Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9adef58b 58#include <linux/module.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
b41277dc
DH
71/*
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
74 */
75#define FLAGS_SHARED 0x01
76#define FLAGS_CLOCKRT 0x02
77#define FLAGS_HAS_TIMEOUT 0x04
78
c87e2837
IM
79/*
80 * Priority Inheritance state:
81 */
82struct futex_pi_state {
83 /*
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
86 */
87 struct list_head list;
88
89 /*
90 * The PI object:
91 */
92 struct rt_mutex pi_mutex;
93
94 struct task_struct *owner;
95 atomic_t refcount;
96
97 union futex_key key;
98};
99
d8d88fbb
DH
100/**
101 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 102 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
110 *
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
112 * we can wake only the relevant ones (hashed queues may be shared).
113 *
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 116 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
117 * the second.
118 *
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
121 */
122struct futex_q {
ec92d082 123 struct plist_node list;
1da177e4 124
d8d88fbb 125 struct task_struct *task;
1da177e4 126 spinlock_t *lock_ptr;
1da177e4 127 union futex_key key;
c87e2837 128 struct futex_pi_state *pi_state;
52400ba9 129 struct rt_mutex_waiter *rt_waiter;
84bc4af5 130 union futex_key *requeue_pi_key;
cd689985 131 u32 bitset;
1da177e4
LT
132};
133
5bdb05f9
DH
134static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
138};
139
1da177e4 140/*
b2d0994b
DH
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
1da177e4
LT
144 */
145struct futex_hash_bucket {
ec92d082
PP
146 spinlock_t lock;
147 struct plist_head chain;
1da177e4
LT
148};
149
150static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
1da177e4
LT
152/*
153 * We hash on the keys returned from get_futex_key (see below).
154 */
155static struct futex_hash_bucket *hash_futex(union futex_key *key)
156{
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161}
162
163/*
164 * Return 1 if two futex_keys are equal, 0 otherwise.
165 */
166static inline int match_futex(union futex_key *key1, union futex_key *key2)
167{
2bc87203
DH
168 return (key1 && key2
169 && key1->both.word == key2->both.word
1da177e4
LT
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
172}
173
38d47c1b
PZ
174/*
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
177 *
178 */
179static void get_futex_key_refs(union futex_key *key)
180{
181 if (!key->both.ptr)
182 return;
183
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
7de9c6ee 186 ihold(key->shared.inode);
38d47c1b
PZ
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
191 }
192}
193
194/*
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
197 */
198static void drop_futex_key_refs(union futex_key *key)
199{
90621c40
DH
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
38d47c1b 203 return;
90621c40 204 }
38d47c1b
PZ
205
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
213 }
214}
215
34f01cc1 216/**
d96ee56c
DH
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
34f01cc1
ED
221 *
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
1da177e4 224 *
f3a43f3f 225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
228 *
b2d0994b 229 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 230 */
64d1304a 231static int
7485d0d3 232get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 233{
e2970f2f 234 unsigned long address = (unsigned long)uaddr;
1da177e4 235 struct mm_struct *mm = current->mm;
1da177e4
LT
236 struct page *page;
237 int err;
238
239 /*
240 * The futex address must be "naturally" aligned.
241 */
e2970f2f 242 key->both.offset = address % PAGE_SIZE;
34f01cc1 243 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 244 return -EINVAL;
e2970f2f 245 address -= key->both.offset;
1da177e4 246
34f01cc1
ED
247 /*
248 * PROCESS_PRIVATE futexes are fast.
249 * As the mm cannot disappear under us and the 'key' only needs
250 * virtual address, we dont even have to find the underlying vma.
251 * Note : We do have to check 'uaddr' is a valid user address,
252 * but access_ok() should be faster than find_vma()
253 */
254 if (!fshared) {
7485d0d3 255 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
256 return -EFAULT;
257 key->private.mm = mm;
258 key->private.address = address;
42569c39 259 get_futex_key_refs(key);
34f01cc1
ED
260 return 0;
261 }
1da177e4 262
38d47c1b 263again:
7485d0d3 264 err = get_user_pages_fast(address, 1, 1, &page);
38d47c1b
PZ
265 if (err < 0)
266 return err;
267
ce2ae53b 268 page = compound_head(page);
38d47c1b
PZ
269 lock_page(page);
270 if (!page->mapping) {
271 unlock_page(page);
272 put_page(page);
273 goto again;
274 }
1da177e4
LT
275
276 /*
277 * Private mappings are handled in a simple way.
278 *
279 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
280 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 281 * the object not the particular process.
1da177e4 282 */
38d47c1b
PZ
283 if (PageAnon(page)) {
284 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 285 key->private.mm = mm;
e2970f2f 286 key->private.address = address;
38d47c1b
PZ
287 } else {
288 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
289 key->shared.inode = page->mapping->host;
290 key->shared.pgoff = page->index;
1da177e4
LT
291 }
292
38d47c1b 293 get_futex_key_refs(key);
1da177e4 294
38d47c1b
PZ
295 unlock_page(page);
296 put_page(page);
297 return 0;
1da177e4
LT
298}
299
ae791a2d 300static inline void put_futex_key(union futex_key *key)
1da177e4 301{
38d47c1b 302 drop_futex_key_refs(key);
1da177e4
LT
303}
304
d96ee56c
DH
305/**
306 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
307 * @uaddr: pointer to faulting user space address
308 *
309 * Slow path to fixup the fault we just took in the atomic write
310 * access to @uaddr.
