996e581 1098 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1099 machine_kexec(kexec_crash_image);
dc009d92 1100 }
8c5a1cf0 1101 mutex_unlock(&kexec_mutex);
dc009d92
EB
1102 }
1103}
cc571658 1104
06a7f711
AW
1105size_t crash_get_memory_size(void)
1106{
e05bd336 1107 size_t size = 0;
06a7f711 1108 mutex_lock(&kexec_mutex);
e05bd336 1109 if (crashk_res.end != crashk_res.start)
28f65c11 1110 size = resource_size(&crashk_res);
06a7f711
AW
1111 mutex_unlock(&kexec_mutex);
1112 return size;
1113}
1114
c0bb9e45
AB
1115void __weak crash_free_reserved_phys_range(unsigned long begin,
1116 unsigned long end)
06a7f711
AW
1117{
1118 unsigned long addr;
1119
1120 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1121 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1122 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1123 free_page((unsigned long)__va(addr));
1124 totalram_pages++;
1125 }
1126}
1127
1128int crash_shrink_memory(unsigned long new_size)
1129{
1130 int ret = 0;
1131 unsigned long start, end;
1132
1133 mutex_lock(&kexec_mutex);
1134
1135 if (kexec_crash_image) {
1136 ret = -ENOENT;
1137 goto unlock;
1138 }
1139 start = crashk_res.start;
1140 end = crashk_res.end;
1141
1142 if (new_size >= end - start + 1) {
1143 ret = -EINVAL;
1144 if (new_size == end - start + 1)
1145 ret = 0;
1146 goto unlock;
1147 }
1148
558df720
MH
1149 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1150 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
06a7f711 1151
558df720 1152 crash_map_reserved_pages();
c0bb9e45 1153 crash_free_reserved_phys_range(end, crashk_res.end);
06a7f711 1154
e05bd336 1155 if ((start == end) && (crashk_res.parent != NULL))
06a7f711 1156 release_resource(&crashk_res);
475f9aa6 1157 crashk_res.end = end - 1;
558df720 1158 crash_unmap_reserved_pages();
06a7f711
AW
1159
1160unlock:
1161 mutex_unlock(&kexec_mutex);
1162 return ret;
1163}
1164
85916f81
MD
1165static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1166 size_t data_len)
1167{
1168 struct elf_note note;
1169
1170 note.n_namesz = strlen(name) + 1;
1171 note.n_descsz = data_len;
1172 note.n_type = type;
1173 memcpy(buf, &note, sizeof(note));
1174 buf += (sizeof(note) + 3)/4;
1175 memcpy(buf, name, note.n_namesz);
1176 buf += (note.n_namesz + 3)/4;
1177 memcpy(buf, data, note.n_descsz);
1178 buf += (note.n_descsz + 3)/4;
1179
1180 return buf;
1181}
1182
1183static void final_note(u32 *buf)
1184{
1185 struct elf_note note;
1186
1187 note.n_namesz = 0;
1188 note.n_descsz = 0;
1189 note.n_type = 0;
1190 memcpy(buf, &note, sizeof(note));
1191}
1192
1193void crash_save_cpu(struct pt_regs *regs, int cpu)
1194{
1195 struct elf_prstatus prstatus;
1196 u32 *buf;
1197
4f4b6c1a 1198 if ((cpu < 0) || (cpu >= nr_cpu_ids))
85916f81
MD
1199 return;
1200
1201 /* Using ELF notes here is opportunistic.
1202 * I need a well defined structure format
1203 * for the data I pass, and I need tags
1204 * on the data to indicate what information I have
1205 * squirrelled away. ELF notes happen to provide
1206 * all of that, so there is no need to invent something new.
1207 */
1208 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1209 if (!buf)
1210 return;
1211 memset(&prstatus, 0, sizeof(prstatus));
1212 prstatus.pr_pid = current->pid;
6cd61c0b 1213 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
6672f76a
SH
1214 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1215 &prstatus, sizeof(prstatus));
85916f81
MD
1216 final_note(buf);
1217}
1218
cc571658
VG
1219static int __init crash_notes_memory_init(void)
1220{
1221 /* Allocate memory for saving cpu registers. */
1222 crash_notes = alloc_percpu(note_buf_t);
1223 if (!crash_notes) {
1224 printk("Kexec: Memory allocation for saving cpu register"
1225 " states failed\n");
1226 return -ENOMEM;
1227 }
1228 return 0;
1229}
1230module_init(crash_notes_memory_init)
fd59d231 1231
cba63c30
BW
1232
1233/*
1234 * parsing the "crashkernel" commandline
1235 *
1236 * this code is intended to be called from architecture specific code
1237 */
1238
1239
1240/*
1241 * This function parses command lines in the format
1242 *
1243 * crashkernel=ramsize-range:size[,...][@offset]
1244 *
1245 * The function returns 0 on success and -EINVAL on failure.
