[PATCH] hrtimers: hrtimer_clock_base description typo
[linux-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
62
63/**
64 * ktime_get_real - get the real (wall-) time in ktime_t format
65 *
66 * returns the time in ktime_t format
67 */
d316c57f 68ktime_t ktime_get_real(void)
c0a31329
TG
69{
70 struct timespec now;
71
72 getnstimeofday(&now);
73
74 return timespec_to_ktime(now);
75}
76
77EXPORT_SYMBOL_GPL(ktime_get_real);
78
79/*
80 * The timer bases:
7978672c
GA
81 *
82 * Note: If we want to add new timer bases, we have to skip the two
83 * clock ids captured by the cpu-timers. We do this by holding empty
84 * entries rather than doing math adjustment of the clock ids.
85 * This ensures that we capture erroneous accesses to these clock ids
86 * rather than moving them into the range of valid clock id's.
c0a31329 87 */
54cdfdb4 88DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 89{
3c8aa39d
TG
90
91 .clock_base =
c0a31329 92 {
3c8aa39d
TG
93 {
94 .index = CLOCK_REALTIME,
95 .get_time = &ktime_get_real,
54cdfdb4 96 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
97 },
98 {
99 .index = CLOCK_MONOTONIC,
100 .get_time = &ktime_get,
54cdfdb4 101 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
102 },
103 }
c0a31329
TG
104};
105
106/**
107 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
108 * @ts: pointer to timespec variable
109 *
110 * The function calculates the monotonic clock from the realtime
111 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 112 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
113 */
114void ktime_get_ts(struct timespec *ts)
115{
116 struct timespec tomono;
117 unsigned long seq;
118
119 do {
120 seq = read_seqbegin(&xtime_lock);
121 getnstimeofday(ts);
122 tomono = wall_to_monotonic;
123
124 } while (read_seqretry(&xtime_lock, seq));
125
126 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
127 ts->tv_nsec + tomono.tv_nsec);
128}
69778e32 129EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 130
92127c7a
TG
131/*
132 * Get the coarse grained time at the softirq based on xtime and
133 * wall_to_monotonic.
134 */
3c8aa39d 135static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
136{
137 ktime_t xtim, tomono;
f4304ab2 138 struct timespec xts;
92127c7a
TG
139 unsigned long seq;
140
141 do {
142 seq = read_seqbegin(&xtime_lock);
f4304ab2 143#ifdef CONFIG_NO_HZ
144 getnstimeofday(&xts);
145#else
146 xts = xtime;
147#endif
92127c7a
TG
148 } while (read_seqretry(&xtime_lock, seq));
149
f4304ab2 150 xtim = timespec_to_ktime(xts);
151 tomono = timespec_to_ktime(wall_to_monotonic);
3c8aa39d
TG
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
92127c7a
TG
155}
156
303e967f
TG
157/*
158 * Helper function to check, whether the timer is running the callback
159 * function
160 */
161static inline int hrtimer_callback_running(struct hrtimer *timer)
162{
163 return timer->state & HRTIMER_STATE_CALLBACK;
164}
165
c0a31329
TG
166/*
167 * Functions and macros which are different for UP/SMP systems are kept in a
168 * single place
169 */
170#ifdef CONFIG_SMP
171
c0a31329
TG
172/*
173 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
174 * means that all timers which are tied to this base via timer->base are
175 * locked, and the base itself is locked too.
176 *
177 * So __run_timers/migrate_timers can safely modify all timers which could
178 * be found on the lists/queues.
179 *
180 * When the timer's base is locked, and the timer removed from list, it is
181 * possible to set timer->base = NULL and drop the lock: the timer remains
182 * locked.
183 */
3c8aa39d
TG
184static
185struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
186 unsigned long *flags)
c0a31329 187{
3c8aa39d 188 struct hrtimer_clock_base *base;
c0a31329
TG
189
190 for (;;) {
191 base = timer->base;
192 if (likely(base != NULL)) {
3c8aa39d 193 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
194 if (likely(base == timer->base))
195 return base;
196 /* The timer has migrated to another CPU: */
3c8aa39d 197 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
198 }
199 cpu_relax();
200 }
201}
202
203/*
204 * Switch the timer base to the current CPU when possible.
205 */
3c8aa39d
TG
206static inline struct hrtimer_clock_base *
207switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 208{
3c8aa39d
TG
209 struct hrtimer_clock_base *new_base;
210 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 211
3c8aa39d
TG
212 new_cpu_base = &__get_cpu_var(hrtimer_bases);
213 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
214
215 if (base != new_base) {
216 /*
217 * We are trying to schedule the timer on the local CPU.
218 * However we can't change timer's base while it is running,
219 * so we keep it on the same CPU. No hassle vs. reprogramming
220 * the event source in the high resolution case. The softirq
221 * code will take care of this when the timer function has
222 * completed. There is no conflict as we hold the lock until
223 * the timer is enqueued.
