[CVE-2009-0029] System call wrapper special cases
[linux-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
641b9e0e 62EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
63
64/**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
d316c57f 69ktime_t ktime_get_real(void)
c0a31329
TG
70{
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76}
77
78EXPORT_SYMBOL_GPL(ktime_get_real);
79
80/*
81 * The timer bases:
7978672c
GA
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
c0a31329 88 */
54cdfdb4 89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 90{
3c8aa39d
TG
91
92 .clock_base =
c0a31329 93 {
3c8aa39d
TG
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
54cdfdb4 97 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
54cdfdb4 102 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
103 },
104 }
c0a31329
TG
105};
106
107/**
108 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 113 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
114 */
115void ktime_get_ts(struct timespec *ts)
116{
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129}
69778e32 130EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 131
92127c7a
TG
132/*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
3c8aa39d 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
137{
138 ktime_t xtim, tomono;
ad28d94a 139 struct timespec xts, tom;
92127c7a
TG
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
2c6b47de 144 xts = current_kernel_time();
ad28d94a 145 tom = wall_to_monotonic;
92127c7a
TG
146 } while (read_seqretry(&xtime_lock, seq));
147
f4304ab2 148 xtim = timespec_to_ktime(xts);
ad28d94a 149 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
92127c7a
TG
153}
154
c0a31329
TG
155/*
156 * Functions and macros which are different for UP/SMP systems are kept in a
157 * single place
158 */
159#ifdef CONFIG_SMP
160
c0a31329
TG
161/*
162 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
163 * means that all timers which are tied to this base via timer->base are
164 * locked, and the base itself is locked too.
165 *
166 * So __run_timers/migrate_timers can safely modify all timers which could
167 * be found on the lists/queues.
168 *
169 * When the timer's base is locked, and the timer removed from list, it is
170 * possible to set timer->base = NULL and drop the lock: the timer remains
171 * locked.
172 */
3c8aa39d
TG
173static
174struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
175 unsigned long *flags)
c0a31329 176{
3c8aa39d 177 struct hrtimer_clock_base *base;
c0a31329
TG
178
179 for (;;) {
180 base = timer->base;
181 if (likely(base != NULL)) {
3c8aa39d 182 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
183 if (likely(base == timer->base))
184 return base;
185 /* The timer has migrated to another CPU: */
3c8aa39d 186 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
187 }
188 cpu_relax();
189 }
190}
191
192/*
193 * Switch the timer base to the current CPU when possible.
194 */
3c8aa39d
TG
195static inline struct hrtimer_clock_base *
196switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 197{
3c8aa39d
TG
198 struct hrtimer_clock_base *new_base;
199 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 200
3c8aa39d
TG
201 new_cpu_base = &__get_cpu_var(hrtimer_bases);
202 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
203
204 if (base != new_base) {
205 /*
206 * We are trying to schedule the timer on the local CPU.
207 * However we can't change timer's base while it is running,
208 * so we keep it on the same CPU. No hassle vs. reprogramming
209 * the event source in the high resolution case. The softirq
210 * code will take care of this when the timer function has
211 * completed. There is no conflict as we hold the lock until
212 * the timer is enqueued.
213 */
54cdfdb4 214 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
215 return base;
216
217 /* See the comment in lock_timer_base() */
218 timer->base = NULL;
3c8aa39d
TG
219 spin_unlock(&base->cpu_base->lock);
220 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
221 timer->base = new_base;
222 }
223 return new_base;
224}
225
226#else /* CONFIG_SMP */
227
3c8aa39d 228static inline struct hrtimer_clock_base *
c0a31329
TG
229lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230{
3c8aa39d 231 struct hrtimer_clock_base *base = timer->base;
c0a31329 232
3c8aa39d 233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
234
235 return base;
236}
237
54cdfdb4 238# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
239
240#endif /* !CONFIG_SMP */
241
242/*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246#if BITS_PER_LONG < 64
247# ifndef CONFIG_KTIME_SCALAR
248/**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256{
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268}
b8b8fd2d
DH
269
270EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
271
272/**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280{
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292}
293
294EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
295# endif /* !CONFIG_KTIME_SCALAR */
296
297/*
298 * Divide a ktime value by a nanosecond value
299 */
4d672e7a 300u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 301{
900cfa46 302 u64 dclc;
c0a31329
TG
303 int sft = 0;
304
900cfa46 305 dclc = ktime_to_ns(kt);
c0a31329
TG
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
4d672e7a 314 return dclc;
c0a31329 315}
c0a31329
TG
316#endif /* BITS_PER_LONG >= 64 */
317
5a7780e7
TG
318/*
319 * Add two ktime values and do a safety check for overflow:
320 */
321ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322{
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333}
334
237fc6e7
TG
335#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
336
337static struct debug_obj_descr hrtimer_debug_descr;
338
339/*
340 * fixup_init is called when:
341 * - an active object is initialized
342 */
343static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
344{
345 struct hrtimer *timer = addr;
346
347 switch (state) {
348 case ODEBUG_STATE_ACTIVE:
349 hrtimer_cancel(timer);
350 debug_object_init(timer, &hrtimer_debug_descr);
351 return 1;
352 default:
353 return 0;
354 }
355}
356
357/*
358 * fixup_activate is called when:
359 * - an active object is activated
360 * - an unknown object is activated (might be a statically initialized object)
361 */
362static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
363{
364 switch (state) {
365
366 case ODEBUG_STATE_NOTAVAILABLE:
367 WARN_ON_ONCE(1);
368 return 0;
369
370 case ODEBUG_STATE_ACTIVE:
371 WARN_ON(1);
372
373 default:
374 return 0;
375 }
376}
377
378/*
379 * fixup_free is called when:
380 * - an active object is freed
381 */
382static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
383{
384 struct hrtimer *timer = addr;
385
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 hrtimer_cancel(timer);
389 debug_object_free(timer, &hrtimer_debug_descr);
390 return 1;
391 default:
392 return 0;
393 }
394}
395
396static struct debug_obj_descr hrtimer_debug_descr = {
397 .name = "hrtimer",
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
401};
402
403static inline void debug_hrtimer_init(struct hrtimer *timer)
404{
405 debug_object_init(timer, &hrtimer_debug_descr);
406}
407
408static inline void debug_hrtimer_activate(struct hrtimer *timer)
409{
410 debug_object_activate(timer, &hrtimer_debug_descr);
411}
412
413static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
414{
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
416}
417
418static inline void debug_hrtimer_free(struct hrtimer *timer)
419{
420 debug_object_free(timer, &hrtimer_debug_descr);
421}
422
423static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
425
426void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
428{
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
431}
432
433void destroy_hrtimer_on_stack(struct hrtimer *timer)
434{
435 debug_object_free(timer, &hrtimer_debug_descr);
436}
437
438#else
439static inline void debug_hrtimer_init(struct hrtimer *timer) { }
440static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
441static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442#endif
443
54cdfdb4
TG
444/* High resolution timer related functions */
445#ifdef CONFIG_HIGH_RES_TIMERS
446
447/*
448 * High resolution timer enabled ?