311 *
fb62db2b 312 * We have no generic implementation of a non-destructive write to the
d0725992
TG
313 * user address. We know that we faulted in the atomic pagefault
314 * disabled section so we can as well avoid the #PF overhead by
315 * calling get_user_pages() right away.
316 */
317static int fault_in_user_writeable(u32 __user *uaddr)
318{
722d0172
AK
319 struct mm_struct *mm = current->mm;
320 int ret;
321
322 down_read(&mm->mmap_sem);
323 ret = get_user_pages(current, mm, (unsigned long)uaddr,
324 1, 1, 0, NULL, NULL);
325 up_read(&mm->mmap_sem);
326
d0725992
TG
327 return ret < 0 ? ret : 0;
328}
329
4b1c486b
DH
330/**
331 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
332 * @hb: the hash bucket the futex_q's reside in
333 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
334 *
335 * Must be called with the hb lock held.
336 */
337static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
338 union futex_key *key)
339{
340 struct futex_q *this;
341
342 plist_for_each_entry(this, &hb->chain, list) {
343 if (match_futex(&this->key, key))
344 return this;
345 }
346 return NULL;
347}
348
36cf3b5c
TG
349static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
350{
351 u32 curval;
352
353 pagefault_disable();
354 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
355 pagefault_enable();
356
357 return curval;
358}
359
360static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
361{
362 int ret;
363
a866374a 364 pagefault_disable();
e2970f2f 365 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 366 pagefault_enable();
1da177e4
LT
367
368 return ret ? -EFAULT : 0;
369}
370
c87e2837
IM
371
372/*
373 * PI code:
374 */
375static int refill_pi_state_cache(void)
376{
377 struct futex_pi_state *pi_state;
378
379 if (likely(current->pi_state_cache))
380 return 0;
381
4668edc3 382 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
383
384 if (!pi_state)
385 return -ENOMEM;
386
c87e2837
IM
387 INIT_LIST_HEAD(&pi_state->list);
388 /* pi_mutex gets initialized later */
389 pi_state->owner = NULL;
390 atomic_set(&pi_state->refcount, 1);
38d47c1b 391 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
392
393 current->pi_state_cache = pi_state;
394
395 return 0;
396}
397
398static struct futex_pi_state * alloc_pi_state(void)
399{
400 struct futex_pi_state *pi_state = current->pi_state_cache;
401
402 WARN_ON(!pi_state);
403 current->pi_state_cache = NULL;
404
405 return pi_state;
406}
407
408static void free_pi_state(struct futex_pi_state *pi_state)
409{
410 if (!atomic_dec_and_test(&pi_state->refcount))
411 return;
412
413 /*
414 * If pi_state->owner is NULL, the owner is most probably dying
415 * and has cleaned up the pi_state already
416 */
417 if (pi_state->owner) {
1d615482 418 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 419 list_del_init(&pi_state->list);
1d615482 420 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
421
422 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
423 }
424
425 if (current->pi_state_cache)
426 kfree(pi_state);
427 else {
428 /*
429 * pi_state->list is already empty.
430 * clear pi_state->owner.
431 * refcount is at 0 - put it back to 1.
432 */
433 pi_state->owner = NULL;
434 atomic_set(&pi_state->refcount, 1);
435 current->pi_state_cache = pi_state;
436 }
437}
438
439/*
440 * Look up the task based on what TID userspace gave us.
441 * We dont trust it.
442 */
443static struct task_struct * futex_find_get_task(pid_t pid)
444{
445 struct task_struct *p;
446
d359b549 447 rcu_read_lock();
228ebcbe 448 p = find_task_by_vpid(pid);
7a0ea09a
MH
449 if (p)
450 get_task_struct(p);
a06381fe 451
d359b549 452 rcu_read_unlock();
c87e2837
IM
453
454 return p;
455}
456
457/*
458 * This task is holding PI mutexes at exit time => bad.
459 * Kernel cleans up PI-state, but userspace is likely hosed.
460 * (Robust-futex cleanup is separate and might save the day for userspace.)
