[PATCH] kdump: i386 save ss esp bug fix
[linux-2.6-block.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9#include <linux/mm.h>
10#include <linux/file.h>
11#include <linux/slab.h>
12#include <linux/fs.h>
13#include <linux/kexec.h>
14#include <linux/spinlock.h>
15#include <linux/list.h>
16#include <linux/highmem.h>
17#include <linux/syscalls.h>
18#include <linux/reboot.h>
19#include <linux/syscalls.h>
20#include <linux/ioport.h>
6e274d14
AN
21#include <linux/hardirq.h>
22
dc009d92
EB
23#include <asm/page.h>
24#include <asm/uaccess.h>
25#include <asm/io.h>
26#include <asm/system.h>
27#include <asm/semaphore.h>
28
29/* Location of the reserved area for the crash kernel */
30struct resource crashk_res = {
31 .name = "Crash kernel",
32 .start = 0,
33 .end = 0,
34 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
35};
36
6e274d14
AN
37int kexec_should_crash(struct task_struct *p)
38{
39 if (in_interrupt() || !p->pid || p->pid == 1 || panic_on_oops)
40 return 1;
41 return 0;
42}
43
dc009d92
EB
44/*
45 * When kexec transitions to the new kernel there is a one-to-one
46 * mapping between physical and virtual addresses. On processors
47 * where you can disable the MMU this is trivial, and easy. For
48 * others it is still a simple predictable page table to setup.
49 *
50 * In that environment kexec copies the new kernel to its final
51 * resting place. This means I can only support memory whose
52 * physical address can fit in an unsigned long. In particular
53 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
54 * If the assembly stub has more restrictive requirements
55 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
56 * defined more restrictively in <asm/kexec.h>.
57 *
58 * The code for the transition from the current kernel to the
59 * the new kernel is placed in the control_code_buffer, whose size
60 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
61 * page of memory is necessary, but some architectures require more.
62 * Because this memory must be identity mapped in the transition from
63 * virtual to physical addresses it must live in the range
64 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
65 * modifiable.
66 *
67 * The assembly stub in the control code buffer is passed a linked list
68 * of descriptor pages detailing the source pages of the new kernel,
69 * and the destination addresses of those source pages. As this data
70 * structure is not used in the context of the current OS, it must
71 * be self-contained.
72 *
73 * The code has been made to work with highmem pages and will use a
74 * destination page in its final resting place (if it happens
75 * to allocate it). The end product of this is that most of the
76 * physical address space, and most of RAM can be used.
77 *
78 * Future directions include:
79 * - allocating a page table with the control code buffer identity
80 * mapped, to simplify machine_kexec and make kexec_on_panic more
81 * reliable.
82 */
83
84/*
85 * KIMAGE_NO_DEST is an impossible destination address..., for
86 * allocating pages whose destination address we do not care about.
87 */
88#define KIMAGE_NO_DEST (-1UL)
89
72414d3f
MS
90static int kimage_is_destination_range(struct kimage *image,
91 unsigned long start, unsigned long end);
92static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 93 gfp_t gfp_mask,
72414d3f 94 unsigned long dest);
dc009d92
EB
95
96static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
97 unsigned long nr_segments,
98 struct kexec_segment __user *segments)
dc009d92
EB
99{
100 size_t segment_bytes;
101 struct kimage *image;
102 unsigned long i;
103 int result;
104
105 /* Allocate a controlling structure */
106 result = -ENOMEM;
107 image = kmalloc(sizeof(*image), GFP_KERNEL);
72414d3f 108 if (!image)
dc009d92 109 goto out;
72414d3f 110
dc009d92
EB
111 memset(image, 0, sizeof(*image));
112 image->head = 0;
113 image->entry = &image->head;
114 image->last_entry = &image->head;
115 image->control_page = ~0; /* By default this does not apply */
116 image->start = entry;
117 image->type = KEXEC_TYPE_DEFAULT;
118
119 /* Initialize the list of control pages */
120 INIT_LIST_HEAD(&image->control_pages);
121
122 /* Initialize the list of destination pages */
123 INIT_LIST_HEAD(&image->dest_pages);
124
125 /* Initialize the list of unuseable pages */
126 INIT_LIST_HEAD(&image->unuseable_pages);
127
128 /* Read in the segments */
129 image->nr_segments = nr_segments;
130 segment_bytes = nr_segments * sizeof(*segments);
131 result = copy_from_user(image->segment, segments, segment_bytes);
132 if (result)
133 goto out;
134
135 /*
136 * Verify we have good destination addresses. The caller is
137 * responsible for making certain we don't attempt to load
138 * the new image into invalid or reserved areas of RAM. This
139 * just verifies it is an address we can use.
