Linux 3.18-rc1
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
4e857c58 270 smp_mb__after_atomic();
b0c29f79
DB
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
4e857c58 283 smp_mb__after_atomic();
11d4616b
LT
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b 345 break;
76835b0e
CM
346 default:
347 smp_mb(); /* explicit MB (B) */
38d47c1b
PZ
348 }
349}
350
351/*
352 * Drop a reference to the resource addressed by a key.
353 * The hash bucket spinlock must not be held.
354 */
355static void drop_futex_key_refs(union futex_key *key)
356{
90621c40
DH
357 if (!key->both.ptr) {
358 /* If we're here then we tried to put a key we failed to get */
359 WARN_ON_ONCE(1);
38d47c1b 360 return;
90621c40 361 }
38d47c1b
PZ
362
363 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
364 case FUT_OFF_INODE:
365 iput(key->shared.inode);
366 break;
367 case FUT_OFF_MMSHARED:
368 mmdrop(key->private.mm);
369 break;
370 }
371}
372
34f01cc1 373/**
d96ee56c
DH
374 * get_futex_key() - Get parameters which are the keys for a futex
375 * @uaddr: virtual address of the futex
376 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
377 * @key: address where result is stored.
9ea71503
SB
378 * @rw: mapping needs to be read/write (values: VERIFY_READ,
379 * VERIFY_WRITE)
34f01cc1 380 *
6c23cbbd
RD
381 * Return: a negative error code or 0
382 *
34f01cc1 383 * The key words are stored in *key on success.
1da177e4 384 *
6131ffaa 385 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
386 * offset_within_page). For private mappings, it's (uaddr, current->mm).
387 * We can usually work out the index without swapping in the page.
388 *
b2d0994b 389 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 390 */
64d1304a 391static int
9ea71503 392get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 393{
e2970f2f 394 unsigned long address = (unsigned long)uaddr;
1da177e4 395 struct mm_struct *mm = current->mm;
a5b338f2 396 struct page *page, *page_head;
9ea71503 397 int err, ro = 0;
1da177e4
LT
398
399 /*
400 * The futex address must be "naturally" aligned.
401 */
e2970f2f 402 key->both.offset = address % PAGE_SIZE;
34f01cc1 403 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 404 return -EINVAL;
e2970f2f 405 address -= key->both.offset;
1da177e4 406
5cdec2d8
LT
407 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
408 return -EFAULT;
409
34f01cc1
ED
410 /*
411 * PROCESS_PRIVATE futexes are fast.
412 * As the mm cannot disappear under us and the 'key' only needs
413 * virtual address, we dont even have to find the underlying vma.
414 * Note : We do have to check 'uaddr' is a valid user address,
415 * but access_ok() should be faster than find_vma()
416 */
417 if (!fshared) {
34f01cc1
ED
418 key->private.mm = mm;
419 key->private.address = address;
b0c29f79 420 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
421 return 0;
422 }
1da177e4 423
38d47c1b 424again:
7485d0d3 425 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
426 /*
427 * If write access is not required (eg. FUTEX_WAIT), try
428 * and get read-only access.
429 */
430 if (err == -EFAULT && rw == VERIFY_READ) {
431 err = get_user_pages_fast(address, 1, 0, &page);
432 ro = 1;
433 }
38d47c1b
PZ
434 if (err < 0)
435 return err;
9ea71503
SB
436 else
437 err = 0;
38d47c1b 438
a5b338f2
AA
439#ifdef CONFIG_TRANSPARENT_HUGEPAGE
440 page_head = page;
441 if (unlikely(PageTail(page))) {
38d47c1b 442 put_page(page);
a5b338f2
AA
443 /* serialize against __split_huge_page_splitting() */
444 local_irq_disable();
f12d5bfc 445 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
446 page_head = compound_head(page);
447 /*
448 * page_head is valid pointer but we must pin
449 * it before taking the PG_lock and/or
450 * PG_compound_lock. The moment we re-enable
451 * irqs __split_huge_page_splitting() can
452 * return and the head page can be freed from
453 * under us. We can't take the PG_lock and/or
454 * PG_compound_lock on a page that could be
455 * freed from under us.
456 */
457 if (page != page_head) {
458 get_page(page_head);
459 put_page(page);
460 }
461 local_irq_enable();
462 } else {
463 local_irq_enable();
464 goto again;
465 }
466 }
467#else
468 page_head = compound_head(page);
469 if (page != page_head) {
470 get_page(page_head);
471 put_page(page);
472 }
473#endif
474
475 lock_page(page_head);
e6780f72
HD
476
477 /*
478 * If page_head->mapping is NULL, then it cannot be a PageAnon
479 * page; but it might be the ZERO_PAGE or in the gate area or
480 * in a special mapping (all cases which we are happy to fail);
481 * or it may have been a good file page when get_user_pages_fast
482 * found it, but truncated or holepunched or subjected to
483 * invalidate_complete_page2 before we got the page lock (also
484 * cases which we are happy to fail). And we hold a reference,
485 * so refcount care in invalidate_complete_page's remove_mapping
486 * prevents drop_caches from setting mapping to NULL beneath us.
487 *
488 * The case we do have to guard against is when memory pressure made
489 * shmem_writepage move it from filecache to swapcache beneath us:
490 * an unlikely race, but we do need to retry for page_head->mapping.
491 */
a5b338f2 492 if (!page_head->mapping) {
e6780f72 493 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
494 unlock_page(page_head);
495 put_page(page_head);
e6780f72
HD
496 if (shmem_swizzled)
497 goto again;
498 return -EFAULT;
38d47c1b 499 }
1da177e4
LT
500
501 /*
502 * Private mappings are handled in a simple way.
503 *
504 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
505 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 506 * the object not the particular process.
1da177e4 507 */
a5b338f2 508 if (PageAnon(page_head)) {
9ea71503
SB
509 /*
510 * A RO anonymous page will never change and thus doesn't make
511 * sense for futex operations.
512 */
513 if (ro) {
514 err = -EFAULT;
515 goto out;
516 }
517
38d47c1b 518 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 519 key->private.mm = mm;
e2970f2f 520 key->private.address = address;
38d47c1b
PZ
521 } else {
522 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 523 key->shared.inode = page_head->mapping->host;
13d60f4b 524 key->shared.pgoff = basepage_index(page);
1da177e4
LT
525 }
526
b0c29f79 527 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 528
9ea71503 529out:
a5b338f2
AA
530 unlock_page(page_head);
531 put_page(page_head);
9ea71503 532 return err;
1da177e4
LT
533}
534
ae791a2d 535static inline void put_futex_key(union futex_key *key)
1da177e4 536{
38d47c1b 537 drop_futex_key_refs(key);
1da177e4
LT
538}
539
d96ee56c
DH
540/**
541 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
542 * @uaddr: pointer to faulting user space address
543 *
544 * Slow path to fixup the fault we just took in the atomic write
545 * access to @uaddr.
546 *
fb62db2b 547 * We have no generic implementation of a non-destructive write to the
d0725992
TG
548 * user address. We know that we faulted in the atomic pagefault
549 * disabled section so we can as well avoid the #PF overhead by
550 * calling get_user_pages() right away.
551 */
552static int fault_in_user_writeable(u32 __user *uaddr)
553{
722d0172
AK
554 struct mm_struct *mm = current->mm;
555 int ret;
556
557 down_read(&mm->mmap_sem);
2efaca92
BH
558 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
559 FAULT_FLAG_WRITE);
722d0172
AK
560 up_read(&mm->mmap_sem);
561
d0725992
TG
562 return ret < 0 ? ret : 0;
563}
564
4b1c486b
DH
565/**
566 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
567 * @hb: the hash bucket the futex_q's reside in
568 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
569 *
570 * Must be called with the hb lock held.
571 */
572static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
573 union futex_key *key)
574{
575 struct futex_q *this;
576
577 plist_for_each_entry(this, &hb->chain, list) {
578 if (match_futex(&this->key, key))
579 return this;
580 }
581 return NULL;
582}
583
37a9d912
ML
584static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
585 u32 uval, u32 newval)
36cf3b5c 586{
37a9d912 587 int ret;
36cf3b5c
TG
588
589 pagefault_disable();
37a9d912 590 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
591 pagefault_enable();
592
37a9d912 593 return ret;
36cf3b5c
TG
594}
595
596static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
597{
598 int ret;
599
a866374a 600 pagefault_disable();
e2970f2f 601 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 602 pagefault_enable();
1da177e4
LT
603
604 return ret ? -EFAULT : 0;
605}
606
c87e2837
IM
607
608/*
609 * PI code:
610 */
611static int refill_pi_state_cache(void)
612{
613 struct futex_pi_state *pi_state;
614
615 if (likely(current->pi_state_cache))
616 return 0;
617
4668edc3 618 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
619
620 if (!pi_state)
621 return -ENOMEM;
622
c87e2837
IM
623 INIT_LIST_HEAD(&pi_state->list);
624 /* pi_mutex gets initialized later */
625 pi_state->owner = NULL;
626 atomic_set(&pi_state->refcount, 1);
38d47c1b 627 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
628
629 current->pi_state_cache = pi_state;
630
631 return 0;
632}
633
634static struct futex_pi_state * alloc_pi_state(void)
635{
636 struct futex_pi_state *pi_state = current->pi_state_cache;
637
638 WARN_ON(!pi_state);
639 current->pi_state_cache = NULL;
640
641 return pi_state;
642}
643
644static void free_pi_state(struct futex_pi_state *pi_state)
645{
646 if (!atomic_dec_and_test(&pi_state->refcount))
647 return;
648
649 /*
650 * If pi_state->owner is NULL, the owner is most probably dying
651 * and has cleaned up the pi_state already
652 */
653 if (pi_state->owner) {
1d615482 654 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 655 list_del_init(&pi_state->list);
1d615482 656 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
657
658 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
659 }
660
661 if (current->pi_state_cache)
662 kfree(pi_state);
663 else {
664 /*
665 * pi_state->list is already empty.
666 * clear pi_state->owner.
667 * refcount is at 0 - put it back to 1.
668 */
669 pi_state->owner = NULL;
670 atomic_set(&pi_state->refcount, 1);
671 current->pi_state_cache = pi_state;
672 }
673}
674
675/*
676 * Look up the task based on what TID userspace gave us.
677 * We dont trust it.
678 */
679static struct task_struct * futex_find_get_task(pid_t pid)
680{
681 struct task_struct *p;
682
d359b549 683 rcu_read_lock();
228ebcbe 684 p = find_task_by_vpid(pid);
7a0ea09a
MH
685 if (p)
686 get_task_struct(p);
a06381fe 687
d359b549 688 rcu_read_unlock();
c87e2837
IM
689
690 return p;
691}
692
693/*
694 * This task is holding PI mutexes at exit time => bad.
695 * Kernel cleans up PI-state, but userspace is likely hosed.
696 * (Robust-futex cleanup is separate and might save the day for userspace.)