461 */
462void exit_pi_state_list(struct task_struct *curr)
463{
c87e2837
IM
464 struct list_head *next, *head = &curr->pi_state_list;
465 struct futex_pi_state *pi_state;
627371d7 466 struct futex_hash_bucket *hb;
38d47c1b 467 union futex_key key = FUTEX_KEY_INIT;
c87e2837 468
a0c1e907
TG
469 if (!futex_cmpxchg_enabled)
470 return;
c87e2837
IM
471 /*
472 * We are a ZOMBIE and nobody can enqueue itself on
473 * pi_state_list anymore, but we have to be careful
627371d7 474 * versus waiters unqueueing themselves:
c87e2837 475 */
1d615482 476 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
477 while (!list_empty(head)) {
478
479 next = head->next;
480 pi_state = list_entry(next, struct futex_pi_state, list);
481 key = pi_state->key;
627371d7 482 hb = hash_futex(&key);
1d615482 483 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 484
c87e2837
IM
485 spin_lock(&hb->lock);
486
1d615482 487 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
488 /*
489 * We dropped the pi-lock, so re-check whether this
490 * task still owns the PI-state:
491 */
c87e2837
IM
492 if (head->next != next) {
493 spin_unlock(&hb->lock);
494 continue;
495 }
496
c87e2837 497 WARN_ON(pi_state->owner != curr);
627371d7
IM
498 WARN_ON(list_empty(&pi_state->list));
499 list_del_init(&pi_state->list);
c87e2837 500 pi_state->owner = NULL;
1d615482 501 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
502
503 rt_mutex_unlock(&pi_state->pi_mutex);
504
505 spin_unlock(&hb->lock);
506
1d615482 507 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 508 }
1d615482 509 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
510}
511
512static int
d0aa7a70
PP
513lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
514 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
515{
516 struct futex_pi_state *pi_state = NULL;
517 struct futex_q *this, *next;
ec92d082 518 struct plist_head *head;
c87e2837 519 struct task_struct *p;
778e9a9c 520 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
521
522 head = &hb->chain;
523
ec92d082 524 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 525 if (match_futex(&this->key, key)) {
c87e2837
IM
526 /*
527 * Another waiter already exists - bump up
528 * the refcount and return its pi_state:
529 */
530 pi_state = this->pi_state;
06a9ec29 531 /*
fb62db2b 532 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
533 */
534 if (unlikely(!pi_state))
535 return -EINVAL;
536
627371d7 537 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
538
539 /*
540 * When pi_state->owner is NULL then the owner died
541 * and another waiter is on the fly. pi_state->owner
542 * is fixed up by the task which acquires
543 * pi_state->rt_mutex.
544 *
545 * We do not check for pid == 0 which can happen when
546 * the owner died and robust_list_exit() cleared the
547 * TID.
548 */
549 if (pid && pi_state->owner) {
550 /*
551 * Bail out if user space manipulated the
552 * futex value.
553 */
554 if (pid != task_pid_vnr(pi_state->owner))
555 return -EINVAL;
556 }
627371d7 557
c87e2837 558 atomic_inc(&pi_state->refcount);
d0aa7a70 559 *ps = pi_state;
c87e2837
IM
560
561 return 0;
562 }
563 }
564
565 /*
e3f2ddea 566 * We are the first waiter - try to look up the real owner and attach
778e9a9c 567 * the new pi_state to it, but bail out when TID = 0
c87e2837 568 */
778e9a9c 569 if (!pid)
e3f2ddea 570 return -ESRCH;
c87e2837 571 p = futex_find_get_task(pid);
7a0ea09a
MH
572 if (!p)
573 return -ESRCH;
778e9a9c
AK
574
575 /*
576 * We need to look at the task state flags to figure out,
577 * whether the task is exiting. To protect against the do_exit
578 * change of the task flags, we do this protected by
579 * p->pi_lock:
580 */
1d615482 581 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
582 if (unlikely(p->flags & PF_EXITING)) {
583 /*
584 * The task is on the way out. When PF_EXITPIDONE is
585 * set, we know that the task has finished the
586 * cleanup:
587 */
588 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
589
1d615482 590 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
591 put_task_struct(p);
592 return ret;
593 }
c87e2837
IM
594
595 pi_state = alloc_pi_state();
596
597 /*
598 * Initialize the pi_mutex in locked state and make 'p'
599 * the owner of it:
600 */
601 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
602
603 /* Store the key for possible exit cleanups: */
d0aa7a70 604 pi_state->key = *key;
c87e2837 605
627371d7 606 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
607 list_add(&pi_state->list, &p->pi_state_list);
608 pi_state->owner = p;
1d615482 609 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
610
611 put_task_struct(p);
612
d0aa7a70 613 *ps = pi_state;
c87e2837
IM
614
615 return 0;
616}
617
1a52084d 618/**
d96ee56c 619 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
620 * @uaddr: the pi futex user address
621 * @hb: the pi futex hash bucket
622 * @key: the futex key associated with uaddr and hb
623 * @ps: the pi_state pointer where we store the result of the
624 * lookup
625 * @task: the task to perform the atomic lock work for. This will
626 * be "current" except in the case of requeue pi.
627 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
628 *
629 * Returns:
630 * 0 - ready to wait
631 * 1 - acquired the lock
632 * <0 - error
633 *
634 * The hb->lock and futex_key refs shall be held by the caller.
635 */
636static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
637 union futex_key *key,
638 struct futex_pi_state **ps,
bab5bc9e 639 struct task_struct *task, int set_waiters)
1a52084d
DH
640{
641 int lock_taken, ret, ownerdied = 0;
642 u32 uval, newval, curval;
643
644retry:
645 ret = lock_taken = 0;
646
647 /*
648 * To avoid races, we attempt to take the lock here again
649 * (by doing a 0 -> TID atomic cmpxchg), while holding all
650 * the locks. It will most likely not succeed.
651 */
652 newval = task_pid_vnr(task);
bab5bc9e
DH
653 if (set_waiters)
654 newval |= FUTEX_WAITERS;
1a52084d
DH
655
656 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
657
658 if (unlikely(curval == -EFAULT))
659 return -EFAULT;
660
661 /*
662 * Detect deadlocks.