1246 */
1247static int __init parse_crashkernel_mem(char *cmdline,
1248 unsigned long long system_ram,
1249 unsigned long long *crash_size,
1250 unsigned long long *crash_base)
1251{
1252 char *cur = cmdline, *tmp;
1253
1254 /* for each entry of the comma-separated list */
1255 do {
1256 unsigned long long start, end = ULLONG_MAX, size;
1257
1258 /* get the start of the range */
1259 start = memparse(cur, &tmp);
1260 if (cur == tmp) {
1261 pr_warning("crashkernel: Memory value expected\n");
1262 return -EINVAL;
1263 }
1264 cur = tmp;
1265 if (*cur != '-') {
1266 pr_warning("crashkernel: '-' expected\n");
1267 return -EINVAL;
1268 }
1269 cur++;
1270
1271 /* if no ':' is here, than we read the end */
1272 if (*cur != ':') {
1273 end = memparse(cur, &tmp);
1274 if (cur == tmp) {
1275 pr_warning("crashkernel: Memory "
1276 "value expected\n");
1277 return -EINVAL;
1278 }
1279 cur = tmp;
1280 if (end <= start) {
1281 pr_warning("crashkernel: end <= start\n");
1282 return -EINVAL;
1283 }
1284 }
1285
1286 if (*cur != ':') {
1287 pr_warning("crashkernel: ':' expected\n");
1288 return -EINVAL;
1289 }
1290 cur++;
1291
1292 size = memparse(cur, &tmp);
1293 if (cur == tmp) {
1294 pr_warning("Memory value expected\n");
1295 return -EINVAL;
1296 }
1297 cur = tmp;
1298 if (size >= system_ram) {
1299 pr_warning("crashkernel: invalid size\n");
1300 return -EINVAL;
1301 }
1302
1303 /* match ? */
be089d79 1304 if (system_ram >= start && system_ram < end) {
cba63c30
BW
1305 *crash_size = size;
1306 break;
1307 }
1308 } while (*cur++ == ',');
1309
1310 if (*crash_size > 0) {
11c7da4b 1311 while (*cur && *cur != ' ' && *cur != '@')
cba63c30
BW
1312 cur++;
1313 if (*cur == '@') {
1314 cur++;
1315 *crash_base = memparse(cur, &tmp);
1316 if (cur == tmp) {
1317 pr_warning("Memory value expected "
1318 "after '@'\n");
1319 return -EINVAL;
1320 }
1321 }
1322 }
1323
1324 return 0;
1325}
1326
1327/*
1328 * That function parses "simple" (old) crashkernel command lines like
1329 *
1330 * crashkernel=size[@offset]
1331 *
1332 * It returns 0 on success and -EINVAL on failure.
1333 */
1334static int __init parse_crashkernel_simple(char *cmdline,
1335 unsigned long long *crash_size,
1336 unsigned long long *crash_base)
1337{
1338 char *cur = cmdline;
1339
1340 *crash_size = memparse(cmdline, &cur);
1341 if (cmdline == cur) {
1342 pr_warning("crashkernel: memory value expected\n");
1343 return -EINVAL;
1344 }
1345
1346 if (*cur == '@')
1347 *crash_base = memparse(cur+1, &cur);
1348
1349 return 0;
1350}
1351
1352/*
1353 * That function is the entry point for command line parsing and should be
1354 * called from the arch-specific code.
