kernel/kexec.c: make 'kimage_terminate' void
[linux-2.6-block.git] / kernel / kexec.c
CommitLineData
dc009d92
EB
1/*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
c59ede7b 9#include <linux/capability.h>
dc009d92
EB
10#include <linux/mm.h>
11#include <linux/file.h>
12#include <linux/slab.h>
13#include <linux/fs.h>
14#include <linux/kexec.h>
15#include <linux/spinlock.h>
16#include <linux/list.h>
17#include <linux/highmem.h>
18#include <linux/syscalls.h>
19#include <linux/reboot.h>
dc009d92 20#include <linux/ioport.h>
6e274d14 21#include <linux/hardirq.h>
85916f81
MD
22#include <linux/elf.h>
23#include <linux/elfcore.h>
fd59d231
KO
24#include <linux/utsrelease.h>
25#include <linux/utsname.h>
26#include <linux/numa.h>
6e274d14 27
dc009d92
EB
28#include <asm/page.h>
29#include <asm/uaccess.h>
30#include <asm/io.h>
31#include <asm/system.h>
fd59d231 32#include <asm/sections.h>
dc009d92 33
cc571658
VG
34/* Per cpu memory for storing cpu states in case of system crash. */
35note_buf_t* crash_notes;
36
fd59d231
KO
37/* vmcoreinfo stuff */
38unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
39u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
d768281e
KO
40size_t vmcoreinfo_size;
41size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
fd59d231 42
dc009d92
EB
43/* Location of the reserved area for the crash kernel */
44struct resource crashk_res = {
45 .name = "Crash kernel",
46 .start = 0,
47 .end = 0,
48 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
49};
50
6e274d14
AN
51int kexec_should_crash(struct task_struct *p)
52{
b460cbc5 53 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
6e274d14
AN
54 return 1;
55 return 0;
56}
57
dc009d92
EB
58/*
59 * When kexec transitions to the new kernel there is a one-to-one
60 * mapping between physical and virtual addresses. On processors
61 * where you can disable the MMU this is trivial, and easy. For
62 * others it is still a simple predictable page table to setup.
63 *
64 * In that environment kexec copies the new kernel to its final
65 * resting place. This means I can only support memory whose
66 * physical address can fit in an unsigned long. In particular
67 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
68 * If the assembly stub has more restrictive requirements
69 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
70 * defined more restrictively in <asm/kexec.h>.
71 *
72 * The code for the transition from the current kernel to the
73 * the new kernel is placed in the control_code_buffer, whose size
74 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
75 * page of memory is necessary, but some architectures require more.
76 * Because this memory must be identity mapped in the transition from
77 * virtual to physical addresses it must live in the range
78 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
79 * modifiable.
80 *
81 * The assembly stub in the control code buffer is passed a linked list
82 * of descriptor pages detailing the source pages of the new kernel,
83 * and the destination addresses of those source pages. As this data
84 * structure is not used in the context of the current OS, it must
85 * be self-contained.
86 *
87 * The code has been made to work with highmem pages and will use a
88 * destination page in its final resting place (if it happens
89 * to allocate it). The end product of this is that most of the
90 * physical address space, and most of RAM can be used.
91 *
92 * Future directions include:
93 * - allocating a page table with the control code buffer identity
94 * mapped, to simplify machine_kexec and make kexec_on_panic more
95 * reliable.
96 */
97
98/*
99 * KIMAGE_NO_DEST is an impossible destination address..., for
100 * allocating pages whose destination address we do not care about.
101 */
102#define KIMAGE_NO_DEST (-1UL)
103
72414d3f
MS
104static int kimage_is_destination_range(struct kimage *image,
105 unsigned long start, unsigned long end);
106static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 107 gfp_t gfp_mask,
72414d3f 108 unsigned long dest);
dc009d92
EB
109
110static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
111 unsigned long nr_segments,
112 struct kexec_segment __user *segments)
dc009d92
EB
113{
114 size_t segment_bytes;
115 struct kimage *image;
116 unsigned long i;
117 int result;
118
119 /* Allocate a controlling structure */
120 result = -ENOMEM;
4668edc3 121 image = kzalloc(sizeof(*image), GFP_KERNEL);
72414d3f 122 if (!image)
dc009d92 123 goto out;
72414d3f 124
dc009d92
EB
125 image->head = 0;
126 image->entry = &image->head;
127 image->last_entry = &image->head;
128 image->control_page = ~0; /* By default this does not apply */
129 image->start = entry;
130 image->type = KEXEC_TYPE_DEFAULT;
131
132 /* Initialize the list of control pages */
133 INIT_LIST_HEAD(&image->control_pages);
134
135 /* Initialize the list of destination pages */
136 INIT_LIST_HEAD(&image->dest_pages);
137
138 /* Initialize the list of unuseable pages */
139 INIT_LIST_HEAD(&image->unuseable_pages);
140
141 /* Read in the segments */
142 image->nr_segments = nr_segments;
143 segment_bytes = nr_segments * sizeof(*segments);
144 result = copy_from_user(image->segment, segments, segment_bytes);
145 if (result)
146 goto out;
147
148 /*
149 * Verify we have good destination addresses. The caller is
150 * responsible for making certain we don't attempt to load
151 * the new image into invalid or reserved areas of RAM. This
152 * just verifies it is an address we can use.
153 *
154 * Since the kernel does everything in page size chunks ensure
155 * the destination addreses are page aligned. Too many
156 * special cases crop of when we don't do this. The most
157 * insidious is getting overlapping destination addresses
158 * simply because addresses are changed to page size
159 * granularity.
160 */
161 result = -EADDRNOTAVAIL;
162 for (i = 0; i < nr_segments; i++) {
163 unsigned long mstart, mend;
72414d3f 164
dc009d92
EB
165 mstart = image->segment[i].mem;
166 mend = mstart + image->segment[i].memsz;
167 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
168 goto out;
169 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
170 goto out;
171 }
172
173 /* Verify our destination addresses do not overlap.
174 * If we alloed overlapping destination addresses
175 * through very weird things can happen with no
176 * easy explanation as one segment stops on another.
