Linux 3.15-rc5
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic_inc();
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
11d4616b
LT
283 smp_mb__after_atomic_inc();
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
345 break;
346 }
347}
348
349/*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353static void drop_futex_key_refs(union futex_key *key)
354{
90621c40
DH
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
38d47c1b 358 return;
90621c40 359 }
38d47c1b
PZ
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369}
370
34f01cc1 371/**
d96ee56c
DH
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
9ea71503
SB
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
34f01cc1 378 *
6c23cbbd
RD
379 * Return: a negative error code or 0
380 *
34f01cc1 381 * The key words are stored in *key on success.
1da177e4 382 *
6131ffaa 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
b2d0994b 387 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 388 */
64d1304a 389static int
9ea71503 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 391{
e2970f2f 392 unsigned long address = (unsigned long)uaddr;
1da177e4 393 struct mm_struct *mm = current->mm;
a5b338f2 394 struct page *page, *page_head;
9ea71503 395 int err, ro = 0;
1da177e4
LT
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
e2970f2f 400 key->both.offset = address % PAGE_SIZE;
34f01cc1 401 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 402 return -EINVAL;
e2970f2f 403 address -= key->both.offset;
1da177e4 404
5cdec2d8
LT
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
34f01cc1
ED
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
34f01cc1
ED
416 key->private.mm = mm;
417 key->private.address = address;
b0c29f79 418 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
419 return 0;
420 }
1da177e4 421
38d47c1b 422again:
7485d0d3 423 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
38d47c1b
PZ
432 if (err < 0)
433 return err;
9ea71503
SB
434 else
435 err = 0;
38d47c1b 436
a5b338f2
AA
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
38d47c1b 440 put_page(page);
a5b338f2
AA
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
f12d5bfc 443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465#else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471#endif
472
473 lock_page(page_head);
e6780f72
HD
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
a5b338f2 490 if (!page_head->mapping) {
e6780f72 491 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
492 unlock_page(page_head);
493 put_page(page_head);
e6780f72
HD
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
38d47c1b 497 }
1da177e4
LT
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 504 * the object not the particular process.
1da177e4 505 */
a5b338f2 506 if (PageAnon(page_head)) {
9ea71503
SB
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
38d47c1b 516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 517 key->private.mm = mm;
e2970f2f 518 key->private.address = address;
38d47c1b
PZ
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 521 key->shared.inode = page_head->mapping->host;
13d60f4b 522 key->shared.pgoff = basepage_index(page);
1da177e4
LT
523 }
524
b0c29f79 525 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 526
9ea71503 527out:
a5b338f2
AA
528 unlock_page(page_head);
529 put_page(page_head);
9ea71503 530 return err;
1da177e4
LT
531}
532
ae791a2d 533static inline void put_futex_key(union futex_key *key)
1da177e4 534{
38d47c1b 535 drop_futex_key_refs(key);
1da177e4
LT
536}
537
d96ee56c
DH
538/**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
fb62db2b 545 * We have no generic implementation of a non-destructive write to the
d0725992
TG
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550static int fault_in_user_writeable(u32 __user *uaddr)
551{
722d0172
AK
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
2efaca92
BH
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
722d0172
AK
558 up_read(&mm->mmap_sem);
559
d0725992
TG
560 return ret < 0 ? ret : 0;
561}
562
4b1c486b
DH
563/**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
567 *
568 * Must be called with the hb lock held.
569 */
570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572{
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580}
581
37a9d912
ML
582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
36cf3b5c 584{
37a9d912 585 int ret;
36cf3b5c
TG
586
587 pagefault_disable();
37a9d912 588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
589 pagefault_enable();
590
37a9d912 591 return ret;
36cf3b5c
TG
592}
593
594static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
595{
596 int ret;
597
a866374a 598 pagefault_disable();
e2970f2f 599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 600 pagefault_enable();
1da177e4
LT
601
602 return ret ? -EFAULT : 0;
603}
604
c87e2837
IM
605
606/*
607 * PI code:
608 */
609static int refill_pi_state_cache(void)
610{
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
4668edc3 616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
617
618 if (!pi_state)
619 return -ENOMEM;
620
c87e2837
IM
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
38d47c1b 625 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630}
631
632static struct futex_pi_state * alloc_pi_state(void)
633{
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640}
641
642static void free_pi_state(struct futex_pi_state *pi_state)
643{
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
1d615482 652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 653 list_del_init(&pi_state->list);
1d615482 654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671}
672
673/*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677static struct task_struct * futex_find_get_task(pid_t pid)
678{
679 struct task_struct *p;
680
d359b549 681 rcu_read_lock();
228ebcbe 682 p = find_task_by_vpid(pid);
7a0ea09a
MH
683 if (p)
684 get_task_struct(p);
a06381fe 685
d359b549 686 rcu_read_unlock();
c87e2837
IM
687
688 return p;
689}
690
691/*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696void exit_pi_state_list(struct task_struct *curr)
697{
c87e2837
IM
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
627371d7 700 struct futex_hash_bucket *hb;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
c87e2837 702
a0c1e907
TG
703 if (!futex_cmpxchg_enabled)
704 return;
c87e2837
IM
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
627371d7 708 * versus waiters unqueueing themselves:
c87e2837 709 */
1d615482 710 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
627371d7 716 hb = hash_futex(&key);
1d615482 717 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 718
c87e2837
IM
719 spin_lock(&hb->lock);
720
1d615482 721 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
c87e2837
IM
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
c87e2837 731 WARN_ON(pi_state->owner != curr);
627371d7
IM
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
c87e2837 734 pi_state->owner = NULL;
1d615482 735 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
1d615482 741 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 742 }
1d615482 743 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
744}
745
746static int
d0aa7a70
PP
747lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
749{
750 struct futex_pi_state *pi_state = NULL;
751 struct futex_q *this, *next;
c87e2837 752 struct task_struct *p;
778e9a9c 753 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 754
0d00c7b2 755 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 756 if (match_futex(&this->key, key)) {
c87e2837
IM
757 /*
758 * Another waiter already exists - bump up
759 * the refcount and return its pi_state:
760 */
761 pi_state = this->pi_state;
06a9ec29 762 /*
fb62db2b 763 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
764 */
765 if (unlikely(!pi_state))
766 return -EINVAL;
767
627371d7 768 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
769
770 /*
771 * When pi_state->owner is NULL then the owner died
772 * and another waiter is on the fly. pi_state->owner
773 * is fixed up by the task which acquires
774 * pi_state->rt_mutex.
775 *
776 * We do not check for pid == 0 which can happen when
777 * the owner died and robust_list_exit() cleared the
778 * TID.
779 */
780 if (pid && pi_state->owner) {
781 /*
782 * Bail out if user space manipulated the
783 * futex value.
784 */
785 if (pid != task_pid_vnr(pi_state->owner))
786 return -EINVAL;
787 }
627371d7 788
c87e2837 789 atomic_inc(&pi_state->refcount);
d0aa7a70 790 *ps = pi_state;
c87e2837
IM
791
792 return 0;
793 }
794 }
795
796 /*
e3f2ddea 797 * We are the first waiter - try to look up the real owner and attach
778e9a9c 798 * the new pi_state to it, but bail out when TID = 0
c87e2837 799 */
778e9a9c 800 if (!pid)
e3f2ddea 801 return -ESRCH;
c87e2837 802 p = futex_find_get_task(pid);
7a0ea09a
MH
803 if (!p)
804 return -ESRCH;
778e9a9c
AK
805
806 /*
807 * We need to look at the task state flags to figure out,
808 * whether the task is exiting. To protect against the do_exit
809 * change of the task flags, we do this protected by
810 * p->pi_lock:
811 */
1d615482 812 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
813 if (unlikely(p->flags & PF_EXITING)) {
814 /*
815 * The task is on the way out. When PF_EXITPIDONE is
816 * set, we know that the task has finished the
817 * cleanup:
818 */
819 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
820
1d615482 821 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
822 put_task_struct(p);
823 return ret;
824 }
c87e2837
IM
825
826 pi_state = alloc_pi_state();
827
828 /*
829 * Initialize the pi_mutex in locked state and make 'p'
830 * the owner of it:
831 */
832 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
833
834 /* Store the key for possible exit cleanups: */
d0aa7a70 835 pi_state->key = *key;
c87e2837 836
627371d7 837 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
838 list_add(&pi_state->list, &p->pi_state_list);
839 pi_state->owner = p;
1d615482 840 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
841
842 put_task_struct(p);
843
d0aa7a70 844 *ps = pi_state;
c87e2837
IM
845
846 return 0;
847}
848
1a52084d 849/**
d96ee56c 850 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
851 * @uaddr: the pi futex user address
852 * @hb: the pi futex hash bucket
853 * @key: the futex key associated with uaddr and hb
854 * @ps: the pi_state pointer where we store the result of the
855 * lookup
856 * @task: the task to perform the atomic lock work for. This will
857 * be "current" except in the case of requeue pi.
858 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 859 *
6c23cbbd
RD
860 * Return:
861 * 0 - ready to wait;
862 * 1 - acquired the lock;
1a52084d
DH
863 * <0 - error
864 *
865 * The hb->lock and futex_key refs shall be held by the caller.
866 */
867static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
868 union futex_key *key,
869 struct futex_pi_state **ps,
bab5bc9e 870 struct task_struct *task, int set_waiters)
1a52084d 871{
59fa6245 872 int lock_taken, ret, force_take = 0;
c0c9ed15 873 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
874
875retry:
876 ret = lock_taken = 0;
877
878 /*
879 * To avoid races, we attempt to take the lock here again
880 * (by doing a 0 -> TID atomic cmpxchg), while holding all
881 * the locks. It will most likely not succeed.