697 */
698void exit_pi_state_list(struct task_struct *curr)
699{
c87e2837
IM
700 struct list_head *next, *head = &curr->pi_state_list;
701 struct futex_pi_state *pi_state;
627371d7 702 struct futex_hash_bucket *hb;
38d47c1b 703 union futex_key key = FUTEX_KEY_INIT;
c87e2837 704
a0c1e907
TG
705 if (!futex_cmpxchg_enabled)
706 return;
c87e2837
IM
707 /*
708 * We are a ZOMBIE and nobody can enqueue itself on
709 * pi_state_list anymore, but we have to be careful
627371d7 710 * versus waiters unqueueing themselves:
c87e2837 711 */
1d615482 712 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
713 while (!list_empty(head)) {
714
715 next = head->next;
716 pi_state = list_entry(next, struct futex_pi_state, list);
717 key = pi_state->key;
627371d7 718 hb = hash_futex(&key);
1d615482 719 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 720
c87e2837
IM
721 spin_lock(&hb->lock);
722
1d615482 723 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
724 /*
725 * We dropped the pi-lock, so re-check whether this
726 * task still owns the PI-state:
727 */
c87e2837
IM
728 if (head->next != next) {
729 spin_unlock(&hb->lock);
730 continue;
731 }
732
c87e2837 733 WARN_ON(pi_state->owner != curr);
627371d7
IM
734 WARN_ON(list_empty(&pi_state->list));
735 list_del_init(&pi_state->list);
c87e2837 736 pi_state->owner = NULL;
1d615482 737 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
738
739 rt_mutex_unlock(&pi_state->pi_mutex);
740
741 spin_unlock(&hb->lock);
742
1d615482 743 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 744 }
1d615482 745 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
746}
747
54a21788
TG
748/*
749 * We need to check the following states:
750 *
751 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
752 *
753 * [1] NULL | --- | --- | 0 | 0/1 | Valid
754 * [2] NULL | --- | --- | >0 | 0/1 | Valid
755 *
756 * [3] Found | NULL | -- | Any | 0/1 | Invalid
757 *
758 * [4] Found | Found | NULL | 0 | 1 | Valid
759 * [5] Found | Found | NULL | >0 | 1 | Invalid
760 *
761 * [6] Found | Found | task | 0 | 1 | Valid
762 *
763 * [7] Found | Found | NULL | Any | 0 | Invalid
764 *
765 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
766 * [9] Found | Found | task | 0 | 0 | Invalid
767 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
768 *
769 * [1] Indicates that the kernel can acquire the futex atomically. We
770 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
771 *
772 * [2] Valid, if TID does not belong to a kernel thread. If no matching
773 * thread is found then it indicates that the owner TID has died.
774 *
775 * [3] Invalid. The waiter is queued on a non PI futex
776 *
777 * [4] Valid state after exit_robust_list(), which sets the user space
778 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
779 *
780 * [5] The user space value got manipulated between exit_robust_list()
781 * and exit_pi_state_list()
782 *
783 * [6] Valid state after exit_pi_state_list() which sets the new owner in
784 * the pi_state but cannot access the user space value.
785 *
786 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
787 *
788 * [8] Owner and user space value match
789 *
790 * [9] There is no transient state which sets the user space TID to 0
791 * except exit_robust_list(), but this is indicated by the
792 * FUTEX_OWNER_DIED bit. See [4]
793 *
794 * [10] There is no transient state which leaves owner and user space
795 * TID out of sync.
796 */
e60cbc5c
TG
797
798/*
799 * Validate that the existing waiter has a pi_state and sanity check
800 * the pi_state against the user space value. If correct, attach to
801 * it.
802 */
803static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
804 struct futex_pi_state **ps)
c87e2837 805{
778e9a9c 806 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 807
e60cbc5c
TG
808 /*
809 * Userspace might have messed up non-PI and PI futexes [3]
810 */
811 if (unlikely(!pi_state))
812 return -EINVAL;
06a9ec29 813
e60cbc5c 814 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 815
e60cbc5c
TG
816 /*
817 * Handle the owner died case:
818 */
819 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 820 /*
e60cbc5c
TG
821 * exit_pi_state_list sets owner to NULL and wakes the
822 * topmost waiter. The task which acquires the
823 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 824 */
e60cbc5c 825 if (!pi_state->owner) {
59647b6a 826 /*
e60cbc5c
TG
827 * No pi state owner, but the user space TID
828 * is not 0. Inconsistent state. [5]
59647b6a 829 */
e60cbc5c
TG
830 if (pid)
831 return -EINVAL;
bd1dbcc6 832 /*
e60cbc5c 833 * Take a ref on the state and return success. [4]
866293ee 834 */
e60cbc5c 835 goto out_state;
c87e2837 836 }
bd1dbcc6
TG
837
838 /*
e60cbc5c
TG
839 * If TID is 0, then either the dying owner has not
840 * yet executed exit_pi_state_list() or some waiter
841 * acquired the rtmutex in the pi state, but did not
842 * yet fixup the TID in user space.
843 *
844 * Take a ref on the state and return success. [6]
845 */
846 if (!pid)
847 goto out_state;
848 } else {
849 /*
850 * If the owner died bit is not set, then the pi_state
851 * must have an owner. [7]
bd1dbcc6 852 */
e60cbc5c 853 if (!pi_state->owner)
bd1dbcc6 854 return -EINVAL;
c87e2837
IM
855 }
856
e60cbc5c
TG
857 /*
858 * Bail out if user space manipulated the futex value. If pi
859 * state exists then the owner TID must be the same as the
860 * user space TID. [9/10]
861 */
862 if (pid != task_pid_vnr(pi_state->owner))
863 return -EINVAL;
864out_state:
865 atomic_inc(&pi_state->refcount);
866 *ps = pi_state;
867 return 0;
868}
869
04e1b2e5
TG
870/*
871 * Lookup the task for the TID provided from user space and attach to
872 * it after doing proper sanity checks.
873 */
874static int attach_to_pi_owner(u32 uval, union futex_key *key,
875 struct futex_pi_state **ps)
e60cbc5c 876{
e60cbc5c 877 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
878 struct futex_pi_state *pi_state;
879 struct task_struct *p;
e60cbc5c 880
c87e2837 881 /*
e3f2ddea 882 * We are the first waiter - try to look up the real owner and attach
54a21788 883 * the new pi_state to it, but bail out when TID = 0 [1]
c87e2837 884 */
778e9a9c 885 if (!pid)
e3f2ddea 886 return -ESRCH;
c87e2837 887 p = futex_find_get_task(pid);
7a0ea09a
MH
888 if (!p)
889 return -ESRCH;
778e9a9c 890
f0d71b3d
TG
891 if (!p->mm) {
892 put_task_struct(p);
893 return -EPERM;
894 }
895
778e9a9c
AK
896 /*
897 * We need to look at the task state flags to figure out,
898 * whether the task is exiting. To protect against the do_exit
899 * change of the task flags, we do this protected by
900 * p->pi_lock:
901 */
1d615482 902 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
903 if (unlikely(p->flags & PF_EXITING)) {
904 /*
905 * The task is on the way out. When PF_EXITPIDONE is
906 * set, we know that the task has finished the
907 * cleanup:
908 */
909 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
910
1d615482 911 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
912 put_task_struct(p);
913 return ret;
914 }
c87e2837 915
54a21788
TG
916 /*
917 * No existing pi state. First waiter. [2]
918 */
c87e2837
IM
919 pi_state = alloc_pi_state();
920
921 /*
04e1b2e5 922 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
923 * the owner of it:
924 */
925 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
926
927 /* Store the key for possible exit cleanups: */
d0aa7a70 928 pi_state->key = *key;
c87e2837 929
627371d7 930 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
931 list_add(&pi_state->list, &p->pi_state_list);
932 pi_state->owner = p;
1d615482 933 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
934
935 put_task_struct(p);
936
d0aa7a70 937 *ps = pi_state;
c87e2837
IM
938
939 return 0;
940}
941
04e1b2e5
TG
942static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
943 union futex_key *key, struct futex_pi_state **ps)
944{
945 struct futex_q *match = futex_top_waiter(hb, key);
946
947 /*
948 * If there is a waiter on that futex, validate it and
949 * attach to the pi_state when the validation succeeds.
950 */
951 if (match)
952 return attach_to_pi_state(uval, match->pi_state, ps);
953
954 /*
955 * We are the first waiter - try to look up the owner based on
956 * @uval and attach to it.
957 */
958 return attach_to_pi_owner(uval, key, ps);
959}
960
af54d6a1
TG
961static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
962{
963 u32 uninitialized_var(curval);
964
965 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
966 return -EFAULT;
967
968 /*If user space value changed, let the caller retry */
969 return curval != uval ? -EAGAIN : 0;
970}
971
1a52084d 972/**
d96ee56c 973 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
974 * @uaddr: the pi futex user address
975 * @hb: the pi futex hash bucket
976 * @key: the futex key associated with uaddr and hb
977 * @ps: the pi_state pointer where we store the result of the
978 * lookup
979 * @task: the task to perform the atomic lock work for. This will
980 * be "current" except in the case of requeue pi.
981 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 982 *
6c23cbbd
RD
983 * Return:
984 * 0 - ready to wait;
985 * 1 - acquired the lock;
1a52084d
DH
986 * <0 - error
987 *
988 * The hb->lock and futex_key refs shall be held by the caller.
989 */
990static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
991 union futex_key *key,
992 struct futex_pi_state **ps,
bab5bc9e 993 struct task_struct *task, int set_waiters)
1a52084d 994{
af54d6a1
TG
995 u32 uval, newval, vpid = task_pid_vnr(task);
996 struct futex_q *match;
997 int ret;
1a52084d
DH
998
999 /*
af54d6a1
TG
1000 * Read the user space value first so we can validate a few
1001 * things before proceeding further.
1a52084d 1002 */
af54d6a1 1003 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1004 return -EFAULT;
1005
1006 /*
1007 * Detect deadlocks.
1008 */
af54d6a1 1009 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1010 return -EDEADLK;
1011
1012 /*
af54d6a1
TG
1013 * Lookup existing state first. If it exists, try to attach to
1014 * its pi_state.
1a52084d 1015 */
af54d6a1
TG
1016 match = futex_top_waiter(hb, key);
1017 if (match)
1018 return attach_to_pi_state(uval, match->pi_state, ps);
1a52084d
DH
1019
1020 /*
af54d6a1
TG
1021 * No waiter and user TID is 0. We are here because the
1022 * waiters or the owner died bit is set or called from
1023 * requeue_cmp_pi or for whatever reason something took the
1024 * syscall.
1a52084d 1025 */
af54d6a1 1026 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1027 /*
af54d6a1
TG
1028 * We take over the futex. No other waiters and the user space
1029 * TID is 0. We preserve the owner died bit.
59fa6245 1030 */
af54d6a1
TG
1031 newval = uval & FUTEX_OWNER_DIED;
1032 newval |= vpid;
1a52084d 1033
af54d6a1
TG
1034 /* The futex requeue_pi code can enforce the waiters bit */
1035 if (set_waiters)
1036 newval |= FUTEX_WAITERS;
1037
1038 ret = lock_pi_update_atomic(uaddr, uval, newval);
1039 /* If the take over worked, return 1 */
1040 return ret < 0 ? ret : 1;
1041 }
1a52084d
DH
1042
1043 /*
af54d6a1
TG
1044 * First waiter. Set the waiters bit before attaching ourself to
1045 * the owner. If owner tries to unlock, it will be forced into
1046 * the kernel and blocked on hb->lock.