177 */
178 result = -EINVAL;
72414d3f 179 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
180 unsigned long mstart, mend;
181 unsigned long j;
72414d3f 182
dc009d92
EB
183 mstart = image->segment[i].mem;
184 mend = mstart + image->segment[i].memsz;
72414d3f 185 for (j = 0; j < i; j++) {
dc009d92
EB
186 unsigned long pstart, pend;
187 pstart = image->segment[j].mem;
188 pend = pstart + image->segment[j].memsz;
189 /* Do the segments overlap ? */
190 if ((mend > pstart) && (mstart < pend))
191 goto out;
192 }
193 }
194
195 /* Ensure our buffer sizes are strictly less than
196 * our memory sizes. This should always be the case,
197 * and it is easier to check up front than to be surprised
198 * later on.
199 */
200 result = -EINVAL;
72414d3f 201 for (i = 0; i < nr_segments; i++) {
dc009d92
EB
202 if (image->segment[i].bufsz > image->segment[i].memsz)
203 goto out;
204 }
205
dc009d92 206 result = 0;
72414d3f
MS
207out:
208 if (result == 0)
dc009d92 209 *rimage = image;
72414d3f 210 else
dc009d92 211 kfree(image);
72414d3f 212
dc009d92
EB
213 return result;
214
215}
216
217static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
72414d3f
MS
218 unsigned long nr_segments,
219 struct kexec_segment __user *segments)
dc009d92
EB
220{
221 int result;
222 struct kimage *image;
223
224 /* Allocate and initialize a controlling structure */
225 image = NULL;
226 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 227 if (result)
dc009d92 228 goto out;
72414d3f 229
dc009d92
EB
230 *rimage = image;
231
232 /*
233 * Find a location for the control code buffer, and add it
234 * the vector of segments so that it's pages will also be
235 * counted as destination pages.
236 */
237 result = -ENOMEM;
238 image->control_code_page = kimage_alloc_control_pages(image,
72414d3f 239 get_order(KEXEC_CONTROL_CODE_SIZE));
dc009d92
EB
240 if (!image->control_code_page) {
241 printk(KERN_ERR "Could not allocate control_code_buffer\n");
242 goto out;
243 }
244
245 result = 0;
246 out:
72414d3f 247 if (result == 0)
dc009d92 248 *rimage = image;
72414d3f 249 else
dc009d92 250 kfree(image);
72414d3f 251
dc009d92
EB
252 return result;
253}
254
255static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
72414d3f 256 unsigned long nr_segments,
314b6a4d 257 struct kexec_segment __user *segments)
dc009d92
EB
258{
259 int result;
260 struct kimage *image;
261 unsigned long i;
262
263 image = NULL;
264 /* Verify we have a valid entry point */
265 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
266 result = -EADDRNOTAVAIL;
267 goto out;
268 }
269
270 /* Allocate and initialize a controlling structure */
271 result = do_kimage_alloc(&image, entry, nr_segments, segments);
72414d3f 272 if (result)
dc009d92 273 goto out;
dc009d92
EB
274
275 /* Enable the special crash kernel control page
276 * allocation policy.
277 */
278 image->control_page = crashk_res.start;
279 image->type = KEXEC_TYPE_CRASH;
280
281 /*
282 * Verify we have good destination addresses. Normally
283 * the caller is responsible for making certain we don't
284 * attempt to load the new image into invalid or reserved
285 * areas of RAM. But crash kernels are preloaded into a
286 * reserved area of ram. We must ensure the addresses
287 * are in the reserved area otherwise preloading the
288 * kernel could corrupt things.
289 */
290 result = -EADDRNOTAVAIL;
291 for (i = 0; i < nr_segments; i++) {
292 unsigned long mstart, mend;
72414d3f 293
dc009d92 294 mstart = image->segment[i].mem;
50cccc69 295 mend = mstart + image->segment[i].memsz - 1;
dc009d92
EB
296 /* Ensure we are within the crash kernel limits */
297 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
298 goto out;
299 }
300
dc009d92
EB
301 /*
302 * Find a location for the control code buffer, and add
303 * the vector of segments so that it's pages will also be
304 * counted as destination pages.
305 */
306 result = -ENOMEM;
307 image->control_code_page = kimage_alloc_control_pages(image,
72414d3f 308 get_order(KEXEC_CONTROL_CODE_SIZE));
dc009d92
EB
309 if (!image->control_code_page) {
310 printk(KERN_ERR "Could not allocate control_code_buffer\n");
311 goto out;
312 }
313
314 result = 0;
72414d3f
MS
315out:
316 if (result == 0)
dc009d92 317 *rimage = image;
72414d3f 318 else
dc009d92 319 kfree(image);
72414d3f 320
dc009d92
EB
321 return result;
322}
323
72414d3f
MS
324static int kimage_is_destination_range(struct kimage *image,
325 unsigned long start,
326 unsigned long end)
dc009d92
EB
327{
328 unsigned long i;
329
330 for (i = 0; i < image->nr_segments; i++) {
331 unsigned long mstart, mend;
72414d3f 332
dc009d92 333 mstart = image->segment[i].mem;
72414d3f
MS
334 mend = mstart + image->segment[i].memsz;
335 if ((end > mstart) && (start < mend))
dc009d92 336 return 1;
dc009d92 337 }
72414d3f 338
dc009d92
EB
339 return 0;
340}
341
9796fdd8 342static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
dc009d92
EB
343{
344 struct page *pages;
72414d3f 345
dc009d92
EB
346 pages = alloc_pages(gfp_mask, order);
347 if (pages) {
348 unsigned int count, i;
349 pages->mapping = NULL;
4c21e2f2 350 set_page_private(pages, order);
dc009d92 351 count = 1 << order;
72414d3f 352 for (i = 0; i < count; i++)
dc009d92 353 SetPageReserved(pages + i);
dc009d92 354 }
72414d3f 355
dc009d92
EB
356 return pages;
357}
358
359static void kimage_free_pages(struct page *page)
360{
361 unsigned int order, count, i;
72414d3f 362
4c21e2f2 363 order = page_private(page);
dc009d92 364 count = 1 << order;
72414d3f 365 for (i = 0; i < count; i++)
dc009d92 366 ClearPageReserved(page + i);
dc009d92
EB
367 __free_pages(page, order);
368}
369
370static void kimage_free_page_list(struct list_head *list)
371{
372 struct list_head *pos, *next;
72414d3f 373
dc009d92
EB
374 list_for_each_safe(pos, next, list) {
375 struct page *page;
376
377 page = list_entry(pos, struct page, lru);
378 list_del(&page->lru);
dc009d92
EB
379 kimage_free_pages(page);
380 }
381}
382
72414d3f
MS
383static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
384 unsigned int order)
dc009d92
EB
385{
386 /* Control pages are special, they are the intermediaries
387 * that are needed while we copy the rest of the pages
388 * to their final resting place. As such they must
389 * not conflict with either the destination addresses
390 * or memory the kernel is already using.