449 */
450static int hrtimer_hres_enabled __read_mostly = 1;
451
452/*
453 * Enable / Disable high resolution mode
454 */
455static int __init setup_hrtimer_hres(char *str)
456{
457 if (!strcmp(str, "off"))
458 hrtimer_hres_enabled = 0;
459 else if (!strcmp(str, "on"))
460 hrtimer_hres_enabled = 1;
461 else
462 return 0;
463 return 1;
464}
465
466__setup("highres=", setup_hrtimer_hres);
467
468/*
469 * hrtimer_high_res_enabled - query, if the highres mode is enabled
470 */
471static inline int hrtimer_is_hres_enabled(void)
472{
473 return hrtimer_hres_enabled;
474}
475
476/*
477 * Is the high resolution mode active ?
478 */
479static inline int hrtimer_hres_active(void)
480{
481 return __get_cpu_var(hrtimer_bases).hres_active;
482}
483
484/*
485 * Reprogram the event source with checking both queues for the
486 * next event
487 * Called with interrupts disabled and base->lock held
488 */
489static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
490{
491 int i;
492 struct hrtimer_clock_base *base = cpu_base->clock_base;
493 ktime_t expires;
494
495 cpu_base->expires_next.tv64 = KTIME_MAX;
496
497 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498 struct hrtimer *timer;
499
500 if (!base->first)
501 continue;
502 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 503 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
504 if (expires.tv64 < cpu_base->expires_next.tv64)
505 cpu_base->expires_next = expires;
506 }
507
508 if (cpu_base->expires_next.tv64 != KTIME_MAX)
509 tick_program_event(cpu_base->expires_next, 1);
510}
511
512/*
513 * Shared reprogramming for clock_realtime and clock_monotonic
514 *
515 * When a timer is enqueued and expires earlier than the already enqueued
516 * timers, we have to check, whether it expires earlier than the timer for
517 * which the clock event device was armed.
518 *
519 * Called with interrupts disabled and base->cpu_base.lock held
520 */
521static int hrtimer_reprogram(struct hrtimer *timer,
522 struct hrtimer_clock_base *base)
523{
524 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
cc584b21 525 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
526 int res;
527
cc584b21 528 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 529
54cdfdb4
TG
530 /*
531 * When the callback is running, we do not reprogram the clock event
532 * device. The timer callback is either running on a different CPU or
3a4fa0a2 533 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
534 * reprogramming is handled either by the softirq, which called the
535 * callback or at the end of the hrtimer_interrupt.
536 */
537 if (hrtimer_callback_running(timer))
538 return 0;
539
63070a79
TG
540 /*
541 * CLOCK_REALTIME timer might be requested with an absolute
542 * expiry time which is less than base->offset. Nothing wrong
543 * about that, just avoid to call into the tick code, which
544 * has now objections against negative expiry values.
545 */
546 if (expires.tv64 < 0)
547 return -ETIME;
548
54cdfdb4
TG
549 if (expires.tv64 >= expires_next->tv64)
550 return 0;
551
552 /*
553 * Clockevents returns -ETIME, when the event was in the past.
554 */
555 res = tick_program_event(expires, 0);
556 if (!IS_ERR_VALUE(res))
557 *expires_next = expires;
558 return res;
559}
560
561
562/*
563 * Retrigger next event is called after clock was set
564 *
565 * Called with interrupts disabled via on_each_cpu()
566 */
567static void retrigger_next_event(void *arg)
568{
569 struct hrtimer_cpu_base *base;
570 struct timespec realtime_offset;
571 unsigned long seq;
572
573 if (!hrtimer_hres_active())
574 return;
575
576 do {
577 seq = read_seqbegin(&xtime_lock);
578 set_normalized_timespec(&realtime_offset,
579 -wall_to_monotonic.tv_sec,
580 -wall_to_monotonic.tv_nsec);
581 } while (read_seqretry(&xtime_lock, seq));
582
583 base = &__get_cpu_var(hrtimer_bases);
584
585 /* Adjust CLOCK_REALTIME offset */
586 spin_lock(&base->lock);
587 base->clock_base[CLOCK_REALTIME].offset =
588 timespec_to_ktime(realtime_offset);
589
590 hrtimer_force_reprogram(base);
591 spin_unlock(&base->lock);
592}
593
594/*
595 * Clock realtime was set
596 *
597 * Change the offset of the realtime clock vs. the monotonic
598 * clock.