1a52084d 1047 */
af54d6a1
TG
1048 newval = uval | FUTEX_WAITERS;
1049 ret = lock_pi_update_atomic(uaddr, uval, newval);
1050 if (ret)
1051 return ret;
1a52084d 1052 /*
af54d6a1
TG
1053 * If the update of the user space value succeeded, we try to
1054 * attach to the owner. If that fails, no harm done, we only
1055 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1056 */
af54d6a1 1057 return attach_to_pi_owner(uval, key, ps);
1a52084d
DH
1058}
1059
2e12978a
LJ
1060/**
1061 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1062 * @q: The futex_q to unqueue
1063 *
1064 * The q->lock_ptr must not be NULL and must be held by the caller.
1065 */
1066static void __unqueue_futex(struct futex_q *q)
1067{
1068 struct futex_hash_bucket *hb;
1069
29096202
SR
1070 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1071 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1072 return;
1073
1074 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1075 plist_del(&q->list, &hb->chain);
11d4616b 1076 hb_waiters_dec(hb);
2e12978a
LJ
1077}
1078
1da177e4
LT
1079/*
1080 * The hash bucket lock must be held when this is called.
1081 * Afterwards, the futex_q must not be accessed.
1082 */
1083static void wake_futex(struct futex_q *q)
1084{
f1a11e05
TG
1085 struct task_struct *p = q->task;
1086
aa10990e
DH
1087 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1088 return;
1089
1da177e4 1090 /*
f1a11e05 1091 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1092 * a non-futex wake up happens on another CPU then the task
1093 * might exit and p would dereference a non-existing task
f1a11e05
TG
1094 * struct. Prevent this by holding a reference on p across the
1095 * wake up.
1da177e4 1096 */
f1a11e05
TG
1097 get_task_struct(p);
1098
2e12978a 1099 __unqueue_futex(q);
1da177e4 1100 /*
f1a11e05
TG
1101 * The waiting task can free the futex_q as soon as
1102 * q->lock_ptr = NULL is written, without taking any locks. A
1103 * memory barrier is required here to prevent the following
1104 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1105 */
ccdea2f8 1106 smp_wmb();
1da177e4 1107 q->lock_ptr = NULL;
f1a11e05
TG
1108
1109 wake_up_state(p, TASK_NORMAL);
1110 put_task_struct(p);
1da177e4
LT
1111}
1112
c87e2837
IM
1113static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1114{
1115 struct task_struct *new_owner;
1116 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1117 u32 uninitialized_var(curval), newval;
13fbca4c 1118 int ret = 0;
c87e2837
IM
1119
1120 if (!pi_state)
1121 return -EINVAL;
1122
51246bfd
TG
1123 /*
1124 * If current does not own the pi_state then the futex is
1125 * inconsistent and user space fiddled with the futex value.
1126 */
1127 if (pi_state->owner != current)
1128 return -EINVAL;
1129
d209d74d 1130 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1131 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1132
1133 /*
f123c98e
SR
1134 * It is possible that the next waiter (the one that brought
1135 * this owner to the kernel) timed out and is no longer
1136 * waiting on the lock.
c87e2837
IM
1137 */
1138 if (!new_owner)
1139 new_owner = this->task;
1140
1141 /*
13fbca4c
TG
1142 * We pass it to the next owner. The WAITERS bit is always
1143 * kept enabled while there is PI state around. We cleanup the
1144 * owner died bit, because we are the owner.
c87e2837 1145 */
13fbca4c 1146 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1147
13fbca4c
TG
1148 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1149 ret = -EFAULT;
1150 else if (curval != uval)
1151 ret = -EINVAL;
1152 if (ret) {
1153 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1154 return ret;
e3f2ddea 1155 }
c87e2837 1156
1d615482 1157 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1158 WARN_ON(list_empty(&pi_state->list));
1159 list_del_init(&pi_state->list);
1d615482 1160 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1161
1d615482 1162 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1163 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1164 list_add(&pi_state->list, &new_owner->pi_state_list);
1165 pi_state->owner = new_owner;
1d615482 1166 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1167
d209d74d 1168 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1169 rt_mutex_unlock(&pi_state->pi_mutex);
1170
1171 return 0;
1172}
1173
8b8f319f
IM
1174/*
1175 * Express the locking dependencies for lockdep:
1176 */
1177static inline void
1178double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1179{
1180 if (hb1 <= hb2) {
1181 spin_lock(&hb1->lock);
1182 if (hb1 < hb2)
1183 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1184 } else { /* hb1 > hb2 */
1185 spin_lock(&hb2->lock);
1186 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1187 }
1188}
1189
5eb3dc62
DH
1190static inline void
1191double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1192{
f061d351 1193 spin_unlock(&hb1->lock);
88f502fe
IM
1194 if (hb1 != hb2)
1195 spin_unlock(&hb2->lock);
5eb3dc62
DH
1196}
1197
1da177e4 1198/*
b2d0994b 1199 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1200 */
b41277dc
DH
1201static int
1202futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1203{
e2970f2f 1204 struct futex_hash_bucket *hb;
1da177e4 1205 struct futex_q *this, *next;
38d47c1b 1206 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1207 int ret;
1208
cd689985
TG
1209 if (!bitset)
1210 return -EINVAL;
1211
9ea71503 1212 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1213 if (unlikely(ret != 0))
1214 goto out;
1215
e2970f2f 1216 hb = hash_futex(&key);
b0c29f79
DB
1217
1218 /* Make sure we really have tasks to wakeup */
1219 if (!hb_waiters_pending(hb))
1220 goto out_put_key;
1221
e2970f2f 1222 spin_lock(&hb->lock);
1da177e4 1223
0d00c7b2 1224 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1225 if (match_futex (&this->key, &key)) {
52400ba9 1226 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1227 ret = -EINVAL;
1228 break;
1229 }
cd689985
TG
1230
1231 /* Check if one of the bits is set in both bitsets */
1232 if (!(this->bitset & bitset))
1233 continue;
1234
1da177e4
LT
1235 wake_futex(this);
1236 if (++ret >= nr_wake)
1237 break;
1238 }
1239 }
1240
e2970f2f 1241 spin_unlock(&hb->lock);
b0c29f79 1242out_put_key:
ae791a2d 1243 put_futex_key(&key);
42d35d48 1244out:
1da177e4
LT
1245 return ret;
1246}
1247
4732efbe
JJ
1248/*
1249 * Wake up all waiters hashed on the physical page that is mapped
1250 * to this virtual address:
1251 */
e2970f2f 1252static int
b41277dc 1253futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1254 int nr_wake, int nr_wake2, int op)
4732efbe 1255{
38d47c1b 1256 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1257 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1258 struct futex_q *this, *next;
e4dc5b7a 1259 int ret, op_ret;
4732efbe 1260
e4dc5b7a 1261retry:
9ea71503 1262 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1263 if (unlikely(ret != 0))
1264 goto out;
9ea71503 1265 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1266 if (unlikely(ret != 0))
42d35d48 1267 goto out_put_key1;
4732efbe 1268
e2970f2f
IM
1269 hb1 = hash_futex(&key1);
1270 hb2 = hash_futex(&key2);
4732efbe 1271
e4dc5b7a 1272retry_private:
eaaea803 1273 double_lock_hb(hb1, hb2);
e2970f2f 1274 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1275 if (unlikely(op_ret < 0)) {
4732efbe 1276
5eb3dc62 1277 double_unlock_hb(hb1, hb2);
4732efbe 1278
7ee1dd3f 1279#ifndef CONFIG_MMU
e2970f2f
IM
1280 /*
1281 * we don't get EFAULT from MMU faults if we don't have an MMU,
1282 * but we might get them from range checking
1283 */
7ee1dd3f 1284 ret = op_ret;
42d35d48 1285 goto out_put_keys;
7ee1dd3f
DH
1286#endif
1287
796f8d9b
DG
1288 if (unlikely(op_ret != -EFAULT)) {
1289 ret = op_ret;
42d35d48 1290 goto out_put_keys;
796f8d9b
DG
1291 }
1292
d0725992 1293 ret = fault_in_user_writeable(uaddr2);
4732efbe 1294 if (ret)
de87fcc1 1295 goto out_put_keys;
4732efbe 1296
b41277dc 1297 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1298 goto retry_private;
1299
ae791a2d
TG
1300 put_futex_key(&key2);
1301 put_futex_key(&key1);
e4dc5b7a 1302 goto retry;
4732efbe
JJ
1303 }
1304
0d00c7b2 1305 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1306 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1307 if (this->pi_state || this->rt_waiter) {
1308 ret = -EINVAL;
1309 goto out_unlock;
1310 }
4732efbe
JJ
1311 wake_futex(this);
1312 if (++ret >= nr_wake)
1313 break;
1314 }
1315 }
1316
1317 if (op_ret > 0) {
4732efbe 1318 op_ret = 0;
0d00c7b2 1319 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1320 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1321 if (this->pi_state || this->rt_waiter) {
1322 ret = -EINVAL;
1323 goto out_unlock;
1324 }
4732efbe
JJ
1325 wake_futex(this);
1326 if (++op_ret >= nr_wake2)
1327 break;
1328 }
1329 }
1330 ret += op_ret;
1331 }
1332
aa10990e 1333out_unlock:
5eb3dc62 1334 double_unlock_hb(hb1, hb2);
42d35d48 1335out_put_keys:
ae791a2d 1336 put_futex_key(&key2);
42d35d48 1337out_put_key1:
ae791a2d 1338 put_futex_key(&key1);
42d35d48 1339out:
4732efbe
JJ
1340 return ret;
1341}
1342
9121e478
DH
1343/**
1344 * requeue_futex() - Requeue a futex_q from one hb to another
1345 * @q: the futex_q to requeue
1346 * @hb1: the source hash_bucket
1347 * @hb2: the target hash_bucket
1348 * @key2: the new key for the requeued futex_q
1349 */
1350static inline
1351void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1352 struct futex_hash_bucket *hb2, union futex_key *key2)
1353{
1354
1355 /*
1356 * If key1 and key2 hash to the same bucket, no need to
1357 * requeue.
1358 */
1359 if (likely(&hb1->chain != &hb2->chain)) {
1360 plist_del(&q->list, &hb1->chain);
11d4616b 1361 hb_waiters_dec(hb1);
9121e478 1362 plist_add(&q->list, &hb2->chain);
11d4616b 1363 hb_waiters_inc(hb2);
9121e478 1364 q->lock_ptr = &hb2->lock;
9121e478
DH
1365 }
1366 get_futex_key_refs(key2);
1367 q->key = *key2;
1368}
1369
52400ba9
DH
1370/**
1371 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1372 * @q: the futex_q
1373 * @key: the key of the requeue target futex
1374 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1375 *
1376 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1377 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1378 * to the requeue target futex so the waiter can detect the wakeup on the right
1379 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1380 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1381 * to protect access to the pi_state to fixup the owner later. Must be called
1382 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1383 */
1384static inline
beda2c7e
DH
1385void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1386 struct futex_hash_bucket *hb)
52400ba9 1387{
52400ba9
DH
1388 get_futex_key_refs(key);
1389 q->key = *key;
1390
2e12978a 1391 __unqueue_futex(q);
52400ba9
DH
1392
1393 WARN_ON(!q->rt_waiter);
1394 q->rt_waiter = NULL;
1395
beda2c7e 1396 q->lock_ptr = &hb->lock;
beda2c7e 1397
f1a11e05 1398 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1399}
1400
1401/**
1402 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1403 * @pifutex: the user address of the to futex
1404 * @hb1: the from futex hash bucket, must be locked by the caller
1405 * @hb2: the to futex hash bucket, must be locked by the caller
1406 * @key1: the from futex key
1407 * @key2: the to futex key
1408 * @ps: address to store the pi_state pointer
1409 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1410 *
1411 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1412 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1413 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1414 * hb1 and hb2 must be held by the caller.