882 */
c0c9ed15 883 newval = vpid;
bab5bc9e
DH
884 if (set_waiters)
885 newval |= FUTEX_WAITERS;
1a52084d 886
37a9d912 887 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
888 return -EFAULT;
889
890 /*
891 * Detect deadlocks.
892 */
c0c9ed15 893 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
894 return -EDEADLK;
895
896 /*
897 * Surprise - we got the lock. Just return to userspace:
898 */
899 if (unlikely(!curval))
900 return 1;
901
902 uval = curval;
903
904 /*
905 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
906 * to wake at the next unlock.
907 */
908 newval = curval | FUTEX_WAITERS;
909
910 /*
59fa6245 911 * Should we force take the futex? See below.
1a52084d 912 */
59fa6245
TG
913 if (unlikely(force_take)) {
914 /*
915 * Keep the OWNER_DIED and the WAITERS bit and set the
916 * new TID value.
917 */
c0c9ed15 918 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 919 force_take = 0;
1a52084d
DH
920 lock_taken = 1;
921 }
922
37a9d912 923 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
924 return -EFAULT;
925 if (unlikely(curval != uval))
926 goto retry;
927
928 /*
59fa6245 929 * We took the lock due to forced take over.
1a52084d
DH
930 */
931 if (unlikely(lock_taken))
932 return 1;
933
934 /*
935 * We dont have the lock. Look up the PI state (or create it if
936 * we are the first waiter):
937 */
938 ret = lookup_pi_state(uval, hb, key, ps);
939
940 if (unlikely(ret)) {
941 switch (ret) {
942 case -ESRCH:
943 /*
59fa6245
TG
944 * We failed to find an owner for this
945 * futex. So we have no pi_state to block
946 * on. This can happen in two cases:
947 *
948 * 1) The owner died
949 * 2) A stale FUTEX_WAITERS bit
950 *
951 * Re-read the futex value.
1a52084d
DH
952 */
953 if (get_futex_value_locked(&curval, uaddr))
954 return -EFAULT;
955
956 /*
59fa6245
TG
957 * If the owner died or we have a stale
958 * WAITERS bit the owner TID in the user space
959 * futex is 0.
1a52084d 960 */
59fa6245
TG
961 if (!(curval & FUTEX_TID_MASK)) {
962 force_take = 1;
1a52084d
DH
963 goto retry;
964 }
965 default:
966 break;
967 }
968 }
969
970 return ret;
971}
972
2e12978a
LJ
973/**
974 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
975 * @q: The futex_q to unqueue
976 *
977 * The q->lock_ptr must not be NULL and must be held by the caller.
978 */
979static void __unqueue_futex(struct futex_q *q)
980{
981 struct futex_hash_bucket *hb;
982
29096202
SR
983 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
984 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
985 return;
986
987 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
988 plist_del(&q->list, &hb->chain);
11d4616b 989 hb_waiters_dec(hb);
2e12978a
LJ
990}
991
1da177e4
LT
992/*
993 * The hash bucket lock must be held when this is called.
994 * Afterwards, the futex_q must not be accessed.
995 */
996static void wake_futex(struct futex_q *q)
997{
f1a11e05
TG
998 struct task_struct *p = q->task;
999
aa10990e
DH
1000 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1001 return;
1002
1da177e4 1003 /*
f1a11e05 1004 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1005 * a non-futex wake up happens on another CPU then the task
1006 * might exit and p would dereference a non-existing task
f1a11e05
TG
1007 * struct. Prevent this by holding a reference on p across the
1008 * wake up.
1da177e4 1009 */
f1a11e05
TG
1010 get_task_struct(p);
1011
2e12978a 1012 __unqueue_futex(q);
1da177e4 1013 /*
f1a11e05
TG
1014 * The waiting task can free the futex_q as soon as
1015 * q->lock_ptr = NULL is written, without taking any locks. A
1016 * memory barrier is required here to prevent the following
1017 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1018 */
ccdea2f8 1019 smp_wmb();
1da177e4 1020 q->lock_ptr = NULL;
f1a11e05
TG
1021
1022 wake_up_state(p, TASK_NORMAL);
1023 put_task_struct(p);
1da177e4
LT
1024}
1025
c87e2837
IM
1026static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1027{
1028 struct task_struct *new_owner;
1029 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1030 u32 uninitialized_var(curval), newval;
c87e2837
IM
1031
1032 if (!pi_state)
1033 return -EINVAL;
1034
51246bfd
TG
1035 /*
1036 * If current does not own the pi_state then the futex is
1037 * inconsistent and user space fiddled with the futex value.
1038 */
1039 if (pi_state->owner != current)
1040 return -EINVAL;
1041
d209d74d 1042 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1043 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1044
1045 /*
f123c98e
SR
1046 * It is possible that the next waiter (the one that brought
1047 * this owner to the kernel) timed out and is no longer
1048 * waiting on the lock.
c87e2837
IM
1049 */
1050 if (!new_owner)
1051 new_owner = this->task;
1052
1053 /*
1054 * We pass it to the next owner. (The WAITERS bit is always
1055 * kept enabled while there is PI state around. We must also
1056 * preserve the owner died bit.)
1057 */
e3f2ddea 1058 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
1059 int ret = 0;
1060
b488893a 1061 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1062
37a9d912 1063 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 1064 ret = -EFAULT;
cde898fa 1065 else if (curval != uval)
778e9a9c
AK
1066 ret = -EINVAL;
1067 if (ret) {
d209d74d 1068 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
1069 return ret;
1070 }
e3f2ddea 1071 }
c87e2837 1072
1d615482 1073 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1074 WARN_ON(list_empty(&pi_state->list));
1075 list_del_init(&pi_state->list);
1d615482 1076 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1077
1d615482 1078 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1079 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1080 list_add(&pi_state->list, &new_owner->pi_state_list);
1081 pi_state->owner = new_owner;
1d615482 1082 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1083
d209d74d 1084 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1085 rt_mutex_unlock(&pi_state->pi_mutex);
1086
1087 return 0;
1088}
1089
1090static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1091{
7cfdaf38 1092 u32 uninitialized_var(oldval);
c87e2837
IM
1093
1094 /*
1095 * There is no waiter, so we unlock the futex. The owner died
1096 * bit has not to be preserved here. We are the owner:
1097 */
37a9d912
ML
1098 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1099 return -EFAULT;
c87e2837
IM
1100 if (oldval != uval)
1101 return -EAGAIN;
1102
1103 return 0;
1104}
1105
8b8f319f
IM
1106/*
1107 * Express the locking dependencies for lockdep:
1108 */
1109static inline void
1110double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1111{
1112 if (hb1 <= hb2) {
1113 spin_lock(&hb1->lock);
1114 if (hb1 < hb2)
1115 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1116 } else { /* hb1 > hb2 */
1117 spin_lock(&hb2->lock);
1118 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1119 }
1120}
1121
5eb3dc62
DH
1122static inline void
1123double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1124{
f061d351 1125 spin_unlock(&hb1->lock);
88f502fe
IM
1126 if (hb1 != hb2)
1127 spin_unlock(&hb2->lock);
5eb3dc62
DH
1128}
1129
1da177e4 1130/*
b2d0994b 1131 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1132 */
b41277dc
DH
1133static int
1134futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1135{
e2970f2f 1136 struct futex_hash_bucket *hb;
1da177e4 1137 struct futex_q *this, *next;
38d47c1b 1138 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1139 int ret;
1140
cd689985
TG
1141 if (!bitset)
1142 return -EINVAL;
1143
9ea71503 1144 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1145 if (unlikely(ret != 0))
1146 goto out;
1147
e2970f2f 1148 hb = hash_futex(&key);
b0c29f79
DB
1149
1150 /* Make sure we really have tasks to wakeup */
1151 if (!hb_waiters_pending(hb))
1152 goto out_put_key;
1153
e2970f2f 1154 spin_lock(&hb->lock);
1da177e4 1155
0d00c7b2 1156 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1157 if (match_futex (&this->key, &key)) {
52400ba9 1158 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1159 ret = -EINVAL;
1160 break;
1161 }
cd689985
TG
1162
1163 /* Check if one of the bits is set in both bitsets */
1164 if (!(this->bitset & bitset))
1165 continue;
1166
1da177e4
LT
1167 wake_futex(this);
1168 if (++ret >= nr_wake)
1169 break;
1170 }
1171 }
1172
e2970f2f 1173 spin_unlock(&hb->lock);
b0c29f79 1174out_put_key:
ae791a2d 1175 put_futex_key(&key);
42d35d48 1176out:
1da177e4
LT
1177 return ret;
1178}
1179
4732efbe
JJ
1180/*
1181 * Wake up all waiters hashed on the physical page that is mapped
1182 * to this virtual address:
1183 */
e2970f2f 1184static int
b41277dc 1185futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1186 int nr_wake, int nr_wake2, int op)
4732efbe 1187{
38d47c1b 1188 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1189 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1190 struct futex_q *this, *next;
e4dc5b7a 1191 int ret, op_ret;
4732efbe 1192
e4dc5b7a 1193retry:
9ea71503 1194 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1195 if (unlikely(ret != 0))
1196 goto out;
9ea71503 1197 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1198 if (unlikely(ret != 0))
42d35d48 1199 goto out_put_key1;
4732efbe 1200
e2970f2f
IM
1201 hb1 = hash_futex(&key1);
1202 hb2 = hash_futex(&key2);
4732efbe 1203
e4dc5b7a 1204retry_private:
eaaea803 1205 double_lock_hb(hb1, hb2);
e2970f2f 1206 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1207 if (unlikely(op_ret < 0)) {
4732efbe 1208
5eb3dc62 1209 double_unlock_hb(hb1, hb2);
4732efbe 1210
7ee1dd3f 1211#ifndef CONFIG_MMU
e2970f2f
IM
1212 /*
1213 * we don't get EFAULT from MMU faults if we don't have an MMU,
1214 * but we might get them from range checking
1215 */
7ee1dd3f 1216 ret = op_ret;
42d35d48 1217 goto out_put_keys;
7ee1dd3f
DH
1218#endif
1219
796f8d9b
DG
1220 if (unlikely(op_ret != -EFAULT)) {
1221 ret = op_ret;
42d35d48 1222 goto out_put_keys;
796f8d9b
DG
1223 }
1224
d0725992 1225 ret = fault_in_user_writeable(uaddr2);
4732efbe 1226 if (ret)
de87fcc1 1227 goto out_put_keys;
4732efbe 1228
b41277dc 1229 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1230 goto retry_private;
1231
ae791a2d
TG
1232 put_futex_key(&key2);
1233 put_futex_key(&key1);
e4dc5b7a 1234 goto retry;
4732efbe
JJ
1235 }
1236
0d00c7b2 1237 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1238 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1239 if (this->pi_state || this->rt_waiter) {
1240 ret = -EINVAL;
1241 goto out_unlock;
1242 }
4732efbe
JJ
1243 wake_futex(this);
1244 if (++ret >= nr_wake)
1245 break;
1246 }
1247 }
1248
1249 if (op_ret > 0) {
4732efbe 1250 op_ret = 0;
0d00c7b2 1251 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1252 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1253 if (this->pi_state || this->rt_waiter) {
1254 ret = -EINVAL;
1255 goto out_unlock;
1256 }
4732efbe
JJ
1257 wake_futex(this);
1258 if (++op_ret >= nr_wake2)
1259 break;
1260 }
1261 }
1262 ret += op_ret;
1263 }
1264
aa10990e 1265out_unlock:
5eb3dc62 1266 double_unlock_hb(hb1, hb2);
42d35d48 1267out_put_keys:
ae791a2d 1268 put_futex_key(&key2);
42d35d48 1269out_put_key1:
ae791a2d 1270 put_futex_key(&key1);
42d35d48 1271out:
4732efbe
JJ
1272 return ret;
1273}
1274
9121e478
DH
1275/**
1276 * requeue_futex() - Requeue a futex_q from one hb to another
1277 * @q: the futex_q to requeue
1278 * @hb1: the source hash_bucket
1279 * @hb2: the target hash_bucket
1280 * @key2: the new key for the requeued futex_q
1281 */
1282static inline
1283void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1284 struct futex_hash_bucket *hb2, union futex_key *key2)
1285{
1286
1287 /*
1288 * If key1 and key2 hash to the same bucket, no need to
1289 * requeue.