663 */
664 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
665 return -EDEADLK;
666
667 /*
668 * Surprise - we got the lock. Just return to userspace:
669 */
670 if (unlikely(!curval))
671 return 1;
672
673 uval = curval;
674
675 /*
676 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
677 * to wake at the next unlock.
678 */
679 newval = curval | FUTEX_WAITERS;
680
681 /*
682 * There are two cases, where a futex might have no owner (the
683 * owner TID is 0): OWNER_DIED. We take over the futex in this
684 * case. We also do an unconditional take over, when the owner
685 * of the futex died.
686 *
687 * This is safe as we are protected by the hash bucket lock !
688 */
689 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
690 /* Keep the OWNER_DIED bit */
691 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
692 ownerdied = 0;
693 lock_taken = 1;
694 }
695
696 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
697
698 if (unlikely(curval == -EFAULT))
699 return -EFAULT;
700 if (unlikely(curval != uval))
701 goto retry;
702
703 /*
704 * We took the lock due to owner died take over.
705 */
706 if (unlikely(lock_taken))
707 return 1;
708
709 /*
710 * We dont have the lock. Look up the PI state (or create it if
711 * we are the first waiter):
712 */
713 ret = lookup_pi_state(uval, hb, key, ps);
714
715 if (unlikely(ret)) {
716 switch (ret) {
717 case -ESRCH:
718 /*
719 * No owner found for this futex. Check if the
720 * OWNER_DIED bit is set to figure out whether
721 * this is a robust futex or not.
722 */
723 if (get_futex_value_locked(&curval, uaddr))
724 return -EFAULT;
725
726 /*
727 * We simply start over in case of a robust
728 * futex. The code above will take the futex
729 * and return happy.
730 */
731 if (curval & FUTEX_OWNER_DIED) {
732 ownerdied = 1;
733 goto retry;
734 }
735 default:
736 break;
737 }
738 }
739
740 return ret;
741}
742
1da177e4
LT
743/*
744 * The hash bucket lock must be held when this is called.
745 * Afterwards, the futex_q must not be accessed.
746 */
747static void wake_futex(struct futex_q *q)
748{
f1a11e05
TG
749 struct task_struct *p = q->task;
750
1da177e4 751 /*
f1a11e05 752 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
753 * a non-futex wake up happens on another CPU then the task
754 * might exit and p would dereference a non-existing task
f1a11e05
TG
755 * struct. Prevent this by holding a reference on p across the
756 * wake up.
1da177e4 757 */
f1a11e05
TG
758 get_task_struct(p);
759
760 plist_del(&q->list, &q->list.plist);
1da177e4 761 /*
f1a11e05
TG
762 * The waiting task can free the futex_q as soon as
763 * q->lock_ptr = NULL is written, without taking any locks. A
764 * memory barrier is required here to prevent the following
765 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 766 */
ccdea2f8 767 smp_wmb();
1da177e4 768 q->lock_ptr = NULL;
f1a11e05
TG
769
770 wake_up_state(p, TASK_NORMAL);
771 put_task_struct(p);
1da177e4
LT
772}
773
c87e2837
IM
774static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
775{
776 struct task_struct *new_owner;
777 struct futex_pi_state *pi_state = this->pi_state;
778 u32 curval, newval;
779
780 if (!pi_state)
781 return -EINVAL;
782
51246bfd
TG
783 /*
784 * If current does not own the pi_state then the futex is
785 * inconsistent and user space fiddled with the futex value.
786 */
787 if (pi_state->owner != current)
788 return -EINVAL;
789
d209d74d 790 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
791 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
792
793 /*
794 * This happens when we have stolen the lock and the original
795 * pending owner did not enqueue itself back on the rt_mutex.
796 * Thats not a tragedy. We know that way, that a lock waiter
797 * is on the fly. We make the futex_q waiter the pending owner.
798 */
799 if (!new_owner)
800 new_owner = this->task;
801
802 /*
803 * We pass it to the next owner. (The WAITERS bit is always
804 * kept enabled while there is PI state around. We must also
805 * preserve the owner died bit.)