391 *
392 * The only case where we really need more than one of
393 * these are for architectures where we cannot disable
394 * the MMU and must instead generate an identity mapped
395 * page table for all of the memory.
396 *
397 * At worst this runs in O(N) of the image size.
398 */
399 struct list_head extra_pages;
400 struct page *pages;
401 unsigned int count;
402
403 count = 1 << order;
404 INIT_LIST_HEAD(&extra_pages);
405
406 /* Loop while I can allocate a page and the page allocated
407 * is a destination page.
408 */
409 do {
410 unsigned long pfn, epfn, addr, eaddr;
72414d3f 411
dc009d92
EB
412 pages = kimage_alloc_pages(GFP_KERNEL, order);
413 if (!pages)
414 break;
415 pfn = page_to_pfn(pages);
416 epfn = pfn + count;
417 addr = pfn << PAGE_SHIFT;
418 eaddr = epfn << PAGE_SHIFT;
419 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
72414d3f 420 kimage_is_destination_range(image, addr, eaddr)) {
dc009d92
EB
421 list_add(&pages->lru, &extra_pages);
422 pages = NULL;
423 }
72414d3f
MS
424 } while (!pages);
425
dc009d92
EB
426 if (pages) {
427 /* Remember the allocated page... */
428 list_add(&pages->lru, &image->control_pages);
429
430 /* Because the page is already in it's destination
431 * location we will never allocate another page at
432 * that address. Therefore kimage_alloc_pages
433 * will not return it (again) and we don't need
434 * to give it an entry in image->segment[].
435 */
436 }
437 /* Deal with the destination pages I have inadvertently allocated.
438 *
439 * Ideally I would convert multi-page allocations into single
440 * page allocations, and add everyting to image->dest_pages.
441 *
442 * For now it is simpler to just free the pages.
443 */
444 kimage_free_page_list(&extra_pages);
dc009d92 445
72414d3f 446 return pages;
dc009d92
EB
447}
448
72414d3f
MS
449static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
450 unsigned int order)
dc009d92
EB
451{
452 /* Control pages are special, they are the intermediaries
453 * that are needed while we copy the rest of the pages
454 * to their final resting place. As such they must
455 * not conflict with either the destination addresses
456 * or memory the kernel is already using.
457 *
458 * Control pages are also the only pags we must allocate
459 * when loading a crash kernel. All of the other pages
460 * are specified by the segments and we just memcpy
461 * into them directly.
462 *
463 * The only case where we really need more than one of
464 * these are for architectures where we cannot disable
465 * the MMU and must instead generate an identity mapped
466 * page table for all of the memory.
467 *
468 * Given the low demand this implements a very simple
469 * allocator that finds the first hole of the appropriate
470 * size in the reserved memory region, and allocates all
471 * of the memory up to and including the hole.
472 */
473 unsigned long hole_start, hole_end, size;
474 struct page *pages;
72414d3f 475
dc009d92
EB
476 pages = NULL;
477 size = (1 << order) << PAGE_SHIFT;
478 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
479 hole_end = hole_start + size - 1;
72414d3f 480 while (hole_end <= crashk_res.end) {
dc009d92 481 unsigned long i;
72414d3f
MS
482
483 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
dc009d92 484 break;
72414d3f 485 if (hole_end > crashk_res.end)
dc009d92 486 break;
dc009d92 487 /* See if I overlap any of the segments */
72414d3f 488 for (i = 0; i < image->nr_segments; i++) {
dc009d92 489 unsigned long mstart, mend;
72414d3f 490
dc009d92
EB
491 mstart = image->segment[i].mem;
492 mend = mstart + image->segment[i].memsz - 1;
493 if ((hole_end >= mstart) && (hole_start <= mend)) {
494 /* Advance the hole to the end of the segment */
495 hole_start = (mend + (size - 1)) & ~(size - 1);
496 hole_end = hole_start + size - 1;
497 break;
498 }
499 }
500 /* If I don't overlap any segments I have found my hole! */
501 if (i == image->nr_segments) {
502 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
503 break;
504 }
505 }
72414d3f 506 if (pages)
dc009d92 507 image->control_page = hole_end;
72414d3f 508
dc009d92
EB
509 return pages;
510}
511
512
72414d3f
MS
513struct page *kimage_alloc_control_pages(struct kimage *image,
514 unsigned int order)
dc009d92
EB
515{
516 struct page *pages = NULL;
72414d3f
MS
517
518 switch (image->type) {
dc009d92
EB
519 case KEXEC_TYPE_DEFAULT:
520 pages = kimage_alloc_normal_control_pages(image, order);
521 break;
522 case KEXEC_TYPE_CRASH:
523 pages = kimage_alloc_crash_control_pages(image, order);
524 break;
525 }
72414d3f 526
dc009d92
EB
527 return pages;
528}
529
530static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
531{
72414d3f 532 if (*image->entry != 0)
dc009d92 533 image->entry++;
72414d3f 534
dc009d92
EB
535 if (image->entry == image->last_entry) {
536 kimage_entry_t *ind_page;
537 struct page *page;
72414d3f 538
dc009d92 539 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
72414d3f 540 if (!page)
dc009d92 541 return -ENOMEM;
72414d3f 542
dc009d92
EB
543 ind_page = page_address(page);
544 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
545 image->entry = ind_page;
72414d3f
MS
546 image->last_entry = ind_page +
547 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
dc009d92
EB
548 }