1355 */
1356int __init parse_crashkernel(char *cmdline,
1357 unsigned long long system_ram,
1358 unsigned long long *crash_size,
1359 unsigned long long *crash_base)
1360{
1361 char *p = cmdline, *ck_cmdline = NULL;
1362 char *first_colon, *first_space;
1363
1364 BUG_ON(!crash_size || !crash_base);
1365 *crash_size = 0;
1366 *crash_base = 0;
1367
1368 /* find crashkernel and use the last one if there are more */
1369 p = strstr(p, "crashkernel=");
1370 while (p) {
1371 ck_cmdline = p;
1372 p = strstr(p+1, "crashkernel=");
1373 }
1374
1375 if (!ck_cmdline)
1376 return -EINVAL;
1377
1378 ck_cmdline += 12; /* strlen("crashkernel=") */
1379
1380 /*
1381 * if the commandline contains a ':', then that's the extended
1382 * syntax -- if not, it must be the classic syntax
1383 */
1384 first_colon = strchr(ck_cmdline, ':');
1385 first_space = strchr(ck_cmdline, ' ');
1386 if (first_colon && (!first_space || first_colon < first_space))
1387 return parse_crashkernel_mem(ck_cmdline, system_ram,
1388 crash_size, crash_base);
1389 else
1390 return parse_crashkernel_simple(ck_cmdline, crash_size,
1391 crash_base);
1392
1393 return 0;
1394}
1395
1396
fa8ff292 1397static void update_vmcoreinfo_note(void)
fd59d231 1398{
fa8ff292 1399 u32 *buf = vmcoreinfo_note;
fd59d231
KO
1400
1401 if (!vmcoreinfo_size)
1402 return;
fd59d231
KO
1403 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1404 vmcoreinfo_size);
fd59d231
KO
1405 final_note(buf);
1406}
1407
fa8ff292
MH
1408void crash_save_vmcoreinfo(void)
1409{
1410 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1411 update_vmcoreinfo_note();
1412}
1413
fd59d231
KO
1414void vmcoreinfo_append_str(const char *fmt, ...)
1415{
1416 va_list args;
1417 char buf[0x50];
1418 int r;
1419
1420 va_start(args, fmt);
1421 r = vsnprintf(buf, sizeof(buf), fmt, args);
1422 va_end(args);
1423
1424 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1425 r = vmcoreinfo_max_size - vmcoreinfo_size;
1426
1427 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1428
1429 vmcoreinfo_size += r;
1430}
1431
1432/*
1433 * provide an empty default implementation here -- architecture
1434 * code may override this
1435 */
1436void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1437{}
1438
1439unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1440{
1441 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1442}
1443
1444static int __init crash_save_vmcoreinfo_init(void)
1445{
bba1f603
KO
1446 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1447 VMCOREINFO_PAGESIZE(PAGE_SIZE);
fd59d231 1448
bcbba6c1
KO
1449 VMCOREINFO_SYMBOL(init_uts_ns);
1450 VMCOREINFO_SYMBOL(node_online_map);
1451 VMCOREINFO_SYMBOL(swapper_pg_dir);
1452 VMCOREINFO_SYMBOL(_stext);
acd99dbf 1453 VMCOREINFO_SYMBOL(vmlist);
fd59d231
KO
1454
1455#ifndef CONFIG_NEED_MULTIPLE_NODES
bcbba6c1
KO
1456 VMCOREINFO_SYMBOL(mem_map);
1457 VMCOREINFO_SYMBOL(contig_page_data);
fd59d231
KO
1458#endif
1459#ifdef CONFIG_SPARSEMEM
bcbba6c1
KO
1460 VMCOREINFO_SYMBOL(mem_section);
1461 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
c76f860c 1462 VMCOREINFO_STRUCT_SIZE(mem_section);
bcbba6c1 1463 VMCOREINFO_OFFSET(mem_section, section_mem_map);
fd59d231 1464#endif
c76f860c
KO
1465 VMCOREINFO_STRUCT_SIZE(page);
1466 VMCOREINFO_STRUCT_SIZE(pglist_data);
1467 VMCOREINFO_STRUCT_SIZE(zone);
1468 VMCOREINFO_STRUCT_SIZE(free_area);
1469 VMCOREINFO_STRUCT_SIZE(list_head);
1470 VMCOREINFO_SIZE(nodemask_t);
bcbba6c1
KO
1471 VMCOREINFO_OFFSET(page, flags);
1472 VMCOREINFO_OFFSET(page, _count);
1473 VMCOREINFO_OFFSET(page, mapping);
1474 VMCOREINFO_OFFSET(page, lru);
1475 VMCOREINFO_OFFSET(pglist_data, node_zones);
