Merge branches 'x86/numa-fixes', 'x86/apic', 'x86/apm', 'x86/bitops', 'x86/build...
[linux-2.6-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
237fc6e7 46#include <linux/debugobjects.h>
c0a31329
TG
47
48#include <asm/uaccess.h>
49
50/**
51 * ktime_get - get the monotonic time in ktime_t format
52 *
53 * returns the time in ktime_t format
54 */
d316c57f 55ktime_t ktime_get(void)
c0a31329
TG
56{
57 struct timespec now;
58
59 ktime_get_ts(&now);
60
61 return timespec_to_ktime(now);
62}
641b9e0e 63EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
64
65/**
66 * ktime_get_real - get the real (wall-) time in ktime_t format
67 *
68 * returns the time in ktime_t format
69 */
d316c57f 70ktime_t ktime_get_real(void)
c0a31329
TG
71{
72 struct timespec now;
73
74 getnstimeofday(&now);
75
76 return timespec_to_ktime(now);
77}
78
79EXPORT_SYMBOL_GPL(ktime_get_real);
80
81/*
82 * The timer bases:
7978672c
GA
83 *
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
c0a31329 89 */
54cdfdb4 90DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 91{
3c8aa39d
TG
92
93 .clock_base =
c0a31329 94 {
3c8aa39d
TG
95 {
96 .index = CLOCK_REALTIME,
97 .get_time = &ktime_get_real,
54cdfdb4 98 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
99 },
100 {
101 .index = CLOCK_MONOTONIC,
102 .get_time = &ktime_get,
54cdfdb4 103 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
104 },
105 }
c0a31329
TG
106};
107
108/**
109 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
110 * @ts: pointer to timespec variable
111 *
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 114 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
115 */
116void ktime_get_ts(struct timespec *ts)
117{
118 struct timespec tomono;
119 unsigned long seq;
120
121 do {
122 seq = read_seqbegin(&xtime_lock);
123 getnstimeofday(ts);
124 tomono = wall_to_monotonic;
125
126 } while (read_seqretry(&xtime_lock, seq));
127
128 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
129 ts->tv_nsec + tomono.tv_nsec);
130}
69778e32 131EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 132
92127c7a
TG
133/*
134 * Get the coarse grained time at the softirq based on xtime and
135 * wall_to_monotonic.
136 */
3c8aa39d 137static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
138{
139 ktime_t xtim, tomono;
ad28d94a 140 struct timespec xts, tom;
92127c7a
TG
141 unsigned long seq;
142
143 do {
144 seq = read_seqbegin(&xtime_lock);
2c6b47de 145 xts = current_kernel_time();
ad28d94a 146 tom = wall_to_monotonic;
92127c7a
TG
147 } while (read_seqretry(&xtime_lock, seq));
148
f4304ab2 149 xtim = timespec_to_ktime(xts);
ad28d94a 150 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
151 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
152 base->clock_base[CLOCK_MONOTONIC].softirq_time =
153 ktime_add(xtim, tomono);
92127c7a
TG
154}
155
c0a31329
TG
156/*
157 * Functions and macros which are different for UP/SMP systems are kept in a
158 * single place
159 */
160#ifdef CONFIG_SMP
161
c0a31329
TG
162/*
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
166 *
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
169 *
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
172 * locked.
173 */
3c8aa39d
TG
174static
175struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
176 unsigned long *flags)
c0a31329 177{
3c8aa39d 178 struct hrtimer_clock_base *base;
c0a31329
TG
179
180 for (;;) {
181 base = timer->base;
182 if (likely(base != NULL)) {
3c8aa39d 183 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
184 if (likely(base == timer->base))
185 return base;
186 /* The timer has migrated to another CPU: */
3c8aa39d 187 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
188 }
189 cpu_relax();
190 }
191}
192
193/*
194 * Switch the timer base to the current CPU when possible.
195 */
3c8aa39d
TG
196static inline struct hrtimer_clock_base *
197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 198{
3c8aa39d
TG
199 struct hrtimer_clock_base *new_base;
200 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 201
3c8aa39d
TG
202 new_cpu_base = &__get_cpu_var(hrtimer_bases);
203 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
204
205 if (base != new_base) {
206 /*
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
54cdfdb4 215 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
3c8aa39d
TG
220 spin_unlock(&base->cpu_base->lock);
221 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
222 timer->base = new_base;
223 }
224 return new_base;
225}
226
227#else /* CONFIG_SMP */
228
3c8aa39d 229static inline struct hrtimer_clock_base *
c0a31329
TG
230lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231{
3c8aa39d 232 struct hrtimer_clock_base *base = timer->base;
c0a31329 233
3c8aa39d 234 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
235
236 return base;
237}
238
54cdfdb4 239# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
240
241#endif /* !CONFIG_SMP */
242
243/*
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
246 */
247#if BITS_PER_LONG < 64
248# ifndef CONFIG_KTIME_SCALAR
249/**
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
251 * @kt: addend
252 * @nsec: the scalar nsec value to add
253 *
254 * Returns the sum of kt and nsec in ktime_t format
255 */
256ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257{
258 ktime_t tmp;
259
260 if (likely(nsec < NSEC_PER_SEC)) {
261 tmp.tv64 = nsec;
262 } else {
263 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264
265 tmp = ktime_set((long)nsec, rem);
266 }
267
268 return ktime_add(kt, tmp);
269}
b8b8fd2d
DH
270
271EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
272
273/**
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @kt: minuend
276 * @nsec: the scalar nsec value to subtract
277 *
278 * Returns the subtraction of @nsec from @kt in ktime_t format
279 */
280ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281{
282 ktime_t tmp;
283
284 if (likely(nsec < NSEC_PER_SEC)) {
285 tmp.tv64 = nsec;
286 } else {
287 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288
289 tmp = ktime_set((long)nsec, rem);
290 }
291
292 return ktime_sub(kt, tmp);
293}
294
295EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
296# endif /* !CONFIG_KTIME_SCALAR */
297
298/*
299 * Divide a ktime value by a nanosecond value
300 */
