hrtimer: clean up cpu->base locking tricks
[linux-2.6-block.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
c0a31329
TG
46
47#include <asm/uaccess.h>
48
49/**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
d316c57f 54ktime_t ktime_get(void)
c0a31329
TG
55{
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61}
641b9e0e 62EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
63
64/**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
d316c57f 69ktime_t ktime_get_real(void)
c0a31329
TG
70{
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76}
77
78EXPORT_SYMBOL_GPL(ktime_get_real);
79
80/*
81 * The timer bases:
7978672c
GA
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
c0a31329 88 */
54cdfdb4 89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 90{
3c8aa39d
TG
91
92 .clock_base =
c0a31329 93 {
3c8aa39d
TG
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
54cdfdb4 97 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
54cdfdb4 102 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
103 },
104 }
c0a31329
TG
105};
106
107/**
108 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 113 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
114 */
115void ktime_get_ts(struct timespec *ts)
116{
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129}
69778e32 130EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 131
92127c7a
TG
132/*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
3c8aa39d 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
137{
138 ktime_t xtim, tomono;
ad28d94a 139 struct timespec xts, tom;
92127c7a
TG
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
2c6b47de 144 xts = current_kernel_time();
ad28d94a 145 tom = wall_to_monotonic;
92127c7a
TG
146 } while (read_seqretry(&xtime_lock, seq));
147
f4304ab2 148 xtim = timespec_to_ktime(xts);
ad28d94a 149 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
92127c7a
TG
153}
154
303e967f
TG
155/*
156 * Helper function to check, whether the timer is running the callback
157 * function
158 */
159static inline int hrtimer_callback_running(struct hrtimer *timer)
160{
161 return timer->state & HRTIMER_STATE_CALLBACK;
162}
163
c0a31329
TG
164/*
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
167 */
168#ifdef CONFIG_SMP
169
c0a31329
TG
170/*
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
174 *
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
177 *
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
181 */
3c8aa39d
TG
182static
183struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
c0a31329 185{
3c8aa39d 186 struct hrtimer_clock_base *base;
c0a31329
TG
187
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
3c8aa39d 191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
3c8aa39d 195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
196 }
197 cpu_relax();
198 }
199}
200
201/*
202 * Switch the timer base to the current CPU when possible.
203 */
3c8aa39d
TG
204static inline struct hrtimer_clock_base *
205switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 206{
3c8aa39d
TG
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 209
3c8aa39d
TG
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
212
213 if (base != new_base) {
214 /*
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
222 */
54cdfdb4 223 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
224 return base;
225
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
3c8aa39d
TG
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
230 timer->base = new_base;
231 }
232 return new_base;
233}
234
235#else /* CONFIG_SMP */
236
3c8aa39d 237static inline struct hrtimer_clock_base *
c0a31329
TG
238lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239{
3c8aa39d 240 struct hrtimer_clock_base *base = timer->base;
c0a31329 241
3c8aa39d 242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
243
244 return base;
245}
246
54cdfdb4 247# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
248
249#endif /* !CONFIG_SMP */
250
251/*
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
254 */
255#if BITS_PER_LONG < 64
256# ifndef CONFIG_KTIME_SCALAR
257/**
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
261 *
262 * Returns the sum of kt and nsec in ktime_t format
263 */
264ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265{
266 ktime_t tmp;
267
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272
273 tmp = ktime_set((long)nsec, rem);
274 }
275
276 return ktime_add(kt, tmp);
277}
b8b8fd2d
DH
278
279EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
280
281/**
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
285 *
286 * Returns the subtraction of @nsec from @kt in ktime_t format
287 */
288ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289{
290 ktime_t tmp;
291
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296
297 tmp = ktime_set((long)nsec, rem);
298 }
299
300 return ktime_sub(kt, tmp);
301}
302
303EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
304# endif /* !CONFIG_KTIME_SCALAR */
305
306/*
307 * Divide a ktime value by a nanosecond value
308 */
79bf2bb3 309unsigned long ktime_divns(const ktime_t kt, s64 div)
c0a31329
TG
310{
311 u64 dclc, inc, dns;
312 int sft = 0;
313
314 dclc = dns = ktime_to_ns(kt);
315 inc = div;
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
320 }
321 dclc >>= sft;
322 do_div(dclc, (unsigned long) div);
323
324 return (unsigned long) dclc;
325}
c0a31329
TG
326#endif /* BITS_PER_LONG >= 64 */
327
54cdfdb4
TG
328/* High resolution timer related functions */
329#ifdef CONFIG_HIGH_RES_TIMERS
330
331/*
332 * High resolution timer enabled ?
333 */
334static int hrtimer_hres_enabled __read_mostly = 1;
335
336/*
337 * Enable / Disable high resolution mode
338 */
339static int __init setup_hrtimer_hres(char *str)
340{
341 if (!strcmp(str, "off"))
342 hrtimer_hres_enabled = 0;
343 else if (!strcmp(str, "on"))
344 hrtimer_hres_enabled = 1;
345 else
346 return 0;
347 return 1;
348}
349
350__setup("highres=", setup_hrtimer_hres);
351
352/*
353 * hrtimer_high_res_enabled - query, if the highres mode is enabled
354 */
355static inline int hrtimer_is_hres_enabled(void)
356{
357 return hrtimer_hres_enabled;
358}
359
360/*
361 * Is the high resolution mode active ?