224 */
54cdfdb4 225 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
226 return base;
227
228 /* See the comment in lock_timer_base() */
229 timer->base = NULL;
3c8aa39d
TG
230 spin_unlock(&base->cpu_base->lock);
231 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
232 timer->base = new_base;
233 }
234 return new_base;
235}
236
237#else /* CONFIG_SMP */
238
3c8aa39d 239static inline struct hrtimer_clock_base *
c0a31329
TG
240lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
241{
3c8aa39d 242 struct hrtimer_clock_base *base = timer->base;
c0a31329 243
3c8aa39d 244 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
245
246 return base;
247}
248
54cdfdb4 249# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
250
251#endif /* !CONFIG_SMP */
252
253/*
254 * Functions for the union type storage format of ktime_t which are
255 * too large for inlining:
256 */
257#if BITS_PER_LONG < 64
258# ifndef CONFIG_KTIME_SCALAR
259/**
260 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
261 * @kt: addend
262 * @nsec: the scalar nsec value to add
263 *
264 * Returns the sum of kt and nsec in ktime_t format
265 */
266ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
267{
268 ktime_t tmp;
269
270 if (likely(nsec < NSEC_PER_SEC)) {
271 tmp.tv64 = nsec;
272 } else {
273 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
274
275 tmp = ktime_set((long)nsec, rem);
276 }
277
278 return ktime_add(kt, tmp);
279}
c0a31329
TG
280# endif /* !CONFIG_KTIME_SCALAR */
281
282/*
283 * Divide a ktime value by a nanosecond value
284 */
79bf2bb3 285unsigned long ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
286{
287 u64 dclc, inc, dns;
288 int sft = 0;
289
290 dclc = dns = ktime_to_ns(kt);
291 inc = div;
292 /* Make sure the divisor is less than 2^32: */
293 while (div >> 32) {
294 sft++;
295 div >>= 1;
296 }
297 dclc >>= sft;
298 do_div(dclc, (unsigned long) div);
299
300 return (unsigned long) dclc;
301}
c0a31329
TG
302#endif /* BITS_PER_LONG >= 64 */
303
54cdfdb4
TG
304/* High resolution timer related functions */
305#ifdef CONFIG_HIGH_RES_TIMERS
306
307/*
308 * High resolution timer enabled ?
309 */
310static int hrtimer_hres_enabled __read_mostly = 1;
311
312/*
313 * Enable / Disable high resolution mode
314 */
315static int __init setup_hrtimer_hres(char *str)
316{
317 if (!strcmp(str, "off"))
318 hrtimer_hres_enabled = 0;
319 else if (!strcmp(str, "on"))
320 hrtimer_hres_enabled = 1;
321 else
322 return 0;
323 return 1;
324}
325
326__setup("highres=", setup_hrtimer_hres);
327
328/*
329 * hrtimer_high_res_enabled - query, if the highres mode is enabled
330 */
331static inline int hrtimer_is_hres_enabled(void)
332{
333 return hrtimer_hres_enabled;
334}
335
336/*
337 * Is the high resolution mode active ?
338 */
339static inline int hrtimer_hres_active(void)
340{
341 return __get_cpu_var(hrtimer_bases).hres_active;
342}
343
344/*
345 * Reprogram the event source with checking both queues for the
346 * next event
347 * Called with interrupts disabled and base->lock held
348 */
349static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
350{
351 int i;
352 struct hrtimer_clock_base *base = cpu_base->clock_base;
353 ktime_t expires;
354
355 cpu_base->expires_next.tv64 = KTIME_MAX;
356
357 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
358 struct hrtimer *timer;
359
360 if (!base->first)
361 continue;
362 timer = rb_entry(base->first, struct hrtimer, node);
363 expires = ktime_sub(timer->expires, base->offset);
364 if (expires.tv64 < cpu_base->expires_next.tv64)
365 cpu_base->expires_next = expires;
366 }
367
368 if (cpu_base->expires_next.tv64 != KTIME_MAX)
369 tick_program_event(cpu_base->expires_next, 1);
370}
371
372/*
373 * Shared reprogramming for clock_realtime and clock_monotonic
374 *
375 * When a timer is enqueued and expires earlier than the already enqueued
376 * timers, we have to check, whether it expires earlier than the timer for
377 * which the clock event device was armed.
378 *
379 * Called with interrupts disabled and base->cpu_base.lock held
380 */
381static int hrtimer_reprogram(struct hrtimer *timer,
382 struct hrtimer_clock_base *base)
383{
384 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
385 ktime_t expires = ktime_sub(timer->expires, base->offset);
386 int res;
387
388 /*
389 * When the callback is running, we do not reprogram the clock event
390 * device. The timer callback is either running on a different CPU or
391 * the callback is executed in the hrtimer_interupt context. The
392 * reprogramming is handled either by the softirq, which called the
393 * callback or at the end of the hrtimer_interrupt.
394 */
395 if (hrtimer_callback_running(timer))
396 return 0;
397
398 if (expires.tv64 >= expires_next->tv64)
399 return 0;
400
401 /*
402 * Clockevents returns -ETIME, when the event was in the past.