4d672e7a 301u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
302{
303 u64 dclc, inc, dns;
304 int sft = 0;
305
306 dclc = dns = ktime_to_ns(kt);
307 inc = div;
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
312 }
313 dclc >>= sft;
314 do_div(dclc, (unsigned long) div);
315
4d672e7a 316 return dclc;
c0a31329 317}
c0a31329
TG
318#endif /* BITS_PER_LONG >= 64 */
319
5a7780e7
TG
320/*
321 * Add two ktime values and do a safety check for overflow:
322 */
323ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324{
325 ktime_t res = ktime_add(lhs, rhs);
326
327 /*
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
330 */
331 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
332 res = ktime_set(KTIME_SEC_MAX, 0);
333
334 return res;
335}
336
237fc6e7
TG
337#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338
339static struct debug_obj_descr hrtimer_debug_descr;
340
341/*
342 * fixup_init is called when:
343 * - an active object is initialized
344 */
345static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
346{
347 struct hrtimer *timer = addr;
348
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
356 }
357}
358
359/*
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
363 */
364static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
365{
366 switch (state) {
367
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378}
379
380/*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
385{
386 struct hrtimer *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396}
397
398static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403};
404
405static inline void debug_hrtimer_init(struct hrtimer *timer)
406{
407 debug_object_init(timer, &hrtimer_debug_descr);
408}
409
410static inline void debug_hrtimer_activate(struct hrtimer *timer)
411{
412 debug_object_activate(timer, &hrtimer_debug_descr);
413}
414
415static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
416{
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
418}
419
420static inline void debug_hrtimer_free(struct hrtimer *timer)
421{
422 debug_object_free(timer, &hrtimer_debug_descr);
423}
424
425static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
427
428void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
430{
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
433}
434
435void destroy_hrtimer_on_stack(struct hrtimer *timer)
436{
437 debug_object_free(timer, &hrtimer_debug_descr);
438}
439
440#else
441static inline void debug_hrtimer_init(struct hrtimer *timer) { }
442static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
443static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
444#endif
445
d3d74453
PZ
446/*
447 * Check, whether the timer is on the callback pending list
448 */
449static inline int hrtimer_cb_pending(const struct hrtimer *timer)
450{
451 return timer->state & HRTIMER_STATE_PENDING;
452}
453
454/*
455 * Remove a timer from the callback pending list
456 */
457static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
458{
459 list_del_init(&timer->cb_entry);
460}
461
54cdfdb4
TG
462/* High resolution timer related functions */
463#ifdef CONFIG_HIGH_RES_TIMERS
464
465/*
466 * High resolution timer enabled ?
467 */
468static int hrtimer_hres_enabled __read_mostly = 1;
469
470/*
471 * Enable / Disable high resolution mode
472 */
473static int __init setup_hrtimer_hres(char *str)
474{
475 if (!strcmp(str, "off"))
476 hrtimer_hres_enabled = 0;
477 else if (!strcmp(str, "on"))
478 hrtimer_hres_enabled = 1;
479 else
480 return 0;
481 return 1;
482}
483
484__setup("highres=", setup_hrtimer_hres);
485
486/*
487 * hrtimer_high_res_enabled - query, if the highres mode is enabled
488 */
489static inline int hrtimer_is_hres_enabled(void)
490{
491 return hrtimer_hres_enabled;
492}
493
494/*
495 * Is the high resolution mode active ?
496 */
497static inline int hrtimer_hres_active(void)
498{
499 return __get_cpu_var(hrtimer_bases).hres_active;
500}
501
502/*
503 * Reprogram the event source with checking both queues for the
504 * next event
505 * Called with interrupts disabled and base->lock held
506 */
507static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
508{
509 int i;
510 struct hrtimer_clock_base *base = cpu_base->clock_base;
511 ktime_t expires;
512
513 cpu_base->expires_next.tv64 = KTIME_MAX;
514
515 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
516 struct hrtimer *timer;
517
518 if (!base->first)
519 continue;
520 timer = rb_entry(base->first, struct hrtimer, node);
521 expires = ktime_sub(timer->expires, base->offset);
522 if (expires.tv64 < cpu_base->expires_next.tv64)
523 cpu_base->expires_next = expires;
524 }
525
526 if (cpu_base->expires_next.tv64 != KTIME_MAX)
527 tick_program_event(cpu_base->expires_next, 1);
528}
529
530/*
531 * Shared reprogramming for clock_realtime and clock_monotonic
532 *
533 * When a timer is enqueued and expires earlier than the already enqueued
534 * timers, we have to check, whether it expires earlier than the timer for
535 * which the clock event device was armed.
536 *
537 * Called with interrupts disabled and base->cpu_base.lock held
538 */
539static int hrtimer_reprogram(struct hrtimer *timer,
540 struct hrtimer_clock_base *base)
541{
542 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
543 ktime_t expires = ktime_sub(timer->expires, base->offset);
544 int res;
545
63070a79
TG
546 WARN_ON_ONCE(timer->expires.tv64 < 0);
547
54cdfdb4
TG
548 /*
549 * When the callback is running, we do not reprogram the clock event
550 * device. The timer callback is either running on a different CPU or
3a4fa0a2 551 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
552 * reprogramming is handled either by the softirq, which called the
553 * callback or at the end of the hrtimer_interrupt.
554 */
555 if (hrtimer_callback_running(timer))
556 return 0;
557
63070a79
TG
558 /*
559 * CLOCK_REALTIME timer might be requested with an absolute
560 * expiry time which is less than base->offset. Nothing wrong
561 * about that, just avoid to call into the tick code, which
562 * has now objections against negative expiry values.
563 */
564 if (expires.tv64 < 0)
565 return -ETIME;
566
54cdfdb4
TG
567 if (expires.tv64 >= expires_next->tv64)
568 return 0;
569
570 /*
571 * Clockevents returns -ETIME, when the event was in the past.