140 *
141 * Since the kernel does everything in page size chunks ensure
142 * the destination addreses are page aligned. Too many
143 * special cases crop of when we don't do this. The most
144 * insidious is getting overlapping destination addresses
145 * simply because addresses are changed to page size
146 * granularity.
147 */
148 result = -EADDRNOTAVAIL;
149 for (i = 0; i < nr_segments; i++) {
150 unsigned long mstart, mend;
72414d3f 151
dc009d92
EB
152 mstart = image->segment[i].mem;
153 mend = mstart + image->segment[i].memsz;
154 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
155 goto out;
156 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
157 goto out;
158 }
159
160 /* Verify our destination addresses do not overlap.
161 * If we alloed overlapping destination addresses
162 * through very weird things can happen with no
163 * easy explanation as one segment stops on another.
164 */
165 result = -EINVAL;
72414d3f 166 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
167 unsigned long mstart, mend;
168 unsigned long j;
72414d3f 169
dc009d92
EB
170 mstart = image->segment[i].mem;
171 mend = mstart + image->segment[i].memsz;
72414d3f 172 for (j = 0; j < i; j++) {
dc009d92
EB
173 unsigned long pstart, pend;
174 pstart = image->segment[j].mem;
175 pend = pstart + image->segment[j].memsz;
176 /* Do the segments overlap ? */
177 if ((mend > pstart) && (mstart < pend))
178 goto out;
179 }
180 }
181
182 /* Ensure our buffer sizes are strictly less than
183 * our memory sizes. This should always be the case,
184 * and it is easier to check up front than to be surprised
185 * later on.
186 */
187 result = -EINVAL;
72414d3f 188 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
189 if (image->segment[i].bufsz > image->segment[i].memsz)
190 goto out;
191 }
192
dc009d92 193 result = 0;
72414d3f
MS
194out:
195 if (result == 0)
dc009d92 196 *rimage = image;
72414d3f 197 else
dc009d92 198 kfree(image);
72414d3f 199
dc009d92
EB
200 return result;
201
202}
203
204static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
205 unsigned long nr_segments,
206 struct kexec_segment __user *segments)
dc009d92
EB
207{
208 int result;
209 struct kimage *image;
210
211 /* Allocate and initialize a controlling structure */
212 image = NULL;
213 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 214 if (result)
dc009d92 215 goto out;
72414d3f 216
dc009d92
EB
217 *rimage = image;
218
219 /*
220 * Find a location for the control code buffer, and add it
221 * the vector of segments so that it's pages will also be
222 * counted as destination pages.
223 */
224 result = -ENOMEM;
225 image->control_code_page = kimage_alloc_control_pages(image,
72414d3f 226 get_order(KEXEC_CONTROL_CODE_SIZE));
dc009d92
EB
227 if (!image->control_code_page) {
228 printk(KERN_ERR "Could not allocate control_code_buffer\n");
229 goto out;
230 }
231
232 result = 0;
233 out:
72414d3f 234 if (result == 0)
dc009d92 235 *rimage = image;
72414d3f 236 else
dc009d92 237 kfree(image);
72414d3f 238
dc009d92
EB
239 return result;
240}
241
242static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
72414d3f 243 unsigned long nr_segments,
314b6a4d 244 struct kexec_segment __user *segments)
dc009d92
EB
245{
246 int result;
247 struct kimage *image;
248 unsigned long i;
249
250 image = NULL;
251 /* Verify we have a valid entry point */
252 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
253 result = -EADDRNOTAVAIL;
254 goto out;
255 }
256
257 /* Allocate and initialize a controlling structure */
258 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 259 if (result)
dc009d92 260 goto out;
dc009d92
EB
261
262 /* Enable the special crash kernel control page
263 * allocation policy.
264 */
265 image->control_page = crashk_res.start;
266 image->type = KEXEC_TYPE_CRASH;
267
268 /*
269 * Verify we have good destination addresses. Normally
270 * the caller is responsible for making certain we don't
271 * attempt to load the new image into invalid or reserved
272 * areas of RAM. But crash kernels are preloaded into a
273 * reserved area of ram. We must ensure the addresses
274 * are in the reserved area otherwise preloading the
275 * kernel could corrupt things.