403 */
404 res = tick_program_event(expires, 0);
405 if (!IS_ERR_VALUE(res))
406 *expires_next = expires;
407 return res;
408}
409
410
411/*
412 * Retrigger next event is called after clock was set
413 *
414 * Called with interrupts disabled via on_each_cpu()
415 */
416static void retrigger_next_event(void *arg)
417{
418 struct hrtimer_cpu_base *base;
419 struct timespec realtime_offset;
420 unsigned long seq;
421
422 if (!hrtimer_hres_active())
423 return;
424
425 do {
426 seq = read_seqbegin(&xtime_lock);
427 set_normalized_timespec(&realtime_offset,
428 -wall_to_monotonic.tv_sec,
429 -wall_to_monotonic.tv_nsec);
430 } while (read_seqretry(&xtime_lock, seq));
431
432 base = &__get_cpu_var(hrtimer_bases);
433
434 /* Adjust CLOCK_REALTIME offset */
435 spin_lock(&base->lock);
436 base->clock_base[CLOCK_REALTIME].offset =
437 timespec_to_ktime(realtime_offset);
438
439 hrtimer_force_reprogram(base);
440 spin_unlock(&base->lock);
441}
442
443/*
444 * Clock realtime was set
445 *
446 * Change the offset of the realtime clock vs. the monotonic
447 * clock.
448 *
449 * We might have to reprogram the high resolution timer interrupt. On
450 * SMP we call the architecture specific code to retrigger _all_ high
451 * resolution timer interrupts. On UP we just disable interrupts and
452 * call the high resolution interrupt code.
453 */
454void clock_was_set(void)
455{
456 /* Retrigger the CPU local events everywhere */
457 on_each_cpu(retrigger_next_event, NULL, 0, 1);
458}
459
460/*
461 * Check, whether the timer is on the callback pending list
462 */
463static inline int hrtimer_cb_pending(const struct hrtimer *timer)
464{
465 return timer->state & HRTIMER_STATE_PENDING;
466}
467
468/*
469 * Remove a timer from the callback pending list
470 */
471static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
472{
473 list_del_init(&timer->cb_entry);
474}
475
476/*
477 * Initialize the high resolution related parts of cpu_base
478 */
479static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
480{
481 base->expires_next.tv64 = KTIME_MAX;
482 base->hres_active = 0;
483 INIT_LIST_HEAD(&base->cb_pending);
484}
485
486/*
487 * Initialize the high resolution related parts of a hrtimer
488 */
489static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
490{
491 INIT_LIST_HEAD(&timer->cb_entry);
492}
493
494/*
495 * When High resolution timers are active, try to reprogram. Note, that in case
496 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
497 * check happens. The timer gets enqueued into the rbtree. The reprogramming
498 * and expiry check is done in the hrtimer_interrupt or in the softirq.
499 */
500static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
501 struct hrtimer_clock_base *base)
502{
503 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
504
505 /* Timer is expired, act upon the callback mode */
506 switch(timer->cb_mode) {
507 case HRTIMER_CB_IRQSAFE_NO_RESTART:
508 /*
509 * We can call the callback from here. No restart
510 * happens, so no danger of recursion
511 */
512 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
513 return 1;
514 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
515 /*
516 * This is solely for the sched tick emulation with
517 * dynamic tick support to ensure that we do not
518 * restart the tick right on the edge and end up with
519 * the tick timer in the softirq ! The calling site
520 * takes care of this.
521 */
522 return 1;
523 case HRTIMER_CB_IRQSAFE:
524 case HRTIMER_CB_SOFTIRQ:
525 /*
526 * Move everything else into the softirq pending list !
527 */
528 list_add_tail(&timer->cb_entry,
529 &base->cpu_base->cb_pending);
530 timer->state = HRTIMER_STATE_PENDING;
531 raise_softirq(HRTIMER_SOFTIRQ);
532 return 1;
533 default:
534 BUG();
535 }
536 }
537 return 0;
538}
539
540/*
541 * Switch to high resolution mode
542 */
543static void hrtimer_switch_to_hres(void)
544{
545 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
546 unsigned long flags;
547
548 if (base->hres_active)
549 return;
550
551 local_irq_save(flags);
552
553 if (tick_init_highres()) {
554 local_irq_restore(flags);
555 return;
556 }
557 base->hres_active = 1;
558 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
559 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
560
561 tick_setup_sched_timer();
562
563 /* "Retrigger" the interrupt to get things going */
564 retrigger_next_event(NULL);
565 local_irq_restore(flags);
566 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
567 smp_processor_id());
568}
569
570#else
571
572static inline int hrtimer_hres_active(void) { return 0; }
573static inline int hrtimer_is_hres_enabled(void) { return 0; }
574static inline void hrtimer_switch_to_hres(void) { }
575static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
576static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
577 struct hrtimer_clock_base *base)
578{
579 return 0;
580}
581static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
582static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
583static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
584static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
585
586#endif /* CONFIG_HIGH_RES_TIMERS */
587
82f67cd9
IM
588#ifdef CONFIG_TIMER_STATS
589void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
590{
591 if (timer->start_site)
592 return;
593
594 timer->start_site = addr;
595 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
596 timer->start_pid = current->pid;
597}
598#endif
599
c0a31329
TG
600/*
601 * Counterpart to lock_timer_base above:
602 */
603static inline
604void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
605{
3c8aa39d 606 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
607}
608
609/**
610 * hrtimer_forward - forward the timer expiry
c0a31329 611 * @timer: hrtimer to forward
44f21475 612 * @now: forward past this time
c0a31329
TG
613 * @interval: the interval to forward
614 *
615 * Forward the timer expiry so it will expire in the future.