572 */
573 res = tick_program_event(expires, 0);
574 if (!IS_ERR_VALUE(res))
575 *expires_next = expires;
576 return res;
577}
578
579
580/*
581 * Retrigger next event is called after clock was set
582 *
583 * Called with interrupts disabled via on_each_cpu()
584 */
585static void retrigger_next_event(void *arg)
586{
587 struct hrtimer_cpu_base *base;
588 struct timespec realtime_offset;
589 unsigned long seq;
590
591 if (!hrtimer_hres_active())
592 return;
593
594 do {
595 seq = read_seqbegin(&xtime_lock);
596 set_normalized_timespec(&realtime_offset,
597 -wall_to_monotonic.tv_sec,
598 -wall_to_monotonic.tv_nsec);
599 } while (read_seqretry(&xtime_lock, seq));
600
601 base = &__get_cpu_var(hrtimer_bases);
602
603 /* Adjust CLOCK_REALTIME offset */
604 spin_lock(&base->lock);
605 base->clock_base[CLOCK_REALTIME].offset =
606 timespec_to_ktime(realtime_offset);
607
608 hrtimer_force_reprogram(base);
609 spin_unlock(&base->lock);
610}
611
612/*
613 * Clock realtime was set
614 *
615 * Change the offset of the realtime clock vs. the monotonic
616 * clock.
617 *
618 * We might have to reprogram the high resolution timer interrupt. On
619 * SMP we call the architecture specific code to retrigger _all_ high
620 * resolution timer interrupts. On UP we just disable interrupts and
621 * call the high resolution interrupt code.
622 */
623void clock_was_set(void)
624{
625 /* Retrigger the CPU local events everywhere */
626 on_each_cpu(retrigger_next_event, NULL, 0, 1);
627}
628
995f054f
IM
629/*
630 * During resume we might have to reprogram the high resolution timer
631 * interrupt (on the local CPU):
632 */
633void hres_timers_resume(void)
634{
635 WARN_ON_ONCE(num_online_cpus() > 1);
636
637 /* Retrigger the CPU local events: */
638 retrigger_next_event(NULL);
639}
640
54cdfdb4
TG
641/*
642 * Initialize the high resolution related parts of cpu_base
643 */
644static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
645{
646 base->expires_next.tv64 = KTIME_MAX;
647 base->hres_active = 0;
54cdfdb4
TG
648}
649
650/*
651 * Initialize the high resolution related parts of a hrtimer
652 */
653static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
654{
54cdfdb4
TG
655}
656
657/*
658 * When High resolution timers are active, try to reprogram. Note, that in case
659 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
660 * check happens. The timer gets enqueued into the rbtree. The reprogramming
661 * and expiry check is done in the hrtimer_interrupt or in the softirq.
662 */
663static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
664 struct hrtimer_clock_base *base)
665{
666 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
667
668 /* Timer is expired, act upon the callback mode */
669 switch(timer->cb_mode) {
670 case HRTIMER_CB_IRQSAFE_NO_RESTART:
237fc6e7 671 debug_hrtimer_deactivate(timer);
54cdfdb4
TG
672 /*
673 * We can call the callback from here. No restart
674 * happens, so no danger of recursion
675 */
676 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
677 return 1;
678 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
679 /*
680 * This is solely for the sched tick emulation with
681 * dynamic tick support to ensure that we do not
682 * restart the tick right on the edge and end up with
683 * the tick timer in the softirq ! The calling site
684 * takes care of this.
685 */
237fc6e7 686 debug_hrtimer_deactivate(timer);
54cdfdb4
TG
687 return 1;
688 case HRTIMER_CB_IRQSAFE:
689 case HRTIMER_CB_SOFTIRQ:
690 /*
691 * Move everything else into the softirq pending list !
692 */
693 list_add_tail(&timer->cb_entry,
694 &base->cpu_base->cb_pending);
695 timer->state = HRTIMER_STATE_PENDING;
54cdfdb4
TG
696 return 1;
697 default:
698 BUG();
699 }
700 }
701 return 0;
702}
703
704/*
705 * Switch to high resolution mode
706 */
f8953856 707static int hrtimer_switch_to_hres(void)
54cdfdb4 708{
820de5c3
IM
709 int cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
711 unsigned long flags;
712
713 if (base->hres_active)
f8953856 714 return 1;
54cdfdb4
TG
715
716 local_irq_save(flags);
717
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
820de5c3
IM
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
f8953856 722 return 0;
54cdfdb4
TG
723 }
724 base->hres_active = 1;
725 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
726 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
727
728 tick_setup_sched_timer();
729
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL);
732 local_irq_restore(flags);
edfed66e 733 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 734 smp_processor_id());
f8953856 735 return 1;
54cdfdb4
TG
736}
737
0c96c597
TG
738static inline void hrtimer_raise_softirq(void)
739{
740 raise_softirq(HRTIMER_SOFTIRQ);
741}
742
54cdfdb4
TG
743#else
744
745static inline int hrtimer_hres_active(void) { return 0; }
746static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 747static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
748static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
749static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
750 struct hrtimer_clock_base *base)
751{
752 return 0;
753}
54cdfdb4
TG
754static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
755static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
d3d74453
PZ
756static inline int hrtimer_reprogram(struct hrtimer *timer,
757 struct hrtimer_clock_base *base)
758{
759 return 0;
760}
0c96c597 761static inline void hrtimer_raise_softirq(void) { }
54cdfdb4
TG
762
763#endif /* CONFIG_HIGH_RES_TIMERS */
764
82f67cd9
IM
765#ifdef CONFIG_TIMER_STATS
766void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
767{
768 if (timer->start_site)
769 return;
770
771 timer->start_site = addr;
772 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
773 timer->start_pid = current->pid;
774}
775#endif
776
c0a31329 777/*
6506f2aa 778 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
779 */
780static inline
781void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
782{
3c8aa39d 783 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
784}
785
786/**
787 * hrtimer_forward - forward the timer expiry
c0a31329 788 * @timer: hrtimer to forward
44f21475 789 * @now: forward past this time
c0a31329
TG
790 * @interval: the interval to forward
791 *
792 * Forward the timer expiry so it will expire in the future.