806 */
e3f2ddea 807 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
808 int ret = 0;
809
b488893a 810 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 811
36cf3b5c 812 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 813
e3f2ddea 814 if (curval == -EFAULT)
778e9a9c 815 ret = -EFAULT;
cde898fa 816 else if (curval != uval)
778e9a9c
AK
817 ret = -EINVAL;
818 if (ret) {
d209d74d 819 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
820 return ret;
821 }
e3f2ddea 822 }
c87e2837 823
1d615482 824 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
825 WARN_ON(list_empty(&pi_state->list));
826 list_del_init(&pi_state->list);
1d615482 827 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 828
1d615482 829 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 830 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
831 list_add(&pi_state->list, &new_owner->pi_state_list);
832 pi_state->owner = new_owner;
1d615482 833 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 834
d209d74d 835 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
836 rt_mutex_unlock(&pi_state->pi_mutex);
837
838 return 0;
839}
840
841static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
842{
843 u32 oldval;
844
845 /*
846 * There is no waiter, so we unlock the futex. The owner died
847 * bit has not to be preserved here. We are the owner:
848 */
36cf3b5c 849 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
850
851 if (oldval == -EFAULT)
852 return oldval;
853 if (oldval != uval)
854 return -EAGAIN;
855
856 return 0;
857}
858
8b8f319f
IM
859/*
860 * Express the locking dependencies for lockdep:
861 */
862static inline void
863double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
864{
865 if (hb1 <= hb2) {
866 spin_lock(&hb1->lock);
867 if (hb1 < hb2)
868 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
869 } else { /* hb1 > hb2 */
870 spin_lock(&hb2->lock);
871 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
872 }
873}
874
5eb3dc62
DH
875static inline void
876double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
877{
f061d351 878 spin_unlock(&hb1->lock);
88f502fe
IM
879 if (hb1 != hb2)
880 spin_unlock(&hb2->lock);
5eb3dc62
DH
881}
882
1da177e4 883/*
b2d0994b 884 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 885 */
b41277dc
DH
886static int
887futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 888{
e2970f2f 889 struct futex_hash_bucket *hb;
1da177e4 890 struct futex_q *this, *next;
ec92d082 891 struct plist_head *head;
38d47c1b 892 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
893 int ret;
894
cd689985
TG
895 if (!bitset)
896 return -EINVAL;
897
b41277dc 898 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
1da177e4
LT
899 if (unlikely(ret != 0))
900 goto out;
901
e2970f2f
IM
902 hb = hash_futex(&key);
903 spin_lock(&hb->lock);
904 head = &hb->chain;
1da177e4 905
ec92d082 906 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 907 if (match_futex (&this->key, &key)) {
52400ba9 908 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
909 ret = -EINVAL;
910 break;
911 }
cd689985
TG
912
913 /* Check if one of the bits is set in both bitsets */
914 if (!(this->bitset & bitset))
915 continue;
916
1da177e4
LT
917 wake_futex(this);
918 if (++ret >= nr_wake)
919 break;
920 }
921 }
922
e2970f2f 923 spin_unlock(&hb->lock);
ae791a2d 924 put_futex_key(&key);
42d35d48 925out:
1da177e4
LT
926 return ret;
927}
928
4732efbe
JJ
929/*
930 * Wake up all waiters hashed on the physical page that is mapped
931 * to this virtual address:
932 */
e2970f2f 933static int
b41277dc 934futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 935 int nr_wake, int nr_wake2, int op)
4732efbe 936{
38d47c1b 937 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 938 struct futex_hash_bucket *hb1, *hb2;
ec92d082 939 struct plist_head *head;
4732efbe 940 struct futex_q *this, *next;
e4dc5b7a 941 int ret, op_ret;
4732efbe 942
e4dc5b7a 943retry:
b41277dc 944 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
4732efbe
JJ
945 if (unlikely(ret != 0))
946 goto out;
b41277dc 947 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
4732efbe 948 if (unlikely(ret != 0))
42d35d48 949 goto out_put_key1;
4732efbe 950
e2970f2f
IM
951 hb1 = hash_futex(&key1);
952 hb2 = hash_futex(&key2);
4732efbe 953
e4dc5b7a 954retry_private:
eaaea803 955 double_lock_hb(hb1, hb2);
e2970f2f 956 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 957 if (unlikely(op_ret < 0)) {
4732efbe 958
5eb3dc62 959 double_unlock_hb(hb1, hb2);
4732efbe 960
7ee1dd3f 961#ifndef CONFIG_MMU
e2970f2f
IM
962 /*
963 * we don't get EFAULT from MMU faults if we don't have an MMU,
964 * but we might get them from range checking
965 */
7ee1dd3f 966 ret = op_ret;
42d35d48 967 goto out_put_keys;
7ee1dd3f
DH
968#endif
969
796f8d9b
DG
970 if (unlikely(op_ret != -EFAULT)) {
971 ret = op_ret;
42d35d48 972 goto out_put_keys;
796f8d9b
DG
973 }
974
d0725992 975 ret = fault_in_user_writeable(uaddr2);
4732efbe 976 if (ret)
de87fcc1 977 goto out_put_keys;
4732efbe 978
b41277dc 979 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
980 goto retry_private;
981
ae791a2d
TG
982 put_futex_key(&key2);
983 put_futex_key(&key1);
e4dc5b7a 984 goto retry;
4732efbe
JJ
985 }
986
e2970f2f 987 head = &hb1->chain;
4732efbe 988
ec92d082 989 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
990 if (match_futex (&this->key, &key1)) {
991 wake_futex(this);
992 if (++ret >= nr_wake)
993 break;
994 }
995 }
996
997 if (op_ret > 0) {
e2970f2f 998 head = &hb2->chain;
4732efbe
JJ
999
1000 op_ret = 0;
ec92d082 1001 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
1002 if (match_futex (&this->key, &key2)) {
1003 wake_futex(this);
1004 if (++op_ret >= nr_wake2)
1005 break;
1006 }
1007 }
1008 ret += op_ret;
1009 }
1010
5eb3dc62 1011 double_unlock_hb(hb1, hb2);
42d35d48 1012out_put_keys:
ae791a2d 1013 put_futex_key(&key2);
42d35d48 1014out_put_key1:
ae791a2d 1015 put_futex_key(&key1);
42d35d48 1016out:
4732efbe
JJ
1017 return ret;
1018}
1019
9121e478
DH
1020/**
1021 * requeue_futex() - Requeue a futex_q from one hb to another
1022 * @q: the futex_q to requeue
1023 * @hb1: the source hash_bucket
1024 * @hb2: the target hash_bucket
1025 * @key2: the new key for the requeued futex_q
1026 */
1027static inline
1028void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1029 struct futex_hash_bucket *hb2, union futex_key *key2)
1030{
1031
1032 /*
1033 * If key1 and key2 hash to the same bucket, no need to
1034 * requeue.