599 *
600 * We might have to reprogram the high resolution timer interrupt. On
601 * SMP we call the architecture specific code to retrigger _all_ high
602 * resolution timer interrupts. On UP we just disable interrupts and
603 * call the high resolution interrupt code.
604 */
605void clock_was_set(void)
606{
607 /* Retrigger the CPU local events everywhere */
15c8b6c1 608 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
609}
610
995f054f
IM
611/*
612 * During resume we might have to reprogram the high resolution timer
613 * interrupt (on the local CPU):
614 */
615void hres_timers_resume(void)
616{
995f054f
IM
617 /* Retrigger the CPU local events: */
618 retrigger_next_event(NULL);
619}
620
54cdfdb4
TG
621/*
622 * Initialize the high resolution related parts of cpu_base
623 */
624static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
625{
626 base->expires_next.tv64 = KTIME_MAX;
627 base->hres_active = 0;
54cdfdb4
TG
628}
629
630/*
631 * Initialize the high resolution related parts of a hrtimer
632 */
633static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
634{
54cdfdb4
TG
635}
636
ca109491 637
54cdfdb4
TG
638/*
639 * When High resolution timers are active, try to reprogram. Note, that in case
640 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
641 * check happens. The timer gets enqueued into the rbtree. The reprogramming
642 * and expiry check is done in the hrtimer_interrupt or in the softirq.
643 */
644static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
645 struct hrtimer_clock_base *base)
646{
647 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
a6037b61
PZ
648 spin_unlock(&base->cpu_base->lock);
649 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
650 spin_lock(&base->cpu_base->lock);
ca109491 651 return 1;
54cdfdb4
TG
652 }
653 return 0;
654}
655
656/*
657 * Switch to high resolution mode
658 */
f8953856 659static int hrtimer_switch_to_hres(void)
54cdfdb4 660{
820de5c3
IM
661 int cpu = smp_processor_id();
662 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
663 unsigned long flags;
664
665 if (base->hres_active)
f8953856 666 return 1;
54cdfdb4
TG
667
668 local_irq_save(flags);
669
670 if (tick_init_highres()) {
671 local_irq_restore(flags);
820de5c3
IM
672 printk(KERN_WARNING "Could not switch to high resolution "
673 "mode on CPU %d\n", cpu);
f8953856 674 return 0;
54cdfdb4
TG
675 }
676 base->hres_active = 1;
677 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
678 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
679
680 tick_setup_sched_timer();
681
682 /* "Retrigger" the interrupt to get things going */
683 retrigger_next_event(NULL);
684 local_irq_restore(flags);
edfed66e 685 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 686 smp_processor_id());
f8953856 687 return 1;
54cdfdb4
TG
688}
689
690#else
691
692static inline int hrtimer_hres_active(void) { return 0; }
693static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 694static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
695static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
696static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
697 struct hrtimer_clock_base *base)
698{
699 return 0;
700}
54cdfdb4
TG
701static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
702static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
703
704#endif /* CONFIG_HIGH_RES_TIMERS */
705
82f67cd9
IM
706#ifdef CONFIG_TIMER_STATS
707void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
708{
709 if (timer->start_site)
710 return;
711
712 timer->start_site = addr;
713 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
714 timer->start_pid = current->pid;
715}
716#endif
717
c0a31329 718/*
6506f2aa 719 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
720 */
721static inline
722void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
723{
3c8aa39d 724 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
725}
726
727/**
728 * hrtimer_forward - forward the timer expiry
c0a31329 729 * @timer: hrtimer to forward
44f21475 730 * @now: forward past this time
c0a31329
TG
731 * @interval: the interval to forward
732 *
733 * Forward the timer expiry so it will expire in the future.
8dca6f33 734 * Returns the number of overruns.
c0a31329 735 */
4d672e7a 736u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 737{
4d672e7a 738 u64 orun = 1;
44f21475 739 ktime_t delta;
c0a31329 740
cc584b21 741 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
742
743 if (delta.tv64 < 0)
744 return 0;
745
c9db4fa1
TG
746 if (interval.tv64 < timer->base->resolution.tv64)
747 interval.tv64 = timer->base->resolution.tv64;
748
c0a31329 749 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 750 s64 incr = ktime_to_ns(interval);
c0a31329
TG
751
752 orun = ktime_divns(delta, incr);
cc584b21
AV
753 hrtimer_add_expires_ns(timer, incr * orun);
754 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
755 return orun;
756 /*
757 * This (and the ktime_add() below) is the
758 * correction for exact:
759 */
760 orun++;
761 }
cc584b21 762 hrtimer_add_expires(timer, interval);
c0a31329
TG
763
764 return orun;
765}
6bdb6b62 766EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
767
768/*
769 * enqueue_hrtimer - internal function to (re)start a timer
770 *
771 * The timer is inserted in expiry order. Insertion into the
772 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
773 *
774 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 775 */
a6037b61
PZ
776static int enqueue_hrtimer(struct hrtimer *timer,
777 struct hrtimer_clock_base *base)
c0a31329
TG
778{
779 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
780 struct rb_node *parent = NULL;
781 struct hrtimer *entry;
99bc2fcb 782 int leftmost = 1;
c0a31329 783
237fc6e7
TG
784 debug_hrtimer_activate(timer);
785
c0a31329
TG
786 /*
787 * Find the right place in the rbtree:
788 */
789 while (*link) {
790 parent = *link;
791 entry = rb_entry(parent, struct hrtimer, node);
792 /*
793 * We dont care about collisions. Nodes with
794 * the same expiry time stay together.