362 */
363static inline int hrtimer_hres_active(void)
364{
365 return __get_cpu_var(hrtimer_bases).hres_active;
366}
367
368/*
369 * Reprogram the event source with checking both queues for the
370 * next event
371 * Called with interrupts disabled and base->lock held
372 */
373static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
374{
375 int i;
376 struct hrtimer_clock_base *base = cpu_base->clock_base;
377 ktime_t expires;
378
379 cpu_base->expires_next.tv64 = KTIME_MAX;
380
381 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
382 struct hrtimer *timer;
383
384 if (!base->first)
385 continue;
386 timer = rb_entry(base->first, struct hrtimer, node);
387 expires = ktime_sub(timer->expires, base->offset);
388 if (expires.tv64 < cpu_base->expires_next.tv64)
389 cpu_base->expires_next = expires;
390 }
391
392 if (cpu_base->expires_next.tv64 != KTIME_MAX)
393 tick_program_event(cpu_base->expires_next, 1);
394}
395
396/*
397 * Shared reprogramming for clock_realtime and clock_monotonic
398 *
399 * When a timer is enqueued and expires earlier than the already enqueued
400 * timers, we have to check, whether it expires earlier than the timer for
401 * which the clock event device was armed.
402 *
403 * Called with interrupts disabled and base->cpu_base.lock held
404 */
405static int hrtimer_reprogram(struct hrtimer *timer,
406 struct hrtimer_clock_base *base)
407{
408 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
409 ktime_t expires = ktime_sub(timer->expires, base->offset);
410 int res;
411
412 /*
413 * When the callback is running, we do not reprogram the clock event
414 * device. The timer callback is either running on a different CPU or
3a4fa0a2 415 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
416 * reprogramming is handled either by the softirq, which called the
417 * callback or at the end of the hrtimer_interrupt.
418 */
419 if (hrtimer_callback_running(timer))
420 return 0;
421
422 if (expires.tv64 >= expires_next->tv64)
423 return 0;
424
425 /*
426 * Clockevents returns -ETIME, when the event was in the past.
427 */
428 res = tick_program_event(expires, 0);
429 if (!IS_ERR_VALUE(res))
430 *expires_next = expires;
431 return res;
432}
433
434
435/*
436 * Retrigger next event is called after clock was set
437 *
438 * Called with interrupts disabled via on_each_cpu()
439 */
440static void retrigger_next_event(void *arg)
441{
442 struct hrtimer_cpu_base *base;
443 struct timespec realtime_offset;
444 unsigned long seq;
445
446 if (!hrtimer_hres_active())
447 return;
448
449 do {
450 seq = read_seqbegin(&xtime_lock);
451 set_normalized_timespec(&realtime_offset,
452 -wall_to_monotonic.tv_sec,
453 -wall_to_monotonic.tv_nsec);
454 } while (read_seqretry(&xtime_lock, seq));
455
456 base = &__get_cpu_var(hrtimer_bases);
457
458 /* Adjust CLOCK_REALTIME offset */
459 spin_lock(&base->lock);
460 base->clock_base[CLOCK_REALTIME].offset =
461 timespec_to_ktime(realtime_offset);
462
463 hrtimer_force_reprogram(base);
464 spin_unlock(&base->lock);
465}
466
467/*
468 * Clock realtime was set
469 *
470 * Change the offset of the realtime clock vs. the monotonic
471 * clock.
472 *
473 * We might have to reprogram the high resolution timer interrupt. On
474 * SMP we call the architecture specific code to retrigger _all_ high
475 * resolution timer interrupts. On UP we just disable interrupts and
476 * call the high resolution interrupt code.
477 */
478void clock_was_set(void)
479{
480 /* Retrigger the CPU local events everywhere */
481 on_each_cpu(retrigger_next_event, NULL, 0, 1);
482}
483
995f054f
IM
484/*
485 * During resume we might have to reprogram the high resolution timer
486 * interrupt (on the local CPU):
487 */
488void hres_timers_resume(void)
489{
490 WARN_ON_ONCE(num_online_cpus() > 1);
491
492 /* Retrigger the CPU local events: */
493 retrigger_next_event(NULL);
494}
495
54cdfdb4
TG
496/*
497 * Check, whether the timer is on the callback pending list
498 */
499static inline int hrtimer_cb_pending(const struct hrtimer *timer)
500{
501 return timer->state & HRTIMER_STATE_PENDING;
502}
503
504/*
505 * Remove a timer from the callback pending list
506 */
507static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
508{
509 list_del_init(&timer->cb_entry);
510}
511
512/*
513 * Initialize the high resolution related parts of cpu_base
514 */
515static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
516{
517 base->expires_next.tv64 = KTIME_MAX;
518 base->hres_active = 0;
519 INIT_LIST_HEAD(&base->cb_pending);
520}
521
522/*
523 * Initialize the high resolution related parts of a hrtimer
524 */
525static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
526{
527 INIT_LIST_HEAD(&timer->cb_entry);
528}
529
530/*
531 * When High resolution timers are active, try to reprogram. Note, that in case
532 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
533 * check happens. The timer gets enqueued into the rbtree. The reprogramming
534 * and expiry check is done in the hrtimer_interrupt or in the softirq.