8dca6f33 793 * Returns the number of overruns.
c0a31329 794 */
4d672e7a 795u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 796{
4d672e7a 797 u64 orun = 1;
44f21475 798 ktime_t delta;
c0a31329
TG
799
800 delta = ktime_sub(now, timer->expires);
801
802 if (delta.tv64 < 0)
803 return 0;
804
c9db4fa1
TG
805 if (interval.tv64 < timer->base->resolution.tv64)
806 interval.tv64 = timer->base->resolution.tv64;
807
c0a31329 808 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 809 s64 incr = ktime_to_ns(interval);
c0a31329
TG
810
811 orun = ktime_divns(delta, incr);
812 timer->expires = ktime_add_ns(timer->expires, incr * orun);
813 if (timer->expires.tv64 > now.tv64)
814 return orun;
815 /*
816 * This (and the ktime_add() below) is the
817 * correction for exact:
818 */
819 orun++;
820 }
5a7780e7 821 timer->expires = ktime_add_safe(timer->expires, interval);
c0a31329
TG
822
823 return orun;
824}
6bdb6b62 825EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
826
827/*
828 * enqueue_hrtimer - internal function to (re)start a timer
829 *
830 * The timer is inserted in expiry order. Insertion into the
831 * red black tree is O(log(n)). Must hold the base lock.
832 */
3c8aa39d 833static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 834 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
835{
836 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
837 struct rb_node *parent = NULL;
838 struct hrtimer *entry;
99bc2fcb 839 int leftmost = 1;
c0a31329 840
237fc6e7
TG
841 debug_hrtimer_activate(timer);
842
c0a31329
TG
843 /*
844 * Find the right place in the rbtree:
845 */
846 while (*link) {
847 parent = *link;
848 entry = rb_entry(parent, struct hrtimer, node);
849 /*
850 * We dont care about collisions. Nodes with
851 * the same expiry time stay together.
852 */
99bc2fcb 853 if (timer->expires.tv64 < entry->expires.tv64) {
c0a31329 854 link = &(*link)->rb_left;
99bc2fcb 855 } else {
c0a31329 856 link = &(*link)->rb_right;
99bc2fcb
IM
857 leftmost = 0;
858 }
c0a31329
TG
859 }
860
861 /*
288867ec
TG
862 * Insert the timer to the rbtree and check whether it
863 * replaces the first pending timer
c0a31329 864 */
99bc2fcb 865 if (leftmost) {
54cdfdb4
TG
866 /*
867 * Reprogram the clock event device. When the timer is already
868 * expired hrtimer_enqueue_reprogram has either called the
869 * callback or added it to the pending list and raised the
870 * softirq.
871 *
872 * This is a NOP for !HIGHRES
873 */
874 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
875 return;
876
877 base->first = &timer->node;
878 }
879
c0a31329
TG
880 rb_link_node(&timer->node, parent, link);
881 rb_insert_color(&timer->node, &base->active);
303e967f
TG
882 /*
883 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
884 * state of a possibly running callback.
885 */
886 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 887}
c0a31329
TG
888
889/*
890 * __remove_hrtimer - internal function to remove a timer
891 *
892 * Caller must hold the base lock.
54cdfdb4
TG
893 *
894 * High resolution timer mode reprograms the clock event device when the
895 * timer is the one which expires next. The caller can disable this by setting
896 * reprogram to zero. This is useful, when the context does a reprogramming
897 * anyway (e.g. timer interrupt)
c0a31329 898 */
3c8aa39d 899static void __remove_hrtimer(struct hrtimer *timer,
303e967f 900 struct hrtimer_clock_base *base,
54cdfdb4 901 unsigned long newstate, int reprogram)
c0a31329 902{
54cdfdb4
TG
903 /* High res. callback list. NOP for !HIGHRES */
904 if (hrtimer_cb_pending(timer))
905 hrtimer_remove_cb_pending(timer);
906 else {
907 /*
908 * Remove the timer from the rbtree and replace the
909 * first entry pointer if necessary.
910 */
911 if (base->first == &timer->node) {
912 base->first = rb_next(&timer->node);
913 /* Reprogram the clock event device. if enabled */
914 if (reprogram && hrtimer_hres_active())
915 hrtimer_force_reprogram(base->cpu_base);
916 }
917 rb_erase(&timer->node, &base->active);
918 }
303e967f 919 timer->state = newstate;
c0a31329
TG
920}
921
922/*
923 * remove hrtimer, called with base lock held
924 */
925static inline int
3c8aa39d 926remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 927{
303e967f 928 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
929 int reprogram;
930
931 /*
932 * Remove the timer and force reprogramming when high
933 * resolution mode is active and the timer is on the current
934 * CPU. If we remove a timer on another CPU, reprogramming is
935 * skipped. The interrupt event on this CPU is fired and
936 * reprogramming happens in the interrupt handler. This is a
937 * rare case and less expensive than a smp call.
938 */
237fc6e7 939 debug_hrtimer_deactivate(timer);
82f67cd9 940 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
941 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
942 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
943 reprogram);
c0a31329
TG
944 return 1;
945 }
946 return 0;
947}
948
949/**
950 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
951 * @timer: the timer to be added
952 * @tim: expiry time
953 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
954 *
955 * Returns:
956 * 0 on success
957 * 1 when the timer was active
958 */
959int
960hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
961{
3c8aa39d 962 struct hrtimer_clock_base *base, *new_base;
c0a31329 963 unsigned long flags;
0c96c597 964 int ret, raise;
c0a31329
TG
965
966 base = lock_hrtimer_base(timer, &flags);
967
968 /* Remove an active timer from the queue: */
969 ret = remove_hrtimer(timer, base);
970
971 /* Switch the timer base, if necessary: */
972 new_base = switch_hrtimer_base(timer, base);
973
c9cb2e3d 974 if (mode == HRTIMER_MODE_REL) {
5a7780e7 975 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
976 /*
977 * CONFIG_TIME_LOW_RES is a temporary way for architectures
978 * to signal that they simply return xtime in
979 * do_gettimeoffset(). In this case we want to round up by
980 * resolution when starting a relative timer, to avoid short
981 * timeouts. This will go away with the GTOD framework.