549 *image->entry = entry;
550 image->entry++;
551 *image->entry = 0;
72414d3f 552
dc009d92
EB
553 return 0;
554}
555
72414d3f
MS
556static int kimage_set_destination(struct kimage *image,
557 unsigned long destination)
dc009d92
EB
558{
559 int result;
560
561 destination &= PAGE_MASK;
562 result = kimage_add_entry(image, destination | IND_DESTINATION);
72414d3f 563 if (result == 0)
dc009d92 564 image->destination = destination;
72414d3f 565
dc009d92
EB
566 return result;
567}
568
569
570static int kimage_add_page(struct kimage *image, unsigned long page)
571{
572 int result;
573
574 page &= PAGE_MASK;
575 result = kimage_add_entry(image, page | IND_SOURCE);
72414d3f 576 if (result == 0)
dc009d92 577 image->destination += PAGE_SIZE;
72414d3f 578
dc009d92
EB
579 return result;
580}
581
582
583static void kimage_free_extra_pages(struct kimage *image)
584{
585 /* Walk through and free any extra destination pages I may have */
586 kimage_free_page_list(&image->dest_pages);
587
588 /* Walk through and free any unuseable pages I have cached */
589 kimage_free_page_list(&image->unuseable_pages);
590
591}
7fccf032 592static void kimage_terminate(struct kimage *image)
dc009d92 593{
72414d3f 594 if (*image->entry != 0)
dc009d92 595 image->entry++;
72414d3f 596
dc009d92 597 *image->entry = IND_DONE;
dc009d92
EB
598}
599
600#define for_each_kimage_entry(image, ptr, entry) \
601 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
602 ptr = (entry & IND_INDIRECTION)? \
603 phys_to_virt((entry & PAGE_MASK)): ptr +1)
604
605static void kimage_free_entry(kimage_entry_t entry)
606{
607 struct page *page;
608
609 page = pfn_to_page(entry >> PAGE_SHIFT);
610 kimage_free_pages(page);
611}
612
613static void kimage_free(struct kimage *image)
614{
615 kimage_entry_t *ptr, entry;
616 kimage_entry_t ind = 0;
617
618 if (!image)
619 return;
72414d3f 620
dc009d92
EB
621 kimage_free_extra_pages(image);
622 for_each_kimage_entry(image, ptr, entry) {
623 if (entry & IND_INDIRECTION) {
624 /* Free the previous indirection page */
72414d3f 625 if (ind & IND_INDIRECTION)
dc009d92 626 kimage_free_entry(ind);
dc009d92
EB
627 /* Save this indirection page until we are
628 * done with it.
629 */
630 ind = entry;
631 }
72414d3f 632 else if (entry & IND_SOURCE)
dc009d92 633 kimage_free_entry(entry);
dc009d92
EB
634 }
635 /* Free the final indirection page */
72414d3f 636 if (ind & IND_INDIRECTION)
dc009d92 637 kimage_free_entry(ind);
dc009d92
EB
638
639 /* Handle any machine specific cleanup */
640 machine_kexec_cleanup(image);
641
642 /* Free the kexec control pages... */
643 kimage_free_page_list(&image->control_pages);
644 kfree(image);
645}
646
72414d3f
MS
647static kimage_entry_t *kimage_dst_used(struct kimage *image,
648 unsigned long page)
dc009d92
EB
649{
650 kimage_entry_t *ptr, entry;
651 unsigned long destination = 0;
652
653 for_each_kimage_entry(image, ptr, entry) {
72414d3f 654 if (entry & IND_DESTINATION)
dc009d92 655 destination = entry & PAGE_MASK;
dc009d92 656 else if (entry & IND_SOURCE) {
72414d3f 657 if (page == destination)
dc009d92 658 return ptr;
dc009d92
EB
659 destination += PAGE_SIZE;
660 }
661 }
72414d3f 662
314b6a4d 663 return NULL;
dc009d92
EB
664}
665
72414d3f 666static struct page *kimage_alloc_page(struct kimage *image,
9796fdd8 667 gfp_t gfp_mask,
72414d3f 668 unsigned long destination)
dc009d92
EB
669{
670 /*
671 * Here we implement safeguards to ensure that a source page
672 * is not copied to its destination page before the data on
673 * the destination page is no longer useful.
674 *
675 * To do this we maintain the invariant that a source page is
676 * either its own destination page, or it is not a
677 * destination page at all.
678 *
679 * That is slightly stronger than required, but the proof
680 * that no problems will not occur is trivial, and the
681 * implementation is simply to verify.
682 *
683 * When allocating all pages normally this algorithm will run
684 * in O(N) time, but in the worst case it will run in O(N^2)
685 * time. If the runtime is a problem the data structures can
686 * be fixed.
687 */
688 struct page *page;
689 unsigned long addr;
690
691 /*
692 * Walk through the list of destination pages, and see if I
693 * have a match.
694 */
695 list_for_each_entry(page, &image->dest_pages, lru) {
696 addr = page_to_pfn(page) << PAGE_SHIFT;
697 if (addr == destination) {
698 list_del(&page->lru);
699 return page;
700 }
701 }
702 page = NULL;
703 while (1) {
704 kimage_entry_t *old;
705
706 /* Allocate a page, if we run out of memory give up */
707 page = kimage_alloc_pages(gfp_mask, 0);
72414d3f 708 if (!page)
314b6a4d 709 return NULL;
dc009d92 710 /* If the page cannot be used file it away */
72414d3f
MS
711 if (page_to_pfn(page) >
712 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
dc009d92
EB
713 list_add(&page->lru, &image->unuseable_pages);
714 continue;
715 }
716 addr = page_to_pfn(page) << PAGE_SHIFT;
717
718 /* If it is the destination page we want use it */
719 if (addr == destination)
720 break;
721
722 /* If the page is not a destination page use it */
72414d3f
MS
723 if (!kimage_is_destination_range(image, addr,
724 addr + PAGE_SIZE))
dc009d92
EB
725 break;
726
727 /*
728 * I know that the page is someones destination page.