795 */
cc584b21
AV
796 if (hrtimer_get_expires_tv64(timer) <
797 hrtimer_get_expires_tv64(entry)) {
c0a31329 798 link = &(*link)->rb_left;
99bc2fcb 799 } else {
c0a31329 800 link = &(*link)->rb_right;
99bc2fcb
IM
801 leftmost = 0;
802 }
c0a31329
TG
803 }
804
805 /*
288867ec
TG
806 * Insert the timer to the rbtree and check whether it
807 * replaces the first pending timer
c0a31329 808 */
a6037b61 809 if (leftmost)
54cdfdb4 810 base->first = &timer->node;
54cdfdb4 811
c0a31329
TG
812 rb_link_node(&timer->node, parent, link);
813 rb_insert_color(&timer->node, &base->active);
303e967f
TG
814 /*
815 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
816 * state of a possibly running callback.
817 */
818 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
819
820 return leftmost;
288867ec 821}
c0a31329
TG
822
823/*
824 * __remove_hrtimer - internal function to remove a timer
825 *
826 * Caller must hold the base lock.
54cdfdb4
TG
827 *
828 * High resolution timer mode reprograms the clock event device when the
829 * timer is the one which expires next. The caller can disable this by setting
830 * reprogram to zero. This is useful, when the context does a reprogramming
831 * anyway (e.g. timer interrupt)
c0a31329 832 */
3c8aa39d 833static void __remove_hrtimer(struct hrtimer *timer,
303e967f 834 struct hrtimer_clock_base *base,
54cdfdb4 835 unsigned long newstate, int reprogram)
c0a31329 836{
ca109491 837 if (timer->state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
838 /*
839 * Remove the timer from the rbtree and replace the
840 * first entry pointer if necessary.
841 */
842 if (base->first == &timer->node) {
843 base->first = rb_next(&timer->node);
844 /* Reprogram the clock event device. if enabled */
845 if (reprogram && hrtimer_hres_active())
846 hrtimer_force_reprogram(base->cpu_base);
847 }
848 rb_erase(&timer->node, &base->active);
849 }
303e967f 850 timer->state = newstate;
c0a31329
TG
851}
852
853/*
854 * remove hrtimer, called with base lock held
855 */
856static inline int
3c8aa39d 857remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 858{
303e967f 859 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
860 int reprogram;
861
862 /*
863 * Remove the timer and force reprogramming when high
864 * resolution mode is active and the timer is on the current
865 * CPU. If we remove a timer on another CPU, reprogramming is
866 * skipped. The interrupt event on this CPU is fired and
867 * reprogramming happens in the interrupt handler. This is a
868 * rare case and less expensive than a smp call.
869 */
237fc6e7 870 debug_hrtimer_deactivate(timer);
82f67cd9 871 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
872 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
873 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
874 reprogram);
c0a31329
TG
875 return 1;
876 }
877 return 0;
878}
879
880/**
e1dd7bc5 881 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
c0a31329
TG
882 * @timer: the timer to be added
883 * @tim: expiry time
da8f2e17 884 * @delta_ns: "slack" range for the timer
c0a31329
TG
885 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
886 *
887 * Returns:
888 * 0 on success
889 * 1 when the timer was active
890 */
891int
da8f2e17
AV
892hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
893 const enum hrtimer_mode mode)
c0a31329 894{
3c8aa39d 895 struct hrtimer_clock_base *base, *new_base;
c0a31329 896 unsigned long flags;
a6037b61 897 int ret, leftmost;
c0a31329
TG
898
899 base = lock_hrtimer_base(timer, &flags);
900
901 /* Remove an active timer from the queue: */
902 ret = remove_hrtimer(timer, base);
903
904 /* Switch the timer base, if necessary: */
905 new_base = switch_hrtimer_base(timer, base);
906
c9cb2e3d 907 if (mode == HRTIMER_MODE_REL) {
5a7780e7 908 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
909 /*
910 * CONFIG_TIME_LOW_RES is a temporary way for architectures
911 * to signal that they simply return xtime in
912 * do_gettimeoffset(). In this case we want to round up by
913 * resolution when starting a relative timer, to avoid short
914 * timeouts. This will go away with the GTOD framework.
915 */
916#ifdef CONFIG_TIME_LOW_RES
5a7780e7 917 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
918#endif
919 }
237fc6e7 920
da8f2e17 921 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 922
82f67cd9
IM
923 timer_stats_hrtimer_set_start_info(timer);
924
a6037b61
PZ
925 leftmost = enqueue_hrtimer(timer, new_base);
926
935c631d
IM
927 /*
928 * Only allow reprogramming if the new base is on this CPU.
929 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
930 *
931 * XXX send_remote_softirq() ?
935c631d 932 */
a6037b61
PZ
933 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
934 hrtimer_enqueue_reprogram(timer, new_base);
c0a31329
TG
935
936 unlock_hrtimer_base(timer, &flags);
937
938 return ret;
939}
da8f2e17
AV
940EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
941
942/**
e1dd7bc5 943 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
944 * @timer: the timer to be added
945 * @tim: expiry time
946 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
947 *
948 * Returns:
949 * 0 on success
950 * 1 when the timer was active
951 */
952int
953hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
954{
955 return hrtimer_start_range_ns(timer, tim, 0, mode);
956}
8d16b764 957EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 958
da8f2e17 959
c0a31329
TG
960/**
961 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
962 * @timer: hrtimer to stop
963 *
964 * Returns:
965 * 0 when the timer was not active
966 * 1 when the timer was active
967 * -1 when the timer is currently excuting the callback function and
fa9799e3 968 * cannot be stopped
c0a31329
TG
969 */
970int hrtimer_try_to_cancel(struct hrtimer *timer)
971{
3c8aa39d 972 struct hrtimer_clock_base *base;
c0a31329
TG
973 unsigned long flags;
974 int ret = -1;
975
976 base = lock_hrtimer_base(timer, &flags);
977
303e967f 978 if (!hrtimer_callback_running(timer))
c0a31329
TG
979 ret = remove_hrtimer(timer, base);
980
981 unlock_hrtimer_base(timer, &flags);
982
983 return ret;
984
985}
8d16b764 986EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
987
988/**
989 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
990 * @timer: the timer to be cancelled
991 *
992 * Returns:
993 * 0 when the timer was not active
994 * 1 when the timer was active
995 */
996int hrtimer_cancel(struct hrtimer *timer)
997{
998 for (;;) {
999 int ret = hrtimer_try_to_cancel(timer);
1000
1001 if (ret >= 0)
1002 return ret;
5ef37b19 1003 cpu_relax();
c0a31329
TG
1004 }
1005}
8d16b764 1006EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1007
1008/**
1009 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1010 * @timer: the timer to read
1011 */
1012ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1013{
3c8aa39d 1014 struct hrtimer_clock_base *base;
c0a31329
TG
1015 unsigned long flags;
1016 ktime_t rem;
1017
1018 base = lock_hrtimer_base(timer, &flags);
cc584b21 1019 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1020 unlock_hrtimer_base(timer, &flags);
1021
1022 return rem;
1023}
8d16b764 1024EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1025
ee9c5785 1026#ifdef CONFIG_NO_HZ
69239749
TL
1027/**
1028 * hrtimer_get_next_event - get the time until next expiry event
1029 *
1030 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1031 * is pending.