535 */
536static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
537 struct hrtimer_clock_base *base)
538{
539 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
540
541 /* Timer is expired, act upon the callback mode */
542 switch(timer->cb_mode) {
543 case HRTIMER_CB_IRQSAFE_NO_RESTART:
544 /*
545 * We can call the callback from here. No restart
546 * happens, so no danger of recursion
547 */
548 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
549 return 1;
550 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
551 /*
552 * This is solely for the sched tick emulation with
553 * dynamic tick support to ensure that we do not
554 * restart the tick right on the edge and end up with
555 * the tick timer in the softirq ! The calling site
556 * takes care of this.
557 */
558 return 1;
559 case HRTIMER_CB_IRQSAFE:
560 case HRTIMER_CB_SOFTIRQ:
561 /*
562 * Move everything else into the softirq pending list !
563 */
564 list_add_tail(&timer->cb_entry,
565 &base->cpu_base->cb_pending);
566 timer->state = HRTIMER_STATE_PENDING;
567 raise_softirq(HRTIMER_SOFTIRQ);
568 return 1;
569 default:
570 BUG();
571 }
572 }
573 return 0;
574}
575
576/*
577 * Switch to high resolution mode
578 */
f8953856 579static int hrtimer_switch_to_hres(void)
54cdfdb4 580{
820de5c3
IM
581 int cpu = smp_processor_id();
582 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
583 unsigned long flags;
584
585 if (base->hres_active)
f8953856 586 return 1;
54cdfdb4
TG
587
588 local_irq_save(flags);
589
590 if (tick_init_highres()) {
591 local_irq_restore(flags);
820de5c3
IM
592 printk(KERN_WARNING "Could not switch to high resolution "
593 "mode on CPU %d\n", cpu);
f8953856 594 return 0;
54cdfdb4
TG
595 }
596 base->hres_active = 1;
597 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
598 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
599
600 tick_setup_sched_timer();
601
602 /* "Retrigger" the interrupt to get things going */
603 retrigger_next_event(NULL);
604 local_irq_restore(flags);
edfed66e 605 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 606 smp_processor_id());
f8953856 607 return 1;
54cdfdb4
TG
608}
609
610#else
611
612static inline int hrtimer_hres_active(void) { return 0; }
613static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 614static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
615static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
616static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
617 struct hrtimer_clock_base *base)
618{
619 return 0;
620}
621static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
622static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
623static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
624static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
625
626#endif /* CONFIG_HIGH_RES_TIMERS */
627
82f67cd9
IM
628#ifdef CONFIG_TIMER_STATS
629void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
630{
631 if (timer->start_site)
632 return;
633
634 timer->start_site = addr;
635 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
636 timer->start_pid = current->pid;
637}
638#endif
639
c0a31329 640/*
6506f2aa 641 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
642 */
643static inline
644void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
645{
3c8aa39d 646 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
647}
648
649/**
650 * hrtimer_forward - forward the timer expiry
c0a31329 651 * @timer: hrtimer to forward
44f21475 652 * @now: forward past this time
c0a31329
TG
653 * @interval: the interval to forward
654 *
655 * Forward the timer expiry so it will expire in the future.
8dca6f33 656 * Returns the number of overruns.
c0a31329
TG
657 */
658unsigned long
44f21475 659hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329
TG
660{
661 unsigned long orun = 1;
44f21475 662 ktime_t delta;
c0a31329
TG
663
664 delta = ktime_sub(now, timer->expires);
665
666 if (delta.tv64 < 0)
667 return 0;
668
c9db4fa1
TG
669 if (interval.tv64 < timer->base->resolution.tv64)
670 interval.tv64 = timer->base->resolution.tv64;
671
c0a31329 672 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 673 s64 incr = ktime_to_ns(interval);
c0a31329
TG
674
675 orun = ktime_divns(delta, incr);
676 timer->expires = ktime_add_ns(timer->expires, incr * orun);
677 if (timer->expires.tv64 > now.tv64)
678 return orun;
679 /*
680 * This (and the ktime_add() below) is the
681 * correction for exact:
682 */
683 orun++;
684 }
685 timer->expires = ktime_add(timer->expires, interval);
13788ccc
TG
686 /*
687 * Make sure, that the result did not wrap with a very large
688 * interval.
689 */
690 if (timer->expires.tv64 < 0)
691 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
c0a31329
TG
692
693 return orun;
694}
6bdb6b62 695EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
696
697/*
698 * enqueue_hrtimer - internal function to (re)start a timer
699 *
700 * The timer is inserted in expiry order. Insertion into the
701 * red black tree is O(log(n)). Must hold the base lock.
702 */
3c8aa39d 703static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 704 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
705{
706 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
707 struct rb_node *parent = NULL;
708 struct hrtimer *entry;
99bc2fcb 709 int leftmost = 1;
c0a31329
TG
710
711 /*
712 * Find the right place in the rbtree:
713 */
714 while (*link) {
715 parent = *link;
716 entry = rb_entry(parent, struct hrtimer, node);
717 /*
718 * We dont care about collisions. Nodes with
719 * the same expiry time stay together.