729 * See if there is already a source page for this
730 * destination page. And if so swap the source pages.
731 */
732 old = kimage_dst_used(image, addr);
733 if (old) {
734 /* If so move it */
735 unsigned long old_addr;
736 struct page *old_page;
737
738 old_addr = *old & PAGE_MASK;
739 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
740 copy_highpage(page, old_page);
741 *old = addr | (*old & ~PAGE_MASK);
742
743 /* The old page I have found cannot be a
744 * destination page, so return it.
745 */
746 addr = old_addr;
747 page = old_page;
748 break;
749 }
750 else {
751 /* Place the page on the destination list I
752 * will use it later.
753 */
754 list_add(&page->lru, &image->dest_pages);
755 }
756 }
72414d3f 757
dc009d92
EB
758 return page;
759}
760
761static int kimage_load_normal_segment(struct kimage *image,
72414d3f 762 struct kexec_segment *segment)
dc009d92
EB
763{
764 unsigned long maddr;
765 unsigned long ubytes, mbytes;
766 int result;
314b6a4d 767 unsigned char __user *buf;
dc009d92
EB
768
769 result = 0;
770 buf = segment->buf;
771 ubytes = segment->bufsz;
772 mbytes = segment->memsz;
773 maddr = segment->mem;
774
775 result = kimage_set_destination(image, maddr);
72414d3f 776 if (result < 0)
dc009d92 777 goto out;
72414d3f
MS
778
779 while (mbytes) {
dc009d92
EB
780 struct page *page;
781 char *ptr;
782 size_t uchunk, mchunk;
72414d3f 783
dc009d92 784 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
c80544dc 785 if (!page) {
dc009d92
EB
786 result = -ENOMEM;
787 goto out;
788 }
72414d3f
MS
789 result = kimage_add_page(image, page_to_pfn(page)
790 << PAGE_SHIFT);
791 if (result < 0)
dc009d92 792 goto out;
72414d3f 793
dc009d92
EB
794 ptr = kmap(page);
795 /* Start with a clear page */
796 memset(ptr, 0, PAGE_SIZE);
797 ptr += maddr & ~PAGE_MASK;
798 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 799 if (mchunk > mbytes)
dc009d92 800 mchunk = mbytes;
72414d3f 801
dc009d92 802 uchunk = mchunk;
72414d3f 803 if (uchunk > ubytes)
dc009d92 804 uchunk = ubytes;
72414d3f 805
dc009d92
EB
806 result = copy_from_user(ptr, buf, uchunk);
807 kunmap(page);
808 if (result) {
809 result = (result < 0) ? result : -EIO;
810 goto out;
811 }
812 ubytes -= uchunk;
813 maddr += mchunk;
814 buf += mchunk;
815 mbytes -= mchunk;
816 }
72414d3f 817out:
dc009d92
EB
818 return result;
819}
820
821static int kimage_load_crash_segment(struct kimage *image,
72414d3f 822 struct kexec_segment *segment)
dc009d92
EB
823{
824 /* For crash dumps kernels we simply copy the data from
825 * user space to it's destination.
826 * We do things a page at a time for the sake of kmap.
827 */
828 unsigned long maddr;
829 unsigned long ubytes, mbytes;
830 int result;
314b6a4d 831 unsigned char __user *buf;
dc009d92
EB
832
833 result = 0;
834 buf = segment->buf;
835 ubytes = segment->bufsz;
836 mbytes = segment->memsz;
837 maddr = segment->mem;
72414d3f 838 while (mbytes) {
dc009d92
EB
839 struct page *page;
840 char *ptr;
841 size_t uchunk, mchunk;
72414d3f 842
dc009d92 843 page = pfn_to_page(maddr >> PAGE_SHIFT);
c80544dc 844 if (!page) {
dc009d92
EB
845 result = -ENOMEM;
846 goto out;
847 }
848 ptr = kmap(page);
849 ptr += maddr & ~PAGE_MASK;
850 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
72414d3f 851 if (mchunk > mbytes)
dc009d92 852 mchunk = mbytes;
72414d3f 853
dc009d92
EB
854 uchunk = mchunk;
855 if (uchunk > ubytes) {
856 uchunk = ubytes;
857 /* Zero the trailing part of the page */
858 memset(ptr + uchunk, 0, mchunk - uchunk);
859 }
860 result = copy_from_user(ptr, buf, uchunk);
a7956113 861 kexec_flush_icache_page(page);
dc009d92
EB
862 kunmap(page);
863 if (result) {
864 result = (result < 0) ? result : -EIO;
865 goto out;
866 }
867 ubytes -= uchunk;
868 maddr += mchunk;
869 buf += mchunk;
870 mbytes -= mchunk;
871 }
72414d3f 872out:
dc009d92
EB
873 return result;
874}
875
876static int kimage_load_segment(struct kimage *image,
72414d3f 877 struct kexec_segment *segment)
dc009d92
EB
878{
879 int result = -ENOMEM;
72414d3f
MS
880
881 switch (image->type) {
dc009d92
EB
882 case KEXEC_TYPE_DEFAULT:
883 result = kimage_load_normal_segment(image, segment);
884 break;
885 case KEXEC_TYPE_CRASH:
886 result = kimage_load_crash_segment(image, segment);
887 break;
888 }
72414d3f 889
dc009d92
EB
890 return result;
891}
892
893/*
894 * Exec Kernel system call: for obvious reasons only root may call it.
895 *
896 * This call breaks up into three pieces.
897 * - A generic part which loads the new kernel from the current
898 * address space, and very carefully places the data in the
899 * allocated pages.
900 *
901 * - A generic part that interacts with the kernel and tells all of
902 * the devices to shut down. Preventing on-going dmas, and placing
903 * the devices in a consistent state so a later kernel can
904 * reinitialize them.