276 */
277 result = -EADDRNOTAVAIL;
278 for (i = 0; i < nr_segments; i++) {
279 unsigned long mstart, mend;
72414d3f 280
dc009d92 281 mstart = image->segment[i].mem;
50cccc69 282 mend = mstart + image->segment[i].memsz - 1;
dc009d92
EB
283 /* Ensure we are within the crash kernel limits */
284 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
285 goto out;
286 }
287
dc009d92
EB
288 /*
289 * Find a location for the control code buffer, and add
290 * the vector of segments so that it's pages will also be
291 * counted as destination pages.
292 */
293 result = -ENOMEM;
294 image->control_code_page = kimage_alloc_control_pages(image,
72414d3f 295 get_order(KEXEC_CONTROL_CODE_SIZE));
dc009d92
EB
296 if (!image->control_code_page) {
297 printk(KERN_ERR "Could not allocate control_code_buffer\n");
298 goto out;
299 }
300
301 result = 0;
72414d3f
MS
302out:
303 if (result == 0)
dc009d92 304 *rimage = image;
72414d3f 305 else
dc009d92 306 kfree(image);
72414d3f 307
dc009d92
EB
308 return result;
309}
310
72414d3f
MS
311static int kimage_is_destination_range(struct kimage *image,
312 unsigned long start,
313 unsigned long end)
dc009d92
EB
314{
315 unsigned long i;
316
317 for (i = 0; i < image->nr_segments; i++) {
318 unsigned long mstart, mend;
72414d3f 319
dc009d92 320 mstart = image->segment[i].mem;
72414d3f
MS
321 mend = mstart + image->segment[i].memsz;
322 if ((end > mstart) && (start < mend))
dc009d92 323 return 1;
dc009d92 324 }
72414d3f 325
dc009d92
EB
326 return 0;
327}
328
9796fdd8 329static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
330{
331 struct page *pages;
72414d3f 332
dc009d92
EB
333 pages = alloc_pages(gfp_mask, order);
334 if (pages) {
335 unsigned int count, i;
336 pages->mapping = NULL;
4c21e2f2 337 set_page_private(pages, order);
dc009d92 338 count = 1 << order;
72414d3f 339 for (i = 0; i < count; i++)
dc009d92 340 SetPageReserved(pages + i);
dc009d92 341 }
72414d3f 342
dc009d92
EB
343 return pages;
344}
345
346static void kimage_free_pages(struct page *page)
347{
348 unsigned int order, count, i;
72414d3f 349
4c21e2f2 350 order = page_private(page);
dc009d92 351 count = 1 << order;
72414d3f 352 for (i = 0; i < count; i++)
dc009d92 353 ClearPageReserved(page + i);
dc009d92
EB
354 __free_pages(page, order);
355}
356
357static void kimage_free_page_list(struct list_head *list)
358{
359 struct list_head *pos, *next;
72414d3f 360
dc009d92
EB
361 list_for_each_safe(pos, next, list) {
362 struct page *page;
363
364 page = list_entry(pos, struct page, lru);
365 list_del(&page->lru);
dc009d92
EB
366 kimage_free_pages(page);
367 }
368}
369
72414d3f
MS
370static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
371 unsigned int order)
dc009d92
EB
372{
373 /* Control pages are special, they are the intermediaries
374 * that are needed while we copy the rest of the pages
375 * to their final resting place. As such they must
376 * not conflict with either the destination addresses
377 * or memory the kernel is already using.
378 *
379 * The only case where we really need more than one of
380 * these are for architectures where we cannot disable
381 * the MMU and must instead generate an identity mapped
382 * page table for all of the memory.
383 *
384 * At worst this runs in O(N) of the image size.
385 */
386 struct list_head extra_pages;
387 struct page *pages;
388 unsigned int count;
389
390 count = 1 << order;
391 INIT_LIST_HEAD(&extra_pages);
392
393 /* Loop while I can allocate a page and the page allocated
394 * is a destination page.