720 */
99bc2fcb 721 if (timer->expires.tv64 < entry->expires.tv64) {
c0a31329 722 link = &(*link)->rb_left;
99bc2fcb 723 } else {
c0a31329 724 link = &(*link)->rb_right;
99bc2fcb
IM
725 leftmost = 0;
726 }
c0a31329
TG
727 }
728
729 /*
288867ec
TG
730 * Insert the timer to the rbtree and check whether it
731 * replaces the first pending timer
c0a31329 732 */
99bc2fcb 733 if (leftmost) {
54cdfdb4
TG
734 /*
735 * Reprogram the clock event device. When the timer is already
736 * expired hrtimer_enqueue_reprogram has either called the
737 * callback or added it to the pending list and raised the
738 * softirq.
739 *
740 * This is a NOP for !HIGHRES
741 */
742 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
743 return;
744
745 base->first = &timer->node;
746 }
747
c0a31329
TG
748 rb_link_node(&timer->node, parent, link);
749 rb_insert_color(&timer->node, &base->active);
303e967f
TG
750 /*
751 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
752 * state of a possibly running callback.
753 */
754 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 755}
c0a31329
TG
756
757/*
758 * __remove_hrtimer - internal function to remove a timer
759 *
760 * Caller must hold the base lock.
54cdfdb4
TG
761 *
762 * High resolution timer mode reprograms the clock event device when the
763 * timer is the one which expires next. The caller can disable this by setting
764 * reprogram to zero. This is useful, when the context does a reprogramming
765 * anyway (e.g. timer interrupt)
c0a31329 766 */
3c8aa39d 767static void __remove_hrtimer(struct hrtimer *timer,
303e967f 768 struct hrtimer_clock_base *base,
54cdfdb4 769 unsigned long newstate, int reprogram)
c0a31329 770{
54cdfdb4
TG
771 /* High res. callback list. NOP for !HIGHRES */
772 if (hrtimer_cb_pending(timer))
773 hrtimer_remove_cb_pending(timer);
774 else {
775 /*
776 * Remove the timer from the rbtree and replace the
777 * first entry pointer if necessary.
778 */
779 if (base->first == &timer->node) {
780 base->first = rb_next(&timer->node);
781 /* Reprogram the clock event device. if enabled */
782 if (reprogram && hrtimer_hres_active())
783 hrtimer_force_reprogram(base->cpu_base);
784 }
785 rb_erase(&timer->node, &base->active);
786 }
303e967f 787 timer->state = newstate;
c0a31329
TG
788}
789
790/*
791 * remove hrtimer, called with base lock held
792 */
793static inline int
3c8aa39d 794remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 795{
303e967f 796 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
797 int reprogram;
798
799 /*
800 * Remove the timer and force reprogramming when high
801 * resolution mode is active and the timer is on the current
802 * CPU. If we remove a timer on another CPU, reprogramming is
803 * skipped. The interrupt event on this CPU is fired and
804 * reprogramming happens in the interrupt handler. This is a
805 * rare case and less expensive than a smp call.
806 */
82f67cd9 807 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
808 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
809 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
810 reprogram);
c0a31329
TG
811 return 1;
812 }
813 return 0;
814}
815
816/**
817 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
818 * @timer: the timer to be added
819 * @tim: expiry time
820 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
821 *
822 * Returns:
823 * 0 on success
824 * 1 when the timer was active
825 */
826int
827hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
828{
3c8aa39d 829 struct hrtimer_clock_base *base, *new_base;
c0a31329
TG
830 unsigned long flags;
831 int ret;
832
833 base = lock_hrtimer_base(timer, &flags);
834
835 /* Remove an active timer from the queue: */
836 ret = remove_hrtimer(timer, base);
837
838 /* Switch the timer base, if necessary: */
839 new_base = switch_hrtimer_base(timer, base);
840
c9cb2e3d 841 if (mode == HRTIMER_MODE_REL) {
c0a31329 842 tim = ktime_add(tim, new_base->get_time());
06027bdd
IM
843 /*
844 * CONFIG_TIME_LOW_RES is a temporary way for architectures
845 * to signal that they simply return xtime in
846 * do_gettimeoffset(). In this case we want to round up by
847 * resolution when starting a relative timer, to avoid short
848 * timeouts. This will go away with the GTOD framework.
849 */
850#ifdef CONFIG_TIME_LOW_RES
851 tim = ktime_add(tim, base->resolution);
852#endif
62f0f61e
TG
853 /*
854 * Careful here: User space might have asked for a
855 * very long sleep, so the add above might result in a
856 * negative number, which enqueues the timer in front
857 * of the queue.
858 */
859 if (tim.tv64 < 0)
860 tim.tv64 = KTIME_MAX;
06027bdd 861 }
c0a31329
TG
862 timer->expires = tim;
863
82f67cd9
IM
864 timer_stats_hrtimer_set_start_info(timer);
865
935c631d
IM
866 /*
867 * Only allow reprogramming if the new base is on this CPU.