1290 */
1291 if (likely(&hb1->chain != &hb2->chain)) {
1292 plist_del(&q->list, &hb1->chain);
11d4616b 1293 hb_waiters_dec(hb1);
9121e478 1294 plist_add(&q->list, &hb2->chain);
11d4616b 1295 hb_waiters_inc(hb2);
9121e478 1296 q->lock_ptr = &hb2->lock;
9121e478
DH
1297 }
1298 get_futex_key_refs(key2);
1299 q->key = *key2;
1300}
1301
52400ba9
DH
1302/**
1303 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1304 * @q: the futex_q
1305 * @key: the key of the requeue target futex
1306 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1307 *
1308 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1309 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1310 * to the requeue target futex so the waiter can detect the wakeup on the right
1311 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1312 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1313 * to protect access to the pi_state to fixup the owner later. Must be called
1314 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1315 */
1316static inline
beda2c7e
DH
1317void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1318 struct futex_hash_bucket *hb)
52400ba9 1319{
52400ba9
DH
1320 get_futex_key_refs(key);
1321 q->key = *key;
1322
2e12978a 1323 __unqueue_futex(q);
52400ba9
DH
1324
1325 WARN_ON(!q->rt_waiter);
1326 q->rt_waiter = NULL;
1327
beda2c7e 1328 q->lock_ptr = &hb->lock;
beda2c7e 1329
f1a11e05 1330 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1331}
1332
1333/**
1334 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1335 * @pifutex: the user address of the to futex
1336 * @hb1: the from futex hash bucket, must be locked by the caller
1337 * @hb2: the to futex hash bucket, must be locked by the caller
1338 * @key1: the from futex key
1339 * @key2: the to futex key
1340 * @ps: address to store the pi_state pointer
1341 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1342 *
1343 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1344 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1345 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1346 * hb1 and hb2 must be held by the caller.
52400ba9 1347 *
6c23cbbd
RD
1348 * Return:
1349 * 0 - failed to acquire the lock atomically;
1350 * 1 - acquired the lock;
52400ba9
DH
1351 * <0 - error
1352 */
1353static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1354 struct futex_hash_bucket *hb1,
1355 struct futex_hash_bucket *hb2,
1356 union futex_key *key1, union futex_key *key2,
bab5bc9e 1357 struct futex_pi_state **ps, int set_waiters)
52400ba9 1358{
bab5bc9e 1359 struct futex_q *top_waiter = NULL;
52400ba9
DH
1360 u32 curval;
1361 int ret;
1362
1363 if (get_futex_value_locked(&curval, pifutex))
1364 return -EFAULT;
1365
bab5bc9e
DH
1366 /*
1367 * Find the top_waiter and determine if there are additional waiters.
1368 * If the caller intends to requeue more than 1 waiter to pifutex,
1369 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1370 * as we have means to handle the possible fault. If not, don't set
1371 * the bit unecessarily as it will force the subsequent unlock to enter
1372 * the kernel.
1373 */
52400ba9
DH
1374 top_waiter = futex_top_waiter(hb1, key1);
1375
1376 /* There are no waiters, nothing for us to do. */
1377 if (!top_waiter)
1378 return 0;
1379
84bc4af5
DH
1380 /* Ensure we requeue to the expected futex. */
1381 if (!match_futex(top_waiter->requeue_pi_key, key2))
1382 return -EINVAL;
1383
52400ba9 1384 /*
bab5bc9e
DH
1385 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1386 * the contended case or if set_waiters is 1. The pi_state is returned
1387 * in ps in contended cases.
52400ba9 1388 */
bab5bc9e
DH
1389 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1390 set_waiters);
52400ba9 1391 if (ret == 1)
beda2c7e 1392 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1393
1394 return ret;
1395}
1396
1397/**
1398 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1399 * @uaddr1: source futex user address
b41277dc 1400 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1401 * @uaddr2: target futex user address
1402 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1403 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1404 * @cmpval: @uaddr1 expected value (or %NULL)
1405 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1406 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1407 *
1408 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1409 * uaddr2 atomically on behalf of the top waiter.
1410 *
6c23cbbd
RD
1411 * Return:
1412 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1413 * <0 - on error
1da177e4 1414 */
b41277dc
DH
1415static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1416 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1417 u32 *cmpval, int requeue_pi)
1da177e4 1418{
38d47c1b 1419 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1420 int drop_count = 0, task_count = 0, ret;
1421 struct futex_pi_state *pi_state = NULL;
e2970f2f 1422 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1423 struct futex_q *this, *next;
52400ba9
DH
1424 u32 curval2;
1425
1426 if (requeue_pi) {
1427 /*
1428 * requeue_pi requires a pi_state, try to allocate it now
1429 * without any locks in case it fails.
1430 */
1431 if (refill_pi_state_cache())
1432 return -ENOMEM;
1433 /*
1434 * requeue_pi must wake as many tasks as it can, up to nr_wake
1435 * + nr_requeue, since it acquires the rt_mutex prior to
1436 * returning to userspace, so as to not leave the rt_mutex with
1437 * waiters and no owner. However, second and third wake-ups
1438 * cannot be predicted as they involve race conditions with the
1439 * first wake and a fault while looking up the pi_state. Both
1440 * pthread_cond_signal() and pthread_cond_broadcast() should
1441 * use nr_wake=1.
1442 */
1443 if (nr_wake != 1)
1444 return -EINVAL;
1445 }
1da177e4 1446
42d35d48 1447retry:
52400ba9
DH
1448 if (pi_state != NULL) {
1449 /*
1450 * We will have to lookup the pi_state again, so free this one
1451 * to keep the accounting correct.
1452 */
1453 free_pi_state(pi_state);
1454 pi_state = NULL;
1455 }
1456
9ea71503 1457 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1458 if (unlikely(ret != 0))
1459 goto out;
9ea71503
SB
1460 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1461 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1462 if (unlikely(ret != 0))
42d35d48 1463 goto out_put_key1;
1da177e4 1464
e2970f2f
IM
1465 hb1 = hash_futex(&key1);
1466 hb2 = hash_futex(&key2);
1da177e4 1467
e4dc5b7a 1468retry_private:
69cd9eba 1469 hb_waiters_inc(hb2);
8b8f319f 1470 double_lock_hb(hb1, hb2);
1da177e4 1471
e2970f2f
IM
1472 if (likely(cmpval != NULL)) {
1473 u32 curval;
1da177e4 1474
e2970f2f 1475 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1476
1477 if (unlikely(ret)) {
5eb3dc62 1478 double_unlock_hb(hb1, hb2);
69cd9eba 1479 hb_waiters_dec(hb2);
1da177e4 1480
e2970f2f 1481 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1482 if (ret)
1483 goto out_put_keys;
1da177e4 1484
b41277dc 1485 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1486 goto retry_private;
1da177e4 1487
ae791a2d
TG
1488 put_futex_key(&key2);
1489 put_futex_key(&key1);
e4dc5b7a 1490 goto retry;
1da177e4 1491 }
e2970f2f 1492 if (curval != *cmpval) {
1da177e4
LT
1493 ret = -EAGAIN;
1494 goto out_unlock;
1495 }
1496 }
1497
52400ba9 1498 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1499 /*
1500 * Attempt to acquire uaddr2 and wake the top waiter. If we
1501 * intend to requeue waiters, force setting the FUTEX_WAITERS
1502 * bit. We force this here where we are able to easily handle
1503 * faults rather in the requeue loop below.