395 */
396 do {
397 unsigned long pfn, epfn, addr, eaddr;
72414d3f 398
dc009d92
EB
399 pages = kimage_alloc_pages(GFP_KERNEL, order);
400 if (!pages)
401 break;
402 pfn = page_to_pfn(pages);
403 epfn = pfn + count;
404 addr = pfn << PAGE_SHIFT;
405 eaddr = epfn << PAGE_SHIFT;
406 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 407 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
408 list_add(&pages->lru, &extra_pages);
409 pages = NULL;
410 }
72414d3f
MS
411 } while (!pages);
412
dc009d92
EB
413 if (pages) {
414 /* Remember the allocated page... */
415 list_add(&pages->lru, &image->control_pages);
416
417 /* Because the page is already in it's destination
418 * location we will never allocate another page at
419 * that address. Therefore kimage_alloc_pages
420 * will not return it (again) and we don't need
421 * to give it an entry in image->segment[].
422 */
423 }
424 /* Deal with the destination pages I have inadvertently allocated.
425 *
426 * Ideally I would convert multi-page allocations into single
427 * page allocations, and add everyting to image->dest_pages.
428 *
429 * For now it is simpler to just free the pages.
430 */
431 kimage_free_page_list(&extra_pages);
dc009d92 432
72414d3f 433 return pages;
dc009d92
EB
434}
435
72414d3f
MS
436static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
437 unsigned int order)
dc009d92
EB
438{
439 /* Control pages are special, they are the intermediaries
440 * that are needed while we copy the rest of the pages
441 * to their final resting place. As such they must
442 * not conflict with either the destination addresses
443 * or memory the kernel is already using.
444 *
445 * Control pages are also the only pags we must allocate
446 * when loading a crash kernel. All of the other pages
447 * are specified by the segments and we just memcpy
448 * into them directly.
449 *
450 * The only case where we really need more than one of
451 * these are for architectures where we cannot disable
452 * the MMU and must instead generate an identity mapped
453 * page table for all of the memory.
454 *
455 * Given the low demand this implements a very simple
456 * allocator that finds the first hole of the appropriate
457 * size in the reserved memory region, and allocates all
458 * of the memory up to and including the hole.
459 */
460 unsigned long hole_start, hole_end, size;
461 struct page *pages;
72414d3f 462
dc009d92
EB
463 pages = NULL;
464 size = (1 << order) << PAGE_SHIFT;
465 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
466 hole_end = hole_start + size - 1;
72414d3f 467 while (hole_end <= crashk_res.end) {
dc009d92 468 unsigned long i;
72414d3f
MS
469
470 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
dc009d92 471 break;
72414d3f 472 if (hole_end > crashk_res.end)
dc009d92 473 break;
dc009d92 474 /* See if I overlap any of the segments */
72414d3f 475 for (i = 0; i < image->nr_segments; i++) {
dc009d92 476 unsigned long mstart, mend;
72414d3f 477
dc009d92
EB
478 mstart = image->segment[i].mem;
479 mend = mstart + image->segment[i].memsz - 1;
480 if ((hole_end >= mstart) && (hole_start <= mend)) {
481 /* Advance the hole to the end of the segment */
482 hole_start = (mend + (size - 1)) & ~(size - 1);
483 hole_end = hole_start + size - 1;
484 break;
485 }
486 }
487 /* If I don't overlap any segments I have found my hole! */
488 if (i == image->nr_segments) {
489 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
490 break;
491 }
492 }
72414d3f 493 if (pages)
dc009d92 494 image->control_page = hole_end;
72414d3f 495
dc009d92
EB
496 return pages;
497}
498
499
72414d3f
MS
500struct page *kimage_alloc_control_pages(struct kimage *image,
501 unsigned int order)
dc009d92
EB
502{
503 struct page *pages = NULL;
72414d3f
MS
504
505 switch (image->type) {
dc009d92
EB
506 case KEXEC_TYPE_DEFAULT:
507 pages = kimage_alloc_normal_control_pages(image, order);
508 break;
509 case KEXEC_TYPE_CRASH:
510 pages = kimage_alloc_crash_control_pages(image, order);
511 break;
512 }
72414d3f 513
dc009d92
EB
514 return pages;
515}
516
517static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
518{
72414d3f 519 if (*image->entry != 0)
dc009d92 520 image->entry++;