8dca6f33 616 * Returns the number of overruns.
c0a31329
TG
617 */
618unsigned long
44f21475 619hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329
TG
620{
621 unsigned long orun = 1;
44f21475 622 ktime_t delta;
c0a31329
TG
623
624 delta = ktime_sub(now, timer->expires);
625
626 if (delta.tv64 < 0)
627 return 0;
628
c9db4fa1
TG
629 if (interval.tv64 < timer->base->resolution.tv64)
630 interval.tv64 = timer->base->resolution.tv64;
631
c0a31329 632 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 633 s64 incr = ktime_to_ns(interval);
c0a31329
TG
634
635 orun = ktime_divns(delta, incr);
636 timer->expires = ktime_add_ns(timer->expires, incr * orun);
637 if (timer->expires.tv64 > now.tv64)
638 return orun;
639 /*
640 * This (and the ktime_add() below) is the
641 * correction for exact:
642 */
643 orun++;
644 }
645 timer->expires = ktime_add(timer->expires, interval);
646
647 return orun;
648}
649
650/*
651 * enqueue_hrtimer - internal function to (re)start a timer
652 *
653 * The timer is inserted in expiry order. Insertion into the
654 * red black tree is O(log(n)). Must hold the base lock.
655 */
3c8aa39d 656static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 657 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
658{
659 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
660 struct rb_node *parent = NULL;
661 struct hrtimer *entry;
662
663 /*
664 * Find the right place in the rbtree:
665 */
666 while (*link) {
667 parent = *link;
668 entry = rb_entry(parent, struct hrtimer, node);
669 /*
670 * We dont care about collisions. Nodes with
671 * the same expiry time stay together.
672 */
673 if (timer->expires.tv64 < entry->expires.tv64)
674 link = &(*link)->rb_left;
288867ec 675 else
c0a31329 676 link = &(*link)->rb_right;
c0a31329
TG
677 }
678
679 /*
288867ec
TG
680 * Insert the timer to the rbtree and check whether it
681 * replaces the first pending timer
c0a31329 682 */
54cdfdb4
TG
683 if (!base->first || timer->expires.tv64 <
684 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
685 /*
686 * Reprogram the clock event device. When the timer is already
687 * expired hrtimer_enqueue_reprogram has either called the
688 * callback or added it to the pending list and raised the
689 * softirq.
690 *
691 * This is a NOP for !HIGHRES
692 */
693 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
694 return;
695
696 base->first = &timer->node;
697 }
698
c0a31329
TG
699 rb_link_node(&timer->node, parent, link);
700 rb_insert_color(&timer->node, &base->active);
303e967f
TG
701 /*
702 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
703 * state of a possibly running callback.
704 */
705 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 706}
c0a31329
TG
707
708/*
709 * __remove_hrtimer - internal function to remove a timer
710 *
711 * Caller must hold the base lock.
54cdfdb4
TG
712 *
713 * High resolution timer mode reprograms the clock event device when the
714 * timer is the one which expires next. The caller can disable this by setting
715 * reprogram to zero. This is useful, when the context does a reprogramming
716 * anyway (e.g. timer interrupt)
c0a31329 717 */
3c8aa39d 718static void __remove_hrtimer(struct hrtimer *timer,
303e967f 719 struct hrtimer_clock_base *base,
54cdfdb4 720 unsigned long newstate, int reprogram)
c0a31329 721{
54cdfdb4
TG
722 /* High res. callback list. NOP for !HIGHRES */
723 if (hrtimer_cb_pending(timer))
724 hrtimer_remove_cb_pending(timer);
725 else {
726 /*
727 * Remove the timer from the rbtree and replace the
728 * first entry pointer if necessary.
729 */
730 if (base->first == &timer->node) {
731 base->first = rb_next(&timer->node);
732 /* Reprogram the clock event device. if enabled */
733 if (reprogram && hrtimer_hres_active())
734 hrtimer_force_reprogram(base->cpu_base);
735 }
736 rb_erase(&timer->node, &base->active);
737 }
303e967f 738 timer->state = newstate;
c0a31329
TG
739}
740
741/*
742 * remove hrtimer, called with base lock held
743 */
744static inline int
3c8aa39d 745remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 746{
303e967f 747 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
748 int reprogram;
749
750 /*
751 * Remove the timer and force reprogramming when high
752 * resolution mode is active and the timer is on the current
753 * CPU. If we remove a timer on another CPU, reprogramming is
754 * skipped. The interrupt event on this CPU is fired and
755 * reprogramming happens in the interrupt handler. This is a
756 * rare case and less expensive than a smp call.