52400ba9 1415 *
6c23cbbd
RD
1416 * Return:
1417 * 0 - failed to acquire the lock atomically;
866293ee 1418 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1419 * <0 - error
1420 */
1421static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1422 struct futex_hash_bucket *hb1,
1423 struct futex_hash_bucket *hb2,
1424 union futex_key *key1, union futex_key *key2,
bab5bc9e 1425 struct futex_pi_state **ps, int set_waiters)
52400ba9 1426{
bab5bc9e 1427 struct futex_q *top_waiter = NULL;
52400ba9 1428 u32 curval;
866293ee 1429 int ret, vpid;
52400ba9
DH
1430
1431 if (get_futex_value_locked(&curval, pifutex))
1432 return -EFAULT;
1433
bab5bc9e
DH
1434 /*
1435 * Find the top_waiter and determine if there are additional waiters.
1436 * If the caller intends to requeue more than 1 waiter to pifutex,
1437 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1438 * as we have means to handle the possible fault. If not, don't set
1439 * the bit unecessarily as it will force the subsequent unlock to enter
1440 * the kernel.
1441 */
52400ba9
DH
1442 top_waiter = futex_top_waiter(hb1, key1);
1443
1444 /* There are no waiters, nothing for us to do. */
1445 if (!top_waiter)
1446 return 0;
1447
84bc4af5
DH
1448 /* Ensure we requeue to the expected futex. */
1449 if (!match_futex(top_waiter->requeue_pi_key, key2))
1450 return -EINVAL;
1451
52400ba9 1452 /*
bab5bc9e
DH
1453 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1454 * the contended case or if set_waiters is 1. The pi_state is returned
1455 * in ps in contended cases.
52400ba9 1456 */
866293ee 1457 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1458 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1459 set_waiters);
866293ee 1460 if (ret == 1) {
beda2c7e 1461 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1462 return vpid;
1463 }
52400ba9
DH
1464 return ret;
1465}
1466
1467/**
1468 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1469 * @uaddr1: source futex user address
b41277dc 1470 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1471 * @uaddr2: target futex user address
1472 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1473 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1474 * @cmpval: @uaddr1 expected value (or %NULL)
1475 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1476 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1477 *
1478 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1479 * uaddr2 atomically on behalf of the top waiter.
1480 *
6c23cbbd
RD
1481 * Return:
1482 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1483 * <0 - on error
1da177e4 1484 */
b41277dc
DH
1485static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1486 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1487 u32 *cmpval, int requeue_pi)
1da177e4 1488{
38d47c1b 1489 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1490 int drop_count = 0, task_count = 0, ret;
1491 struct futex_pi_state *pi_state = NULL;
e2970f2f 1492 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1493 struct futex_q *this, *next;
52400ba9
DH
1494
1495 if (requeue_pi) {
e9c243a5
TG
1496 /*
1497 * Requeue PI only works on two distinct uaddrs. This
1498 * check is only valid for private futexes. See below.
1499 */
1500 if (uaddr1 == uaddr2)
1501 return -EINVAL;
1502
52400ba9
DH
1503 /*
1504 * requeue_pi requires a pi_state, try to allocate it now
1505 * without any locks in case it fails.
1506 */
1507 if (refill_pi_state_cache())
1508 return -ENOMEM;
1509 /*
1510 * requeue_pi must wake as many tasks as it can, up to nr_wake
1511 * + nr_requeue, since it acquires the rt_mutex prior to
1512 * returning to userspace, so as to not leave the rt_mutex with
1513 * waiters and no owner. However, second and third wake-ups
1514 * cannot be predicted as they involve race conditions with the
1515 * first wake and a fault while looking up the pi_state. Both
1516 * pthread_cond_signal() and pthread_cond_broadcast() should
1517 * use nr_wake=1.
1518 */
1519 if (nr_wake != 1)
1520 return -EINVAL;
1521 }
1da177e4 1522
42d35d48 1523retry:
52400ba9
DH
1524 if (pi_state != NULL) {
1525 /*
1526 * We will have to lookup the pi_state again, so free this one
1527 * to keep the accounting correct.
1528 */
1529 free_pi_state(pi_state);
1530 pi_state = NULL;
1531 }
1532
9ea71503 1533 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1534 if (unlikely(ret != 0))
1535 goto out;
9ea71503
SB
1536 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1537 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1538 if (unlikely(ret != 0))
42d35d48 1539 goto out_put_key1;
1da177e4 1540
e9c243a5
TG
1541 /*
1542 * The check above which compares uaddrs is not sufficient for
1543 * shared futexes. We need to compare the keys:
1544 */
1545 if (requeue_pi && match_futex(&key1, &key2)) {
1546 ret = -EINVAL;
1547 goto out_put_keys;
1548 }
1549
e2970f2f
IM
1550 hb1 = hash_futex(&key1);
1551 hb2 = hash_futex(&key2);
1da177e4 1552
e4dc5b7a 1553retry_private:
69cd9eba 1554 hb_waiters_inc(hb2);
8b8f319f 1555 double_lock_hb(hb1, hb2);
1da177e4 1556
e2970f2f
IM
1557 if (likely(cmpval != NULL)) {
1558 u32 curval;
1da177e4 1559
e2970f2f 1560 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1561
1562 if (unlikely(ret)) {
5eb3dc62 1563 double_unlock_hb(hb1, hb2);
69cd9eba 1564 hb_waiters_dec(hb2);
1da177e4 1565
e2970f2f 1566 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1567 if (ret)
1568 goto out_put_keys;
1da177e4 1569
b41277dc 1570 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1571 goto retry_private;
1da177e4 1572
ae791a2d
TG
1573 put_futex_key(&key2);
1574 put_futex_key(&key1);
e4dc5b7a 1575 goto retry;
1da177e4 1576 }
e2970f2f 1577 if (curval != *cmpval) {
1da177e4
LT
1578 ret = -EAGAIN;
1579 goto out_unlock;
1580 }
1581 }
1582
52400ba9 1583 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1584 /*
1585 * Attempt to acquire uaddr2 and wake the top waiter. If we
1586 * intend to requeue waiters, force setting the FUTEX_WAITERS
1587 * bit. We force this here where we are able to easily handle
1588 * faults rather in the requeue loop below.
1589 */
52400ba9 1590 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1591 &key2, &pi_state, nr_requeue);
52400ba9
DH
1592
1593 /*
1594 * At this point the top_waiter has either taken uaddr2 or is
1595 * waiting on it. If the former, then the pi_state will not
1596 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1597 * reference to it. If the lock was taken, ret contains the
1598 * vpid of the top waiter task.
52400ba9 1599 */
866293ee 1600 if (ret > 0) {
52400ba9 1601 WARN_ON(pi_state);
89061d3d 1602 drop_count++;
52400ba9 1603 task_count++;
866293ee
TG
1604 /*
1605 * If we acquired the lock, then the user
1606 * space value of uaddr2 should be vpid. It
1607 * cannot be changed by the top waiter as it
1608 * is blocked on hb2 lock if it tries to do
1609 * so. If something fiddled with it behind our
1610 * back the pi state lookup might unearth
1611 * it. So we rather use the known value than
1612 * rereading and handing potential crap to
1613 * lookup_pi_state.
1614 */
54a21788 1615 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
52400ba9
DH
1616 }
1617
1618 switch (ret) {
1619 case 0:
1620 break;
1621 case -EFAULT:
1622 double_unlock_hb(hb1, hb2);
69cd9eba 1623 hb_waiters_dec(hb2);
ae791a2d
TG
1624 put_futex_key(&key2);
1625 put_futex_key(&key1);
d0725992 1626 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1627 if (!ret)
1628 goto retry;
1629 goto out;
1630 case -EAGAIN:
af54d6a1
TG
1631 /*
1632 * Two reasons for this:
1633 * - Owner is exiting and we just wait for the
1634 * exit to complete.
1635 * - The user space value changed.
1636 */
52400ba9 1637 double_unlock_hb(hb1, hb2);
69cd9eba 1638 hb_waiters_dec(hb2);
ae791a2d
TG
1639 put_futex_key(&key2);
1640 put_futex_key(&key1);
52400ba9
DH
1641 cond_resched();
1642 goto retry;
1643 default:
1644 goto out_unlock;
1645 }
1646 }
1647
0d00c7b2 1648 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1649 if (task_count - nr_wake >= nr_requeue)
1650 break;
1651
1652 if (!match_futex(&this->key, &key1))
1da177e4 1653 continue;
52400ba9 1654
392741e0
DH
1655 /*
1656 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1657 * be paired with each other and no other futex ops.
aa10990e
DH
1658 *
1659 * We should never be requeueing a futex_q with a pi_state,
1660 * which is awaiting a futex_unlock_pi().
392741e0
DH
1661 */
1662 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1663 (!requeue_pi && this->rt_waiter) ||
1664 this->pi_state) {
392741e0
DH
1665 ret = -EINVAL;
1666 break;
1667 }
52400ba9
DH
1668
1669 /*
1670 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1671 * lock, we already woke the top_waiter. If not, it will be
1672 * woken by futex_unlock_pi().
1673 */
1674 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1675 wake_futex(this);
52400ba9
DH
1676 continue;
1677 }
1da177e4 1678
84bc4af5
DH
1679 /* Ensure we requeue to the expected futex for requeue_pi. */
1680 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1681 ret = -EINVAL;
1682 break;
1683 }
1684
52400ba9
DH
1685 /*
1686 * Requeue nr_requeue waiters and possibly one more in the case
1687 * of requeue_pi if we couldn't acquire the lock atomically.
1688 */
1689 if (requeue_pi) {
1690 /* Prepare the waiter to take the rt_mutex. */
1691 atomic_inc(&pi_state->refcount);
1692 this->pi_state = pi_state;
1693 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1694 this->rt_waiter,
c051b21f 1695 this->task);
52400ba9
DH
1696 if (ret == 1) {
1697 /* We got the lock. */
beda2c7e 1698 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1699 drop_count++;
52400ba9
DH
1700 continue;
1701 } else if (ret) {
1702 /* -EDEADLK */
1703 this->pi_state = NULL;
1704 free_pi_state(pi_state);
1705 goto out_unlock;
1706 }
1da177e4 1707 }
52400ba9
DH
1708 requeue_futex(this, hb1, hb2, &key2);
1709 drop_count++;
1da177e4
LT
1710 }
1711
1712out_unlock:
5eb3dc62 1713 double_unlock_hb(hb1, hb2);
69cd9eba 1714 hb_waiters_dec(hb2);
1da177e4 1715
cd84a42f
DH
1716 /*
1717 * drop_futex_key_refs() must be called outside the spinlocks. During
1718 * the requeue we moved futex_q's from the hash bucket at key1 to the
1719 * one at key2 and updated their key pointer. We no longer need to
1720 * hold the references to key1.