1035 */
1036 if (likely(&hb1->chain != &hb2->chain)) {
1037 plist_del(&q->list, &hb1->chain);
1038 plist_add(&q->list, &hb2->chain);
1039 q->lock_ptr = &hb2->lock;
1040#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1041 q->list.plist.spinlock = &hb2->lock;
9121e478
DH
1042#endif
1043 }
1044 get_futex_key_refs(key2);
1045 q->key = *key2;
1046}
1047
52400ba9
DH
1048/**
1049 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1050 * @q: the futex_q
1051 * @key: the key of the requeue target futex
1052 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1053 *
1054 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1055 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1056 * to the requeue target futex so the waiter can detect the wakeup on the right
1057 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1058 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1059 * to protect access to the pi_state to fixup the owner later. Must be called
1060 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1061 */
1062static inline
beda2c7e
DH
1063void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1064 struct futex_hash_bucket *hb)
52400ba9 1065{
52400ba9
DH
1066 get_futex_key_refs(key);
1067 q->key = *key;
1068
1069 WARN_ON(plist_node_empty(&q->list));
1070 plist_del(&q->list, &q->list.plist);
1071
1072 WARN_ON(!q->rt_waiter);
1073 q->rt_waiter = NULL;
1074
beda2c7e
DH
1075 q->lock_ptr = &hb->lock;
1076#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1077 q->list.plist.spinlock = &hb->lock;
beda2c7e
DH
1078#endif
1079
f1a11e05 1080 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1081}
1082
1083/**
1084 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1085 * @pifutex: the user address of the to futex
1086 * @hb1: the from futex hash bucket, must be locked by the caller
1087 * @hb2: the to futex hash bucket, must be locked by the caller
1088 * @key1: the from futex key
1089 * @key2: the to futex key
1090 * @ps: address to store the pi_state pointer
1091 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1092 *
1093 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1094 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1095 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1096 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1097 *
1098 * Returns:
1099 * 0 - failed to acquire the lock atomicly
1100 * 1 - acquired the lock
1101 * <0 - error
1102 */
1103static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1104 struct futex_hash_bucket *hb1,
1105 struct futex_hash_bucket *hb2,
1106 union futex_key *key1, union futex_key *key2,
bab5bc9e 1107 struct futex_pi_state **ps, int set_waiters)
52400ba9 1108{
bab5bc9e 1109 struct futex_q *top_waiter = NULL;
52400ba9
DH
1110 u32 curval;
1111 int ret;
1112
1113 if (get_futex_value_locked(&curval, pifutex))
1114 return -EFAULT;
1115
bab5bc9e
DH
1116 /*
1117 * Find the top_waiter and determine if there are additional waiters.
1118 * If the caller intends to requeue more than 1 waiter to pifutex,
1119 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1120 * as we have means to handle the possible fault. If not, don't set
1121 * the bit unecessarily as it will force the subsequent unlock to enter
1122 * the kernel.
1123 */
52400ba9
DH
1124 top_waiter = futex_top_waiter(hb1, key1);
1125
1126 /* There are no waiters, nothing for us to do. */
1127 if (!top_waiter)
1128 return 0;
1129
84bc4af5
DH
1130 /* Ensure we requeue to the expected futex. */
1131 if (!match_futex(top_waiter->requeue_pi_key, key2))
1132 return -EINVAL;
1133
52400ba9 1134 /*
bab5bc9e
DH
1135 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1136 * the contended case or if set_waiters is 1. The pi_state is returned
1137 * in ps in contended cases.
52400ba9 1138 */
bab5bc9e
DH
1139 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1140 set_waiters);
52400ba9 1141 if (ret == 1)
beda2c7e 1142 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1143
1144 return ret;
1145}
1146
1147/**
1148 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1149 * @uaddr1: source futex user address
b41277dc 1150 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1151 * @uaddr2: target futex user address
1152 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1153 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1154 * @cmpval: @uaddr1 expected value (or %NULL)
1155 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1156 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1157 *
1158 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1159 * uaddr2 atomically on behalf of the top waiter.
1160 *
1161 * Returns:
1162 * >=0 - on success, the number of tasks requeued or woken
1163 * <0 - on error
1da177e4 1164 */
b41277dc
DH
1165static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1166 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1167 u32 *cmpval, int requeue_pi)
1da177e4 1168{
38d47c1b 1169 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1170 int drop_count = 0, task_count = 0, ret;
1171 struct futex_pi_state *pi_state = NULL;
e2970f2f 1172 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1173 struct plist_head *head1;
1da177e4 1174 struct futex_q *this, *next;
52400ba9
DH
1175 u32 curval2;
1176
1177 if (requeue_pi) {
1178 /*
1179 * requeue_pi requires a pi_state, try to allocate it now
1180 * without any locks in case it fails.