905 *
906 * - A machine specific part that includes the syscall number
907 * and the copies the image to it's final destination. And
908 * jumps into the image at entry.
909 *
910 * kexec does not sync, or unmount filesystems so if you need
911 * that to happen you need to do that yourself.
912 */
c330dda9
JM
913struct kimage *kexec_image;
914struct kimage *kexec_crash_image;
dc009d92
EB
915/*
916 * A home grown binary mutex.
917 * Nothing can wait so this mutex is safe to use
918 * in interrupt context :)
919 */
c330dda9 920static int kexec_lock;
dc009d92 921
72414d3f
MS
922asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
923 struct kexec_segment __user *segments,
924 unsigned long flags)
dc009d92
EB
925{
926 struct kimage **dest_image, *image;
927 int locked;
928 int result;
929
930 /* We only trust the superuser with rebooting the system. */
931 if (!capable(CAP_SYS_BOOT))
932 return -EPERM;
933
934 /*
935 * Verify we have a legal set of flags
936 * This leaves us room for future extensions.
937 */
938 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
939 return -EINVAL;
940
941 /* Verify we are on the appropriate architecture */
942 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
943 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
dc009d92 944 return -EINVAL;
dc009d92
EB
945
946 /* Put an artificial cap on the number
947 * of segments passed to kexec_load.
948 */
949 if (nr_segments > KEXEC_SEGMENT_MAX)
950 return -EINVAL;
951
952 image = NULL;
953 result = 0;
954
955 /* Because we write directly to the reserved memory
956 * region when loading crash kernels we need a mutex here to
957 * prevent multiple crash kernels from attempting to load
958 * simultaneously, and to prevent a crash kernel from loading
959 * over the top of a in use crash kernel.
960 *
961 * KISS: always take the mutex.
962 */
963 locked = xchg(&kexec_lock, 1);
72414d3f 964 if (locked)
dc009d92 965 return -EBUSY;
72414d3f 966
dc009d92 967 dest_image = &kexec_image;
72414d3f 968 if (flags & KEXEC_ON_CRASH)
dc009d92 969 dest_image = &kexec_crash_image;
dc009d92
EB
970 if (nr_segments > 0) {
971 unsigned long i;
72414d3f 972
dc009d92 973 /* Loading another kernel to reboot into */
72414d3f
MS
974 if ((flags & KEXEC_ON_CRASH) == 0)
975 result = kimage_normal_alloc(&image, entry,
976 nr_segments, segments);
dc009d92
EB
977 /* Loading another kernel to switch to if this one crashes */
978 else if (flags & KEXEC_ON_CRASH) {
979 /* Free any current crash dump kernel before
980 * we corrupt it.
981 */
982 kimage_free(xchg(&kexec_crash_image, NULL));
72414d3f
MS
983 result = kimage_crash_alloc(&image, entry,
984 nr_segments, segments);
dc009d92 985 }
72414d3f 986 if (result)
dc009d92 987 goto out;
72414d3f 988
dc009d92 989 result = machine_kexec_prepare(image);
72414d3f 990 if (result)
dc009d92 991 goto out;
72414d3f
MS
992
993 for (i = 0; i < nr_segments; i++) {
dc009d92 994 result = kimage_load_segment(image, &image->segment[i]);
72414d3f 995 if (result)
dc009d92 996 goto out;
dc009d92 997 }
7fccf032 998 kimage_terminate(image);
dc009d92
EB
999 }
1000 /* Install the new kernel, and Uninstall the old */
1001 image = xchg(dest_image, image);
1002
72414d3f 1003out:
0b4a8a78
RM
1004 locked = xchg(&kexec_lock, 0); /* Release the mutex */
1005 BUG_ON(!locked);
dc009d92 1006 kimage_free(image);
72414d3f 1007
dc009d92
EB
1008 return result;
1009}
1010
1011#ifdef CONFIG_COMPAT
1012asmlinkage long compat_sys_kexec_load(unsigned long entry,
72414d3f
MS
1013 unsigned long nr_segments,
1014 struct compat_kexec_segment __user *segments,
1015 unsigned long flags)
dc009d92
EB
1016{
1017 struct compat_kexec_segment in;
1018 struct kexec_segment out, __user *ksegments;
1019 unsigned long i, result;
1020
1021 /* Don't allow clients that don't understand the native
1022 * architecture to do anything.
1023 */
72414d3f 1024 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
dc009d92 1025 return -EINVAL;
dc009d92 1026
72414d3f 1027 if (nr_segments > KEXEC_SEGMENT_MAX)
dc009d92 1028 return -EINVAL;
dc009d92
EB
1029
1030 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1031 for (i=0; i < nr_segments; i++) {
1032 result = copy_from_user(&in, &segments[i], sizeof(in));
72414d3f 1033 if (result)
dc009d92 1034 return -EFAULT;
dc009d92
EB
1035
1036 out.buf = compat_ptr(in.buf);
1037 out.bufsz = in.bufsz;
1038 out.mem = in.mem;
1039 out.memsz = in.memsz;
1040
1041 result = copy_to_user(&ksegments[i], &out, sizeof(out));
72414d3f 1042 if (result)
dc009d92 1043 return -EFAULT;
dc009d92
EB
1044 }
1045
1046 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1047}
1048#endif
1049
6e274d14 1050void crash_kexec(struct pt_regs *regs)
dc009d92 1051{
dc009d92
EB
1052 int locked;
1053
1054
1055 /* Take the kexec_lock here to prevent sys_kexec_load
1056 * running on one cpu from replacing the crash kernel
1057 * we are using after a panic on a different cpu.
1058 *
1059 * If the crash kernel was not located in a fixed area
1060 * of memory the xchg(&kexec_crash_image) would be
1061 * sufficient. But since I reuse the memory...