1721 */
1da177e4 1722 while (--drop_count >= 0)
9adef58b 1723 drop_futex_key_refs(&key1);
1da177e4 1724
42d35d48 1725out_put_keys:
ae791a2d 1726 put_futex_key(&key2);
42d35d48 1727out_put_key1:
ae791a2d 1728 put_futex_key(&key1);
42d35d48 1729out:
52400ba9
DH
1730 if (pi_state != NULL)
1731 free_pi_state(pi_state);
1732 return ret ? ret : task_count;
1da177e4
LT
1733}
1734
1735/* The key must be already stored in q->key. */
82af7aca 1736static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1737 __acquires(&hb->lock)
1da177e4 1738{
e2970f2f 1739 struct futex_hash_bucket *hb;
1da177e4 1740
e2970f2f 1741 hb = hash_futex(&q->key);
11d4616b
LT
1742
1743 /*
1744 * Increment the counter before taking the lock so that
1745 * a potential waker won't miss a to-be-slept task that is
1746 * waiting for the spinlock. This is safe as all queue_lock()
1747 * users end up calling queue_me(). Similarly, for housekeeping,
1748 * decrement the counter at queue_unlock() when some error has
1749 * occurred and we don't end up adding the task to the list.
1750 */
1751 hb_waiters_inc(hb);
1752
e2970f2f 1753 q->lock_ptr = &hb->lock;
1da177e4 1754
b0c29f79 1755 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1756 return hb;
1da177e4
LT
1757}
1758
d40d65c8 1759static inline void
0d00c7b2 1760queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1761 __releases(&hb->lock)
d40d65c8
DH
1762{
1763 spin_unlock(&hb->lock);
11d4616b 1764 hb_waiters_dec(hb);
d40d65c8
DH
1765}
1766
1767/**
1768 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1769 * @q: The futex_q to enqueue
1770 * @hb: The destination hash bucket
1771 *
1772 * The hb->lock must be held by the caller, and is released here. A call to
1773 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1774 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1775 * or nothing if the unqueue is done as part of the wake process and the unqueue
1776 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1777 * an example).
1778 */
82af7aca 1779static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1780 __releases(&hb->lock)
1da177e4 1781{
ec92d082
PP
1782 int prio;
1783
1784 /*
1785 * The priority used to register this element is
1786 * - either the real thread-priority for the real-time threads
1787 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1788 * - or MAX_RT_PRIO for non-RT threads.
1789 * Thus, all RT-threads are woken first in priority order, and
1790 * the others are woken last, in FIFO order.
1791 */
1792 prio = min(current->normal_prio, MAX_RT_PRIO);
1793
1794 plist_node_init(&q->list, prio);
ec92d082 1795 plist_add(&q->list, &hb->chain);
c87e2837 1796 q->task = current;
e2970f2f 1797 spin_unlock(&hb->lock);
1da177e4
LT
1798}
1799
d40d65c8
DH
1800/**
1801 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1802 * @q: The futex_q to unqueue
1803 *
1804 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1805 * be paired with exactly one earlier call to queue_me().
1806 *
6c23cbbd
RD
1807 * Return:
1808 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1809 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1810 */
1da177e4
LT
1811static int unqueue_me(struct futex_q *q)
1812{
1da177e4 1813 spinlock_t *lock_ptr;
e2970f2f 1814 int ret = 0;
1da177e4
LT
1815
1816 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1817retry:
1da177e4 1818 lock_ptr = q->lock_ptr;
e91467ec 1819 barrier();
c80544dc 1820 if (lock_ptr != NULL) {
1da177e4
LT
1821 spin_lock(lock_ptr);
1822 /*
1823 * q->lock_ptr can change between reading it and
1824 * spin_lock(), causing us to take the wrong lock. This
1825 * corrects the race condition.
1826 *
1827 * Reasoning goes like this: if we have the wrong lock,
1828 * q->lock_ptr must have changed (maybe several times)
1829 * between reading it and the spin_lock(). It can
1830 * change again after the spin_lock() but only if it was
1831 * already changed before the spin_lock(). It cannot,
1832 * however, change back to the original value. Therefore
1833 * we can detect whether we acquired the correct lock.
1834 */
1835 if (unlikely(lock_ptr != q->lock_ptr)) {
1836 spin_unlock(lock_ptr);
1837 goto retry;
1838 }
2e12978a 1839 __unqueue_futex(q);
c87e2837
IM
1840
1841 BUG_ON(q->pi_state);
1842
1da177e4
LT
1843 spin_unlock(lock_ptr);
1844 ret = 1;
1845 }
1846
9adef58b 1847 drop_futex_key_refs(&q->key);
1da177e4
LT
1848 return ret;
1849}
1850
c87e2837
IM
1851/*
1852 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1853 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1854 * and dropped here.
c87e2837 1855 */
d0aa7a70 1856static void unqueue_me_pi(struct futex_q *q)
15e408cd 1857 __releases(q->lock_ptr)
c87e2837 1858{
2e12978a 1859 __unqueue_futex(q);
c87e2837
IM
1860
1861 BUG_ON(!q->pi_state);
1862 free_pi_state(q->pi_state);
1863 q->pi_state = NULL;
1864
d0aa7a70 1865 spin_unlock(q->lock_ptr);
c87e2837
IM
1866}
1867
d0aa7a70 1868/*
cdf71a10 1869 * Fixup the pi_state owner with the new owner.
d0aa7a70 1870 *
778e9a9c
AK
1871 * Must be called with hash bucket lock held and mm->sem held for non
1872 * private futexes.
d0aa7a70 1873 */
778e9a9c 1874static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1875 struct task_struct *newowner)
d0aa7a70 1876{
cdf71a10 1877 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1878 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1879 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1880 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1881 int ret;
d0aa7a70
PP
1882
1883 /* Owner died? */
1b7558e4
TG
1884 if (!pi_state->owner)
1885 newtid |= FUTEX_OWNER_DIED;
1886
1887 /*
1888 * We are here either because we stole the rtmutex from the
8161239a
LJ
1889 * previous highest priority waiter or we are the highest priority
1890 * waiter but failed to get the rtmutex the first time.
1891 * We have to replace the newowner TID in the user space variable.
1892 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1893 *
b2d0994b
DH
1894 * Note: We write the user space value _before_ changing the pi_state
1895 * because we can fault here. Imagine swapped out pages or a fork
1896 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1897 *
1898 * Modifying pi_state _before_ the user space value would
1899 * leave the pi_state in an inconsistent state when we fault
1900 * here, because we need to drop the hash bucket lock to
1901 * handle the fault. This might be observed in the PID check
1902 * in lookup_pi_state.
1903 */
1904retry:
1905 if (get_futex_value_locked(&uval, uaddr))
1906 goto handle_fault;
1907
1908 while (1) {
1909 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1910
37a9d912 1911 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1912 goto handle_fault;
1913 if (curval == uval)
1914 break;
1915 uval = curval;
1916 }
1917
1918 /*
1919 * We fixed up user space. Now we need to fix the pi_state
1920 * itself.
1921 */
d0aa7a70 1922 if (pi_state->owner != NULL) {
1d615482 1923 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1924 WARN_ON(list_empty(&pi_state->list));
1925 list_del_init(&pi_state->list);
1d615482 1926 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1927 }
d0aa7a70 1928
cdf71a10 1929 pi_state->owner = newowner;
d0aa7a70 1930
1d615482 1931 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1932 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1933 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1934 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1935 return 0;
d0aa7a70 1936
d0aa7a70 1937 /*
1b7558e4 1938 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1939 * lock here. That gives the other task (either the highest priority
1940 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1941 * chance to try the fixup of the pi_state. So once we are
1942 * back from handling the fault we need to check the pi_state
1943 * after reacquiring the hash bucket lock and before trying to
1944 * do another fixup. When the fixup has been done already we
1945 * simply return.
d0aa7a70 1946 */
1b7558e4
TG
1947handle_fault:
1948 spin_unlock(q->lock_ptr);
778e9a9c 1949
d0725992 1950 ret = fault_in_user_writeable(uaddr);
778e9a9c 1951
1b7558e4 1952 spin_lock(q->lock_ptr);
778e9a9c 1953
1b7558e4
TG
1954 /*
1955 * Check if someone else fixed it for us:
1956 */
1957 if (pi_state->owner != oldowner)
1958 return 0;
1959
1960 if (ret)
1961 return ret;
1962
1963 goto retry;
d0aa7a70
PP
1964}
1965
72c1bbf3 1966static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1967
dd973998
DH
1968/**
1969 * fixup_owner() - Post lock pi_state and corner case management
1970 * @uaddr: user address of the futex
dd973998
DH
1971 * @q: futex_q (contains pi_state and access to the rt_mutex)
1972 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1973 *
1974 * After attempting to lock an rt_mutex, this function is called to cleanup
1975 * the pi_state owner as well as handle race conditions that may allow us to
1976 * acquire the lock. Must be called with the hb lock held.
1977 *
6c23cbbd
RD
1978 * Return:
1979 * 1 - success, lock taken;
1980 * 0 - success, lock not taken;
dd973998
DH
1981 * <0 - on error (-EFAULT)
1982 */
ae791a2d 1983static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1984{
1985 struct task_struct *owner;
1986 int ret = 0;
1987
1988 if (locked) {
1989 /*
1990 * Got the lock. We might not be the anticipated owner if we
1991 * did a lock-steal - fix up the PI-state in that case:
1992 */
1993 if (q->pi_state->owner != current)
ae791a2d 1994 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1995 goto out;
1996 }
1997
1998 /*
1999 * Catch the rare case, where the lock was released when we were on the
2000 * way back before we locked the hash bucket.
2001 */
2002 if (q->pi_state->owner == current) {
2003 /*
2004 * Try to get the rt_mutex now. This might fail as some other
2005 * task acquired the rt_mutex after we removed ourself from the
2006 * rt_mutex waiters list.
2007 */
2008 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2009 locked = 1;
2010 goto out;
2011 }
2012
2013 /*
2014 * pi_state is incorrect, some other task did a lock steal and
2015 * we returned due to timeout or signal without taking the
8161239a 2016 * rt_mutex. Too late.
dd973998 2017 */
8161239a 2018 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 2019 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
2020 if (!owner)
2021 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2022 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 2023 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
2024 goto out;
2025 }
2026
2027 /*
2028 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2029 * the owner of the rt_mutex.
dd973998
DH
2030 */
2031 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2032 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2033 "pi-state %p\n", ret,
2034 q->pi_state->pi_mutex.owner,
2035 q->pi_state->owner);
2036
2037out:
2038 return ret ? ret : locked;
2039}
2040
ca5f9524
DH
2041/**
2042 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2043 * @hb: the futex hash bucket, must be locked by the caller
2044 * @q: the futex_q to queue up on
2045 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2046 */
2047static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2048 struct hrtimer_sleeper *timeout)
ca5f9524 2049{
9beba3c5
DH
2050 /*
2051 * The task state is guaranteed to be set before another task can
2052 * wake it. set_current_state() is implemented using set_mb() and
2053 * queue_me() calls spin_unlock() upon completion, both serializing
2054 * access to the hash list and forcing another memory barrier.