1181 */
1182 if (refill_pi_state_cache())
1183 return -ENOMEM;
1184 /*
1185 * requeue_pi must wake as many tasks as it can, up to nr_wake
1186 * + nr_requeue, since it acquires the rt_mutex prior to
1187 * returning to userspace, so as to not leave the rt_mutex with
1188 * waiters and no owner. However, second and third wake-ups
1189 * cannot be predicted as they involve race conditions with the
1190 * first wake and a fault while looking up the pi_state. Both
1191 * pthread_cond_signal() and pthread_cond_broadcast() should
1192 * use nr_wake=1.
1193 */
1194 if (nr_wake != 1)
1195 return -EINVAL;
1196 }
1da177e4 1197
42d35d48 1198retry:
52400ba9
DH
1199 if (pi_state != NULL) {
1200 /*
1201 * We will have to lookup the pi_state again, so free this one
1202 * to keep the accounting correct.
1203 */
1204 free_pi_state(pi_state);
1205 pi_state = NULL;
1206 }
1207
b41277dc 1208 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1da177e4
LT
1209 if (unlikely(ret != 0))
1210 goto out;
b41277dc 1211 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1da177e4 1212 if (unlikely(ret != 0))
42d35d48 1213 goto out_put_key1;
1da177e4 1214
e2970f2f
IM
1215 hb1 = hash_futex(&key1);
1216 hb2 = hash_futex(&key2);
1da177e4 1217
e4dc5b7a 1218retry_private:
8b8f319f 1219 double_lock_hb(hb1, hb2);
1da177e4 1220
e2970f2f
IM
1221 if (likely(cmpval != NULL)) {
1222 u32 curval;
1da177e4 1223
e2970f2f 1224 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1225
1226 if (unlikely(ret)) {
5eb3dc62 1227 double_unlock_hb(hb1, hb2);
1da177e4 1228
e2970f2f 1229 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1230 if (ret)
1231 goto out_put_keys;
1da177e4 1232
b41277dc 1233 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1234 goto retry_private;
1da177e4 1235
ae791a2d
TG
1236 put_futex_key(&key2);
1237 put_futex_key(&key1);
e4dc5b7a 1238 goto retry;
1da177e4 1239 }
e2970f2f 1240 if (curval != *cmpval) {
1da177e4
LT
1241 ret = -EAGAIN;
1242 goto out_unlock;
1243 }
1244 }
1245
52400ba9 1246 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1247 /*
1248 * Attempt to acquire uaddr2 and wake the top waiter. If we
1249 * intend to requeue waiters, force setting the FUTEX_WAITERS
1250 * bit. We force this here where we are able to easily handle
1251 * faults rather in the requeue loop below.
1252 */
52400ba9 1253 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1254 &key2, &pi_state, nr_requeue);
52400ba9
DH
1255
1256 /*
1257 * At this point the top_waiter has either taken uaddr2 or is
1258 * waiting on it. If the former, then the pi_state will not
1259 * exist yet, look it up one more time to ensure we have a
1260 * reference to it.
1261 */
1262 if (ret == 1) {
1263 WARN_ON(pi_state);
89061d3d 1264 drop_count++;
52400ba9
DH
1265 task_count++;
1266 ret = get_futex_value_locked(&curval2, uaddr2);
1267 if (!ret)
1268 ret = lookup_pi_state(curval2, hb2, &key2,
1269 &pi_state);
1270 }
1271
1272 switch (ret) {
1273 case 0:
1274 break;
1275 case -EFAULT:
1276 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1277 put_futex_key(&key2);
1278 put_futex_key(&key1);
d0725992 1279 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1280 if (!ret)
1281 goto retry;
1282 goto out;
1283 case -EAGAIN:
1284 /* The owner was exiting, try again. */
1285 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1286 put_futex_key(&key2);
1287 put_futex_key(&key1);
52400ba9
DH
1288 cond_resched();
1289 goto retry;
1290 default:
1291 goto out_unlock;
1292 }
1293 }
1294
e2970f2f 1295 head1 = &hb1->chain;
ec92d082 1296 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1297 if (task_count - nr_wake >= nr_requeue)
1298 break;
1299
1300 if (!match_futex(&this->key, &key1))
1da177e4 1301 continue;
52400ba9 1302
392741e0
DH
1303 /*
1304 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1305 * be paired with each other and no other futex ops.
1306 */
1307 if ((requeue_pi && !this->rt_waiter) ||
1308 (!requeue_pi && this->rt_waiter)) {
1309 ret = -EINVAL;
1310 break;
1311 }
52400ba9
DH
1312
1313 /*
1314 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1315 * lock, we already woke the top_waiter. If not, it will be
1316 * woken by futex_unlock_pi().
1317 */
1318 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1319 wake_futex(this);
52400ba9
DH
1320 continue;
1321 }
1da177e4 1322
84bc4af5
DH
1323 /* Ensure we requeue to the expected futex for requeue_pi. */
1324 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1325 ret = -EINVAL;
1326 break;
1327 }
1328
52400ba9
DH
1329 /*
1330 * Requeue nr_requeue waiters and possibly one more in the case
1331 * of requeue_pi if we couldn't acquire the lock atomically.