72414d3f 521
dc009d92
EB
522 if (image->entry == image->last_entry) {
523 kimage_entry_t *ind_page;
524 struct page *page;
72414d3f 525
dc009d92 526 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 527 if (!page)
dc009d92 528 return -ENOMEM;
72414d3f 529
dc009d92
EB
530 ind_page = page_address(page);
531 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
532 image->entry = ind_page;
72414d3f
MS
533 image->last_entry = ind_page +
534 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
535 }
536 *image->entry = entry;
537 image->entry++;
538 *image->entry = 0;
72414d3f 539
dc009d92
EB
540 return 0;
541}
542
72414d3f
MS
543static int kimage_set_destination(struct kimage *image,
544 unsigned long destination)
dc009d92
EB
545{
546 int result;
547
548 destination &= PAGE_MASK;
549 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 550 if (result == 0)
dc009d92 551 image->destination = destination;
72414d3f 552
dc009d92
EB
553 return result;
554}
555
556
557static int kimage_add_page(struct kimage *image, unsigned long page)
558{
559 int result;
560
561 page &= PAGE_MASK;
562 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 563 if (result == 0)
dc009d92 564 image->destination += PAGE_SIZE;
72414d3f 565
dc009d92
EB
566 return result;
567}
568
569
570static void kimage_free_extra_pages(struct kimage *image)
571{
572 /* Walk through and free any extra destination pages I may have */
573 kimage_free_page_list(&image->dest_pages);
574
575 /* Walk through and free any unuseable pages I have cached */
576 kimage_free_page_list(&image->unuseable_pages);
577
578}
579static int kimage_terminate(struct kimage *image)
580{
72414d3f 581 if (*image->entry != 0)
dc009d92 582 image->entry++;
72414d3f 583
dc009d92 584 *image->entry = IND_DONE;
72414d3f 585
dc009d92
EB
586 return 0;
587}
588
589#define for_each_kimage_entry(image, ptr, entry) \
590 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
591 ptr = (entry & IND_INDIRECTION)? \
592 phys_to_virt((entry & PAGE_MASK)): ptr +1)
593
594static void kimage_free_entry(kimage_entry_t entry)
595{
596 struct page *page;
597
598 page = pfn_to_page(entry >> PAGE_SHIFT);
599 kimage_free_pages(page);
600}
601
602static void kimage_free(struct kimage *image)
603{
604 kimage_entry_t *ptr, entry;
605 kimage_entry_t ind = 0;
606
607 if (!image)
608 return;
72414d3f 609
dc009d92
EB
610 kimage_free_extra_pages(image);
611 for_each_kimage_entry(image, ptr, entry) {
612 if (entry & IND_INDIRECTION) {
613 /* Free the previous indirection page */
72414d3f 614 if (ind & IND_INDIRECTION)
dc009d92 615 kimage_free_entry(ind);
dc009d92
EB
616 /* Save this indirection page until we are
617 * done with it.
618 */
619 ind = entry;
620 }
72414d3f 621 else if (entry & IND_SOURCE)
dc009d92 622 kimage_free_entry(entry);
dc009d92
EB
623 }
624 /* Free the final indirection page */
72414d3f 625 if (ind & IND_INDIRECTION)
dc009d92 626 kimage_free_entry(ind);
dc009d92
EB
627
628 /* Handle any machine specific cleanup */
629 machine_kexec_cleanup(image);
630
631 /* Free the kexec control pages... */
632 kimage_free_page_list(&image->control_pages);
633 kfree(image);
634}
635
72414d3f
MS
636static kimage_entry_t *kimage_dst_used(struct kimage *image,
637 unsigned long page)
dc009d92
EB
638{
639 kimage_entry_t *ptr, entry;
640 unsigned long destination = 0;
641
642 for_each_kimage_entry(image, ptr, entry) {
72414d3f 643 if (entry & IND_DESTINATION)
dc009d92 644 destination = entry & PAGE_MASK;
dc009d92 645 else if (entry & IND_SOURCE) {
72414d3f 646 if (page == destination)
dc009d92 647 return ptr;
dc009d92
EB
648 destination += PAGE_SIZE;
649 }
650 }
72414d3f 651
314b6a4d 652 return NULL;
dc009d92
EB
653}
654
72414d3f 655static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 656 gfp_t gfp_mask,
72414d3f 657 unsigned long destination)
dc009d92
EB
658{
659 /*
660 * Here we implement safeguards to ensure that a source page
661 * is not copied to its destination page before the data on
662 * the destination page is no longer useful.
663 *
664 * To do this we maintain the invariant that a source page is
665 * either its own destination page, or it is not a
666 * destination page at all.