1504 */
52400ba9 1505 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1506 &key2, &pi_state, nr_requeue);
52400ba9
DH
1507
1508 /*
1509 * At this point the top_waiter has either taken uaddr2 or is
1510 * waiting on it. If the former, then the pi_state will not
1511 * exist yet, look it up one more time to ensure we have a
1512 * reference to it.
1513 */
1514 if (ret == 1) {
1515 WARN_ON(pi_state);
89061d3d 1516 drop_count++;
52400ba9
DH
1517 task_count++;
1518 ret = get_futex_value_locked(&curval2, uaddr2);
1519 if (!ret)
1520 ret = lookup_pi_state(curval2, hb2, &key2,
1521 &pi_state);
1522 }
1523
1524 switch (ret) {
1525 case 0:
1526 break;
1527 case -EFAULT:
1528 double_unlock_hb(hb1, hb2);
69cd9eba 1529 hb_waiters_dec(hb2);
ae791a2d
TG
1530 put_futex_key(&key2);
1531 put_futex_key(&key1);
d0725992 1532 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1533 if (!ret)
1534 goto retry;
1535 goto out;
1536 case -EAGAIN:
1537 /* The owner was exiting, try again. */
1538 double_unlock_hb(hb1, hb2);
69cd9eba 1539 hb_waiters_dec(hb2);
ae791a2d
TG
1540 put_futex_key(&key2);
1541 put_futex_key(&key1);
52400ba9
DH
1542 cond_resched();
1543 goto retry;
1544 default:
1545 goto out_unlock;
1546 }
1547 }
1548
0d00c7b2 1549 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1550 if (task_count - nr_wake >= nr_requeue)
1551 break;
1552
1553 if (!match_futex(&this->key, &key1))
1da177e4 1554 continue;
52400ba9 1555
392741e0
DH
1556 /*
1557 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1558 * be paired with each other and no other futex ops.
aa10990e
DH
1559 *
1560 * We should never be requeueing a futex_q with a pi_state,
1561 * which is awaiting a futex_unlock_pi().
392741e0
DH
1562 */
1563 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1564 (!requeue_pi && this->rt_waiter) ||
1565 this->pi_state) {
392741e0
DH
1566 ret = -EINVAL;
1567 break;
1568 }
52400ba9
DH
1569
1570 /*
1571 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1572 * lock, we already woke the top_waiter. If not, it will be
1573 * woken by futex_unlock_pi().
1574 */
1575 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1576 wake_futex(this);
52400ba9
DH
1577 continue;
1578 }
1da177e4 1579
84bc4af5
DH
1580 /* Ensure we requeue to the expected futex for requeue_pi. */
1581 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1582 ret = -EINVAL;
1583 break;
1584 }
1585
52400ba9
DH
1586 /*
1587 * Requeue nr_requeue waiters and possibly one more in the case
1588 * of requeue_pi if we couldn't acquire the lock atomically.
1589 */
1590 if (requeue_pi) {
1591 /* Prepare the waiter to take the rt_mutex. */
1592 atomic_inc(&pi_state->refcount);
1593 this->pi_state = pi_state;
1594 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1595 this->rt_waiter,
1596 this->task, 1);
1597 if (ret == 1) {
1598 /* We got the lock. */
beda2c7e 1599 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1600 drop_count++;
52400ba9
DH
1601 continue;
1602 } else if (ret) {
1603 /* -EDEADLK */
1604 this->pi_state = NULL;
1605 free_pi_state(pi_state);
1606 goto out_unlock;
1607 }
1da177e4 1608 }
52400ba9
DH
1609 requeue_futex(this, hb1, hb2, &key2);
1610 drop_count++;
1da177e4
LT
1611 }
1612
1613out_unlock:
5eb3dc62 1614 double_unlock_hb(hb1, hb2);
69cd9eba 1615 hb_waiters_dec(hb2);
1da177e4 1616
cd84a42f
DH
1617 /*
1618 * drop_futex_key_refs() must be called outside the spinlocks. During
1619 * the requeue we moved futex_q's from the hash bucket at key1 to the
1620 * one at key2 and updated their key pointer. We no longer need to
1621 * hold the references to key1.
1622 */
1da177e4 1623 while (--drop_count >= 0)
9adef58b 1624 drop_futex_key_refs(&key1);
1da177e4 1625
42d35d48 1626out_put_keys:
ae791a2d 1627 put_futex_key(&key2);
42d35d48 1628out_put_key1:
ae791a2d 1629 put_futex_key(&key1);
42d35d48 1630out:
52400ba9
DH
1631 if (pi_state != NULL)
1632 free_pi_state(pi_state);
1633 return ret ? ret : task_count;
1da177e4
LT
1634}
1635
1636/* The key must be already stored in q->key. */
82af7aca 1637static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1638 __acquires(&hb->lock)
1da177e4 1639{
e2970f2f 1640 struct futex_hash_bucket *hb;
1da177e4 1641
e2970f2f 1642 hb = hash_futex(&q->key);
11d4616b
LT
1643
1644 /*
1645 * Increment the counter before taking the lock so that
1646 * a potential waker won't miss a to-be-slept task that is
1647 * waiting for the spinlock. This is safe as all queue_lock()
1648 * users end up calling queue_me(). Similarly, for housekeeping,
1649 * decrement the counter at queue_unlock() when some error has
1650 * occurred and we don't end up adding the task to the list.
1651 */
1652 hb_waiters_inc(hb);
1653
e2970f2f 1654 q->lock_ptr = &hb->lock;
1da177e4 1655
b0c29f79 1656 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1657 return hb;
1da177e4
LT
1658}
1659
d40d65c8 1660static inline void
0d00c7b2 1661queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1662 __releases(&hb->lock)
d40d65c8
DH
1663{
1664 spin_unlock(&hb->lock);
11d4616b 1665 hb_waiters_dec(hb);
d40d65c8
DH
1666}
1667
1668/**
1669 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1670 * @q: The futex_q to enqueue
1671 * @hb: The destination hash bucket
1672 *
1673 * The hb->lock must be held by the caller, and is released here. A call to
1674 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1675 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1676 * or nothing if the unqueue is done as part of the wake process and the unqueue
1677 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1678 * an example).
1679 */
82af7aca 1680static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1681 __releases(&hb->lock)
1da177e4 1682{
ec92d082
PP
1683 int prio;
1684
1685 /*
1686 * The priority used to register this element is
1687 * - either the real thread-priority for the real-time threads
1688 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1689 * - or MAX_RT_PRIO for non-RT threads.
1690 * Thus, all RT-threads are woken first in priority order, and
1691 * the others are woken last, in FIFO order.
1692 */
1693 prio = min(current->normal_prio, MAX_RT_PRIO);
1694
1695 plist_node_init(&q->list, prio);
ec92d082 1696 plist_add(&q->list, &hb->chain);
c87e2837 1697 q->task = current;
e2970f2f 1698 spin_unlock(&hb->lock);
1da177e4
LT
1699}
1700
d40d65c8
DH
1701/**
1702 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1703 * @q: The futex_q to unqueue
1704 *
1705 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1706 * be paired with exactly one earlier call to queue_me().
1707 *
6c23cbbd
RD
1708 * Return:
1709 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1710 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1711 */
1da177e4
LT
1712static int unqueue_me(struct futex_q *q)
1713{
1da177e4 1714 spinlock_t *lock_ptr;
e2970f2f 1715 int ret = 0;
1da177e4
LT
1716
1717 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1718retry:
1da177e4 1719 lock_ptr = q->lock_ptr;
e91467ec 1720 barrier();
c80544dc 1721 if (lock_ptr != NULL) {
1da177e4
LT
1722 spin_lock(lock_ptr);
1723 /*
1724 * q->lock_ptr can change between reading it and
1725 * spin_lock(), causing us to take the wrong lock. This
1726 * corrects the race condition.
1727 *
1728 * Reasoning goes like this: if we have the wrong lock,
1729 * q->lock_ptr must have changed (maybe several times)
1730 * between reading it and the spin_lock(). It can
1731 * change again after the spin_lock() but only if it was
1732 * already changed before the spin_lock(). It cannot,
1733 * however, change back to the original value. Therefore
1734 * we can detect whether we acquired the correct lock.
1735 */
1736 if (unlikely(lock_ptr != q->lock_ptr)) {
1737 spin_unlock(lock_ptr);
1738 goto retry;
1739 }
2e12978a 1740 __unqueue_futex(q);
c87e2837
IM
1741
1742 BUG_ON(q->pi_state);
1743
1da177e4
LT
1744 spin_unlock(lock_ptr);
1745 ret = 1;
1746 }
1747
9adef58b 1748 drop_futex_key_refs(&q->key);
1da177e4
LT
1749 return ret;
1750}
1751
c87e2837
IM
1752/*
1753 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1754 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1755 * and dropped here.
c87e2837 1756 */
d0aa7a70 1757static void unqueue_me_pi(struct futex_q *q)
15e408cd 1758 __releases(q->lock_ptr)
c87e2837 1759{
2e12978a 1760 __unqueue_futex(q);
c87e2837
IM
1761
1762 BUG_ON(!q->pi_state);
1763 free_pi_state(q->pi_state);
1764 q->pi_state = NULL;
1765
d0aa7a70 1766 spin_unlock(q->lock_ptr);
c87e2837
IM
1767}
1768
d0aa7a70 1769/*
cdf71a10 1770 * Fixup the pi_state owner with the new owner.
d0aa7a70 1771 *
778e9a9c
AK
1772 * Must be called with hash bucket lock held and mm->sem held for non
1773 * private futexes.
d0aa7a70 1774 */
778e9a9c 1775static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1776 struct task_struct *newowner)
d0aa7a70 1777{
cdf71a10 1778 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1779 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1780 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1781 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1782 int ret;
d0aa7a70
PP
1783
1784 /* Owner died? */
1b7558e4
TG
1785 if (!pi_state->owner)
1786 newtid |= FUTEX_OWNER_DIED;
1787
1788 /*
1789 * We are here either because we stole the rtmutex from the
8161239a
LJ
1790 * previous highest priority waiter or we are the highest priority
1791 * waiter but failed to get the rtmutex the first time.