1062 */
1063 locked = xchg(&kexec_lock, 1);
1064 if (!locked) {
c0ce7d08 1065 if (kexec_crash_image) {
e996e581
VG
1066 struct pt_regs fixed_regs;
1067 crash_setup_regs(&fixed_regs, regs);
fd59d231 1068 crash_save_vmcoreinfo();
e996e581 1069 machine_crash_shutdown(&fixed_regs);
c0ce7d08 1070 machine_kexec(kexec_crash_image);
dc009d92 1071 }
0b4a8a78
RM
1072 locked = xchg(&kexec_lock, 0);
1073 BUG_ON(!locked);
dc009d92
EB
1074 }
1075}
cc571658 1076
85916f81
MD
1077static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1078 size_t data_len)
1079{
1080 struct elf_note note;
1081
1082 note.n_namesz = strlen(name) + 1;
1083 note.n_descsz = data_len;
1084 note.n_type = type;
1085 memcpy(buf, &note, sizeof(note));
1086 buf += (sizeof(note) + 3)/4;
1087 memcpy(buf, name, note.n_namesz);
1088 buf += (note.n_namesz + 3)/4;
1089 memcpy(buf, data, note.n_descsz);
1090 buf += (note.n_descsz + 3)/4;
1091
1092 return buf;
1093}
1094
1095static void final_note(u32 *buf)
1096{
1097 struct elf_note note;
1098
1099 note.n_namesz = 0;
1100 note.n_descsz = 0;
1101 note.n_type = 0;
1102 memcpy(buf, &note, sizeof(note));
1103}
1104
1105void crash_save_cpu(struct pt_regs *regs, int cpu)
1106{
1107 struct elf_prstatus prstatus;
1108 u32 *buf;
1109
1110 if ((cpu < 0) || (cpu >= NR_CPUS))
1111 return;
1112
1113 /* Using ELF notes here is opportunistic.
1114 * I need a well defined structure format
1115 * for the data I pass, and I need tags
1116 * on the data to indicate what information I have
1117 * squirrelled away. ELF notes happen to provide
1118 * all of that, so there is no need to invent something new.
1119 */
1120 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1121 if (!buf)
1122 return;
1123 memset(&prstatus, 0, sizeof(prstatus));
1124 prstatus.pr_pid = current->pid;
1125 elf_core_copy_regs(&prstatus.pr_reg, regs);
6672f76a
SH
1126 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1127 &prstatus, sizeof(prstatus));
85916f81
MD
1128 final_note(buf);
1129}
1130
cc571658
VG
1131static int __init crash_notes_memory_init(void)
1132{
1133 /* Allocate memory for saving cpu registers. */
1134 crash_notes = alloc_percpu(note_buf_t);
1135 if (!crash_notes) {
1136 printk("Kexec: Memory allocation for saving cpu register"
1137 " states failed\n");
1138 return -ENOMEM;
1139 }
1140 return 0;
1141}
1142module_init(crash_notes_memory_init)
fd59d231 1143
cba63c30
BW
1144
1145/*
1146 * parsing the "crashkernel" commandline
1147 *
1148 * this code is intended to be called from architecture specific code
1149 */
1150
1151
1152/*
1153 * This function parses command lines in the format
1154 *
1155 * crashkernel=ramsize-range:size[,...][@offset]
1156 *
1157 * The function returns 0 on success and -EINVAL on failure.
1158 */
1159static int __init parse_crashkernel_mem(char *cmdline,
1160 unsigned long long system_ram,
1161 unsigned long long *crash_size,
1162 unsigned long long *crash_base)
1163{
1164 char *cur = cmdline, *tmp;
1165
1166 /* for each entry of the comma-separated list */
1167 do {
1168 unsigned long long start, end = ULLONG_MAX, size;
1169
1170 /* get the start of the range */
1171 start = memparse(cur, &tmp);
1172 if (cur == tmp) {
1173 pr_warning("crashkernel: Memory value expected\n");
1174 return -EINVAL;
1175 }
1176 cur = tmp;
1177 if (*cur != '-') {
1178 pr_warning("crashkernel: '-' expected\n");
1179 return -EINVAL;
1180 }
1181 cur++;
1182
1183 /* if no ':' is here, than we read the end */
1184 if (*cur != ':') {
1185 end = memparse(cur, &tmp);
1186 if (cur == tmp) {
1187 pr_warning("crashkernel: Memory "
1188 "value expected\n");
1189 return -EINVAL;
1190 }
1191 cur = tmp;
1192 if (end <= start) {
1193 pr_warning("crashkernel: end <= start\n");
1194 return -EINVAL;
1195 }
1196 }
1197
1198 if (*cur != ':') {
1199 pr_warning("crashkernel: ':' expected\n");
1200 return -EINVAL;
1201 }
1202 cur++;
1203
1204 size = memparse(cur, &tmp);
1205 if (cur == tmp) {
1206 pr_warning("Memory value expected\n");
1207 return -EINVAL;
1208 }
1209 cur = tmp;
1210 if (size >= system_ram) {
1211 pr_warning("crashkernel: invalid size\n");
1212 return -EINVAL;
1213 }
1214
1215 /* match ? */
be089d79 1216 if (system_ram >= start && system_ram < end) {
cba63c30
BW
1217 *crash_size = size;
1218 break;
1219 }
1220 } while (*cur++ == ',');
1221
1222 if (*crash_size > 0) {
1223 while (*cur != ' ' && *cur != '@')
1224 cur++;
1225 if (*cur == '@') {
1226 cur++;
1227 *crash_base = memparse(cur, &tmp);
1228 if (cur == tmp) {
1229 pr_warning("Memory value expected "
1230 "after '@'\n");
1231 return -EINVAL;
1232 }
1233 }
1234 }
1235
1236 return 0;
1237}
1238
1239/*
1240 * That function parses "simple" (old) crashkernel command lines like
1241 *
1242 * crashkernel=size[@offset]
1243 *
1244 * It returns 0 on success and -EINVAL on failure.