1032 */
1033ktime_t hrtimer_get_next_event(void)
1034{
3c8aa39d
TG
1035 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1036 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1037 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1038 unsigned long flags;
1039 int i;
1040
3c8aa39d
TG
1041 spin_lock_irqsave(&cpu_base->lock, flags);
1042
54cdfdb4
TG
1043 if (!hrtimer_hres_active()) {
1044 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1045 struct hrtimer *timer;
69239749 1046
54cdfdb4
TG
1047 if (!base->first)
1048 continue;
3c8aa39d 1049
54cdfdb4 1050 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1051 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1052 delta = ktime_sub(delta, base->get_time());
1053 if (delta.tv64 < mindelta.tv64)
1054 mindelta.tv64 = delta.tv64;
1055 }
69239749 1056 }
3c8aa39d
TG
1057
1058 spin_unlock_irqrestore(&cpu_base->lock, flags);
1059
69239749
TL
1060 if (mindelta.tv64 < 0)
1061 mindelta.tv64 = 0;
1062 return mindelta;
1063}
1064#endif
1065
237fc6e7
TG
1066static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1067 enum hrtimer_mode mode)
c0a31329 1068{
3c8aa39d 1069 struct hrtimer_cpu_base *cpu_base;
c0a31329 1070
7978672c
GA
1071 memset(timer, 0, sizeof(struct hrtimer));
1072
3c8aa39d 1073 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1074
c9cb2e3d 1075 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1076 clock_id = CLOCK_MONOTONIC;
1077
3c8aa39d 1078 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1079 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1080 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1081
1082#ifdef CONFIG_TIMER_STATS
1083 timer->start_site = NULL;
1084 timer->start_pid = -1;
1085 memset(timer->start_comm, 0, TASK_COMM_LEN);
1086#endif
c0a31329 1087}
237fc6e7
TG
1088
1089/**
1090 * hrtimer_init - initialize a timer to the given clock
1091 * @timer: the timer to be initialized
1092 * @clock_id: the clock to be used
1093 * @mode: timer mode abs/rel
1094 */
1095void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1096 enum hrtimer_mode mode)
1097{
1098 debug_hrtimer_init(timer);
1099 __hrtimer_init(timer, clock_id, mode);
1100}
8d16b764 1101EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1102
1103/**
1104 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1105 * @which_clock: which clock to query
1106 * @tp: pointer to timespec variable to store the resolution
1107 *
72fd4a35
RD
1108 * Store the resolution of the clock selected by @which_clock in the
1109 * variable pointed to by @tp.
c0a31329
TG
1110 */
1111int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1112{
3c8aa39d 1113 struct hrtimer_cpu_base *cpu_base;
c0a31329 1114
3c8aa39d
TG
1115 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1116 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1117
1118 return 0;
1119}
8d16b764 1120EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1121
d3d74453
PZ
1122static void __run_hrtimer(struct hrtimer *timer)
1123{
1124 struct hrtimer_clock_base *base = timer->base;
1125 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1126 enum hrtimer_restart (*fn)(struct hrtimer *);
1127 int restart;
1128
ca109491
PZ
1129 WARN_ON(!irqs_disabled());
1130
237fc6e7 1131 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1132 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1133 timer_stats_account_hrtimer(timer);
d3d74453 1134 fn = timer->function;
ca109491
PZ
1135
1136 /*
1137 * Because we run timers from hardirq context, there is no chance
1138 * they get migrated to another cpu, therefore its safe to unlock
1139 * the timer base.
1140 */
1141 spin_unlock(&cpu_base->lock);
1142 restart = fn(timer);
1143 spin_lock(&cpu_base->lock);
d3d74453
PZ
1144
1145 /*
e3f1d883
TG
1146 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1147 * we do not reprogramm the event hardware. Happens either in
1148 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1149 */
1150 if (restart != HRTIMER_NORESTART) {
1151 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1152 enqueue_hrtimer(timer, base);
d3d74453
PZ
1153 }
1154 timer->state &= ~HRTIMER_STATE_CALLBACK;
1155}
1156
54cdfdb4
TG
1157#ifdef CONFIG_HIGH_RES_TIMERS
1158
1159/*
1160 * High resolution timer interrupt
1161 * Called with interrupts disabled
1162 */
1163void hrtimer_interrupt(struct clock_event_device *dev)
1164{
1165 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1166 struct hrtimer_clock_base *base;
1167 ktime_t expires_next, now;
ca109491 1168 int i;
54cdfdb4
TG
1169
1170 BUG_ON(!cpu_base->hres_active);
1171 cpu_base->nr_events++;
1172 dev->next_event.tv64 = KTIME_MAX;
1173
1174 retry:
1175 now = ktime_get();
1176
1177 expires_next.tv64 = KTIME_MAX;
1178
1179 base = cpu_base->clock_base;
1180
1181 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1182 ktime_t basenow;
1183 struct rb_node *node;
1184
1185 spin_lock(&cpu_base->lock);
1186
1187 basenow = ktime_add(now, base->offset);
1188
1189 while ((node = base->first)) {
1190 struct hrtimer *timer;
1191
1192 timer = rb_entry(node, struct hrtimer, node);
1193
654c8e0b
AV
1194 /*
1195 * The immediate goal for using the softexpires is
1196 * minimizing wakeups, not running timers at the
1197 * earliest interrupt after their soft expiration.