2055 */
f1a11e05 2056 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2057 queue_me(q, hb);
ca5f9524
DH
2058
2059 /* Arm the timer */
2060 if (timeout) {
2061 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2062 if (!hrtimer_active(&timeout->timer))
2063 timeout->task = NULL;
2064 }
2065
2066 /*
0729e196
DH
2067 * If we have been removed from the hash list, then another task
2068 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2069 */
2070 if (likely(!plist_node_empty(&q->list))) {
2071 /*
2072 * If the timer has already expired, current will already be
2073 * flagged for rescheduling. Only call schedule if there
2074 * is no timeout, or if it has yet to expire.
2075 */
2076 if (!timeout || timeout->task)
88c8004f 2077 freezable_schedule();
ca5f9524
DH
2078 }
2079 __set_current_state(TASK_RUNNING);
2080}
2081
f801073f
DH
2082/**
2083 * futex_wait_setup() - Prepare to wait on a futex
2084 * @uaddr: the futex userspace address
2085 * @val: the expected value
b41277dc 2086 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2087 * @q: the associated futex_q
2088 * @hb: storage for hash_bucket pointer to be returned to caller
2089 *
2090 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2091 * compare it with the expected value. Handle atomic faults internally.
2092 * Return with the hb lock held and a q.key reference on success, and unlocked
2093 * with no q.key reference on failure.
2094 *
6c23cbbd
RD
2095 * Return:
2096 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2097 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2098 */
b41277dc 2099static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2100 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2101{
e2970f2f
IM
2102 u32 uval;
2103 int ret;
1da177e4 2104
1da177e4 2105 /*
b2d0994b 2106 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2107 * Order is important:
2108 *
2109 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2110 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2111 *
2112 * The basic logical guarantee of a futex is that it blocks ONLY
2113 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2114 * any cond. If we locked the hash-bucket after testing *uaddr, that
2115 * would open a race condition where we could block indefinitely with
1da177e4
LT
2116 * cond(var) false, which would violate the guarantee.
2117 *
8fe8f545
ML
2118 * On the other hand, we insert q and release the hash-bucket only
2119 * after testing *uaddr. This guarantees that futex_wait() will NOT
2120 * absorb a wakeup if *uaddr does not match the desired values
2121 * while the syscall executes.
1da177e4 2122 */
f801073f 2123retry:
9ea71503 2124 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2125 if (unlikely(ret != 0))
a5a2a0c7 2126 return ret;
f801073f
DH
2127
2128retry_private:
2129 *hb = queue_lock(q);
2130
e2970f2f 2131 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2132
f801073f 2133 if (ret) {
0d00c7b2 2134 queue_unlock(*hb);
1da177e4 2135
e2970f2f 2136 ret = get_user(uval, uaddr);
e4dc5b7a 2137 if (ret)
f801073f 2138 goto out;
1da177e4 2139
b41277dc 2140 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2141 goto retry_private;
2142
ae791a2d 2143 put_futex_key(&q->key);
e4dc5b7a 2144 goto retry;
1da177e4 2145 }
ca5f9524 2146
f801073f 2147 if (uval != val) {
0d00c7b2 2148 queue_unlock(*hb);
f801073f 2149 ret = -EWOULDBLOCK;
2fff78c7 2150 }
1da177e4 2151
f801073f
DH
2152out:
2153 if (ret)
ae791a2d 2154 put_futex_key(&q->key);
f801073f
DH
2155 return ret;
2156}
2157
b41277dc
DH
2158static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2159 ktime_t *abs_time, u32 bitset)
f801073f
DH
2160{
2161 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2162 struct restart_block *restart;
2163 struct futex_hash_bucket *hb;
5bdb05f9 2164 struct futex_q q = futex_q_init;
f801073f
DH
2165 int ret;
2166
2167 if (!bitset)
2168 return -EINVAL;
f801073f
DH
2169 q.bitset = bitset;
2170
2171 if (abs_time) {
2172 to = &timeout;
2173
b41277dc
DH
2174 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2175 CLOCK_REALTIME : CLOCK_MONOTONIC,
2176 HRTIMER_MODE_ABS);
f801073f
DH
2177 hrtimer_init_sleeper(to, current);
2178 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2179 current->timer_slack_ns);
2180 }
2181
d58e6576 2182retry:
7ada876a
DH
2183 /*
2184 * Prepare to wait on uaddr. On success, holds hb lock and increments
2185 * q.key refs.
2186 */
b41277dc 2187 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2188 if (ret)
2189 goto out;
2190
ca5f9524 2191 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2192 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2193
2194 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2195 ret = 0;
7ada876a 2196 /* unqueue_me() drops q.key ref */
1da177e4 2197 if (!unqueue_me(&q))
7ada876a 2198 goto out;
2fff78c7 2199 ret = -ETIMEDOUT;
ca5f9524 2200 if (to && !to->task)
7ada876a 2201 goto out;
72c1bbf3 2202
e2970f2f 2203 /*
d58e6576
TG
2204 * We expect signal_pending(current), but we might be the
2205 * victim of a spurious wakeup as well.
e2970f2f 2206 */
7ada876a 2207 if (!signal_pending(current))
d58e6576 2208 goto retry;
d58e6576 2209
2fff78c7 2210 ret = -ERESTARTSYS;
c19384b5 2211 if (!abs_time)
7ada876a 2212 goto out;
1da177e4 2213
2fff78c7
PZ
2214 restart = &current_thread_info()->restart_block;
2215 restart->fn = futex_wait_restart;
a3c74c52 2216 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2217 restart->futex.val = val;
2218 restart->futex.time = abs_time->tv64;
2219 restart->futex.bitset = bitset;
0cd9c649 2220 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2221
2fff78c7
PZ
2222 ret = -ERESTART_RESTARTBLOCK;
2223
42d35d48 2224out:
ca5f9524
DH
2225 if (to) {
2226 hrtimer_cancel(&to->timer);
2227 destroy_hrtimer_on_stack(&to->timer);
2228 }
c87e2837
IM
2229 return ret;
2230}
2231
72c1bbf3
NP
2232
2233static long futex_wait_restart(struct restart_block *restart)
2234{
a3c74c52 2235 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2236 ktime_t t, *tp = NULL;
72c1bbf3 2237
a72188d8
DH
2238 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2239 t.tv64 = restart->futex.time;
2240 tp = &t;
2241 }
72c1bbf3 2242 restart->fn = do_no_restart_syscall;
b41277dc
DH
2243
2244 return (long)futex_wait(uaddr, restart->futex.flags,
2245 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2246}
2247
2248
c87e2837
IM
2249/*
2250 * Userspace tried a 0 -> TID atomic transition of the futex value
2251 * and failed. The kernel side here does the whole locking operation:
2252 * if there are waiters then it will block, it does PI, etc. (Due to
2253 * races the kernel might see a 0 value of the futex too.)
2254 */
b41277dc
DH
2255static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2256 ktime_t *time, int trylock)
c87e2837 2257{
c5780e97 2258 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2259 struct futex_hash_bucket *hb;
5bdb05f9 2260 struct futex_q q = futex_q_init;
dd973998 2261 int res, ret;
c87e2837
IM
2262
2263 if (refill_pi_state_cache())
2264 return -ENOMEM;
2265
c19384b5 2266 if (time) {
c5780e97 2267 to = &timeout;
237fc6e7
TG
2268 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2269 HRTIMER_MODE_ABS);
c5780e97 2270 hrtimer_init_sleeper(to, current);
cc584b21 2271 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2272 }
2273
42d35d48 2274retry:
9ea71503 2275 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2276 if (unlikely(ret != 0))
42d35d48 2277 goto out;
c87e2837 2278
e4dc5b7a 2279retry_private:
82af7aca 2280 hb = queue_lock(&q);
c87e2837 2281
bab5bc9e 2282 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2283 if (unlikely(ret)) {
778e9a9c 2284 switch (ret) {
1a52084d
DH
2285 case 1:
2286 /* We got the lock. */
2287 ret = 0;
2288 goto out_unlock_put_key;
2289 case -EFAULT:
2290 goto uaddr_faulted;
778e9a9c
AK
2291 case -EAGAIN:
2292 /*
af54d6a1
TG
2293 * Two reasons for this:
2294 * - Task is exiting and we just wait for the
2295 * exit to complete.
2296 * - The user space value changed.
778e9a9c 2297 */
0d00c7b2 2298 queue_unlock(hb);
ae791a2d 2299 put_futex_key(&q.key);
778e9a9c
AK
2300 cond_resched();
2301 goto retry;
778e9a9c 2302 default:
42d35d48 2303 goto out_unlock_put_key;
c87e2837 2304 }
c87e2837
IM
2305 }
2306
2307 /*
2308 * Only actually queue now that the atomic ops are done:
2309 */
82af7aca 2310 queue_me(&q, hb);
c87e2837 2311
c87e2837
IM
2312 WARN_ON(!q.pi_state);
2313 /*
2314 * Block on the PI mutex:
2315 */
c051b21f
TG
2316 if (!trylock) {
2317 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2318 } else {
c87e2837
IM
2319 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2320 /* Fixup the trylock return value: */
2321 ret = ret ? 0 : -EWOULDBLOCK;
2322 }
2323
a99e4e41 2324 spin_lock(q.lock_ptr);
dd973998
DH
2325 /*
2326 * Fixup the pi_state owner and possibly acquire the lock if we
2327 * haven't already.
2328 */
ae791a2d 2329 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2330 /*
2331 * If fixup_owner() returned an error, proprogate that. If it acquired
2332 * the lock, clear our -ETIMEDOUT or -EINTR.
2333 */
2334 if (res)
2335 ret = (res < 0) ? res : 0;
c87e2837 2336
e8f6386c 2337 /*
dd973998
DH
2338 * If fixup_owner() faulted and was unable to handle the fault, unlock
2339 * it and return the fault to userspace.
e8f6386c
DH
2340 */
2341 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2342 rt_mutex_unlock(&q.pi_state->pi_mutex);
2343
778e9a9c
AK
2344 /* Unqueue and drop the lock */
2345 unqueue_me_pi(&q);
c87e2837 2346
5ecb01cf 2347 goto out_put_key;
c87e2837 2348
42d35d48 2349out_unlock_put_key:
0d00c7b2 2350 queue_unlock(hb);
c87e2837 2351
42d35d48 2352out_put_key:
ae791a2d 2353 put_futex_key(&q.key);
42d35d48 2354out:
237fc6e7
TG
2355 if (to)
2356 destroy_hrtimer_on_stack(&to->timer);
dd973998 2357 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2358
42d35d48 2359uaddr_faulted:
0d00c7b2 2360 queue_unlock(hb);
778e9a9c 2361
d0725992 2362 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2363 if (ret)
2364 goto out_put_key;
c87e2837 2365
b41277dc 2366 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2367 goto retry_private;
2368
ae791a2d 2369 put_futex_key(&q.key);
e4dc5b7a 2370 goto retry;
c87e2837
IM
2371}
2372
c87e2837
IM
2373/*
2374 * Userspace attempted a TID -> 0 atomic transition, and failed.
2375 * This is the in-kernel slowpath: we look up the PI state (if any),
2376 * and do the rt-mutex unlock.