1245 */
1246static int __init parse_crashkernel_simple(char *cmdline,
1247 unsigned long long *crash_size,
1248 unsigned long long *crash_base)
1249{
1250 char *cur = cmdline;
1251
1252 *crash_size = memparse(cmdline, &cur);
1253 if (cmdline == cur) {
1254 pr_warning("crashkernel: memory value expected\n");
1255 return -EINVAL;
1256 }
1257
1258 if (*cur == '@')
1259 *crash_base = memparse(cur+1, &cur);
1260
1261 return 0;
1262}
1263
1264/*
1265 * That function is the entry point for command line parsing and should be
1266 * called from the arch-specific code.
1267 */
1268int __init parse_crashkernel(char *cmdline,
1269 unsigned long long system_ram,
1270 unsigned long long *crash_size,
1271 unsigned long long *crash_base)
1272{
1273 char *p = cmdline, *ck_cmdline = NULL;
1274 char *first_colon, *first_space;
1275
1276 BUG_ON(!crash_size || !crash_base);
1277 *crash_size = 0;
1278 *crash_base = 0;
1279
1280 /* find crashkernel and use the last one if there are more */
1281 p = strstr(p, "crashkernel=");
1282 while (p) {
1283 ck_cmdline = p;
1284 p = strstr(p+1, "crashkernel=");
1285 }
1286
1287 if (!ck_cmdline)
1288 return -EINVAL;
1289
1290 ck_cmdline += 12; /* strlen("crashkernel=") */
1291
1292 /*
1293 * if the commandline contains a ':', then that's the extended
1294 * syntax -- if not, it must be the classic syntax
1295 */
1296 first_colon = strchr(ck_cmdline, ':');
1297 first_space = strchr(ck_cmdline, ' ');
1298 if (first_colon && (!first_space || first_colon < first_space))
1299 return parse_crashkernel_mem(ck_cmdline, system_ram,
1300 crash_size, crash_base);
1301 else
1302 return parse_crashkernel_simple(ck_cmdline, crash_size,
1303 crash_base);
1304
1305 return 0;
1306}
1307
1308
1309
fd59d231
KO
1310void crash_save_vmcoreinfo(void)
1311{
1312 u32 *buf;
1313
1314 if (!vmcoreinfo_size)
1315 return;
1316
d768281e 1317 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
fd59d231
KO
1318
1319 buf = (u32 *)vmcoreinfo_note;
1320
1321 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1322 vmcoreinfo_size);
1323
1324 final_note(buf);
1325}
1326
1327void vmcoreinfo_append_str(const char *fmt, ...)
1328{
1329 va_list args;
1330 char buf[0x50];
1331 int r;
1332
1333 va_start(args, fmt);
1334 r = vsnprintf(buf, sizeof(buf), fmt, args);
1335 va_end(args);
1336
1337 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1338 r = vmcoreinfo_max_size - vmcoreinfo_size;
1339
1340 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1341
1342 vmcoreinfo_size += r;
1343}
1344
1345/*
1346 * provide an empty default implementation here -- architecture
1347 * code may override this
1348 */
1349void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1350{}
1351
1352unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1353{
1354 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1355}
1356
1357static int __init crash_save_vmcoreinfo_init(void)
1358{
bba1f603
KO
1359 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1360 VMCOREINFO_PAGESIZE(PAGE_SIZE);
fd59d231 1361
bcbba6c1
KO
1362 VMCOREINFO_SYMBOL(init_uts_ns);
1363 VMCOREINFO_SYMBOL(node_online_map);
1364 VMCOREINFO_SYMBOL(swapper_pg_dir);
1365 VMCOREINFO_SYMBOL(_stext);
fd59d231
KO
1366
1367#ifndef CONFIG_NEED_MULTIPLE_NODES
bcbba6c1
KO
1368 VMCOREINFO_SYMBOL(mem_map);
1369 VMCOREINFO_SYMBOL(contig_page_data);
fd59d231
KO
1370#endif
1371#ifdef CONFIG_SPARSEMEM
bcbba6c1
KO
1372 VMCOREINFO_SYMBOL(mem_section);
1373 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
c76f860c 1374 VMCOREINFO_STRUCT_SIZE(mem_section);
bcbba6c1 1375 VMCOREINFO_OFFSET(mem_section, section_mem_map);
fd59d231 1376#endif
c76f860c
KO
1377 VMCOREINFO_STRUCT_SIZE(page);
1378 VMCOREINFO_STRUCT_SIZE(pglist_data);
1379 VMCOREINFO_STRUCT_SIZE(zone);
1380 VMCOREINFO_STRUCT_SIZE(free_area);
1381 VMCOREINFO_STRUCT_SIZE(list_head);
1382 VMCOREINFO_SIZE(nodemask_t);
bcbba6c1
KO
1383 VMCOREINFO_OFFSET(page, flags);
1384 VMCOREINFO_OFFSET(page, _count);
1385 VMCOREINFO_OFFSET(page, mapping);
1386 VMCOREINFO_OFFSET(page, lru);
1387 VMCOREINFO_OFFSET(pglist_data, node_zones);
1388 VMCOREINFO_OFFSET(pglist_data, nr_zones);
fd59d231 1389#ifdef CONFIG_FLAT_NODE_MEM_MAP
bcbba6c1 1390 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
fd59d231 1391#endif
bcbba6c1
KO
1392 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1393 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1394 VMCOREINFO_OFFSET(pglist_data, node_id);
1395 VMCOREINFO_OFFSET(zone, free_area);
1396 VMCOREINFO_OFFSET(zone, vm_stat);
1397 VMCOREINFO_OFFSET(zone, spanned_pages);
1398 VMCOREINFO_OFFSET(free_area, free_list);
1399 VMCOREINFO_OFFSET(list_head, next);
1400 VMCOREINFO_OFFSET(list_head, prev);
1401 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
83a08e7c 1402 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
bcbba6c1 1403 VMCOREINFO_NUMBER(NR_FREE_PAGES);
122c7a59
KO
1404 VMCOREINFO_NUMBER(PG_lru);
1405 VMCOREINFO_NUMBER(PG_private);
1406 VMCOREINFO_NUMBER(PG_swapcache);
fd59d231
KO
1407
1408 arch_crash_save_vmcoreinfo();
1409
1410 return 0;
1411}
1412
1413module_init(crash_save_vmcoreinfo_init)