868 * (it might still be on another CPU if the timer was pending)
869 */
870 enqueue_hrtimer(timer, new_base,
871 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
c0a31329
TG
872
873 unlock_hrtimer_base(timer, &flags);
874
875 return ret;
876}
8d16b764 877EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
878
879/**
880 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
881 * @timer: hrtimer to stop
882 *
883 * Returns:
884 * 0 when the timer was not active
885 * 1 when the timer was active
886 * -1 when the timer is currently excuting the callback function and
fa9799e3 887 * cannot be stopped
c0a31329
TG
888 */
889int hrtimer_try_to_cancel(struct hrtimer *timer)
890{
3c8aa39d 891 struct hrtimer_clock_base *base;
c0a31329
TG
892 unsigned long flags;
893 int ret = -1;
894
895 base = lock_hrtimer_base(timer, &flags);
896
303e967f 897 if (!hrtimer_callback_running(timer))
c0a31329
TG
898 ret = remove_hrtimer(timer, base);
899
900 unlock_hrtimer_base(timer, &flags);
901
902 return ret;
903
904}
8d16b764 905EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
906
907/**
908 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
909 * @timer: the timer to be cancelled
910 *
911 * Returns:
912 * 0 when the timer was not active
913 * 1 when the timer was active
914 */
915int hrtimer_cancel(struct hrtimer *timer)
916{
917 for (;;) {
918 int ret = hrtimer_try_to_cancel(timer);
919
920 if (ret >= 0)
921 return ret;
5ef37b19 922 cpu_relax();
c0a31329
TG
923 }
924}
8d16b764 925EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
926
927/**
928 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
929 * @timer: the timer to read
930 */
931ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
932{
3c8aa39d 933 struct hrtimer_clock_base *base;
c0a31329
TG
934 unsigned long flags;
935 ktime_t rem;
936
937 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 938 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
939 unlock_hrtimer_base(timer, &flags);
940
941 return rem;
942}
8d16b764 943EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 944
fd064b9b 945#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
69239749
TL
946/**
947 * hrtimer_get_next_event - get the time until next expiry event
948 *
949 * Returns the delta to the next expiry event or KTIME_MAX if no timer
950 * is pending.
951 */
952ktime_t hrtimer_get_next_event(void)
953{
3c8aa39d
TG
954 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
955 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
956 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
957 unsigned long flags;
958 int i;
959
3c8aa39d
TG
960 spin_lock_irqsave(&cpu_base->lock, flags);
961
54cdfdb4
TG
962 if (!hrtimer_hres_active()) {
963 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
964 struct hrtimer *timer;
69239749 965
54cdfdb4
TG
966 if (!base->first)
967 continue;
3c8aa39d 968
54cdfdb4
TG
969 timer = rb_entry(base->first, struct hrtimer, node);
970 delta.tv64 = timer->expires.tv64;
971 delta = ktime_sub(delta, base->get_time());
972 if (delta.tv64 < mindelta.tv64)
973 mindelta.tv64 = delta.tv64;
974 }
69239749 975 }
3c8aa39d
TG
976
977 spin_unlock_irqrestore(&cpu_base->lock, flags);
978
69239749
TL
979 if (mindelta.tv64 < 0)
980 mindelta.tv64 = 0;
981 return mindelta;
982}
983#endif
984
c0a31329 985/**
7978672c 986 * hrtimer_init - initialize a timer to the given clock
7978672c 987 * @timer: the timer to be initialized
c0a31329 988 * @clock_id: the clock to be used
7978672c 989 * @mode: timer mode abs/rel
c0a31329 990 */
7978672c
GA
991void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
992 enum hrtimer_mode mode)
c0a31329 993{
3c8aa39d 994 struct hrtimer_cpu_base *cpu_base;
c0a31329 995
7978672c
GA
996 memset(timer, 0, sizeof(struct hrtimer));
997
3c8aa39d 998 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 999
c9cb2e3d 1000 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1001 clock_id = CLOCK_MONOTONIC;
1002
3c8aa39d 1003 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1004 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1005
1006#ifdef CONFIG_TIMER_STATS
1007 timer->start_site = NULL;
1008 timer->start_pid = -1;
1009 memset(timer->start_comm, 0, TASK_COMM_LEN);
1010#endif
c0a31329 1011}
8d16b764 1012EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1013
1014/**
1015 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1016 * @which_clock: which clock to query
1017 * @tp: pointer to timespec variable to store the resolution
1018 *
72fd4a35
RD
1019 * Store the resolution of the clock selected by @which_clock in the
1020 * variable pointed to by @tp.