2377 */
b41277dc 2378static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2379{
ccf9e6a8 2380 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2381 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8
TG
2382 struct futex_hash_bucket *hb;
2383 struct futex_q *match;
e4dc5b7a 2384 int ret;
c87e2837
IM
2385
2386retry:
2387 if (get_user(uval, uaddr))
2388 return -EFAULT;
2389 /*
2390 * We release only a lock we actually own:
2391 */
c0c9ed15 2392 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2393 return -EPERM;
c87e2837 2394
9ea71503 2395 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
2396 if (ret)
2397 return ret;
c87e2837
IM
2398
2399 hb = hash_futex(&key);
2400 spin_lock(&hb->lock);
2401
c87e2837 2402 /*
ccf9e6a8
TG
2403 * Check waiters first. We do not trust user space values at
2404 * all and we at least want to know if user space fiddled
2405 * with the futex value instead of blindly unlocking.
c87e2837 2406 */
ccf9e6a8
TG
2407 match = futex_top_waiter(hb, &key);
2408 if (match) {
2409 ret = wake_futex_pi(uaddr, uval, match);
c87e2837 2410 /*
ccf9e6a8
TG
2411 * The atomic access to the futex value generated a
2412 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
2413 */
2414 if (ret == -EFAULT)
2415 goto pi_faulted;
2416 goto out_unlock;
2417 }
ccf9e6a8 2418
c87e2837 2419 /*
ccf9e6a8
TG
2420 * We have no kernel internal state, i.e. no waiters in the
2421 * kernel. Waiters which are about to queue themselves are stuck
2422 * on hb->lock. So we can safely ignore them. We do neither
2423 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2424 * owner.
c87e2837 2425 */
ccf9e6a8 2426 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
13fbca4c 2427 goto pi_faulted;
c87e2837 2428
ccf9e6a8
TG
2429 /*
2430 * If uval has changed, let user space handle it.
2431 */
2432 ret = (curval == uval) ? 0 : -EAGAIN;
2433
c87e2837
IM
2434out_unlock:
2435 spin_unlock(&hb->lock);
ae791a2d 2436 put_futex_key(&key);
c87e2837
IM
2437 return ret;
2438
2439pi_faulted:
778e9a9c 2440 spin_unlock(&hb->lock);
ae791a2d 2441 put_futex_key(&key);
c87e2837 2442
d0725992 2443 ret = fault_in_user_writeable(uaddr);
b5686363 2444 if (!ret)
c87e2837
IM
2445 goto retry;
2446
1da177e4
LT
2447 return ret;
2448}
2449
52400ba9
DH
2450/**
2451 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2452 * @hb: the hash_bucket futex_q was original enqueued on
2453 * @q: the futex_q woken while waiting to be requeued
2454 * @key2: the futex_key of the requeue target futex
2455 * @timeout: the timeout associated with the wait (NULL if none)
2456 *
2457 * Detect if the task was woken on the initial futex as opposed to the requeue
2458 * target futex. If so, determine if it was a timeout or a signal that caused
2459 * the wakeup and return the appropriate error code to the caller. Must be
2460 * called with the hb lock held.
2461 *
6c23cbbd
RD
2462 * Return:
2463 * 0 = no early wakeup detected;
2464 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2465 */
2466static inline
2467int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2468 struct futex_q *q, union futex_key *key2,
2469 struct hrtimer_sleeper *timeout)
2470{
2471 int ret = 0;
2472
2473 /*
2474 * With the hb lock held, we avoid races while we process the wakeup.
2475 * We only need to hold hb (and not hb2) to ensure atomicity as the
2476 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2477 * It can't be requeued from uaddr2 to something else since we don't
2478 * support a PI aware source futex for requeue.
2479 */
2480 if (!match_futex(&q->key, key2)) {
2481 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2482 /*
2483 * We were woken prior to requeue by a timeout or a signal.
2484 * Unqueue the futex_q and determine which it was.
2485 */
2e12978a 2486 plist_del(&q->list, &hb->chain);
11d4616b 2487 hb_waiters_dec(hb);
52400ba9 2488
d58e6576 2489 /* Handle spurious wakeups gracefully */
11df6ddd 2490 ret = -EWOULDBLOCK;
52400ba9
DH
2491 if (timeout && !timeout->task)
2492 ret = -ETIMEDOUT;
d58e6576 2493 else if (signal_pending(current))
1c840c14 2494 ret = -ERESTARTNOINTR;
52400ba9
DH
2495 }
2496 return ret;
2497}
2498
2499/**
2500 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2501 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2502 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2503 * the same type, no requeueing from private to shared, etc.
2504 * @val: the expected value of uaddr
2505 * @abs_time: absolute timeout
56ec1607 2506 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2507 * @uaddr2: the pi futex we will take prior to returning to user-space
2508 *
2509 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2510 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2511 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2512 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2513 * without one, the pi logic would not know which task to boost/deboost, if
2514 * there was a need to.
52400ba9
DH
2515 *
2516 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2517 * via the following--
52400ba9 2518 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2519 * 2) wakeup on uaddr2 after a requeue
2520 * 3) signal
2521 * 4) timeout
52400ba9 2522 *
cc6db4e6 2523 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2524 *
2525 * If 2, we may then block on trying to take the rt_mutex and return via:
2526 * 5) successful lock
2527 * 6) signal
2528 * 7) timeout
2529 * 8) other lock acquisition failure
2530 *
cc6db4e6 2531 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2532 *
2533 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2534 *
6c23cbbd
RD
2535 * Return:
2536 * 0 - On success;
52400ba9
DH
2537 * <0 - On error
2538 */
b41277dc 2539static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2540 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2541 u32 __user *uaddr2)
52400ba9
DH
2542{
2543 struct hrtimer_sleeper timeout, *to = NULL;
2544 struct rt_mutex_waiter rt_waiter;
2545 struct rt_mutex *pi_mutex = NULL;
52400ba9 2546 struct futex_hash_bucket *hb;
5bdb05f9
DH
2547 union futex_key key2 = FUTEX_KEY_INIT;
2548 struct futex_q q = futex_q_init;
52400ba9 2549 int res, ret;
52400ba9 2550
6f7b0a2a
DH
2551 if (uaddr == uaddr2)
2552 return -EINVAL;
2553
52400ba9
DH
2554 if (!bitset)
2555 return -EINVAL;
2556
2557 if (abs_time) {
2558 to = &timeout;
b41277dc
DH
2559 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2560 CLOCK_REALTIME : CLOCK_MONOTONIC,
2561 HRTIMER_MODE_ABS);
52400ba9
DH
2562 hrtimer_init_sleeper(to, current);
2563 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2564 current->timer_slack_ns);
2565 }
2566
2567 /*
2568 * The waiter is allocated on our stack, manipulated by the requeue
2569 * code while we sleep on uaddr.
2570 */
2571 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2572 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2573 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2574 rt_waiter.task = NULL;
2575
9ea71503 2576 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2577 if (unlikely(ret != 0))
2578 goto out;
2579
84bc4af5
DH
2580 q.bitset = bitset;
2581 q.rt_waiter = &rt_waiter;
2582 q.requeue_pi_key = &key2;
2583
7ada876a
DH
2584 /*
2585 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2586 * count.
2587 */
b41277dc 2588 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2589 if (ret)
2590 goto out_key2;
52400ba9 2591
e9c243a5
TG
2592 /*
2593 * The check above which compares uaddrs is not sufficient for
2594 * shared futexes. We need to compare the keys:
2595 */
2596 if (match_futex(&q.key, &key2)) {
13c42c2f 2597 queue_unlock(hb);
e9c243a5
TG
2598 ret = -EINVAL;
2599 goto out_put_keys;
2600 }
2601
52400ba9 2602 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2603 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2604
2605 spin_lock(&hb->lock);
2606 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2607 spin_unlock(&hb->lock);
2608 if (ret)
2609 goto out_put_keys;
2610
2611 /*
2612 * In order for us to be here, we know our q.key == key2, and since
2613 * we took the hb->lock above, we also know that futex_requeue() has
2614 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2615 * race with the atomic proxy lock acquisition by the requeue code. The
2616 * futex_requeue dropped our key1 reference and incremented our key2
2617 * reference count.
52400ba9
DH
2618 */
2619
2620 /* Check if the requeue code acquired the second futex for us. */
2621 if (!q.rt_waiter) {
2622 /*
2623 * Got the lock. We might not be the anticipated owner if we
2624 * did a lock-steal - fix up the PI-state in that case.
2625 */
2626 if (q.pi_state && (q.pi_state->owner != current)) {
2627 spin_lock(q.lock_ptr);
ae791a2d 2628 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2629 spin_unlock(q.lock_ptr);
2630 }
2631 } else {
2632 /*
2633 * We have been woken up by futex_unlock_pi(), a timeout, or a
2634 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2635 * the pi_state.
2636 */
f27071cb 2637 WARN_ON(!q.pi_state);
52400ba9 2638 pi_mutex = &q.pi_state->pi_mutex;
c051b21f 2639 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
2640 debug_rt_mutex_free_waiter(&rt_waiter);
2641
2642 spin_lock(q.lock_ptr);
2643 /*
2644 * Fixup the pi_state owner and possibly acquire the lock if we
2645 * haven't already.
2646 */
ae791a2d 2647 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2648 /*
2649 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2650 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2651 */
2652 if (res)
2653 ret = (res < 0) ? res : 0;
2654
2655 /* Unqueue and drop the lock. */
2656 unqueue_me_pi(&q);
2657 }
2658
2659 /*
2660 * If fixup_pi_state_owner() faulted and was unable to handle the
2661 * fault, unlock the rt_mutex and return the fault to userspace.
2662 */
2663 if (ret == -EFAULT) {
b6070a8d 2664 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2665 rt_mutex_unlock(pi_mutex);
2666 } else if (ret == -EINTR) {
52400ba9 2667 /*
cc6db4e6
DH
2668 * We've already been requeued, but cannot restart by calling
2669 * futex_lock_pi() directly. We could restart this syscall, but
2670 * it would detect that the user space "val" changed and return
2671 * -EWOULDBLOCK. Save the overhead of the restart and return
2672 * -EWOULDBLOCK directly.
52400ba9 2673 */
2070887f 2674 ret = -EWOULDBLOCK;
52400ba9
DH
2675 }
2676
2677out_put_keys:
ae791a2d 2678 put_futex_key(&q.key);
c8b15a70 2679out_key2:
ae791a2d 2680 put_futex_key(&key2);
52400ba9
DH
2681
2682out:
2683 if (to) {
2684 hrtimer_cancel(&to->timer);
2685 destroy_hrtimer_on_stack(&to->timer);
2686 }
2687 return ret;
2688}
2689
0771dfef
IM
2690/*
2691 * Support for robust futexes: the kernel cleans up held futexes at
2692 * thread exit time.
2693 *
2694 * Implementation: user-space maintains a per-thread list of locks it
2695 * is holding. Upon do_exit(), the kernel carefully walks this list,
2696 * and marks all locks that are owned by this thread with the
c87e2837 2697 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2698 * always manipulated with the lock held, so the list is private and
2699 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2700 * field, to allow the kernel to clean up if the thread dies after
2701 * acquiring the lock, but just before it could have added itself to
2702 * the list. There can only be one such pending lock.