982 */
983#ifdef CONFIG_TIME_LOW_RES
5a7780e7 984 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
985#endif
986 }
237fc6e7 987
c0a31329
TG
988 timer->expires = tim;
989
82f67cd9
IM
990 timer_stats_hrtimer_set_start_info(timer);
991
935c631d
IM
992 /*
993 * Only allow reprogramming if the new base is on this CPU.
994 * (it might still be on another CPU if the timer was pending)
995 */
996 enqueue_hrtimer(timer, new_base,
997 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
c0a31329 998
0c96c597
TG
999 /*
1000 * The timer may be expired and moved to the cb_pending
1001 * list. We can not raise the softirq with base lock held due
1002 * to a possible deadlock with runqueue lock.
1003 */
1004 raise = timer->state == HRTIMER_STATE_PENDING;
1005
ee3ece83
SR
1006 /*
1007 * We use preempt_disable to prevent this task from migrating after
1008 * setting up the softirq and raising it. Otherwise, if me migrate
1009 * we will raise the softirq on the wrong CPU.
1010 */
1011 preempt_disable();
1012
c0a31329
TG
1013 unlock_hrtimer_base(timer, &flags);
1014
0c96c597
TG
1015 if (raise)
1016 hrtimer_raise_softirq();
ee3ece83 1017 preempt_enable();
0c96c597 1018
c0a31329
TG
1019 return ret;
1020}
8d16b764 1021EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
1022
1023/**
1024 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1025 * @timer: hrtimer to stop
1026 *
1027 * Returns:
1028 * 0 when the timer was not active
1029 * 1 when the timer was active
1030 * -1 when the timer is currently excuting the callback function and
fa9799e3 1031 * cannot be stopped
c0a31329
TG
1032 */
1033int hrtimer_try_to_cancel(struct hrtimer *timer)
1034{
3c8aa39d 1035 struct hrtimer_clock_base *base;
c0a31329
TG
1036 unsigned long flags;
1037 int ret = -1;
1038
1039 base = lock_hrtimer_base(timer, &flags);
1040
303e967f 1041 if (!hrtimer_callback_running(timer))
c0a31329
TG
1042 ret = remove_hrtimer(timer, base);
1043
1044 unlock_hrtimer_base(timer, &flags);
1045
1046 return ret;
1047
1048}
8d16b764 1049EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1050
1051/**
1052 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1053 * @timer: the timer to be cancelled
1054 *
1055 * Returns:
1056 * 0 when the timer was not active
1057 * 1 when the timer was active
1058 */
1059int hrtimer_cancel(struct hrtimer *timer)
1060{
1061 for (;;) {
1062 int ret = hrtimer_try_to_cancel(timer);
1063
1064 if (ret >= 0)
1065 return ret;
5ef37b19 1066 cpu_relax();
c0a31329
TG
1067 }
1068}
8d16b764 1069EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1070
1071/**
1072 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1073 * @timer: the timer to read
1074 */
1075ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1076{
3c8aa39d 1077 struct hrtimer_clock_base *base;
c0a31329
TG
1078 unsigned long flags;
1079 ktime_t rem;
1080
1081 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 1082 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
1083 unlock_hrtimer_base(timer, &flags);
1084
1085 return rem;
1086}
8d16b764 1087EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1088
fd064b9b 1089#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
1090/**
1091 * hrtimer_get_next_event - get the time until next expiry event
1092 *
1093 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1094 * is pending.
1095 */
1096ktime_t hrtimer_get_next_event(void)
1097{
3c8aa39d
TG
1098 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1099 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1100 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1101 unsigned long flags;
1102 int i;
1103
3c8aa39d
TG
1104 spin_lock_irqsave(&cpu_base->lock, flags);
1105
54cdfdb4
TG
1106 if (!hrtimer_hres_active()) {
1107 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1108 struct hrtimer *timer;
69239749 1109
54cdfdb4
TG
1110 if (!base->first)
1111 continue;
3c8aa39d 1112
54cdfdb4
TG
1113 timer = rb_entry(base->first, struct hrtimer, node);
1114 delta.tv64 = timer->expires.tv64;
1115 delta = ktime_sub(delta, base->get_time());
1116 if (delta.tv64 < mindelta.tv64)
1117 mindelta.tv64 = delta.tv64;
1118 }
69239749 1119 }
3c8aa39d
TG
1120
1121 spin_unlock_irqrestore(&cpu_base->lock, flags);
1122
69239749
TL
1123 if (mindelta.tv64 < 0)
1124 mindelta.tv64 = 0;
1125 return mindelta;
1126}
1127#endif
1128
237fc6e7
TG
1129static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1130 enum hrtimer_mode mode)
c0a31329 1131{
3c8aa39d 1132 struct hrtimer_cpu_base *cpu_base;
c0a31329 1133
7978672c
GA
1134 memset(timer, 0, sizeof(struct hrtimer));
1135
3c8aa39d 1136 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1137
c9cb2e3d 1138 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1139 clock_id = CLOCK_MONOTONIC;
1140
3c8aa39d 1141 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1142 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1143 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1144
1145#ifdef CONFIG_TIMER_STATS
1146 timer->start_site = NULL;
1147 timer->start_pid = -1;
1148 memset(timer->start_comm, 0, TASK_COMM_LEN);
1149#endif
c0a31329 1150}
237fc6e7
TG
1151
1152/**
1153 * hrtimer_init - initialize a timer to the given clock
1154 * @timer: the timer to be initialized
1155 * @clock_id: the clock to be used
1156 * @mode: timer mode abs/rel
1157 */
1158void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1159 enum hrtimer_mode mode)
1160{
1161 debug_hrtimer_init(timer);
1162 __hrtimer_init(timer, clock_id, mode);
1163}
8d16b764 1164EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1165
1166/**
1167 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1168 * @which_clock: which clock to query
1169 * @tp: pointer to timespec variable to store the resolution
1170 *
72fd4a35
RD
1171 * Store the resolution of the clock selected by @which_clock in the
1172 * variable pointed to by @tp.