c0a31329
TG
1021 */
1022int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1023{
3c8aa39d 1024 struct hrtimer_cpu_base *cpu_base;
c0a31329 1025
3c8aa39d
TG
1026 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1027 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1028
1029 return 0;
1030}
8d16b764 1031EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1032
54cdfdb4
TG
1033#ifdef CONFIG_HIGH_RES_TIMERS
1034
1035/*
1036 * High resolution timer interrupt
1037 * Called with interrupts disabled
1038 */
1039void hrtimer_interrupt(struct clock_event_device *dev)
1040{
1041 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1042 struct hrtimer_clock_base *base;
1043 ktime_t expires_next, now;
1044 int i, raise = 0;
1045
1046 BUG_ON(!cpu_base->hres_active);
1047 cpu_base->nr_events++;
1048 dev->next_event.tv64 = KTIME_MAX;
1049
1050 retry:
1051 now = ktime_get();
1052
1053 expires_next.tv64 = KTIME_MAX;
1054
1055 base = cpu_base->clock_base;
1056
1057 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1058 ktime_t basenow;
1059 struct rb_node *node;
1060
1061 spin_lock(&cpu_base->lock);
1062
1063 basenow = ktime_add(now, base->offset);
1064
1065 while ((node = base->first)) {
2d44ae4d 1066 enum hrtimer_restart (*fn)(struct hrtimer *);
54cdfdb4 1067 struct hrtimer *timer;
2d44ae4d 1068 int restart;
54cdfdb4
TG
1069
1070 timer = rb_entry(node, struct hrtimer, node);
1071
1072 if (basenow.tv64 < timer->expires.tv64) {
1073 ktime_t expires;
1074
1075 expires = ktime_sub(timer->expires,
1076 base->offset);
1077 if (expires.tv64 < expires_next.tv64)
1078 expires_next = expires;
1079 break;
1080 }
1081
1082 /* Move softirq callbacks to the pending list */
1083 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1084 __remove_hrtimer(timer, base,
1085 HRTIMER_STATE_PENDING, 0);
1086 list_add_tail(&timer->cb_entry,
1087 &base->cpu_base->cb_pending);
1088 raise = 1;
1089 continue;
1090 }
1091
1092 __remove_hrtimer(timer, base,
1093 HRTIMER_STATE_CALLBACK, 0);
82f67cd9 1094 timer_stats_account_hrtimer(timer);
54cdfdb4 1095
2d44ae4d
PZ
1096 fn = timer->function;
1097 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1098 /*
1099 * Used for scheduler timers, avoid lock
1100 * inversion with rq->lock and tasklist_lock.
1101 *
1102 * These timers are required to deal with
1103 * enqueue expiry themselves and are not
1104 * allowed to migrate.
1105 */
1106 spin_unlock(&cpu_base->lock);
1107 restart = fn(timer);
1108 spin_lock(&cpu_base->lock);
1109 } else
1110 restart = fn(timer);
1111
54cdfdb4
TG
1112 /*
1113 * Note: We clear the CALLBACK bit after
1114 * enqueue_hrtimer to avoid reprogramming of
1115 * the event hardware. This happens at the end
1116 * of this function anyway.
1117 */
2d44ae4d 1118 if (restart != HRTIMER_NORESTART) {
54cdfdb4
TG
1119 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1120 enqueue_hrtimer(timer, base, 0);
1121 }
1122 timer->state &= ~HRTIMER_STATE_CALLBACK;
1123 }
1124 spin_unlock(&cpu_base->lock);
1125 base++;
1126 }
1127
1128 cpu_base->expires_next = expires_next;
1129
1130 /* Reprogramming necessary ? */
1131 if (expires_next.tv64 != KTIME_MAX) {
1132 if (tick_program_event(expires_next, 0))
1133 goto retry;
1134 }
1135
1136 /* Raise softirq ? */
1137 if (raise)
1138 raise_softirq(HRTIMER_SOFTIRQ);
1139}
1140
1141static void run_hrtimer_softirq(struct softirq_action *h)
1142{
1143 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1144
1145 spin_lock_irq(&cpu_base->lock);
1146
1147 while (!list_empty(&cpu_base->cb_pending)) {
1148 enum hrtimer_restart (*fn)(struct hrtimer *);
1149 struct hrtimer *timer;
1150 int restart;
1151
1152 timer = list_entry(cpu_base->cb_pending.next,
1153 struct hrtimer, cb_entry);
1154
82f67cd9
IM
1155 timer_stats_account_hrtimer(timer);
1156
54cdfdb4
TG
1157 fn = timer->function;
1158 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1159 spin_unlock_irq(&cpu_base->lock);
1160
1161 restart = fn(timer);
1162
1163 spin_lock_irq(&cpu_base->lock);
1164
1165 timer->state &= ~HRTIMER_STATE_CALLBACK;
1166 if (restart == HRTIMER_RESTART) {
1167 BUG_ON(hrtimer_active(timer));
1168 /*
1169 * Enqueue the timer, allow reprogramming of the event
1170 * device
1171 */
1172 enqueue_hrtimer(timer, timer->base, 1);
1173 } else if (hrtimer_active(timer)) {
1174 /*
1175 * If the timer was rearmed on another CPU, reprogram
1176 * the event device.
1177 */
1178 if (timer->base->first == &timer->node)
1179 hrtimer_reprogram(timer, timer->base);
1180 }
1181 }
1182 spin_unlock_irq(&cpu_base->lock);
1183}
1184
1185#endif /* CONFIG_HIGH_RES_TIMERS */
1186
c0a31329
TG
1187/*
1188 * Expire the per base hrtimer-queue:
1189 */
3c8aa39d
TG
1190static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1191 int index)
c0a31329 1192{
288867ec 1193 struct rb_node *node;
3c8aa39d 1194 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
c0a31329 1195
3055adda
DS
1196 if (!base->first)
1197 return;
1198
92127c7a
TG
1199 if (base->get_softirq_time)
1200 base->softirq_time = base->get_softirq_time();
1201
3c8aa39d 1202 spin_lock_irq(&cpu_base->lock);
c0a31329 1203
288867ec 1204 while ((node = base->first)) {
c0a31329 1205 struct hrtimer *timer;
c9cb2e3d 1206 enum hrtimer_restart (*fn)(struct hrtimer *);
c0a31329 1207 int restart;
c0a31329 1208
288867ec 1209 timer = rb_entry(node, struct hrtimer, node);
92127c7a 1210 if (base->softirq_time.tv64 <= timer->expires.tv64)
c0a31329
TG
1211 break;
1212
f8953856
TG
1213#ifdef CONFIG_HIGH_RES_TIMERS
1214 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1215#endif
82f67cd9
IM
1216 timer_stats_account_hrtimer(timer);
1217
c0a31329 1218 fn = timer->function;
54cdfdb4 1219 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
3c8aa39d 1220 spin_unlock_irq(&cpu_base->lock);
c0a31329 1221
05cfb614 1222 restart = fn(timer);
c0a31329 1223
3c8aa39d 1224 spin_lock_irq(&cpu_base->lock);
c0a31329 1225
303e967f 1226 timer->state &= ~HRTIMER_STATE_CALLBACK;
b75f7a51
RZ
1227 if (restart != HRTIMER_NORESTART) {
1228 BUG_ON(hrtimer_active(timer));
54cdfdb4 1229 enqueue_hrtimer(timer, base, 0);
b75f7a51 1230 }
c0a31329 1231 }
3c8aa39d 1232 spin_unlock_irq(&cpu_base->lock);
c0a31329
TG
1233}
1234
1235/*
1236 * Called from timer softirq every jiffy, expire hrtimers:
54cdfdb4
TG
1237 *
1238 * For HRT its the fall back code to run the softirq in the timer
1239 * softirq context in case the hrtimer initialization failed or has
1240 * not been done yet.