2703 */
2704
2705/**
d96ee56c
DH
2706 * sys_set_robust_list() - Set the robust-futex list head of a task
2707 * @head: pointer to the list-head
2708 * @len: length of the list-head, as userspace expects
0771dfef 2709 */
836f92ad
HC
2710SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2711 size_t, len)
0771dfef 2712{
a0c1e907
TG
2713 if (!futex_cmpxchg_enabled)
2714 return -ENOSYS;
0771dfef
IM
2715 /*
2716 * The kernel knows only one size for now:
2717 */
2718 if (unlikely(len != sizeof(*head)))
2719 return -EINVAL;
2720
2721 current->robust_list = head;
2722
2723 return 0;
2724}
2725
2726/**
d96ee56c
DH
2727 * sys_get_robust_list() - Get the robust-futex list head of a task
2728 * @pid: pid of the process [zero for current task]
2729 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2730 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2731 */
836f92ad
HC
2732SYSCALL_DEFINE3(get_robust_list, int, pid,
2733 struct robust_list_head __user * __user *, head_ptr,
2734 size_t __user *, len_ptr)
0771dfef 2735{
ba46df98 2736 struct robust_list_head __user *head;
0771dfef 2737 unsigned long ret;
bdbb776f 2738 struct task_struct *p;
0771dfef 2739
a0c1e907
TG
2740 if (!futex_cmpxchg_enabled)
2741 return -ENOSYS;
2742
bdbb776f
KC
2743 rcu_read_lock();
2744
2745 ret = -ESRCH;
0771dfef 2746 if (!pid)
bdbb776f 2747 p = current;
0771dfef 2748 else {
228ebcbe 2749 p = find_task_by_vpid(pid);
0771dfef
IM
2750 if (!p)
2751 goto err_unlock;
0771dfef
IM
2752 }
2753
bdbb776f
KC
2754 ret = -EPERM;
2755 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2756 goto err_unlock;
2757
2758 head = p->robust_list;
2759 rcu_read_unlock();
2760
0771dfef
IM
2761 if (put_user(sizeof(*head), len_ptr))
2762 return -EFAULT;
2763 return put_user(head, head_ptr);
2764
2765err_unlock:
aaa2a97e 2766 rcu_read_unlock();
0771dfef
IM
2767
2768 return ret;
2769}
2770
2771/*
2772 * Process a futex-list entry, check whether it's owned by the
2773 * dying task, and do notification if so:
2774 */
e3f2ddea 2775int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2776{
7cfdaf38 2777 u32 uval, uninitialized_var(nval), mval;
0771dfef 2778
8f17d3a5
IM
2779retry:
2780 if (get_user(uval, uaddr))
0771dfef
IM
2781 return -1;
2782
b488893a 2783 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2784 /*
2785 * Ok, this dying thread is truly holding a futex
2786 * of interest. Set the OWNER_DIED bit atomically
2787 * via cmpxchg, and if the value had FUTEX_WAITERS
2788 * set, wake up a waiter (if any). (We have to do a
2789 * futex_wake() even if OWNER_DIED is already set -
2790 * to handle the rare but possible case of recursive
2791 * thread-death.) The rest of the cleanup is done in
2792 * userspace.
2793 */
e3f2ddea 2794 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2795 /*
2796 * We are not holding a lock here, but we want to have
2797 * the pagefault_disable/enable() protection because
2798 * we want to handle the fault gracefully. If the
2799 * access fails we try to fault in the futex with R/W
2800 * verification via get_user_pages. get_user() above
2801 * does not guarantee R/W access. If that fails we
2802 * give up and leave the futex locked.
2803 */
2804 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2805 if (fault_in_user_writeable(uaddr))
2806 return -1;
2807 goto retry;
2808 }
c87e2837 2809 if (nval != uval)
8f17d3a5 2810 goto retry;
0771dfef 2811
e3f2ddea
IM
2812 /*
2813 * Wake robust non-PI futexes here. The wakeup of
2814 * PI futexes happens in exit_pi_state():
2815 */
36cf3b5c 2816 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2817 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2818 }
2819 return 0;
2820}
2821
e3f2ddea
IM
2822/*
2823 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2824 */
2825static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2826 struct robust_list __user * __user *head,
1dcc41bb 2827 unsigned int *pi)
e3f2ddea
IM
2828{
2829 unsigned long uentry;
2830
ba46df98 2831 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2832 return -EFAULT;
2833
ba46df98 2834 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2835 *pi = uentry & 1;
2836
2837 return 0;
2838}
2839
0771dfef
IM
2840/*
2841 * Walk curr->robust_list (very carefully, it's a userspace list!)
2842 * and mark any locks found there dead, and notify any waiters.
2843 *
2844 * We silently return on any sign of list-walking problem.
2845 */
2846void exit_robust_list(struct task_struct *curr)
2847{
2848 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2849 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2850 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2851 unsigned int uninitialized_var(next_pi);
0771dfef 2852 unsigned long futex_offset;
9f96cb1e 2853 int rc;
0771dfef 2854
a0c1e907
TG
2855 if (!futex_cmpxchg_enabled)
2856 return;
2857
0771dfef
IM
2858 /*
2859 * Fetch the list head (which was registered earlier, via
2860 * sys_set_robust_list()):
2861 */
e3f2ddea 2862 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2863 return;
2864 /*
2865 * Fetch the relative futex offset:
2866 */
2867 if (get_user(futex_offset, &head->futex_offset))
2868 return;
2869 /*
2870 * Fetch any possibly pending lock-add first, and handle it
2871 * if it exists:
2872 */
e3f2ddea 2873 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2874 return;
e3f2ddea 2875
9f96cb1e 2876 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2877 while (entry != &head->list) {
9f96cb1e
MS
2878 /*
2879 * Fetch the next entry in the list before calling
2880 * handle_futex_death:
2881 */
2882 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2883 /*
2884 * A pending lock might already be on the list, so
c87e2837 2885 * don't process it twice:
0771dfef
IM
2886 */
2887 if (entry != pending)
ba46df98 2888 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2889 curr, pi))
0771dfef 2890 return;
9f96cb1e 2891 if (rc)
0771dfef 2892 return;
9f96cb1e
MS
2893 entry = next_entry;
2894 pi = next_pi;
0771dfef
IM
2895 /*
2896 * Avoid excessively long or circular lists:
2897 */
2898 if (!--limit)
2899 break;
2900
2901 cond_resched();
2902 }
9f96cb1e
MS
2903
2904 if (pending)
2905 handle_futex_death((void __user *)pending + futex_offset,
2906 curr, pip);
0771dfef
IM
2907}
2908
c19384b5 2909long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2910 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2911{
81b40539 2912 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2913 unsigned int flags = 0;
34f01cc1
ED
2914
2915 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2916 flags |= FLAGS_SHARED;
1da177e4 2917
b41277dc
DH
2918 if (op & FUTEX_CLOCK_REALTIME) {
2919 flags |= FLAGS_CLOCKRT;
2920 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2921 return -ENOSYS;
2922 }
1da177e4 2923
59263b51
TG
2924 switch (cmd) {
2925 case FUTEX_LOCK_PI:
2926 case FUTEX_UNLOCK_PI:
2927 case FUTEX_TRYLOCK_PI:
2928 case FUTEX_WAIT_REQUEUE_PI:
2929 case FUTEX_CMP_REQUEUE_PI:
2930 if (!futex_cmpxchg_enabled)
2931 return -ENOSYS;
2932 }
2933
34f01cc1 2934 switch (cmd) {
1da177e4 2935 case FUTEX_WAIT:
cd689985
TG
2936 val3 = FUTEX_BITSET_MATCH_ANY;
2937 case FUTEX_WAIT_BITSET:
81b40539 2938 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2939 case FUTEX_WAKE:
cd689985
TG
2940 val3 = FUTEX_BITSET_MATCH_ANY;
2941 case FUTEX_WAKE_BITSET:
81b40539 2942 return futex_wake(uaddr, flags, val, val3);
1da177e4 2943 case FUTEX_REQUEUE:
81b40539 2944 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2945 case FUTEX_CMP_REQUEUE:
81b40539 2946 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2947 case FUTEX_WAKE_OP:
81b40539 2948 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2949 case FUTEX_LOCK_PI:
81b40539 2950 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2951 case FUTEX_UNLOCK_PI:
81b40539 2952 return futex_unlock_pi(uaddr, flags);
c87e2837 2953 case FUTEX_TRYLOCK_PI:
81b40539 2954 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2955 case FUTEX_WAIT_REQUEUE_PI:
2956 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2957 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2958 uaddr2);
52400ba9 2959 case FUTEX_CMP_REQUEUE_PI:
81b40539 2960 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2961 }
81b40539 2962 return -ENOSYS;
1da177e4
LT
2963}
2964
2965
17da2bd9
HC
2966SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2967 struct timespec __user *, utime, u32 __user *, uaddr2,
2968 u32, val3)
1da177e4 2969{
c19384b5
PP
2970 struct timespec ts;
2971 ktime_t t, *tp = NULL;
e2970f2f 2972 u32 val2 = 0;
34f01cc1 2973 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2974
cd689985 2975 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2976 cmd == FUTEX_WAIT_BITSET ||
2977 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2978 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2979 return -EFAULT;
c19384b5 2980 if (!timespec_valid(&ts))
9741ef96 2981 return -EINVAL;
c19384b5
PP
2982
2983 t = timespec_to_ktime(ts);
34f01cc1 2984 if (cmd == FUTEX_WAIT)
5a7780e7 2985 t = ktime_add_safe(ktime_get(), t);
c19384b5 2986 tp = &t;
1da177e4
LT
2987 }
2988 /*
52400ba9 2989 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2990 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2991 */
f54f0986 2992 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2993 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2994 val2 = (u32) (unsigned long) utime;
1da177e4 2995
c19384b5 2996 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2997}
2998
03b8c7b6 2999static void __init futex_detect_cmpxchg(void)
1da177e4 3000{
03b8c7b6 3001#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3002 u32 curval;
03b8c7b6
HC
3003
3004 /*
3005 * This will fail and we want it. Some arch implementations do
3006 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3007 * functionality. We want to know that before we call in any
3008 * of the complex code paths. Also we want to prevent
3009 * registration of robust lists in that case. NULL is
3010 * guaranteed to fault and we get -EFAULT on functional
3011 * implementation, the non-functional ones will return
3012 * -ENOSYS.
3013 */
3014 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3015 futex_cmpxchg_enabled = 1;
3016#endif
3017}
3018
3019static int __init futex_init(void)
3020{
63b1a816 3021 unsigned int futex_shift;
a52b89eb
DB
3022 unsigned long i;
3023
3024#if CONFIG_BASE_SMALL
3025 futex_hashsize = 16;
3026#else
3027 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3028#endif
3029
3030 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3031 futex_hashsize, 0,
3032 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3033 &futex_shift, NULL,
3034 futex_hashsize, futex_hashsize);
3035 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3036
3037 futex_detect_cmpxchg();
a0c1e907 3038
a52b89eb 3039 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3040 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3041 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3042 spin_lock_init(&futex_queues[i].lock);
3043 }
3044
1da177e4
LT
3045 return 0;
3046}
f6d107fb 3047__initcall(futex_init);