1792 * We have to replace the newowner TID in the user space variable.
1793 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1794 *
b2d0994b
DH
1795 * Note: We write the user space value _before_ changing the pi_state
1796 * because we can fault here. Imagine swapped out pages or a fork
1797 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1798 *
1799 * Modifying pi_state _before_ the user space value would
1800 * leave the pi_state in an inconsistent state when we fault
1801 * here, because we need to drop the hash bucket lock to
1802 * handle the fault. This might be observed in the PID check
1803 * in lookup_pi_state.
1804 */
1805retry:
1806 if (get_futex_value_locked(&uval, uaddr))
1807 goto handle_fault;
1808
1809 while (1) {
1810 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1811
37a9d912 1812 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1813 goto handle_fault;
1814 if (curval == uval)
1815 break;
1816 uval = curval;
1817 }
1818
1819 /*
1820 * We fixed up user space. Now we need to fix the pi_state
1821 * itself.
1822 */
d0aa7a70 1823 if (pi_state->owner != NULL) {
1d615482 1824 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1825 WARN_ON(list_empty(&pi_state->list));
1826 list_del_init(&pi_state->list);
1d615482 1827 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1828 }
d0aa7a70 1829
cdf71a10 1830 pi_state->owner = newowner;
d0aa7a70 1831
1d615482 1832 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1833 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1834 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1835 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1836 return 0;
d0aa7a70 1837
d0aa7a70 1838 /*
1b7558e4 1839 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1840 * lock here. That gives the other task (either the highest priority
1841 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1842 * chance to try the fixup of the pi_state. So once we are
1843 * back from handling the fault we need to check the pi_state
1844 * after reacquiring the hash bucket lock and before trying to
1845 * do another fixup. When the fixup has been done already we
1846 * simply return.
d0aa7a70 1847 */
1b7558e4
TG
1848handle_fault:
1849 spin_unlock(q->lock_ptr);
778e9a9c 1850
d0725992 1851 ret = fault_in_user_writeable(uaddr);
778e9a9c 1852
1b7558e4 1853 spin_lock(q->lock_ptr);
778e9a9c 1854
1b7558e4
TG
1855 /*
1856 * Check if someone else fixed it for us:
1857 */
1858 if (pi_state->owner != oldowner)
1859 return 0;
1860
1861 if (ret)
1862 return ret;
1863
1864 goto retry;
d0aa7a70
PP
1865}
1866
72c1bbf3 1867static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1868
dd973998
DH
1869/**
1870 * fixup_owner() - Post lock pi_state and corner case management
1871 * @uaddr: user address of the futex
dd973998
DH
1872 * @q: futex_q (contains pi_state and access to the rt_mutex)
1873 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1874 *
1875 * After attempting to lock an rt_mutex, this function is called to cleanup
1876 * the pi_state owner as well as handle race conditions that may allow us to
1877 * acquire the lock. Must be called with the hb lock held.
1878 *
6c23cbbd
RD
1879 * Return:
1880 * 1 - success, lock taken;
1881 * 0 - success, lock not taken;
dd973998
DH
1882 * <0 - on error (-EFAULT)
1883 */
ae791a2d 1884static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1885{
1886 struct task_struct *owner;
1887 int ret = 0;
1888
1889 if (locked) {
1890 /*
1891 * Got the lock. We might not be the anticipated owner if we
1892 * did a lock-steal - fix up the PI-state in that case:
1893 */
1894 if (q->pi_state->owner != current)
ae791a2d 1895 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1896 goto out;
1897 }
1898
1899 /*
1900 * Catch the rare case, where the lock was released when we were on the
1901 * way back before we locked the hash bucket.
1902 */
1903 if (q->pi_state->owner == current) {
1904 /*
1905 * Try to get the rt_mutex now. This might fail as some other
1906 * task acquired the rt_mutex after we removed ourself from the
1907 * rt_mutex waiters list.
1908 */
1909 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1910 locked = 1;
1911 goto out;
1912 }
1913
1914 /*
1915 * pi_state is incorrect, some other task did a lock steal and
1916 * we returned due to timeout or signal without taking the
8161239a 1917 * rt_mutex. Too late.
dd973998 1918 */
8161239a 1919 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1920 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1921 if (!owner)
1922 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1923 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1924 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1925 goto out;
1926 }
1927
1928 /*
1929 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1930 * the owner of the rt_mutex.
dd973998
DH
1931 */
1932 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1933 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1934 "pi-state %p\n", ret,
1935 q->pi_state->pi_mutex.owner,
1936 q->pi_state->owner);
1937
1938out:
1939 return ret ? ret : locked;
1940}
1941
ca5f9524
DH
1942/**
1943 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1944 * @hb: the futex hash bucket, must be locked by the caller
1945 * @q: the futex_q to queue up on
1946 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1947 */
1948static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1949 struct hrtimer_sleeper *timeout)
ca5f9524 1950{
9beba3c5
DH
1951 /*
1952 * The task state is guaranteed to be set before another task can
1953 * wake it. set_current_state() is implemented using set_mb() and
1954 * queue_me() calls spin_unlock() upon completion, both serializing
1955 * access to the hash list and forcing another memory barrier.
1956 */
f1a11e05 1957 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1958 queue_me(q, hb);
ca5f9524
DH
1959
1960 /* Arm the timer */
1961 if (timeout) {
1962 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1963 if (!hrtimer_active(&timeout->timer))
1964 timeout->task = NULL;
1965 }
1966
1967 /*
0729e196
DH
1968 * If we have been removed from the hash list, then another task
1969 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1970 */
1971 if (likely(!plist_node_empty(&q->list))) {
1972 /*
1973 * If the timer has already expired, current will already be
1974 * flagged for rescheduling. Only call schedule if there
1975 * is no timeout, or if it has yet to expire.
1976 */
1977 if (!timeout || timeout->task)
88c8004f 1978 freezable_schedule();
ca5f9524
DH
1979 }
1980 __set_current_state(TASK_RUNNING);
1981}
1982
f801073f
DH
1983/**
1984 * futex_wait_setup() - Prepare to wait on a futex
1985 * @uaddr: the futex userspace address
1986 * @val: the expected value
b41277dc 1987 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1988 * @q: the associated futex_q
1989 * @hb: storage for hash_bucket pointer to be returned to caller
1990 *
1991 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1992 * compare it with the expected value. Handle atomic faults internally.
1993 * Return with the hb lock held and a q.key reference on success, and unlocked
1994 * with no q.key reference on failure.
1995 *
6c23cbbd
RD
1996 * Return:
1997 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1998 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1999 */
b41277dc 2000static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2001 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2002{
e2970f2f
IM
2003 u32 uval;
2004 int ret;
1da177e4 2005
1da177e4 2006 /*
b2d0994b 2007 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2008 * Order is important:
2009 *
2010 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2011 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2012 *
2013 * The basic logical guarantee of a futex is that it blocks ONLY
2014 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2015 * any cond. If we locked the hash-bucket after testing *uaddr, that
2016 * would open a race condition where we could block indefinitely with
1da177e4
LT
2017 * cond(var) false, which would violate the guarantee.
2018 *
8fe8f545
ML
2019 * On the other hand, we insert q and release the hash-bucket only
2020 * after testing *uaddr. This guarantees that futex_wait() will NOT
2021 * absorb a wakeup if *uaddr does not match the desired values
2022 * while the syscall executes.
1da177e4 2023 */
f801073f 2024retry:
9ea71503 2025 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2026 if (unlikely(ret != 0))
a5a2a0c7 2027 return ret;
f801073f
DH
2028
2029retry_private:
2030 *hb = queue_lock(q);
2031
e2970f2f 2032 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2033
f801073f 2034 if (ret) {
0d00c7b2 2035 queue_unlock(*hb);
1da177e4 2036
e2970f2f 2037 ret = get_user(uval, uaddr);
e4dc5b7a 2038 if (ret)
f801073f 2039 goto out;
1da177e4 2040
b41277dc 2041 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2042 goto retry_private;
2043
ae791a2d 2044 put_futex_key(&q->key);
e4dc5b7a 2045 goto retry;
1da177e4 2046 }
ca5f9524 2047
f801073f 2048 if (uval != val) {
0d00c7b2 2049 queue_unlock(*hb);
f801073f 2050 ret = -EWOULDBLOCK;
2fff78c7 2051 }
1da177e4 2052
f801073f
DH
2053out:
2054 if (ret)
ae791a2d 2055 put_futex_key(&q->key);
f801073f
DH
2056 return ret;
2057}
2058
b41277dc
DH
2059static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2060 ktime_t *abs_time, u32 bitset)
f801073f
DH
2061{
2062 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2063 struct restart_block *restart;
2064 struct futex_hash_bucket *hb;
5bdb05f9 2065 struct futex_q q = futex_q_init;
f801073f
DH
2066 int ret;
2067
2068 if (!bitset)
2069 return -EINVAL;
f801073f
DH
2070 q.bitset = bitset;
2071
2072 if (abs_time) {
2073 to = &timeout;
2074
b41277dc
DH
2075 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2076 CLOCK_REALTIME : CLOCK_MONOTONIC,
2077 HRTIMER_MODE_ABS);
f801073f
DH
2078 hrtimer_init_sleeper(to, current);
2079 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2080 current->timer_slack_ns);
2081 }
2082
d58e6576 2083retry:
7ada876a
DH
2084 /*
2085 * Prepare to wait on uaddr. On success, holds hb lock and increments
2086 * q.key refs.