c0a31329
TG
1241 */
1242void hrtimer_run_queues(void)
1243{
3c8aa39d 1244 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
c0a31329
TG
1245 int i;
1246
54cdfdb4
TG
1247 if (hrtimer_hres_active())
1248 return;
1249
79bf2bb3
TG
1250 /*
1251 * This _is_ ugly: We have to check in the softirq context,
1252 * whether we can switch to highres and / or nohz mode. The
1253 * clocksource switch happens in the timer interrupt with
1254 * xtime_lock held. Notification from there only sets the
1255 * check bit in the tick_oneshot code, otherwise we might
1256 * deadlock vs. xtime_lock.
1257 */
54cdfdb4 1258 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
f8953856
TG
1259 if (hrtimer_switch_to_hres())
1260 return;
79bf2bb3 1261
3c8aa39d 1262 hrtimer_get_softirq_time(cpu_base);
92127c7a 1263
3c8aa39d
TG
1264 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1265 run_hrtimer_queue(cpu_base, i);
c0a31329
TG
1266}
1267
10c94ec1
TG
1268/*
1269 * Sleep related functions:
1270 */
c9cb2e3d 1271static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1272{
1273 struct hrtimer_sleeper *t =
1274 container_of(timer, struct hrtimer_sleeper, timer);
1275 struct task_struct *task = t->task;
1276
1277 t->task = NULL;
1278 if (task)
1279 wake_up_process(task);
1280
1281 return HRTIMER_NORESTART;
1282}
1283
36c8b586 1284void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1285{
1286 sl->timer.function = hrtimer_wakeup;
1287 sl->task = task;
54cdfdb4
TG
1288#ifdef CONFIG_HIGH_RES_TIMERS
1289 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1290#endif
00362e33
TG
1291}
1292
669d7868 1293static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1294{
669d7868 1295 hrtimer_init_sleeper(t, current);
10c94ec1 1296
432569bb
RZ
1297 do {
1298 set_current_state(TASK_INTERRUPTIBLE);
1299 hrtimer_start(&t->timer, t->timer.expires, mode);
1300
54cdfdb4
TG
1301 if (likely(t->task))
1302 schedule();
432569bb 1303
669d7868 1304 hrtimer_cancel(&t->timer);
c9cb2e3d 1305 mode = HRTIMER_MODE_ABS;
669d7868
TG
1306
1307 } while (t->task && !signal_pending(current));
432569bb 1308
669d7868 1309 return t->task == NULL;
10c94ec1
TG
1310}
1311
1711ef38 1312long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1313{
669d7868 1314 struct hrtimer_sleeper t;
04c22714 1315 struct timespec *rmtp;
432569bb 1316 ktime_t time;
10c94ec1
TG
1317
1318 restart->fn = do_no_restart_syscall;
1319
c9cb2e3d 1320 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1711ef38 1321 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
10c94ec1 1322
c9cb2e3d 1323 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
10c94ec1
TG
1324 return 0;
1325
04c22714 1326 rmtp = (struct timespec *)restart->arg1;
432569bb
RZ
1327 if (rmtp) {
1328 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1329 if (time.tv64 <= 0)
1330 return 0;
04c22714 1331 *rmtp = ktime_to_timespec(time);
432569bb 1332 }
10c94ec1 1333
1711ef38 1334 restart->fn = hrtimer_nanosleep_restart;
10c94ec1
TG
1335
1336 /* The other values in restart are already filled in */
1337 return -ERESTART_RESTARTBLOCK;
1338}
1339
04c22714 1340long hrtimer_nanosleep(struct timespec *rqtp, struct timespec *rmtp,
10c94ec1
TG
1341 const enum hrtimer_mode mode, const clockid_t clockid)
1342{
1343 struct restart_block *restart;
669d7868 1344 struct hrtimer_sleeper t;
10c94ec1
TG
1345 ktime_t rem;
1346
432569bb
RZ
1347 hrtimer_init(&t.timer, clockid, mode);
1348 t.timer.expires = timespec_to_ktime(*rqtp);
1349 if (do_nanosleep(&t, mode))
10c94ec1
TG
1350 return 0;
1351
7978672c 1352 /* Absolute timers do not update the rmtp value and restart: */
c9cb2e3d 1353 if (mode == HRTIMER_MODE_ABS)
10c94ec1
TG
1354 return -ERESTARTNOHAND;
1355
432569bb
RZ
1356 if (rmtp) {
1357 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1358 if (rem.tv64 <= 0)
1359 return 0;
04c22714 1360 *rmtp = ktime_to_timespec(rem);
432569bb 1361 }
10c94ec1
TG
1362
1363 restart = &current_thread_info()->restart_block;
1711ef38
TA
1364 restart->fn = hrtimer_nanosleep_restart;