1198 * This allows us to avoid using a Priority Search
1199 * Tree, which can answer a stabbing querry for
1200 * overlapping intervals and instead use the simple
1201 * BST we already have.
1202 * We don't add extra wakeups by delaying timers that
1203 * are right-of a not yet expired timer, because that
1204 * timer will have to trigger a wakeup anyway.
1205 */
1206
1207 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1208 ktime_t expires;
1209
cc584b21 1210 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1211 base->offset);
1212 if (expires.tv64 < expires_next.tv64)
1213 expires_next = expires;
1214 break;
1215 }
1216
d3d74453 1217 __run_hrtimer(timer);
54cdfdb4
TG
1218 }
1219 spin_unlock(&cpu_base->lock);
1220 base++;
1221 }
1222
1223 cpu_base->expires_next = expires_next;
1224
1225 /* Reprogramming necessary ? */
1226 if (expires_next.tv64 != KTIME_MAX) {
1227 if (tick_program_event(expires_next, 0))
1228 goto retry;
1229 }
54cdfdb4
TG
1230}
1231
8bdec955
TG
1232/*
1233 * local version of hrtimer_peek_ahead_timers() called with interrupts
1234 * disabled.
1235 */
1236static void __hrtimer_peek_ahead_timers(void)
1237{
1238 struct tick_device *td;
1239
1240 if (!hrtimer_hres_active())
1241 return;
1242
1243 td = &__get_cpu_var(tick_cpu_device);
1244 if (td && td->evtdev)
1245 hrtimer_interrupt(td->evtdev);
1246}
1247
2e94d1f7
AV
1248/**
1249 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1250 *
1251 * hrtimer_peek_ahead_timers will peek at the timer queue of
1252 * the current cpu and check if there are any timers for which
1253 * the soft expires time has passed. If any such timers exist,
1254 * they are run immediately and then removed from the timer queue.
1255 *
1256 */
1257void hrtimer_peek_ahead_timers(void)
1258{
643bdf68 1259 unsigned long flags;
dc4304f7 1260
2e94d1f7 1261 local_irq_save(flags);
8bdec955 1262 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1263 local_irq_restore(flags);
1264}
1265
a6037b61
PZ
1266static void run_hrtimer_softirq(struct softirq_action *h)
1267{
1268 hrtimer_peek_ahead_timers();
1269}
1270
82c5b7b5
IM
1271#else /* CONFIG_HIGH_RES_TIMERS */
1272
1273static inline void __hrtimer_peek_ahead_timers(void) { }
1274
1275#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1276
d3d74453
PZ
1277/*
1278 * Called from timer softirq every jiffy, expire hrtimers:
1279 *
1280 * For HRT its the fall back code to run the softirq in the timer
1281 * softirq context in case the hrtimer initialization failed or has
1282 * not been done yet.
1283 */
1284void hrtimer_run_pending(void)
1285{
d3d74453
PZ
1286 if (hrtimer_hres_active())
1287 return;
54cdfdb4 1288
d3d74453
PZ
1289 /*
1290 * This _is_ ugly: We have to check in the softirq context,
1291 * whether we can switch to highres and / or nohz mode. The
1292 * clocksource switch happens in the timer interrupt with
1293 * xtime_lock held. Notification from there only sets the
1294 * check bit in the tick_oneshot code, otherwise we might
1295 * deadlock vs. xtime_lock.