1476 VMCOREINFO_OFFSET(pglist_data, nr_zones);
fd59d231 1477#ifdef CONFIG_FLAT_NODE_MEM_MAP
bcbba6c1 1478 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
fd59d231 1479#endif
bcbba6c1
KO
1480 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1481 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1482 VMCOREINFO_OFFSET(pglist_data, node_id);
1483 VMCOREINFO_OFFSET(zone, free_area);
1484 VMCOREINFO_OFFSET(zone, vm_stat);
1485 VMCOREINFO_OFFSET(zone, spanned_pages);
1486 VMCOREINFO_OFFSET(free_area, free_list);
1487 VMCOREINFO_OFFSET(list_head, next);
1488 VMCOREINFO_OFFSET(list_head, prev);
acd99dbf 1489 VMCOREINFO_OFFSET(vm_struct, addr);
bcbba6c1 1490 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
04d491ab 1491 log_buf_kexec_setup();
83a08e7c 1492 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
bcbba6c1 1493 VMCOREINFO_NUMBER(NR_FREE_PAGES);
122c7a59
KO
1494 VMCOREINFO_NUMBER(PG_lru);
1495 VMCOREINFO_NUMBER(PG_private);
1496 VMCOREINFO_NUMBER(PG_swapcache);
fd59d231
KO
1497
1498 arch_crash_save_vmcoreinfo();
fa8ff292 1499 update_vmcoreinfo_note();
fd59d231
KO
1500
1501 return 0;
1502}
1503
1504module_init(crash_save_vmcoreinfo_init)
3ab83521 1505
7ade3fcc
HY
1506/*
1507 * Move into place and start executing a preloaded standalone
1508 * executable. If nothing was preloaded return an error.
3ab83521
HY
1509 */
1510int kernel_kexec(void)
1511{
1512 int error = 0;
1513
8c5a1cf0 1514 if (!mutex_trylock(&kexec_mutex))
3ab83521
HY
1515 return -EBUSY;
1516 if (!kexec_image) {
1517 error = -EINVAL;
1518 goto Unlock;
1519 }
1520
3ab83521 1521#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1522 if (kexec_image->preserve_context) {
bcda53fa 1523 lock_system_sleep();
89081d17
HY
1524 pm_prepare_console();
1525 error = freeze_processes();
1526 if (error) {
1527 error = -EBUSY;
1528 goto Restore_console;
1529 }
1530 suspend_console();
d1616302 1531 error = dpm_suspend_start(PMSG_FREEZE);
89081d17
HY
1532 if (error)
1533 goto Resume_console;
d1616302
AS
1534 /* At this point, dpm_suspend_start() has been called,
1535 * but *not* dpm_suspend_noirq(). We *must* call
1536 * dpm_suspend_noirq() now. Otherwise, drivers for
89081d17
HY
1537 * some devices (e.g. interrupt controllers) become
1538 * desynchronized with the actual state of the
1539 * hardware at resume time, and evil weirdness ensues.
1540 */
d1616302 1541 error = dpm_suspend_noirq(PMSG_FREEZE);
89081d17 1542 if (error)
749b0afc
RW
1543 goto Resume_devices;
1544 error = disable_nonboot_cpus();
1545 if (error)
1546 goto Enable_cpus;
2ed8d2b3 1547 local_irq_disable();
2e711c04 1548 error = syscore_suspend();
770824bd 1549 if (error)
749b0afc 1550 goto Enable_irqs;
7ade3fcc 1551 } else
3ab83521 1552#endif
7ade3fcc 1553 {
ca195b7f 1554 kernel_restart_prepare(NULL);
3ab83521
HY
1555 printk(KERN_EMERG "Starting new kernel\n");
1556 machine_shutdown();
1557 }
1558
1559 machine_kexec(kexec_image);
1560
3ab83521 1561#ifdef CONFIG_KEXEC_JUMP
7ade3fcc 1562 if (kexec_image->preserve_context) {
19234c08 1563 syscore_resume();
749b0afc 1564 Enable_irqs:
3ab83521 1565 local_irq_enable();
749b0afc 1566 Enable_cpus:
89081d17 1567 enable_nonboot_cpus();
d1616302 1568 dpm_resume_noirq(PMSG_RESTORE);
89081d17 1569 Resume_devices:
d1616302 1570 dpm_resume_end(PMSG_RESTORE);
89081d17
HY
1571 Resume_console:
1572 resume_console();
1573 thaw_processes();
1574 Restore_console:
1575 pm_restore_console();
bcda53fa 1576 unlock_system_sleep();
3ab83521 1577 }
7ade3fcc 1578#endif
3ab83521
HY
1579
1580 Unlock:
8c5a1cf0 1581 mutex_unlock(&kexec_mutex);
3ab83521
HY
1582 return error;
1583}