757 */
82f67cd9 758 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
759 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
760 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
761 reprogram);
c0a31329
TG
762 return 1;
763 }
764 return 0;
765}
766
767/**
768 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
769 * @timer: the timer to be added
770 * @tim: expiry time
771 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
772 *
773 * Returns:
774 * 0 on success
775 * 1 when the timer was active
776 */
777int
778hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
779{
3c8aa39d 780 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
781 unsigned long flags;
782 int ret;
783
784 base = lock_hrtimer_base(timer, &flags);
785
786 /* Remove an active timer from the queue: */
787 ret = remove_hrtimer(timer, base);
788
789 /* Switch the timer base, if necessary: */
790 new_base = switch_hrtimer_base(timer, base);
791
c9cb2e3d 792 if (mode == HRTIMER_MODE_REL) {
c0a31329 793 tim = ktime_add(tim, new_base->get_time());
06027bdd
IM
794 /*
795 * CONFIG_TIME_LOW_RES is a temporary way for architectures
796 * to signal that they simply return xtime in
797 * do_gettimeoffset(). In this case we want to round up by
798 * resolution when starting a relative timer, to avoid short
799 * timeouts. This will go away with the GTOD framework.
800 */
801#ifdef CONFIG_TIME_LOW_RES
802 tim = ktime_add(tim, base->resolution);
803#endif
804 }
c0a31329
TG
805 timer->expires = tim;
806
82f67cd9
IM
807 timer_stats_hrtimer_set_start_info(timer);
808
54cdfdb4 809 enqueue_hrtimer(timer, new_base, base == new_base);
c0a31329
TG
810
811 unlock_hrtimer_base(timer, &flags);
812
813 return ret;
814}
8d16b764 815EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
816
817/**
818 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
819 * @timer: hrtimer to stop
820 *
821 * Returns:
822 * 0 when the timer was not active
823 * 1 when the timer was active
824 * -1 when the timer is currently excuting the callback function and
fa9799e3 825 * cannot be stopped
c0a31329
TG
826 */
827int hrtimer_try_to_cancel(struct hrtimer *timer)
828{
3c8aa39d 829 struct hrtimer_clock_base *base;
c0a31329
TG
830 unsigned long flags;
831 int ret = -1;
832
833 base = lock_hrtimer_base(timer, &flags);
834
303e967f 835 if (!hrtimer_callback_running(timer))
c0a31329
TG
836 ret = remove_hrtimer(timer, base);
837
838 unlock_hrtimer_base(timer, &flags);
839
840 return ret;
841
842}
8d16b764 843EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
844
845/**
846 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
847 * @timer: the timer to be cancelled
848 *
849 * Returns:
850 * 0 when the timer was not active
851 * 1 when the timer was active
852 */
853int hrtimer_cancel(struct hrtimer *timer)
854{
855 for (;;) {
856 int ret = hrtimer_try_to_cancel(timer);
857
858 if (ret >= 0)
859 return ret;
5ef37b19 860 cpu_relax();
c0a31329
TG
861 }
862}
8d16b764 863EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
864
865/**
866 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
867 * @timer: the timer to read
868 */
869ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
870{
3c8aa39d 871 struct hrtimer_clock_base *base;
c0a31329
TG
872 unsigned long flags;
873 ktime_t rem;
874
875 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 876 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
877 unlock_hrtimer_base(timer, &flags);
878
879 return rem;
880}
8d16b764 881EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 882
fd064b9b 883#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
884/**
885 * hrtimer_get_next_event - get the time until next expiry event
886 *
887 * Returns the delta to the next expiry event or KTIME_MAX if no timer
888 * is pending.
889 */
890ktime_t hrtimer_get_next_event(void)
891{
3c8aa39d
TG
892 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
893 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
894 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
895 unsigned long flags;
896 int i;
897
3c8aa39d
TG
898 spin_lock_irqsave(&cpu_base->lock, flags);
899
54cdfdb4
TG
900 if (!hrtimer_hres_active()) {
901 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
902 struct hrtimer *timer;
69239749 903
54cdfdb4
TG
904 if (!base->first)
905 continue;
3c8aa39d 906
54cdfdb4
TG
907 timer = rb_entry(base->first, struct hrtimer, node);
908 delta.tv64 = timer->expires.tv64;
909 delta = ktime_sub(delta, base->get_time());
910 if (delta.tv64 < mindelta.tv64)
911 mindelta.tv64 = delta.tv64;
912 }
69239749 913 }
3c8aa39d
TG
914
915 spin_unlock_irqrestore(&cpu_base->lock, flags);
916
69239749
TL
917 if (mindelta.tv64 < 0)
918 mindelta.tv64 = 0;
919 return mindelta;
920}
921#endif
922
c0a31329 923/**
7978672c 924 * hrtimer_init - initialize a timer to the given clock
7978672c 925 * @timer: the timer to be initialized
c0a31329 926 * @clock_id: the clock to be used
7978672c 927 * @mode: timer mode abs/rel
c0a31329 928 */
7978672c
GA
929void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
930 enum hrtimer_mode mode)
c0a31329 931{
3c8aa39d 932 struct hrtimer_cpu_base *cpu_base;
c0a31329 933
7978672c
GA
934 memset(timer, 0, sizeof(struct hrtimer));
935
3c8aa39d 936 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 937
c9cb2e3d 938 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
939 clock_id = CLOCK_MONOTONIC;
940
3c8aa39d 941 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 942 hrtimer_init_timer_hres(timer);
82f67cd9
IM
943
944#ifdef CONFIG_TIMER_STATS
945 timer->start_site = NULL;
946 timer->start_pid = -1;
947 memset(timer->start_comm, 0, TASK_COMM_LEN);
948#endif
c0a31329 949}
8d16b764 950EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
951
952/**
953 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
954 * @which_clock: which clock to query
955 * @tp: pointer to timespec variable to store the resolution
956 *
72fd4a35
RD
957 * Store the resolution of the clock selected by @which_clock in the
958 * variable pointed to by @tp.