c0a31329
TG
1173 */
1174int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1175{
3c8aa39d 1176 struct hrtimer_cpu_base *cpu_base;
c0a31329 1177
3c8aa39d
TG
1178 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1179 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1180
1181 return 0;
1182}
8d16b764 1183EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1184
d3d74453
PZ
1185static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1186{
1187 spin_lock_irq(&cpu_base->lock);
1188
1189 while (!list_empty(&cpu_base->cb_pending)) {
1190 enum hrtimer_restart (*fn)(struct hrtimer *);
1191 struct hrtimer *timer;
1192 int restart;
1193
1194 timer = list_entry(cpu_base->cb_pending.next,
1195 struct hrtimer, cb_entry);
1196
237fc6e7 1197 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1198 timer_stats_account_hrtimer(timer);
1199
1200 fn = timer->function;
1201 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1202 spin_unlock_irq(&cpu_base->lock);
1203
1204 restart = fn(timer);
1205
1206 spin_lock_irq(&cpu_base->lock);
1207
1208 timer->state &= ~HRTIMER_STATE_CALLBACK;
1209 if (restart == HRTIMER_RESTART) {
1210 BUG_ON(hrtimer_active(timer));
1211 /*
1212 * Enqueue the timer, allow reprogramming of the event
1213 * device
1214 */
1215 enqueue_hrtimer(timer, timer->base, 1);
1216 } else if (hrtimer_active(timer)) {
1217 /*
1218 * If the timer was rearmed on another CPU, reprogram
1219 * the event device.
1220 */
d7b41a24
BS
1221 struct hrtimer_clock_base *base = timer->base;
1222
1223 if (base->first == &timer->node &&
1224 hrtimer_reprogram(timer, base)) {
1225 /*
1226 * Timer is expired. Thus move it from tree to
1227 * pending list again.
1228 */
1229 __remove_hrtimer(timer, base,
1230 HRTIMER_STATE_PENDING, 0);
1231 list_add_tail(&timer->cb_entry,
1232 &base->cpu_base->cb_pending);
1233 }
d3d74453
PZ
1234 }
1235 }
1236 spin_unlock_irq(&cpu_base->lock);
1237}
1238
1239static void __run_hrtimer(struct hrtimer *timer)
1240{
1241 struct hrtimer_clock_base *base = timer->base;
1242 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1243 enum hrtimer_restart (*fn)(struct hrtimer *);
1244 int restart;
1245
237fc6e7 1246 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1247 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1248 timer_stats_account_hrtimer(timer);
1249
1250 fn = timer->function;
1251 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1252 /*
1253 * Used for scheduler timers, avoid lock inversion with
1254 * rq->lock and tasklist_lock.
1255 *
1256 * These timers are required to deal with enqueue expiry
1257 * themselves and are not allowed to migrate.
1258 */
1259 spin_unlock(&cpu_base->lock);
1260 restart = fn(timer);
1261 spin_lock(&cpu_base->lock);
1262 } else
1263 restart = fn(timer);
1264
1265 /*
1266 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1267 * reprogramming of the event hardware. This happens at the end of this
1268 * function anyway.
1269 */
1270 if (restart != HRTIMER_NORESTART) {
1271 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1272 enqueue_hrtimer(timer, base, 0);
1273 }
1274 timer->state &= ~HRTIMER_STATE_CALLBACK;
1275}
1276
54cdfdb4
TG
1277#ifdef CONFIG_HIGH_RES_TIMERS
1278
1279/*
1280 * High resolution timer interrupt
1281 * Called with interrupts disabled
1282 */
1283void hrtimer_interrupt(struct clock_event_device *dev)
1284{
1285 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1286 struct hrtimer_clock_base *base;
1287 ktime_t expires_next, now;
1288 int i, raise = 0;
1289
1290 BUG_ON(!cpu_base->hres_active);
1291 cpu_base->nr_events++;
1292 dev->next_event.tv64 = KTIME_MAX;
1293
1294 retry:
1295 now = ktime_get();
1296
1297 expires_next.tv64 = KTIME_MAX;
1298
1299 base = cpu_base->clock_base;
1300
1301 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1302 ktime_t basenow;
1303 struct rb_node *node;
1304
1305 spin_lock(&cpu_base->lock);
1306
1307 basenow = ktime_add(now, base->offset);
1308
1309 while ((node = base->first)) {
1310 struct hrtimer *timer;
1311
1312 timer = rb_entry(node, struct hrtimer, node);
1313
1314 if (basenow.tv64 < timer->expires.tv64) {
1315 ktime_t expires;
1316
1317 expires = ktime_sub(timer->expires,
1318 base->offset);
1319 if (expires.tv64 < expires_next.tv64)
1320 expires_next = expires;
1321 break;
1322 }
1323
1324 /* Move softirq callbacks to the pending list */
1325 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1326 __remove_hrtimer(timer, base,
1327 HRTIMER_STATE_PENDING, 0);
1328 list_add_tail(&timer->cb_entry,
1329 &base->cpu_base->cb_pending);
1330 raise = 1;
1331 continue;
1332 }
1333
d3d74453 1334 __run_hrtimer(timer);
54cdfdb4
TG
1335 }
1336 spin_unlock(&cpu_base->lock);
1337 base++;
1338 }
1339
1340 cpu_base->expires_next = expires_next;
1341
1342 /* Reprogramming necessary ? */
1343 if (expires_next.tv64 != KTIME_MAX) {
1344 if (tick_program_event(expires_next, 0))
1345 goto retry;
1346 }
1347
1348 /* Raise softirq ? */
1349 if (raise)
1350 raise_softirq(HRTIMER_SOFTIRQ);
1351}
1352
1353static void run_hrtimer_softirq(struct softirq_action *h)
1354{
d3d74453
PZ
1355 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1356}
54cdfdb4 1357
d3d74453 1358#endif /* CONFIG_HIGH_RES_TIMERS */
82f67cd9 1359
d3d74453
PZ
1360/*
1361 * Called from timer softirq every jiffy, expire hrtimers:
1362 *
1363 * For HRT its the fall back code to run the softirq in the timer
1364 * softirq context in case the hrtimer initialization failed or has
1365 * not been done yet.