2087 */
b41277dc 2088 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2089 if (ret)
2090 goto out;
2091
ca5f9524 2092 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2093 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2094
2095 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2096 ret = 0;
7ada876a 2097 /* unqueue_me() drops q.key ref */
1da177e4 2098 if (!unqueue_me(&q))
7ada876a 2099 goto out;
2fff78c7 2100 ret = -ETIMEDOUT;
ca5f9524 2101 if (to && !to->task)
7ada876a 2102 goto out;
72c1bbf3 2103
e2970f2f 2104 /*
d58e6576
TG
2105 * We expect signal_pending(current), but we might be the
2106 * victim of a spurious wakeup as well.
e2970f2f 2107 */
7ada876a 2108 if (!signal_pending(current))
d58e6576 2109 goto retry;
d58e6576 2110
2fff78c7 2111 ret = -ERESTARTSYS;
c19384b5 2112 if (!abs_time)
7ada876a 2113 goto out;
1da177e4 2114
2fff78c7
PZ
2115 restart = &current_thread_info()->restart_block;
2116 restart->fn = futex_wait_restart;
a3c74c52 2117 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2118 restart->futex.val = val;
2119 restart->futex.time = abs_time->tv64;
2120 restart->futex.bitset = bitset;
0cd9c649 2121 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2122
2fff78c7
PZ
2123 ret = -ERESTART_RESTARTBLOCK;
2124
42d35d48 2125out:
ca5f9524
DH
2126 if (to) {
2127 hrtimer_cancel(&to->timer);
2128 destroy_hrtimer_on_stack(&to->timer);
2129 }
c87e2837
IM
2130 return ret;
2131}
2132
72c1bbf3
NP
2133
2134static long futex_wait_restart(struct restart_block *restart)
2135{
a3c74c52 2136 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2137 ktime_t t, *tp = NULL;
72c1bbf3 2138
a72188d8
DH
2139 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2140 t.tv64 = restart->futex.time;
2141 tp = &t;
2142 }
72c1bbf3 2143 restart->fn = do_no_restart_syscall;
b41277dc
DH
2144
2145 return (long)futex_wait(uaddr, restart->futex.flags,
2146 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2147}
2148
2149
c87e2837
IM
2150/*
2151 * Userspace tried a 0 -> TID atomic transition of the futex value
2152 * and failed. The kernel side here does the whole locking operation:
2153 * if there are waiters then it will block, it does PI, etc. (Due to
2154 * races the kernel might see a 0 value of the futex too.)
2155 */
b41277dc
DH
2156static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2157 ktime_t *time, int trylock)
c87e2837 2158{
c5780e97 2159 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2160 struct futex_hash_bucket *hb;
5bdb05f9 2161 struct futex_q q = futex_q_init;
dd973998 2162 int res, ret;
c87e2837
IM
2163
2164 if (refill_pi_state_cache())
2165 return -ENOMEM;
2166
c19384b5 2167 if (time) {
c5780e97 2168 to = &timeout;
237fc6e7
TG
2169 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2170 HRTIMER_MODE_ABS);
c5780e97 2171 hrtimer_init_sleeper(to, current);
cc584b21 2172 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2173 }
2174
42d35d48 2175retry:
9ea71503 2176 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2177 if (unlikely(ret != 0))
42d35d48 2178 goto out;
c87e2837 2179
e4dc5b7a 2180retry_private:
82af7aca 2181 hb = queue_lock(&q);
c87e2837 2182
bab5bc9e 2183 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2184 if (unlikely(ret)) {
778e9a9c 2185 switch (ret) {
1a52084d
DH
2186 case 1:
2187 /* We got the lock. */
2188 ret = 0;
2189 goto out_unlock_put_key;
2190 case -EFAULT:
2191 goto uaddr_faulted;
778e9a9c
AK
2192 case -EAGAIN:
2193 /*
2194 * Task is exiting and we just wait for the
2195 * exit to complete.
2196 */
0d00c7b2 2197 queue_unlock(hb);
ae791a2d 2198 put_futex_key(&q.key);
778e9a9c
AK
2199 cond_resched();
2200 goto retry;
778e9a9c 2201 default:
42d35d48 2202 goto out_unlock_put_key;
c87e2837 2203 }
c87e2837
IM
2204 }
2205
2206 /*
2207 * Only actually queue now that the atomic ops are done:
2208 */
82af7aca 2209 queue_me(&q, hb);
c87e2837 2210
c87e2837
IM
2211 WARN_ON(!q.pi_state);
2212 /*
2213 * Block on the PI mutex:
2214 */
2215 if (!trylock)
2216 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2217 else {
2218 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2219 /* Fixup the trylock return value: */
2220 ret = ret ? 0 : -EWOULDBLOCK;
2221 }
2222
a99e4e41 2223 spin_lock(q.lock_ptr);
dd973998
DH
2224 /*
2225 * Fixup the pi_state owner and possibly acquire the lock if we
2226 * haven't already.
2227 */
ae791a2d 2228 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2229 /*
2230 * If fixup_owner() returned an error, proprogate that. If it acquired
2231 * the lock, clear our -ETIMEDOUT or -EINTR.
2232 */
2233 if (res)
2234 ret = (res < 0) ? res : 0;
c87e2837 2235
e8f6386c 2236 /*
dd973998
DH
2237 * If fixup_owner() faulted and was unable to handle the fault, unlock
2238 * it and return the fault to userspace.
e8f6386c
DH
2239 */
2240 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2241 rt_mutex_unlock(&q.pi_state->pi_mutex);
2242
778e9a9c
AK
2243 /* Unqueue and drop the lock */
2244 unqueue_me_pi(&q);
c87e2837 2245
5ecb01cf 2246 goto out_put_key;
c87e2837 2247
42d35d48 2248out_unlock_put_key:
0d00c7b2 2249 queue_unlock(hb);
c87e2837 2250
42d35d48 2251out_put_key:
ae791a2d 2252 put_futex_key(&q.key);
42d35d48 2253out:
237fc6e7
TG
2254 if (to)
2255 destroy_hrtimer_on_stack(&to->timer);
dd973998 2256 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2257
42d35d48 2258uaddr_faulted:
0d00c7b2 2259 queue_unlock(hb);
778e9a9c 2260
d0725992 2261 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2262 if (ret)
2263 goto out_put_key;
c87e2837 2264
b41277dc 2265 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2266 goto retry_private;
2267
ae791a2d 2268 put_futex_key(&q.key);
e4dc5b7a 2269 goto retry;
c87e2837
IM
2270}
2271
c87e2837
IM
2272/*
2273 * Userspace attempted a TID -> 0 atomic transition, and failed.
2274 * This is the in-kernel slowpath: we look up the PI state (if any),
2275 * and do the rt-mutex unlock.
2276 */
b41277dc 2277static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2278{
2279 struct futex_hash_bucket *hb;
2280 struct futex_q *this, *next;
38d47c1b 2281 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2282 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2283 int ret;
c87e2837
IM
2284
2285retry:
2286 if (get_user(uval, uaddr))
2287 return -EFAULT;
2288 /*
2289 * We release only a lock we actually own:
2290 */
c0c9ed15 2291 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2292 return -EPERM;
c87e2837 2293
9ea71503 2294 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2295 if (unlikely(ret != 0))
2296 goto out;
2297
2298 hb = hash_futex(&key);
2299 spin_lock(&hb->lock);
2300
c87e2837
IM
2301 /*
2302 * To avoid races, try to do the TID -> 0 atomic transition
2303 * again. If it succeeds then we can return without waking
2304 * anyone else up:
2305 */
37a9d912
ML
2306 if (!(uval & FUTEX_OWNER_DIED) &&
2307 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2308 goto pi_faulted;
2309 /*
2310 * Rare case: we managed to release the lock atomically,
2311 * no need to wake anyone else up:
2312 */
c0c9ed15 2313 if (unlikely(uval == vpid))
c87e2837
IM
2314 goto out_unlock;
2315
2316 /*
2317 * Ok, other tasks may need to be woken up - check waiters
2318 * and do the wakeup if necessary:
2319 */
0d00c7b2 2320 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2321 if (!match_futex (&this->key, &key))
2322 continue;
2323 ret = wake_futex_pi(uaddr, uval, this);
2324 /*
2325 * The atomic access to the futex value
2326 * generated a pagefault, so retry the
2327 * user-access and the wakeup:
2328 */
2329 if (ret == -EFAULT)
2330 goto pi_faulted;
2331 goto out_unlock;
2332 }
2333 /*
2334 * No waiters - kernel unlocks the futex:
2335 */
e3f2ddea
IM
2336 if (!(uval & FUTEX_OWNER_DIED)) {
2337 ret = unlock_futex_pi(uaddr, uval);
2338 if (ret == -EFAULT)
2339 goto pi_faulted;
2340 }
c87e2837
IM
2341
2342out_unlock:
2343 spin_unlock(&hb->lock);
ae791a2d 2344 put_futex_key(&key);
c87e2837 2345
42d35d48 2346out:
c87e2837
IM
2347 return ret;
2348
2349pi_faulted:
778e9a9c 2350 spin_unlock(&hb->lock);
ae791a2d 2351 put_futex_key(&key);
c87e2837 2352
d0725992 2353 ret = fault_in_user_writeable(uaddr);
b5686363 2354 if (!ret)
c87e2837
IM
2355 goto retry;
2356
1da177e4
LT
2357 return ret;
2358}
2359
52400ba9
DH
2360/**
2361 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2362 * @hb: the hash_bucket futex_q was original enqueued on
2363 * @q: the futex_q woken while waiting to be requeued
2364 * @key2: the futex_key of the requeue target futex
2365 * @timeout: the timeout associated with the wait (NULL if none)
2366 *
2367 * Detect if the task was woken on the initial futex as opposed to the requeue
2368 * target futex. If so, determine if it was a timeout or a signal that caused
2369 * the wakeup and return the appropriate error code to the caller. Must be
2370 * called with the hb lock held.