c0a31329
TG
959 */
960int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
961{
3c8aa39d 962 struct hrtimer_cpu_base *cpu_base;
c0a31329 963
3c8aa39d
TG
964 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
965 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
966
967 return 0;
968}
8d16b764 969EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 970
54cdfdb4
TG
971#ifdef CONFIG_HIGH_RES_TIMERS
972
973/*
974 * High resolution timer interrupt
975 * Called with interrupts disabled
976 */
977void hrtimer_interrupt(struct clock_event_device *dev)
978{
979 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
980 struct hrtimer_clock_base *base;
981 ktime_t expires_next, now;
982 int i, raise = 0;
983
984 BUG_ON(!cpu_base->hres_active);
985 cpu_base->nr_events++;
986 dev->next_event.tv64 = KTIME_MAX;
987
988 retry:
989 now = ktime_get();
990
991 expires_next.tv64 = KTIME_MAX;
992
993 base = cpu_base->clock_base;
994
995 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
996 ktime_t basenow;
997 struct rb_node *node;
998
999 spin_lock(&cpu_base->lock);
1000
1001 basenow = ktime_add(now, base->offset);
1002
1003 while ((node = base->first)) {
1004 struct hrtimer *timer;
1005
1006 timer = rb_entry(node, struct hrtimer, node);
1007
1008 if (basenow.tv64 < timer->expires.tv64) {
1009 ktime_t expires;
1010
1011 expires = ktime_sub(timer->expires,
1012 base->offset);
1013 if (expires.tv64 < expires_next.tv64)
1014 expires_next = expires;
1015 break;
1016 }
1017
1018 /* Move softirq callbacks to the pending list */
1019 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1020 __remove_hrtimer(timer, base,
1021 HRTIMER_STATE_PENDING, 0);
1022 list_add_tail(&timer->cb_entry,
1023 &base->cpu_base->cb_pending);
1024 raise = 1;
1025 continue;
1026 }
1027
1028 __remove_hrtimer(timer, base,
1029 HRTIMER_STATE_CALLBACK, 0);
82f67cd9 1030 timer_stats_account_hrtimer(timer);
54cdfdb4
TG
1031
1032 /*
1033 * Note: We clear the CALLBACK bit after
1034 * enqueue_hrtimer to avoid reprogramming of
1035 * the event hardware. This happens at the end
1036 * of this function anyway.
1037 */
1038 if (timer->function(timer) != HRTIMER_NORESTART) {
1039 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1040 enqueue_hrtimer(timer, base, 0);
1041 }
1042 timer->state &= ~HRTIMER_STATE_CALLBACK;
1043 }
1044 spin_unlock(&cpu_base->lock);
1045 base++;
1046 }
1047
1048 cpu_base->expires_next = expires_next;
1049
1050 /* Reprogramming necessary ? */
1051 if (expires_next.tv64 != KTIME_MAX) {
1052 if (tick_program_event(expires_next, 0))
1053 goto retry;
1054 }
1055
1056 /* Raise softirq ? */
1057 if (raise)
1058 raise_softirq(HRTIMER_SOFTIRQ);
1059}
1060
1061static void run_hrtimer_softirq(struct softirq_action *h)
1062{
1063 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1064
1065 spin_lock_irq(&cpu_base->lock);
1066
1067 while (!list_empty(&cpu_base->cb_pending)) {
1068 enum hrtimer_restart (*fn)(struct hrtimer *);
1069 struct hrtimer *timer;
1070 int restart;
1071
1072 timer = list_entry(cpu_base->cb_pending.next,
1073 struct hrtimer, cb_entry);
1074
82f67cd9
IM
1075 timer_stats_account_hrtimer(timer);
1076
54cdfdb4
TG
1077 fn = timer->function;
1078 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1079 spin_unlock_irq(&cpu_base->lock);
1080
1081 restart = fn(timer);
1082
1083 spin_lock_irq(&cpu_base->lock);
1084
1085 timer->state &= ~HRTIMER_STATE_CALLBACK;
1086 if (restart == HRTIMER_RESTART) {
1087 BUG_ON(hrtimer_active(timer));
1088 /*
1089 * Enqueue the timer, allow reprogramming of the event
1090 * device
1091 */
1092 enqueue_hrtimer(timer, timer->base, 1);
1093 } else if (hrtimer_active(timer)) {
1094 /*
1095 * If the timer was rearmed on another CPU, reprogram
1096 * the event device.