1296 */
1297 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1298 hrtimer_switch_to_hres();
54cdfdb4
TG
1299}
1300
c0a31329 1301/*
d3d74453 1302 * Called from hardirq context every jiffy
c0a31329 1303 */
833883d9 1304void hrtimer_run_queues(void)
c0a31329 1305{
288867ec 1306 struct rb_node *node;
833883d9
DS
1307 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1308 struct hrtimer_clock_base *base;
1309 int index, gettime = 1;
c0a31329 1310
833883d9 1311 if (hrtimer_hres_active())
3055adda
DS
1312 return;
1313
833883d9
DS
1314 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1315 base = &cpu_base->clock_base[index];
c0a31329 1316
833883d9 1317 if (!base->first)
d3d74453 1318 continue;
833883d9 1319
d7cfb60c 1320 if (gettime) {
833883d9
DS
1321 hrtimer_get_softirq_time(cpu_base);
1322 gettime = 0;
b75f7a51 1323 }
d3d74453 1324
833883d9 1325 spin_lock(&cpu_base->lock);
c0a31329 1326
833883d9
DS
1327 while ((node = base->first)) {
1328 struct hrtimer *timer;
54cdfdb4 1329
833883d9 1330 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1331 if (base->softirq_time.tv64 <=
1332 hrtimer_get_expires_tv64(timer))
833883d9
DS
1333 break;
1334
833883d9
DS
1335 __run_hrtimer(timer);
1336 }
1337 spin_unlock(&cpu_base->lock);
1338 }
c0a31329
TG
1339}
1340
10c94ec1
TG
1341/*
1342 * Sleep related functions:
1343 */
c9cb2e3d 1344static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1345{
1346 struct hrtimer_sleeper *t =
1347 container_of(timer, struct hrtimer_sleeper, timer);
1348 struct task_struct *task = t->task;
1349
1350 t->task = NULL;
1351 if (task)
1352 wake_up_process(task);
1353
1354 return HRTIMER_NORESTART;
1355}
1356
36c8b586 1357void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1358{
1359 sl->timer.function = hrtimer_wakeup;
1360 sl->task = task;
1361}
1362
669d7868 1363static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1364{
669d7868 1365 hrtimer_init_sleeper(t, current);
10c94ec1 1366
432569bb
RZ
1367 do {
1368 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1369 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1370 if (!hrtimer_active(&t->timer))
1371 t->task = NULL;
432569bb 1372
54cdfdb4
TG
1373 if (likely(t->task))
1374 schedule();
432569bb 1375
669d7868 1376 hrtimer_cancel(&t->timer);
c9cb2e3d 1377 mode = HRTIMER_MODE_ABS;
669d7868
TG
1378
1379 } while (t->task && !signal_pending(current));
432569bb 1380
3588a085
PZ
1381 __set_current_state(TASK_RUNNING);
1382
669d7868 1383 return t->task == NULL;
10c94ec1
TG
1384}
1385
080344b9
ON
1386static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1387{
1388 struct timespec rmt;
1389 ktime_t rem;
1390
cc584b21 1391 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1392 if (rem.tv64 <= 0)
1393 return 0;
1394 rmt = ktime_to_timespec(rem);
1395
1396 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1397 return -EFAULT;
1398
1399 return 1;
1400}
1401
1711ef38 1402long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1403{
669d7868 1404 struct hrtimer_sleeper t;
080344b9 1405 struct timespec __user *rmtp;
237fc6e7 1406 int ret = 0;
10c94ec1 1407
237fc6e7
TG
1408 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1409 HRTIMER_MODE_ABS);
cc584b21 1410 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1411
c9cb2e3d 1412 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1413 goto out;
10c94ec1 1414
029a07e0 1415 rmtp = restart->nanosleep.rmtp;
432569bb 1416 if (rmtp) {
237fc6e7 1417 ret = update_rmtp(&t.timer, rmtp);
080344b9 1418 if (ret <= 0)
237fc6e7 1419 goto out;
432569bb 1420 }
10c94ec1 1421
10c94ec1 1422 /* The other values in restart are already filled in */
237fc6e7
TG
1423 ret = -ERESTART_RESTARTBLOCK;
1424out:
1425 destroy_hrtimer_on_stack(&t.timer);
1426 return ret;
10c94ec1
TG
1427}
1428
080344b9 1429long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1430 const enum hrtimer_mode mode, const clockid_t clockid)
1431{
1432 struct restart_block *restart;
669d7868 1433 struct hrtimer_sleeper t;
237fc6e7 1434 int ret = 0;
3bd01206
AV
1435 unsigned long slack;
1436
1437 slack = current->timer_slack_ns;
1438 if (rt_task(current))
1439 slack = 0;
10c94ec1 1440
237fc6e7 1441 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1442 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1443 if (do_nanosleep(&t, mode))
237fc6e7 1444 goto out;
10c94ec1 1445
7978672c 1446 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1447 if (mode == HRTIMER_MODE_ABS) {
1448 ret = -ERESTARTNOHAND;
1449 goto out;
1450 }
10c94ec1 1451
432569bb 1452 if (rmtp) {
237fc6e7 1453 ret = update_rmtp(&t.timer, rmtp);
080344b9 1454 if (ret <= 0)
237fc6e7 1455 goto out;
432569bb 1456 }
10c94ec1
TG
1457
1458 restart = &current_thread_info()->restart_block;
1711ef38 1459 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1460 restart->nanosleep.index = t.timer.base->index;
1461 restart->nanosleep.rmtp = rmtp;
cc584b21 1462 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1463
237fc6e7
TG
1464 ret = -ERESTART_RESTARTBLOCK;
1465out:
1466 destroy_hrtimer_on_stack(&t.timer);
1467 return ret;
10c94ec1
TG
1468}
1469
6ba1b912
TG
1470asmlinkage long
1471sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1472{
080344b9 1473 struct timespec tu;
6ba1b912
TG
1474
1475 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1476 return -EFAULT;
1477
1478 if (!timespec_valid(&tu))
1479 return -EINVAL;
1480
080344b9 1481 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1482}
1483
c0a31329
TG
1484/*
1485 * Functions related to boot-time initialization:
1486 */
0ec160dd 1487static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1488{
3c8aa39d 1489 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1490 int i;
1491
3c8aa39d 1492 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1493
1494 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1495 cpu_base->clock_base[i].cpu_base = cpu_base;
1496
54cdfdb4 1497 hrtimer_init_hres(cpu_base);
c0a31329
TG
1498}
1499
1500#ifdef CONFIG_HOTPLUG_CPU
1501
ca109491 1502static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1503 struct hrtimer_clock_base *new_base)
c0a31329
TG
1504{
1505 struct hrtimer *timer;
1506 struct rb_node *node;
1507
1508 while ((node = rb_first(&old_base->active))) {
1509 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1510 BUG_ON(hrtimer_callback_running(timer));
237fc6e7 1511 debug_hrtimer_deactivate(timer);
b00c1a99
TG
1512
1513 /*
1514 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1515 * timer could be seen as !active and just vanish away
1516 * under us on another CPU
1517 */
1518 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1519 timer->base = new_base;
54cdfdb4 1520 /*
e3f1d883
TG
1521 * Enqueue the timers on the new cpu. This does not
1522 * reprogram the event device in case the timer
1523 * expires before the earliest on this CPU, but we run
1524 * hrtimer_interrupt after we migrated everything to
1525 * sort out already expired timers and reprogram the
1526 * event device.