667 *
668 * That is slightly stronger than required, but the proof
669 * that no problems will not occur is trivial, and the
670 * implementation is simply to verify.
671 *
672 * When allocating all pages normally this algorithm will run
673 * in O(N) time, but in the worst case it will run in O(N^2)
674 * time. If the runtime is a problem the data structures can
675 * be fixed.
676 */
677 struct page *page;
678 unsigned long addr;
679
680 /*
681 * Walk through the list of destination pages, and see if I
682 * have a match.
683 */
684 list_for_each_entry(page, &image->dest_pages, lru) {
685 addr = page_to_pfn(page) << PAGE_SHIFT;
686 if (addr == destination) {
687 list_del(&page->lru);
688 return page;
689 }
690 }
691 page = NULL;
692 while (1) {
693 kimage_entry_t *old;
694
695 /* Allocate a page, if we run out of memory give up */
696 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 697 if (!page)
314b6a4d 698 return NULL;
dc009d92 699 /* If the page cannot be used file it away */
72414d3f
MS
700 if (page_to_pfn(page) >
701 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
dc009d92
EB
702 list_add(&page->lru, &image->unuseable_pages);
703 continue;
704 }
705 addr = page_to_pfn(page) << PAGE_SHIFT;
706
707 /* If it is the destination page we want use it */
708 if (addr == destination)
709 break;
710
711 /* If the page is not a destination page use it */
72414d3f
MS
712 if (!kimage_is_destination_range(image, addr,
713 addr + PAGE_SIZE))
dc009d92
EB
714 break;
715
716 /*
717 * I know that the page is someones destination page.
718 * See if there is already a source page for this
719 * destination page. And if so swap the source pages.
720 */
721 old = kimage_dst_used(image, addr);
722 if (old) {
723 /* If so move it */
724 unsigned long old_addr;
725 struct page *old_page;
726
727 old_addr = *old & PAGE_MASK;
728 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
729 copy_highpage(page, old_page);
730 *old = addr | (*old & ~PAGE_MASK);
731
732 /* The old page I have found cannot be a
733 * destination page, so return it.
734 */
735 addr = old_addr;
736 page = old_page;
737 break;
738 }
739 else {
740 /* Place the page on the destination list I
741 * will use it later.
742 */
743 list_add(&page->lru, &image->dest_pages);
744 }
745 }
72414d3f 746
dc009d92
EB
747 return page;
748}
749
750static int kimage_load_normal_segment(struct kimage *image,
72414d3f 751 struct kexec_segment *segment)
dc009d92
EB
752{
753 unsigned long maddr;
754 unsigned long ubytes, mbytes;
755 int result;
314b6a4d 756 unsigned char __user *buf;
dc009d92
EB
757
758 result = 0;
759 buf = segment->buf;
760 ubytes = segment->bufsz;
761 mbytes = segment->memsz;
762 maddr = segment->mem;
763
764 result = kimage_set_destination(image, maddr);
72414d3f 765 if (result < 0)
dc009d92 766 goto out;
72414d3f
MS
767
768 while (mbytes) {
dc009d92
EB
769 struct page *page;
770 char *ptr;
771 size_t uchunk, mchunk;
72414d3f 772
dc009d92
EB
773 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
774 if (page == 0) {
775 result = -ENOMEM;
776 goto out;
777 }
72414d3f
MS
778 result = kimage_add_page(image, page_to_pfn(page)
779 << PAGE_SHIFT);
780 if (result < 0)
dc009d92 781 goto out;
72414d3f 782
dc009d92
EB
783 ptr = kmap(page);
784 /* Start with a clear page */
785 memset(ptr, 0, PAGE_SIZE);
786 ptr += maddr & ~PAGE_MASK;
787 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 788 if (mchunk > mbytes)
dc009d92 789 mchunk = mbytes;
72414d3f 790
dc009d92 791 uchunk = mchunk;
72414d3f 792 if (uchunk > ubytes)
dc009d92 793 uchunk = ubytes;
72414d3f 794
dc009d92
EB
795 result = copy_from_user(ptr, buf, uchunk);
796 kunmap(page);
797 if (result) {
798 result = (result < 0) ? result : -EIO;
799 goto out;
800 }
801 ubytes -= uchunk;
802 maddr += mchunk;
803 buf += mchunk;
804 mbytes -= mchunk;
805 }
72414d3f 806out:
dc009d92
EB
807 return result;
808}
809
810static int kimage_load_crash_segment(struct kimage *image,
72414d3f 811 struct kexec_segment *segment)
dc009d92
EB
812{
813 /* For crash dumps kernels we simply copy the data from
814 * user space to it's destination.