1097 */
1098 if (timer->base->first == &timer->node)
1099 hrtimer_reprogram(timer, timer->base);
1100 }
1101 }
1102 spin_unlock_irq(&cpu_base->lock);
1103}
1104
1105#endif /* CONFIG_HIGH_RES_TIMERS */
1106
c0a31329
TG
1107/*
1108 * Expire the per base hrtimer-queue:
1109 */
3c8aa39d
TG
1110static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1111 int index)
c0a31329 1112{
288867ec 1113 struct rb_node *node;
3c8aa39d 1114 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1115
3055adda
DS
1116 if (!base->first)
1117 return;
1118
92127c7a
TG
1119 if (base->get_softirq_time)
1120 base->softirq_time = base->get_softirq_time();
1121
3c8aa39d 1122 spin_lock_irq(&cpu_base->lock);
c0a31329 1123
288867ec 1124 while ((node = base->first)) {
c0a31329 1125 struct hrtimer *timer;
c9cb2e3d 1126 enum hrtimer_restart (*fn)(struct hrtimer *);
c0a31329 1127 int restart;
c0a31329 1128
288867ec 1129 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1130 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1131 break;
1132
82f67cd9
IM
1133 timer_stats_account_hrtimer(timer);
1134
c0a31329 1135 fn = timer->function;
54cdfdb4 1136 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
3c8aa39d 1137 spin_unlock_irq(&cpu_base->lock);
c0a31329 1138
05cfb614 1139 restart = fn(timer);
c0a31329 1140
3c8aa39d 1141 spin_lock_irq(&cpu_base->lock);
c0a31329 1142
303e967f 1143 timer->state &= ~HRTIMER_STATE_CALLBACK;
b75f7a51
RZ
1144 if (restart != HRTIMER_NORESTART) {
1145 BUG_ON(hrtimer_active(timer));
54cdfdb4 1146 enqueue_hrtimer(timer, base, 0);
b75f7a51 1147 }
c0a31329 1148 }
3c8aa39d 1149 spin_unlock_irq(&cpu_base->lock);
c0a31329
TG
1150}
1151
1152/*
1153 * Called from timer softirq every jiffy, expire hrtimers:
54cdfdb4
TG
1154 *
1155 * For HRT its the fall back code to run the softirq in the timer
1156 * softirq context in case the hrtimer initialization failed or has
1157 * not been done yet.
c0a31329
TG
1158 */
1159void hrtimer_run_queues(void)
1160{
3c8aa39d 1161 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1162 int i;
1163
54cdfdb4
TG
1164 if (hrtimer_hres_active())
1165 return;
1166
79bf2bb3
TG
1167 /*
1168 * This _is_ ugly: We have to check in the softirq context,
1169 * whether we can switch to highres and / or nohz mode. The
1170 * clocksource switch happens in the timer interrupt with
1171 * xtime_lock held. Notification from there only sets the
1172 * check bit in the tick_oneshot code, otherwise we might
1173 * deadlock vs. xtime_lock.
1174 */
54cdfdb4
TG
1175 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1176 hrtimer_switch_to_hres();
79bf2bb3 1177
3c8aa39d 1178 hrtimer_get_softirq_time(cpu_base);
92127c7a 1179
3c8aa39d
TG
1180 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1181 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1182}
1183
10c94ec1
TG
1184/*
1185 * Sleep related functions:
1186 */
c9cb2e3d 1187static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1188{
1189 struct hrtimer_sleeper *t =
1190 container_of(timer, struct hrtimer_sleeper, timer);
1191 struct task_struct *task = t->task;
1192
1193 t->task = NULL;
1194 if (task)
1195 wake_up_process(task);
1196
1197 return HRTIMER_NORESTART;
1198}
1199
36c8b586 1200void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1201{
1202 sl->timer.function = hrtimer_wakeup;
1203 sl->task = task;
54cdfdb4
TG
1204#ifdef CONFIG_HIGH_RES_TIMERS
1205 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1206#endif
00362e33
TG
1207}
1208
669d7868 1209static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1210{
669d7868 1211 hrtimer_init_sleeper(t, current);
10c94ec1 1212
432569bb
RZ
1213 do {
1214 set_current_state(TASK_INTERRUPTIBLE);
1215 hrtimer_start(&t->timer, t->timer.expires, mode);
1216
54cdfdb4
TG
1217 if (likely(t->task))
1218 schedule();
432569bb 1219
669d7868 1220 hrtimer_cancel(&t->timer);
c9cb2e3d 1221 mode = HRTIMER_MODE_ABS;
669d7868
TG
1222
1223 } while (t->task && !signal_pending(current));
432569bb 1224
669d7868 1225 return t->task == NULL;
10c94ec1
TG
1226}
1227
1711ef38 1228long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1229{
669d7868 1230 struct hrtimer_sleeper t;
ea13dbc8
IM
1231 struct timespec __user *rmtp;
1232 struct timespec tu;
432569bb 1233 ktime_t time;
10c94ec1
TG
1234
1235 restart->fn = do_no_restart_syscall;
1236
c9cb2e3d 1237 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 1238 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 1239
c9cb2e3d 1240 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1241 return 0;
1242
1711ef38 1243 rmtp = (struct timespec __user *) restart->arg1;
432569bb
RZ
1244 if (rmtp) {
1245 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1246 if (time.tv64 <= 0)
1247 return 0;
1248 tu = ktime_to_timespec(time);
1249 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1250 return -EFAULT;