54cdfdb4 1527 */
a6037b61 1528 enqueue_hrtimer(timer, new_base);
41e1022e 1529
b00c1a99
TG
1530 /* Clear the migration state bit */
1531 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1532 }
1533}
1534
d5fd43c4 1535static void migrate_hrtimers(int scpu)
c0a31329 1536{
3c8aa39d 1537 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1538 int i;
c0a31329 1539
37810659 1540 BUG_ON(cpu_online(scpu));
37810659 1541 tick_cancel_sched_timer(scpu);
731a55ba
TG
1542
1543 local_irq_disable();
1544 old_base = &per_cpu(hrtimer_bases, scpu);
1545 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1546 /*
1547 * The caller is globally serialized and nobody else
1548 * takes two locks at once, deadlock is not possible.
1549 */
731a55ba 1550 spin_lock(&new_base->lock);
8e60e05f 1551 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1552
3c8aa39d 1553 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1554 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1555 &new_base->clock_base[i]);
c0a31329
TG
1556 }
1557
8e60e05f 1558 spin_unlock(&old_base->lock);
731a55ba 1559 spin_unlock(&new_base->lock);
37810659 1560
731a55ba
TG
1561 /* Check, if we got expired work to do */
1562 __hrtimer_peek_ahead_timers();
1563 local_irq_enable();
c0a31329 1564}
37810659 1565
c0a31329
TG
1566#endif /* CONFIG_HOTPLUG_CPU */
1567
8c78f307 1568static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1569 unsigned long action, void *hcpu)
1570{
b2e3c0ad 1571 int scpu = (long)hcpu;
c0a31329
TG
1572
1573 switch (action) {
1574
1575 case CPU_UP_PREPARE:
8bb78442 1576 case CPU_UP_PREPARE_FROZEN:
37810659 1577 init_hrtimers_cpu(scpu);
c0a31329
TG
1578 break;
1579
1580#ifdef CONFIG_HOTPLUG_CPU
1581 case CPU_DEAD:
8bb78442 1582 case CPU_DEAD_FROZEN:
b2e3c0ad 1583 {
37810659 1584 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1585 migrate_hrtimers(scpu);
c0a31329 1586 break;
b2e3c0ad 1587 }
c0a31329
TG
1588#endif
1589
1590 default:
1591 break;
1592 }
1593
1594 return NOTIFY_OK;
1595}
1596
8c78f307 1597static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1598 .notifier_call = hrtimer_cpu_notify,
1599};
1600
1601void __init hrtimers_init(void)
1602{
1603 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1604 (void *)(long)smp_processor_id());
1605 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1606#ifdef CONFIG_HIGH_RES_TIMERS
1607 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1608#endif
c0a31329
TG
1609}
1610
7bb67439 1611/**
654c8e0b 1612 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1613 * @expires: timeout value (ktime_t)
654c8e0b 1614 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1615 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1616 *
1617 * Make the current task sleep until the given expiry time has
1618 * elapsed. The routine will return immediately unless
1619 * the current task state has been set (see set_current_state()).
1620 *
654c8e0b
AV
1621 * The @delta argument gives the kernel the freedom to schedule the
1622 * actual wakeup to a time that is both power and performance friendly.
1623 * The kernel give the normal best effort behavior for "@expires+@delta",
1624 * but may decide to fire the timer earlier, but no earlier than @expires.
1625 *
7bb67439
AV
1626 * You can set the task state as follows -
1627 *
1628 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1629 * pass before the routine returns.
1630 *
1631 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1632 * delivered to the current task.
1633 *
1634 * The current task state is guaranteed to be TASK_RUNNING when this
1635 * routine returns.
1636 *
1637 * Returns 0 when the timer has expired otherwise -EINTR
1638 */
654c8e0b 1639int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1640 const enum hrtimer_mode mode)
1641{
1642 struct hrtimer_sleeper t;
1643
1644 /*
1645 * Optimize when a zero timeout value is given. It does not
1646 * matter whether this is an absolute or a relative time.
1647 */
1648 if (expires && !expires->tv64) {
1649 __set_current_state(TASK_RUNNING);
1650 return 0;
1651 }
1652
1653 /*
1654 * A NULL parameter means "inifinte"
1655 */
1656 if (!expires) {
1657 schedule();
1658 __set_current_state(TASK_RUNNING);
1659 return -EINTR;
1660 }
1661
1662 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1663 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1664
1665 hrtimer_init_sleeper(&t, current);
1666
cc584b21 1667 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1668 if (!hrtimer_active(&t.timer))
1669 t.task = NULL;
1670
1671 if (likely(t.task))
1672 schedule();
1673
1674 hrtimer_cancel(&t.timer);
1675 destroy_hrtimer_on_stack(&t.timer);
1676
1677 __set_current_state(TASK_RUNNING);
1678
1679 return !t.task ? 0 : -EINTR;
1680}
654c8e0b
AV
1681EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1682
1683/**
1684 * schedule_hrtimeout - sleep until timeout
1685 * @expires: timeout value (ktime_t)
1686 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1687 *
1688 * Make the current task sleep until the given expiry time has
1689 * elapsed. The routine will return immediately unless
1690 * the current task state has been set (see set_current_state()).
1691 *
1692 * You can set the task state as follows -
1693 *
1694 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1695 * pass before the routine returns.
1696 *
1697 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1698 * delivered to the current task.
1699 *
1700 * The current task state is guaranteed to be TASK_RUNNING when this
1701 * routine returns.
1702 *
1703 * Returns 0 when the timer has expired otherwise -EINTR
1704 */
1705int __sched schedule_hrtimeout(ktime_t *expires,
1706 const enum hrtimer_mode mode)
1707{
1708 return schedule_hrtimeout_range(expires, 0, mode);
1709}
7bb67439 1710EXPORT_SYMBOL_GPL(schedule_hrtimeout);