1366 */
1367void hrtimer_run_pending(void)
1368{
1369 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
54cdfdb4 1370
d3d74453
PZ
1371 if (hrtimer_hres_active())
1372 return;
54cdfdb4 1373
d3d74453
PZ
1374 /*
1375 * This _is_ ugly: We have to check in the softirq context,
1376 * whether we can switch to highres and / or nohz mode. The
1377 * clocksource switch happens in the timer interrupt with
1378 * xtime_lock held. Notification from there only sets the
1379 * check bit in the tick_oneshot code, otherwise we might
1380 * deadlock vs. xtime_lock.
1381 */
1382 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1383 hrtimer_switch_to_hres();
54cdfdb4 1384
d3d74453 1385 run_hrtimer_pending(cpu_base);
54cdfdb4
TG
1386}
1387
c0a31329 1388/*
d3d74453 1389 * Called from hardirq context every jiffy
c0a31329 1390 */
833883d9 1391void hrtimer_run_queues(void)
c0a31329 1392{
288867ec 1393 struct rb_node *node;
833883d9
DS
1394 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1395 struct hrtimer_clock_base *base;
1396 int index, gettime = 1;
c0a31329 1397
833883d9 1398 if (hrtimer_hres_active())
3055adda
DS
1399 return;
1400
833883d9
DS
1401 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1402 base = &cpu_base->clock_base[index];
c0a31329 1403
833883d9 1404 if (!base->first)
d3d74453 1405 continue;
833883d9 1406
259aae86
TG
1407 if (base->get_softirq_time)
1408 base->softirq_time = base->get_softirq_time();
1409 else if (gettime) {
833883d9
DS
1410 hrtimer_get_softirq_time(cpu_base);
1411 gettime = 0;
b75f7a51 1412 }
d3d74453 1413
833883d9 1414 spin_lock(&cpu_base->lock);
c0a31329 1415
833883d9
DS
1416 while ((node = base->first)) {
1417 struct hrtimer *timer;
54cdfdb4 1418
833883d9
DS
1419 timer = rb_entry(node, struct hrtimer, node);
1420 if (base->softirq_time.tv64 <= timer->expires.tv64)
1421 break;
1422
1423 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1424 __remove_hrtimer(timer, base,
1425 HRTIMER_STATE_PENDING, 0);
1426 list_add_tail(&timer->cb_entry,
1427 &base->cpu_base->cb_pending);
1428 continue;
1429 }
92127c7a 1430
833883d9
DS
1431 __run_hrtimer(timer);
1432 }
1433 spin_unlock(&cpu_base->lock);
1434 }
c0a31329
TG
1435}
1436
10c94ec1
TG
1437/*
1438 * Sleep related functions:
1439 */
c9cb2e3d 1440static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1441{
1442 struct hrtimer_sleeper *t =
1443 container_of(timer, struct hrtimer_sleeper, timer);
1444 struct task_struct *task = t->task;
1445
1446 t->task = NULL;
1447 if (task)
1448 wake_up_process(task);
1449
1450 return HRTIMER_NORESTART;
1451}
1452
36c8b586 1453void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1454{
1455 sl->timer.function = hrtimer_wakeup;
1456 sl->task = task;
54cdfdb4 1457#ifdef CONFIG_HIGH_RES_TIMERS
37bb6cb4 1458 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
54cdfdb4 1459#endif
00362e33
TG
1460}
1461
669d7868 1462static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1463{
669d7868 1464 hrtimer_init_sleeper(t, current);
10c94ec1 1465
432569bb
RZ
1466 do {
1467 set_current_state(TASK_INTERRUPTIBLE);
1468 hrtimer_start(&t->timer, t->timer.expires, mode);
37bb6cb4
PZ
1469 if (!hrtimer_active(&t->timer))
1470 t->task = NULL;
432569bb 1471
54cdfdb4
TG
1472 if (likely(t->task))
1473 schedule();
432569bb 1474
669d7868 1475 hrtimer_cancel(&t->timer);
c9cb2e3d 1476 mode = HRTIMER_MODE_ABS;
669d7868
TG
1477
1478 } while (t->task && !signal_pending(current));
432569bb 1479
3588a085
PZ
1480 __set_current_state(TASK_RUNNING);
1481
669d7868 1482 return t->task == NULL;
10c94ec1
TG
1483}
1484
080344b9
ON
1485static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1486{
1487 struct timespec rmt;
1488 ktime_t rem;
1489
1490 rem = ktime_sub(timer->expires, timer->base->get_time());
1491 if (rem.tv64 <= 0)
1492 return 0;
1493 rmt = ktime_to_timespec(rem);
1494
1495 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1496 return -EFAULT;
1497
1498 return 1;
1499}
1500
1711ef38 1501long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1502{
669d7868 1503 struct hrtimer_sleeper t;
080344b9 1504 struct timespec __user *rmtp;
237fc6e7 1505 int ret = 0;
10c94ec1 1506
237fc6e7
TG
1507 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1508 HRTIMER_MODE_ABS);
029a07e0 1509 t.timer.expires.tv64 = restart->nanosleep.expires;
10c94ec1 1510
c9cb2e3d 1511 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1512 goto out;
10c94ec1 1513
029a07e0 1514 rmtp = restart->nanosleep.rmtp;
432569bb 1515 if (rmtp) {
237fc6e7 1516 ret = update_rmtp(&t.timer, rmtp);
080344b9 1517 if (ret <= 0)
237fc6e7 1518 goto out;
432569bb 1519 }
10c94ec1 1520
10c94ec1 1521 /* The other values in restart are already filled in */
237fc6e7
TG
1522 ret = -ERESTART_RESTARTBLOCK;
1523out:
1524 destroy_hrtimer_on_stack(&t.timer);