1251 }
10c94ec1 1252
1711ef38 1253 restart->fn = hrtimer_nanosleep_restart;
10c94ec1
TG
1254
1255 /* The other values in restart are already filled in */
1256 return -ERESTART_RESTARTBLOCK;
1257}
1258
10c94ec1
TG
1259long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1260 const enum hrtimer_mode mode, const clockid_t clockid)
1261{
1262 struct restart_block *restart;
669d7868 1263 struct hrtimer_sleeper t;
10c94ec1
TG
1264 struct timespec tu;
1265 ktime_t rem;
1266
432569bb
RZ
1267 hrtimer_init(&t.timer, clockid, mode);
1268 t.timer.expires = timespec_to_ktime(*rqtp);
1269 if (do_nanosleep(&t, mode))
10c94ec1
TG
1270 return 0;
1271
7978672c 1272 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1273 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1274 return -ERESTARTNOHAND;
1275
432569bb
RZ
1276 if (rmtp) {
1277 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1278 if (rem.tv64 <= 0)
1279 return 0;
1280 tu = ktime_to_timespec(rem);
1281 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1282 return -EFAULT;
1283 }
10c94ec1
TG
1284
1285 restart = &current_thread_info()->restart_block;
1711ef38
TA
1286 restart->fn = hrtimer_nanosleep_restart;
1287 restart->arg0 = (unsigned long) t.timer.base->index;
1288 restart->arg1 = (unsigned long) rmtp;
1289 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1290 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
1291
1292 return -ERESTART_RESTARTBLOCK;
1293}
1294
6ba1b912
TG
1295asmlinkage long
1296sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1297{
1298 struct timespec tu;
1299
1300 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1301 return -EFAULT;
1302
1303 if (!timespec_valid(&tu))
1304 return -EINVAL;
1305
c9cb2e3d 1306 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1307}
1308
c0a31329
TG
1309/*
1310 * Functions related to boot-time initialization:
1311 */
1312static void __devinit init_hrtimers_cpu(int cpu)
1313{
3c8aa39d 1314 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1315 int i;
1316
3c8aa39d
TG
1317 spin_lock_init(&cpu_base->lock);
1318 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1319
1320 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1321 cpu_base->clock_base[i].cpu_base = cpu_base;
1322
54cdfdb4 1323 hrtimer_init_hres(cpu_base);
c0a31329
TG
1324}
1325
1326#ifdef CONFIG_HOTPLUG_CPU
1327
3c8aa39d
TG
1328static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1329 struct hrtimer_clock_base *new_base)
c0a31329
TG
1330{
1331 struct hrtimer *timer;
1332 struct rb_node *node;
1333
1334 while ((node = rb_first(&old_base->active))) {
1335 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1336 BUG_ON(hrtimer_callback_running(timer));
1337 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1338 timer->base = new_base;
54cdfdb4
TG
1339 /*
1340 * Enqueue the timer. Allow reprogramming of the event device
1341 */
1342 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1343 }
1344}
1345
1346static void migrate_hrtimers(int cpu)
1347{
3c8aa39d 1348 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1349 int i;
1350
1351 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1352 old_base = &per_cpu(hrtimer_bases, cpu);
1353 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1354
54cdfdb4
TG
1355 tick_cancel_sched_timer(cpu);
1356
c0a31329 1357 local_irq_disable();
e81ce1f7
HC
1358 double_spin_lock(&new_base->lock, &old_base->lock,
1359 smp_processor_id() < cpu);
c0a31329 1360
3c8aa39d 1361 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1362 migrate_hrtimer_list(&old_base->clock_base[i],
1363 &new_base->clock_base[i]);
c0a31329
TG
1364 }
1365
e81ce1f7
HC
1366 double_spin_unlock(&new_base->lock, &old_base->lock,
1367 smp_processor_id() < cpu);
c0a31329
TG
1368 local_irq_enable();
1369 put_cpu_var(hrtimer_bases);
1370}
1371#endif /* CONFIG_HOTPLUG_CPU */
1372
8c78f307 1373static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1374 unsigned long action, void *hcpu)
1375{
1376 long cpu = (long)hcpu;
1377
1378 switch (action) {
1379
1380 case CPU_UP_PREPARE:
1381 init_hrtimers_cpu(cpu);
1382 break;
1383
1384#ifdef CONFIG_HOTPLUG_CPU
1385 case CPU_DEAD:
d316c57f 1386 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1387 migrate_hrtimers(cpu);
1388 break;
1389#endif
1390
1391 default:
1392 break;
1393 }
1394
1395 return NOTIFY_OK;
1396}
1397
8c78f307 1398static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1399 .notifier_call = hrtimer_cpu_notify,
1400};
1401
1402void __init hrtimers_init(void)
1403{
1404 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1405 (void *)(long)smp_processor_id());
1406 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1407#ifdef CONFIG_HIGH_RES_TIMERS
1408 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1409#endif
c0a31329
TG
1410}
1411