2371 *
6c23cbbd
RD
2372 * Return:
2373 * 0 = no early wakeup detected;
2374 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2375 */
2376static inline
2377int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2378 struct futex_q *q, union futex_key *key2,
2379 struct hrtimer_sleeper *timeout)
2380{
2381 int ret = 0;
2382
2383 /*
2384 * With the hb lock held, we avoid races while we process the wakeup.
2385 * We only need to hold hb (and not hb2) to ensure atomicity as the
2386 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2387 * It can't be requeued from uaddr2 to something else since we don't
2388 * support a PI aware source futex for requeue.
2389 */
2390 if (!match_futex(&q->key, key2)) {
2391 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2392 /*
2393 * We were woken prior to requeue by a timeout or a signal.
2394 * Unqueue the futex_q and determine which it was.
2395 */
2e12978a 2396 plist_del(&q->list, &hb->chain);
11d4616b 2397 hb_waiters_dec(hb);
52400ba9 2398
d58e6576 2399 /* Handle spurious wakeups gracefully */
11df6ddd 2400 ret = -EWOULDBLOCK;
52400ba9
DH
2401 if (timeout && !timeout->task)
2402 ret = -ETIMEDOUT;
d58e6576 2403 else if (signal_pending(current))
1c840c14 2404 ret = -ERESTARTNOINTR;
52400ba9
DH
2405 }
2406 return ret;
2407}
2408
2409/**
2410 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2411 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2412 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2413 * the same type, no requeueing from private to shared, etc.
2414 * @val: the expected value of uaddr
2415 * @abs_time: absolute timeout
56ec1607 2416 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2417 * @uaddr2: the pi futex we will take prior to returning to user-space
2418 *
2419 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2420 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2421 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2422 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2423 * without one, the pi logic would not know which task to boost/deboost, if
2424 * there was a need to.
52400ba9
DH
2425 *
2426 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2427 * via the following--
52400ba9 2428 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2429 * 2) wakeup on uaddr2 after a requeue
2430 * 3) signal
2431 * 4) timeout
52400ba9 2432 *
cc6db4e6 2433 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2434 *
2435 * If 2, we may then block on trying to take the rt_mutex and return via:
2436 * 5) successful lock
2437 * 6) signal
2438 * 7) timeout
2439 * 8) other lock acquisition failure
2440 *
cc6db4e6 2441 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2442 *
2443 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2444 *
6c23cbbd
RD
2445 * Return:
2446 * 0 - On success;
52400ba9
DH
2447 * <0 - On error
2448 */
b41277dc 2449static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2450 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2451 u32 __user *uaddr2)
52400ba9
DH
2452{
2453 struct hrtimer_sleeper timeout, *to = NULL;
2454 struct rt_mutex_waiter rt_waiter;
2455 struct rt_mutex *pi_mutex = NULL;
52400ba9 2456 struct futex_hash_bucket *hb;
5bdb05f9
DH
2457 union futex_key key2 = FUTEX_KEY_INIT;
2458 struct futex_q q = futex_q_init;
52400ba9 2459 int res, ret;
52400ba9 2460
6f7b0a2a
DH
2461 if (uaddr == uaddr2)
2462 return -EINVAL;
2463
52400ba9
DH
2464 if (!bitset)
2465 return -EINVAL;
2466
2467 if (abs_time) {
2468 to = &timeout;
b41277dc
DH
2469 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2470 CLOCK_REALTIME : CLOCK_MONOTONIC,
2471 HRTIMER_MODE_ABS);
52400ba9
DH
2472 hrtimer_init_sleeper(to, current);
2473 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2474 current->timer_slack_ns);
2475 }
2476
2477 /*
2478 * The waiter is allocated on our stack, manipulated by the requeue
2479 * code while we sleep on uaddr.
2480 */
2481 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2482 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2483 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2484 rt_waiter.task = NULL;
2485
9ea71503 2486 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2487 if (unlikely(ret != 0))
2488 goto out;
2489
84bc4af5
DH
2490 q.bitset = bitset;
2491 q.rt_waiter = &rt_waiter;
2492 q.requeue_pi_key = &key2;
2493
7ada876a
DH
2494 /*
2495 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2496 * count.
2497 */
b41277dc 2498 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2499 if (ret)
2500 goto out_key2;
52400ba9
DH
2501
2502 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2503 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2504
2505 spin_lock(&hb->lock);
2506 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2507 spin_unlock(&hb->lock);
2508 if (ret)
2509 goto out_put_keys;
2510
2511 /*
2512 * In order for us to be here, we know our q.key == key2, and since
2513 * we took the hb->lock above, we also know that futex_requeue() has
2514 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2515 * race with the atomic proxy lock acquisition by the requeue code. The
2516 * futex_requeue dropped our key1 reference and incremented our key2
2517 * reference count.
52400ba9
DH
2518 */
2519
2520 /* Check if the requeue code acquired the second futex for us. */
2521 if (!q.rt_waiter) {
2522 /*
2523 * Got the lock. We might not be the anticipated owner if we
2524 * did a lock-steal - fix up the PI-state in that case.
2525 */
2526 if (q.pi_state && (q.pi_state->owner != current)) {
2527 spin_lock(q.lock_ptr);
ae791a2d 2528 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2529 spin_unlock(q.lock_ptr);
2530 }
2531 } else {
2532 /*
2533 * We have been woken up by futex_unlock_pi(), a timeout, or a
2534 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2535 * the pi_state.
2536 */
f27071cb 2537 WARN_ON(!q.pi_state);
52400ba9
DH
2538 pi_mutex = &q.pi_state->pi_mutex;
2539 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2540 debug_rt_mutex_free_waiter(&rt_waiter);
2541
2542 spin_lock(q.lock_ptr);
2543 /*
2544 * Fixup the pi_state owner and possibly acquire the lock if we
2545 * haven't already.
2546 */
ae791a2d 2547 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2548 /*
2549 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2550 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2551 */
2552 if (res)
2553 ret = (res < 0) ? res : 0;
2554
2555 /* Unqueue and drop the lock. */
2556 unqueue_me_pi(&q);
2557 }
2558
2559 /*
2560 * If fixup_pi_state_owner() faulted and was unable to handle the
2561 * fault, unlock the rt_mutex and return the fault to userspace.
2562 */
2563 if (ret == -EFAULT) {
b6070a8d 2564 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2565 rt_mutex_unlock(pi_mutex);
2566 } else if (ret == -EINTR) {
52400ba9 2567 /*
cc6db4e6
DH
2568 * We've already been requeued, but cannot restart by calling
2569 * futex_lock_pi() directly. We could restart this syscall, but
2570 * it would detect that the user space "val" changed and return
2571 * -EWOULDBLOCK. Save the overhead of the restart and return
2572 * -EWOULDBLOCK directly.
52400ba9 2573 */
2070887f 2574 ret = -EWOULDBLOCK;
52400ba9
DH
2575 }
2576
2577out_put_keys:
ae791a2d 2578 put_futex_key(&q.key);
c8b15a70 2579out_key2:
ae791a2d 2580 put_futex_key(&key2);
52400ba9
DH
2581
2582out:
2583 if (to) {
2584 hrtimer_cancel(&to->timer);
2585 destroy_hrtimer_on_stack(&to->timer);
2586 }
2587 return ret;
2588}
2589
0771dfef
IM
2590/*
2591 * Support for robust futexes: the kernel cleans up held futexes at
2592 * thread exit time.
2593 *
2594 * Implementation: user-space maintains a per-thread list of locks it
2595 * is holding. Upon do_exit(), the kernel carefully walks this list,
2596 * and marks all locks that are owned by this thread with the
c87e2837 2597 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2598 * always manipulated with the lock held, so the list is private and
2599 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2600 * field, to allow the kernel to clean up if the thread dies after
2601 * acquiring the lock, but just before it could have added itself to
2602 * the list. There can only be one such pending lock.
2603 */
2604
2605/**
d96ee56c
DH
2606 * sys_set_robust_list() - Set the robust-futex list head of a task
2607 * @head: pointer to the list-head
2608 * @len: length of the list-head, as userspace expects
0771dfef 2609 */
836f92ad
HC
2610SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2611 size_t, len)
0771dfef 2612{
a0c1e907
TG
2613 if (!futex_cmpxchg_enabled)
2614 return -ENOSYS;
0771dfef
IM
2615 /*
2616 * The kernel knows only one size for now:
2617 */
2618 if (unlikely(len != sizeof(*head)))
2619 return -EINVAL;
2620
2621 current->robust_list = head;
2622
2623 return 0;
2624}
2625
2626/**
d96ee56c
DH
2627 * sys_get_robust_list() - Get the robust-futex list head of a task
2628 * @pid: pid of the process [zero for current task]
2629 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2630 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2631 */
836f92ad
HC
2632SYSCALL_DEFINE3(get_robust_list, int, pid,
2633 struct robust_list_head __user * __user *, head_ptr,
2634 size_t __user *, len_ptr)
0771dfef 2635{
ba46df98 2636 struct robust_list_head __user *head;
0771dfef 2637 unsigned long ret;
bdbb776f 2638 struct task_struct *p;
0771dfef 2639
a0c1e907
TG
2640 if (!futex_cmpxchg_enabled)
2641 return -ENOSYS;
2642
bdbb776f
KC
2643 rcu_read_lock();
2644
2645 ret = -ESRCH;
0771dfef 2646 if (!pid)
bdbb776f 2647 p = current;
0771dfef 2648 else {
228ebcbe 2649 p = find_task_by_vpid(pid);
0771dfef
IM
2650 if (!p)
2651 goto err_unlock;
0771dfef
IM
2652 }
2653
bdbb776f
KC
2654 ret = -EPERM;
2655 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2656 goto err_unlock;
2657
2658 head = p->robust_list;
2659 rcu_read_unlock();
2660
0771dfef
IM
2661 if (put_user(sizeof(*head), len_ptr))
2662 return -EFAULT;
2663 return put_user(head, head_ptr);
2664
2665err_unlock:
aaa2a97e 2666 rcu_read_unlock();
0771dfef
IM
2667
2668 return ret;
2669}
2670
2671/*
2672 * Process a futex-list entry, check whether it's owned by the
2673 * dying task, and do notification if so:
2674 */
e3f2ddea 2675int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2676{
7cfdaf38 2677 u32 uval, uninitialized_var(nval), mval;
0771dfef 2678
8f17d3a5
IM
2679retry:
2680 if (get_user(uval, uaddr))
0771dfef
IM
2681 return -1;
2682
b488893a 2683 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2684 /*
2685 * Ok, this dying thread is truly holding a futex
2686 * of interest. Set the OWNER_DIED bit atomically
2687 * via cmpxchg, and if the value had FUTEX_WAITERS
2688 * set, wake up a waiter (if any). (We have to do a
2689 * futex_wake() even if OWNER_DIED is already set -
2690 * to handle the rare but possible case of recursive
2691 * thread-death.) The rest of the cleanup is done in
2692 * userspace.