1365 restart->arg0 = (unsigned long) t.timer.base->index;
1366 restart->arg1 = (unsigned long) rmtp;
1367 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1368 restart->arg3 = t.timer.expires.tv64 >> 32;
10c94ec1
TG
1369
1370 return -ERESTART_RESTARTBLOCK;
1371}
1372
6ba1b912
TG
1373asmlinkage long
1374sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1375{
04c22714
AB
1376 struct timespec tu, rmt;
1377 int ret;
6ba1b912
TG
1378
1379 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1380 return -EFAULT;
1381
1382 if (!timespec_valid(&tu))
1383 return -EINVAL;
1384
04c22714
AB
1385 ret = hrtimer_nanosleep(&tu, rmtp ? &rmt : NULL, HRTIMER_MODE_REL,
1386 CLOCK_MONOTONIC);
1387
1388 if (ret && rmtp) {
1389 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1390 return -EFAULT;
1391 }
1392
1393 return ret;
6ba1b912
TG
1394}
1395
c0a31329
TG
1396/*
1397 * Functions related to boot-time initialization:
1398 */
0ec160dd 1399static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1400{
3c8aa39d 1401 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1402 int i;
1403
3c8aa39d
TG
1404 spin_lock_init(&cpu_base->lock);
1405 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1406
1407 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1408 cpu_base->clock_base[i].cpu_base = cpu_base;
1409
54cdfdb4 1410 hrtimer_init_hres(cpu_base);
c0a31329
TG
1411}
1412
1413#ifdef CONFIG_HOTPLUG_CPU
1414
3c8aa39d
TG
1415static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1416 struct hrtimer_clock_base *new_base)
c0a31329
TG
1417{
1418 struct hrtimer *timer;
1419 struct rb_node *node;
1420
1421 while ((node = rb_first(&old_base->active))) {
1422 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4
TG
1423 BUG_ON(hrtimer_callback_running(timer));
1424 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1425 timer->base = new_base;
54cdfdb4
TG
1426 /*
1427 * Enqueue the timer. Allow reprogramming of the event device
1428 */
1429 enqueue_hrtimer(timer, new_base, 1);
c0a31329
TG
1430 }
1431}
1432
1433static void migrate_hrtimers(int cpu)
1434{
3c8aa39d 1435 struct hrtimer_cpu_base *old_base, *new_base;
c0a31329
TG
1436 int i;
1437
1438 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1439 old_base = &per_cpu(hrtimer_bases, cpu);
1440 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1441
54cdfdb4
TG
1442 tick_cancel_sched_timer(cpu);
1443
c0a31329 1444 local_irq_disable();
e81ce1f7
HC
1445 double_spin_lock(&new_base->lock, &old_base->lock,
1446 smp_processor_id() < cpu);
c0a31329 1447
3c8aa39d 1448 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d
TG
1449 migrate_hrtimer_list(&old_base->clock_base[i],
1450 &new_base->clock_base[i]);
c0a31329
TG
1451 }
1452
e81ce1f7
HC
1453 double_spin_unlock(&new_base->lock, &old_base->lock,
1454 smp_processor_id() < cpu);
c0a31329
TG
1455 local_irq_enable();
1456 put_cpu_var(hrtimer_bases);
1457}
1458#endif /* CONFIG_HOTPLUG_CPU */
1459
8c78f307 1460static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1461 unsigned long action, void *hcpu)
1462{
7713a7d1 1463 unsigned int cpu = (long)hcpu;
c0a31329
TG
1464
1465 switch (action) {
1466
1467 case CPU_UP_PREPARE:
8bb78442 1468 case CPU_UP_PREPARE_FROZEN:
c0a31329
TG
1469 init_hrtimers_cpu(cpu);
1470 break;
1471
1472#ifdef CONFIG_HOTPLUG_CPU
1473 case CPU_DEAD:
8bb78442 1474 case CPU_DEAD_FROZEN:
d316c57f 1475 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1476 migrate_hrtimers(cpu);
1477 break;
1478#endif
1479
1480 default:
1481 break;
1482 }
1483
1484 return NOTIFY_OK;
1485}
1486
8c78f307 1487static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1488 .notifier_call = hrtimer_cpu_notify,
1489};
1490
1491void __init hrtimers_init(void)
1492{
1493 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1494 (void *)(long)smp_processor_id());
1495 register_cpu_notifier(&hrtimers_nb);
54cdfdb4
TG
1496#ifdef CONFIG_HIGH_RES_TIMERS
1497 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1498#endif
c0a31329
TG
1499}
1500