1525 return ret;
10c94ec1
TG
1526}
1527
080344b9 1528long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1529 const enum hrtimer_mode mode, const clockid_t clockid)
1530{
1531 struct restart_block *restart;
669d7868 1532 struct hrtimer_sleeper t;
237fc6e7 1533 int ret = 0;
10c94ec1 1534
237fc6e7 1535 hrtimer_init_on_stack(&t.timer, clockid, mode);
432569bb
RZ
1536 t.timer.expires = timespec_to_ktime(*rqtp);
1537 if (do_nanosleep(&t, mode))
237fc6e7 1538 goto out;
10c94ec1 1539
7978672c 1540 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1541 if (mode == HRTIMER_MODE_ABS) {
1542 ret = -ERESTARTNOHAND;
1543 goto out;
1544 }
10c94ec1 1545
432569bb 1546 if (rmtp) {
237fc6e7 1547 ret = update_rmtp(&t.timer, rmtp);
080344b9 1548 if (ret <= 0)
237fc6e7 1549 goto out;
432569bb 1550 }
10c94ec1
TG
1551
1552 restart = &current_thread_info()->restart_block;
1711ef38 1553 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1554 restart->nanosleep.index = t.timer.base->index;
1555 restart->nanosleep.rmtp = rmtp;
1556 restart->nanosleep.expires = t.timer.expires.tv64;
10c94ec1 1557
237fc6e7
TG
1558 ret = -ERESTART_RESTARTBLOCK;
1559out:
1560 destroy_hrtimer_on_stack(&t.timer);
1561 return ret;
10c94ec1
TG
1562}
1563
6ba1b912
TG
1564asmlinkage long
1565sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1566{
080344b9 1567 struct timespec tu;
6ba1b912
TG
1568
1569 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1570 return -EFAULT;
1571
1572 if (!timespec_valid(&tu))
1573 return -EINVAL;
1574
080344b9 1575 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1576}
1577
c0a31329
TG
1578/*
1579 * Functions related to boot-time initialization:
1580 */
0ec160dd 1581static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1582{
3c8aa39d 1583 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1584 int i;
1585
3c8aa39d 1586 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1587
1588 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1589 cpu_base->clock_base[i].cpu_base = cpu_base;
1590
d3d74453 1591 INIT_LIST_HEAD(&cpu_base->cb_pending);
54cdfdb4 1592 hrtimer_init_hres(cpu_base);
c0a31329
TG
1593}
1594
1595#ifdef CONFIG_HOTPLUG_CPU
1596
3c8aa39d
TG
1597static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1598 struct hrtimer_clock_base *new_base)
c0a31329
TG
1599{
1600 struct hrtimer *timer;
1601 struct rb_node *node;
1602
1603 while ((node = rb_first(&old_base->active))) {
1604 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1605 BUG_ON(hrtimer_callback_running(timer));
237fc6e7 1606 debug_hrtimer_deactivate(timer);
54cdfdb4 1607 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1608 timer->base = new_base;
54cdfdb4
TG
1609 /*
1610 * Enqueue the timer. Allow reprogramming of the event device
1611 */
1612 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1613 }
1614}
1615
1616static void migrate_hrtimers(int cpu)
1617{
3c8aa39d 1618 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1619 int i;
1620
1621 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1622 old_base = &per_cpu(hrtimer_bases, cpu);
1623 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1624
54cdfdb4
TG
1625 tick_cancel_sched_timer(cpu);
1626
c0a31329 1627 local_irq_disable();
8e60e05f
ON
1628 spin_lock(&new_base->lock);
1629 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1630
3c8aa39d 1631 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1632 migrate_hrtimer_list(&old_base->clock_base[i],
1633 &new_base->clock_base[i]);
c0a31329
TG
1634 }
1635
8e60e05f
ON
1636 spin_unlock(&old_base->lock);
1637 spin_unlock(&new_base->lock);
c0a31329
TG
1638 local_irq_enable();
1639 put_cpu_var(hrtimer_bases);
1640}
1641#endif /* CONFIG_HOTPLUG_CPU */
1642
8c78f307 1643static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1644 unsigned long action, void *hcpu)
1645{
7713a7d1 1646 unsigned int cpu = (long)hcpu;
c0a31329
TG
1647
1648 switch (action) {
1649
1650 case CPU_UP_PREPARE:
8bb78442 1651 case CPU_UP_PREPARE_FROZEN:
c0a31329
TG
1652 init_hrtimers_cpu(cpu);
1653 break;
1654
1655#ifdef CONFIG_HOTPLUG_CPU
1656 case CPU_DEAD:
8bb78442 1657 case CPU_DEAD_FROZEN:
d316c57f 1658 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1659 migrate_hrtimers(cpu);
1660 break;
1661#endif
1662
1663 default:
1664 break;
1665 }
1666
1667 return NOTIFY_OK;
1668}
1669
8c78f307 1670static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1671 .notifier_call = hrtimer_cpu_notify,
1672};
1673
1674void __init hrtimers_init(void)
1675{
1676 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1677 (void *)(long)smp_processor_id());
1678 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1679#ifdef CONFIG_HIGH_RES_TIMERS
1680 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1681#endif
c0a31329
TG
1682}
1683