815 * We do things a page at a time for the sake of kmap.
816 */
817 unsigned long maddr;
818 unsigned long ubytes, mbytes;
819 int result;
314b6a4d 820 unsigned char __user *buf;
dc009d92
EB
821
822 result = 0;
823 buf = segment->buf;
824 ubytes = segment->bufsz;
825 mbytes = segment->memsz;
826 maddr = segment->mem;
72414d3f 827 while (mbytes) {
dc009d92
EB
828 struct page *page;
829 char *ptr;
830 size_t uchunk, mchunk;
72414d3f 831
dc009d92
EB
832 page = pfn_to_page(maddr >> PAGE_SHIFT);
833 if (page == 0) {
834 result = -ENOMEM;
835 goto out;
836 }
837 ptr = kmap(page);
838 ptr += maddr & ~PAGE_MASK;
839 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 840 if (mchunk > mbytes)
dc009d92 841 mchunk = mbytes;
72414d3f 842
dc009d92
EB
843 uchunk = mchunk;
844 if (uchunk > ubytes) {
845 uchunk = ubytes;
846 /* Zero the trailing part of the page */
847 memset(ptr + uchunk, 0, mchunk - uchunk);
848 }
849 result = copy_from_user(ptr, buf, uchunk);
850 kunmap(page);
851 if (result) {
852 result = (result < 0) ? result : -EIO;
853 goto out;
854 }
855 ubytes -= uchunk;
856 maddr += mchunk;
857 buf += mchunk;
858 mbytes -= mchunk;
859 }
72414d3f 860out:
dc009d92
EB
861 return result;
862}
863
864static int kimage_load_segment(struct kimage *image,
72414d3f 865 struct kexec_segment *segment)
dc009d92
EB
866{
867 int result = -ENOMEM;
72414d3f
MS
868
869 switch (image->type) {
dc009d92
EB
870 case KEXEC_TYPE_DEFAULT:
871 result = kimage_load_normal_segment(image, segment);
872 break;
873 case KEXEC_TYPE_CRASH:
874 result = kimage_load_crash_segment(image, segment);
875 break;
876 }
72414d3f 877
dc009d92
EB
878 return result;
879}
880
881/*
882 * Exec Kernel system call: for obvious reasons only root may call it.
883 *
884 * This call breaks up into three pieces.
885 * - A generic part which loads the new kernel from the current
886 * address space, and very carefully places the data in the
887 * allocated pages.
888 *
889 * - A generic part that interacts with the kernel and tells all of
890 * the devices to shut down. Preventing on-going dmas, and placing
891 * the devices in a consistent state so a later kernel can
892 * reinitialize them.
893 *
894 * - A machine specific part that includes the syscall number
895 * and the copies the image to it's final destination. And
896 * jumps into the image at entry.
897 *
898 * kexec does not sync, or unmount filesystems so if you need
899 * that to happen you need to do that yourself.
900 */
901struct kimage *kexec_image = NULL;
902static struct kimage *kexec_crash_image = NULL;
903/*
904 * A home grown binary mutex.
905 * Nothing can wait so this mutex is safe to use
906 * in interrupt context :)
907 */
908static int kexec_lock = 0;
909
72414d3f
MS
910asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
911 struct kexec_segment __user *segments,
912 unsigned long flags)
dc009d92
EB
913{
914 struct kimage **dest_image, *image;
915 int locked;
916 int result;
917
918 /* We only trust the superuser with rebooting the system. */
919 if (!capable(CAP_SYS_BOOT))
920 return -EPERM;
921
922 /*
923 * Verify we have a legal set of flags
924 * This leaves us room for future extensions.
925 */
926 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
927 return -EINVAL;
928
929 /* Verify we are on the appropriate architecture */
930 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
931 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 932 return -EINVAL;
dc009d92
EB
933
934 /* Put an artificial cap on the number
935 * of segments passed to kexec_load.