2693 */
e3f2ddea 2694 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2695 /*
2696 * We are not holding a lock here, but we want to have
2697 * the pagefault_disable/enable() protection because
2698 * we want to handle the fault gracefully. If the
2699 * access fails we try to fault in the futex with R/W
2700 * verification via get_user_pages. get_user() above
2701 * does not guarantee R/W access. If that fails we
2702 * give up and leave the futex locked.
2703 */
2704 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2705 if (fault_in_user_writeable(uaddr))
2706 return -1;
2707 goto retry;
2708 }
c87e2837 2709 if (nval != uval)
8f17d3a5 2710 goto retry;
0771dfef 2711
e3f2ddea
IM
2712 /*
2713 * Wake robust non-PI futexes here. The wakeup of
2714 * PI futexes happens in exit_pi_state():
2715 */
36cf3b5c 2716 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2717 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2718 }
2719 return 0;
2720}
2721
e3f2ddea
IM
2722/*
2723 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2724 */
2725static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2726 struct robust_list __user * __user *head,
1dcc41bb 2727 unsigned int *pi)
e3f2ddea
IM
2728{
2729 unsigned long uentry;
2730
ba46df98 2731 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2732 return -EFAULT;
2733
ba46df98 2734 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2735 *pi = uentry & 1;
2736
2737 return 0;
2738}
2739
0771dfef
IM
2740/*
2741 * Walk curr->robust_list (very carefully, it's a userspace list!)
2742 * and mark any locks found there dead, and notify any waiters.
2743 *
2744 * We silently return on any sign of list-walking problem.
2745 */
2746void exit_robust_list(struct task_struct *curr)
2747{
2748 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2749 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2750 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2751 unsigned int uninitialized_var(next_pi);
0771dfef 2752 unsigned long futex_offset;
9f96cb1e 2753 int rc;
0771dfef 2754
a0c1e907
TG
2755 if (!futex_cmpxchg_enabled)
2756 return;
2757
0771dfef
IM
2758 /*
2759 * Fetch the list head (which was registered earlier, via
2760 * sys_set_robust_list()):
2761 */
e3f2ddea 2762 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2763 return;
2764 /*
2765 * Fetch the relative futex offset:
2766 */
2767 if (get_user(futex_offset, &head->futex_offset))
2768 return;
2769 /*
2770 * Fetch any possibly pending lock-add first, and handle it
2771 * if it exists:
2772 */
e3f2ddea 2773 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2774 return;
e3f2ddea 2775
9f96cb1e 2776 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2777 while (entry != &head->list) {
9f96cb1e
MS
2778 /*
2779 * Fetch the next entry in the list before calling
2780 * handle_futex_death:
2781 */
2782 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2783 /*
2784 * A pending lock might already be on the list, so
c87e2837 2785 * don't process it twice:
0771dfef
IM
2786 */
2787 if (entry != pending)
ba46df98 2788 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2789 curr, pi))
0771dfef 2790 return;
9f96cb1e 2791 if (rc)
0771dfef 2792 return;
9f96cb1e
MS
2793 entry = next_entry;
2794 pi = next_pi;
0771dfef
IM
2795 /*
2796 * Avoid excessively long or circular lists:
2797 */
2798 if (!--limit)
2799 break;
2800
2801 cond_resched();
2802 }
9f96cb1e
MS
2803
2804 if (pending)
2805 handle_futex_death((void __user *)pending + futex_offset,
2806 curr, pip);
0771dfef
IM
2807}
2808
c19384b5 2809long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2810 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2811{
81b40539 2812 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2813 unsigned int flags = 0;
34f01cc1
ED
2814
2815 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2816 flags |= FLAGS_SHARED;
1da177e4 2817
b41277dc
DH
2818 if (op & FUTEX_CLOCK_REALTIME) {
2819 flags |= FLAGS_CLOCKRT;
2820 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2821 return -ENOSYS;
2822 }
1da177e4 2823
59263b51
TG
2824 switch (cmd) {
2825 case FUTEX_LOCK_PI:
2826 case FUTEX_UNLOCK_PI:
2827 case FUTEX_TRYLOCK_PI:
2828 case FUTEX_WAIT_REQUEUE_PI:
2829 case FUTEX_CMP_REQUEUE_PI:
2830 if (!futex_cmpxchg_enabled)
2831 return -ENOSYS;
2832 }
2833
34f01cc1 2834 switch (cmd) {
1da177e4 2835 case FUTEX_WAIT:
cd689985
TG
2836 val3 = FUTEX_BITSET_MATCH_ANY;
2837 case FUTEX_WAIT_BITSET:
81b40539 2838 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2839 case FUTEX_WAKE:
cd689985
TG
2840 val3 = FUTEX_BITSET_MATCH_ANY;
2841 case FUTEX_WAKE_BITSET:
81b40539 2842 return futex_wake(uaddr, flags, val, val3);
1da177e4 2843 case FUTEX_REQUEUE:
81b40539 2844 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2845 case FUTEX_CMP_REQUEUE:
81b40539 2846 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2847 case FUTEX_WAKE_OP:
81b40539 2848 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2849 case FUTEX_LOCK_PI:
81b40539 2850 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2851 case FUTEX_UNLOCK_PI:
81b40539 2852 return futex_unlock_pi(uaddr, flags);
c87e2837 2853 case FUTEX_TRYLOCK_PI:
81b40539 2854 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2855 case FUTEX_WAIT_REQUEUE_PI:
2856 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2857 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2858 uaddr2);
52400ba9 2859 case FUTEX_CMP_REQUEUE_PI:
81b40539 2860 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2861 }
81b40539 2862 return -ENOSYS;
1da177e4
LT
2863}
2864
2865
17da2bd9
HC
2866SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2867 struct timespec __user *, utime, u32 __user *, uaddr2,
2868 u32, val3)
1da177e4 2869{
c19384b5
PP
2870 struct timespec ts;
2871 ktime_t t, *tp = NULL;
e2970f2f 2872 u32 val2 = 0;
34f01cc1 2873 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2874
cd689985 2875 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2876 cmd == FUTEX_WAIT_BITSET ||
2877 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2878 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2879 return -EFAULT;
c19384b5 2880 if (!timespec_valid(&ts))
9741ef96 2881 return -EINVAL;
c19384b5
PP
2882
2883 t = timespec_to_ktime(ts);
34f01cc1 2884 if (cmd == FUTEX_WAIT)
5a7780e7 2885 t = ktime_add_safe(ktime_get(), t);
c19384b5 2886 tp = &t;
1da177e4
LT
2887 }
2888 /*
52400ba9 2889 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2890 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2891 */
f54f0986 2892 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2893 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2894 val2 = (u32) (unsigned long) utime;
1da177e4 2895
c19384b5 2896 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2897}
2898
03b8c7b6 2899static void __init futex_detect_cmpxchg(void)
1da177e4 2900{
03b8c7b6 2901#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2902 u32 curval;
03b8c7b6
HC
2903
2904 /*
2905 * This will fail and we want it. Some arch implementations do
2906 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2907 * functionality. We want to know that before we call in any
2908 * of the complex code paths. Also we want to prevent
2909 * registration of robust lists in that case. NULL is
2910 * guaranteed to fault and we get -EFAULT on functional
2911 * implementation, the non-functional ones will return
2912 * -ENOSYS.
2913 */
2914 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2915 futex_cmpxchg_enabled = 1;
2916#endif
2917}
2918
2919static int __init futex_init(void)
2920{
63b1a816 2921 unsigned int futex_shift;
a52b89eb
DB
2922 unsigned long i;
2923
2924#if CONFIG_BASE_SMALL
2925 futex_hashsize = 16;
2926#else
2927 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2928#endif
2929
2930 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2931 futex_hashsize, 0,
2932 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
2933 &futex_shift, NULL,
2934 futex_hashsize, futex_hashsize);
2935 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
2936
2937 futex_detect_cmpxchg();
a0c1e907 2938
a52b89eb 2939 for (i = 0; i < futex_hashsize; i++) {
11d4616b 2940 atomic_set(&futex_queues[i].waiters, 0);
732375c6 2941 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2942 spin_lock_init(&futex_queues[i].lock);
2943 }
2944
1da177e4
LT
2945 return 0;
2946}
f6d107fb 2947__initcall(futex_init);