936 */
937 if (nr_segments > KEXEC_SEGMENT_MAX)
938 return -EINVAL;
939
940 image = NULL;
941 result = 0;
942
943 /* Because we write directly to the reserved memory
944 * region when loading crash kernels we need a mutex here to
945 * prevent multiple crash kernels from attempting to load
946 * simultaneously, and to prevent a crash kernel from loading
947 * over the top of a in use crash kernel.
948 *
949 * KISS: always take the mutex.
950 */
951 locked = xchg(&kexec_lock, 1);
72414d3f 952 if (locked)
dc009d92 953 return -EBUSY;
72414d3f 954
dc009d92 955 dest_image = &kexec_image;
72414d3f 956 if (flags & KEXEC_ON_CRASH)
dc009d92 957 dest_image = &kexec_crash_image;
dc009d92
EB
958 if (nr_segments > 0) {
959 unsigned long i;
72414d3f 960
dc009d92 961 /* Loading another kernel to reboot into */
72414d3f
MS
962 if ((flags & KEXEC_ON_CRASH) == 0)
963 result = kimage_normal_alloc(&image, entry,
964 nr_segments, segments);
dc009d92
EB
965 /* Loading another kernel to switch to if this one crashes */
966 else if (flags & KEXEC_ON_CRASH) {
967 /* Free any current crash dump kernel before
968 * we corrupt it.
969 */
970 kimage_free(xchg(&kexec_crash_image, NULL));
72414d3f
MS
971 result = kimage_crash_alloc(&image, entry,
972 nr_segments, segments);
dc009d92 973 }
72414d3f 974 if (result)
dc009d92 975 goto out;
72414d3f 976
dc009d92 977 result = machine_kexec_prepare(image);
72414d3f 978 if (result)
dc009d92 979 goto out;
72414d3f
MS
980
981 for (i = 0; i < nr_segments; i++) {
dc009d92 982 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 983 if (result)
dc009d92 984 goto out;
dc009d92
EB
985 }
986 result = kimage_terminate(image);
72414d3f 987 if (result)
dc009d92 988 goto out;
dc009d92
EB
989 }
990 /* Install the new kernel, and Uninstall the old */
991 image = xchg(dest_image, image);
992
72414d3f 993out:
dc009d92
EB
994 xchg(&kexec_lock, 0); /* Release the mutex */
995 kimage_free(image);
72414d3f 996
dc009d92
EB
997 return result;
998}
999
1000#ifdef CONFIG_COMPAT
1001asmlinkage long compat_sys_kexec_load(unsigned long entry,
72414d3f
MS
1002 unsigned long nr_segments,
1003 struct compat_kexec_segment __user *segments,
1004 unsigned long flags)
dc009d92
EB
1005{
1006 struct compat_kexec_segment in;
1007 struct kexec_segment out, __user *ksegments;
1008 unsigned long i, result;
1009
1010 /* Don't allow clients that don't understand the native
1011 * architecture to do anything.
1012 */
72414d3f 1013 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1014 return -EINVAL;
dc009d92 1015
72414d3f 1016 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1017 return -EINVAL;
dc009d92
EB
1018
1019 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1020 for (i=0; i < nr_segments; i++) {
1021 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1022 if (result)
dc009d92 1023 return -EFAULT;
dc009d92
EB
1024
1025 out.buf = compat_ptr(in.buf);
1026 out.bufsz = in.bufsz;
1027 out.mem = in.mem;
1028 out.memsz = in.memsz;
1029
1030 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1031 if (result)
dc009d92 1032 return -EFAULT;
dc009d92
EB
1033 }
1034
1035 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1036}
1037#endif
1038
6e274d14 1039void crash_kexec(struct pt_regs *regs)
dc009d92
EB
1040{
1041 struct kimage *image;
1042 int locked;
1043
1044
1045 /* Take the kexec_lock here to prevent sys_kexec_load
1046 * running on one cpu from replacing the crash kernel
1047 * we are using after a panic on a different cpu.
1048 *
1049 * If the crash kernel was not located in a fixed area
1050 * of memory the xchg(&kexec_crash_image) would be
1051 * sufficient. But since I reuse the memory...
1052 */
1053 locked = xchg(&kexec_lock, 1);
1054 if (!locked) {
1055 image = xchg(&kexec_crash_image, NULL);
1056 if (image) {
6e274d14 1057 machine_crash_shutdown(regs);
dc009d92
EB
1058 machine_kexec(image);
1059 }
1060 xchg(&kexec_lock, 0);
1061 }
1062}