1332 */
1333 if (requeue_pi) {
1334 /* Prepare the waiter to take the rt_mutex. */
1335 atomic_inc(&pi_state->refcount);
1336 this->pi_state = pi_state;
1337 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1338 this->rt_waiter,
1339 this->task, 1);
1340 if (ret == 1) {
1341 /* We got the lock. */
beda2c7e 1342 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1343 drop_count++;
52400ba9
DH
1344 continue;
1345 } else if (ret) {
1346 /* -EDEADLK */
1347 this->pi_state = NULL;
1348 free_pi_state(pi_state);
1349 goto out_unlock;
1350 }
1da177e4 1351 }
52400ba9
DH
1352 requeue_futex(this, hb1, hb2, &key2);
1353 drop_count++;
1da177e4
LT
1354 }
1355
1356out_unlock:
5eb3dc62 1357 double_unlock_hb(hb1, hb2);
1da177e4 1358
cd84a42f
DH
1359 /*
1360 * drop_futex_key_refs() must be called outside the spinlocks. During
1361 * the requeue we moved futex_q's from the hash bucket at key1 to the
1362 * one at key2 and updated their key pointer. We no longer need to
1363 * hold the references to key1.
1364 */
1da177e4 1365 while (--drop_count >= 0)
9adef58b 1366 drop_futex_key_refs(&key1);
1da177e4 1367
42d35d48 1368out_put_keys:
ae791a2d 1369 put_futex_key(&key2);
42d35d48 1370out_put_key1:
ae791a2d 1371 put_futex_key(&key1);
42d35d48 1372out:
52400ba9
DH
1373 if (pi_state != NULL)
1374 free_pi_state(pi_state);
1375 return ret ? ret : task_count;
1da177e4
LT
1376}
1377
1378/* The key must be already stored in q->key. */
82af7aca 1379static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1380 __acquires(&hb->lock)
1da177e4 1381{
e2970f2f 1382 struct futex_hash_bucket *hb;
1da177e4 1383
e2970f2f
IM
1384 hb = hash_futex(&q->key);
1385 q->lock_ptr = &hb->lock;
1da177e4 1386
e2970f2f
IM
1387 spin_lock(&hb->lock);
1388 return hb;
1da177e4
LT
1389}
1390
d40d65c8
DH
1391static inline void
1392queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1393 __releases(&hb->lock)
d40d65c8
DH
1394{
1395 spin_unlock(&hb->lock);
d40d65c8
DH
1396}
1397
1398/**
1399 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1400 * @q: The futex_q to enqueue
1401 * @hb: The destination hash bucket
1402 *
1403 * The hb->lock must be held by the caller, and is released here. A call to
1404 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1405 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1406 * or nothing if the unqueue is done as part of the wake process and the unqueue
1407 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1408 * an example).
1409 */
82af7aca 1410static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1411 __releases(&hb->lock)
1da177e4 1412{
ec92d082
PP
1413 int prio;
1414
1415 /*
1416 * The priority used to register this element is
1417 * - either the real thread-priority for the real-time threads
1418 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1419 * - or MAX_RT_PRIO for non-RT threads.
1420 * Thus, all RT-threads are woken first in priority order, and
1421 * the others are woken last, in FIFO order.
1422 */
1423 prio = min(current->normal_prio, MAX_RT_PRIO);
1424
1425 plist_node_init(&q->list, prio);
1426#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1427 q->list.plist.spinlock = &hb->lock;
ec92d082
PP
1428#endif
1429 plist_add(&q->list, &hb->chain);
c87e2837 1430 q->task = current;
e2970f2f 1431 spin_unlock(&hb->lock);
1da177e4
LT
1432}
1433
d40d65c8
DH
1434/**
1435 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1436 * @q: The futex_q to unqueue
1437 *
1438 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1439 * be paired with exactly one earlier call to queue_me().
1440 *
1441 * Returns:
1442 * 1 - if the futex_q was still queued (and we removed unqueued it)
1443 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1444 */
1da177e4
LT
1445static int unqueue_me(struct futex_q *q)
1446{
1da177e4 1447 spinlock_t *lock_ptr;
e2970f2f 1448 int ret = 0;
1da177e4
LT
1449
1450 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1451retry:
1da177e4 1452 lock_ptr = q->lock_ptr;
e91467ec 1453 barrier();
c80544dc 1454 if (lock_ptr != NULL) {
1da177e4
LT
1455 spin_lock(lock_ptr);
1456 /*
1457 * q->lock_ptr can change between reading it and
1458 * spin_lock(), causing us to take the wrong lock. This
1459 * corrects the race condition.
1460 *
1461 * Reasoning goes like this: if we have the wrong lock,
1462 * q->lock_ptr must have changed (maybe several times)
1463 * between reading it and the spin_lock(). It can
1464 * change again after the spin_lock() but only if it was
1465 * already changed before the spin_lock(). It cannot,
1466 * however, change back to the original value. Therefore
1467 * we can detect whether we acquired the correct lock.
1468 */
1469 if (unlikely(lock_ptr != q->lock_ptr)) {
1470 spin_unlock(lock_ptr);
1471 goto retry;
1472 }
ec92d082
PP
1473 WARN_ON(plist_node_empty(&q->list));
1474 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1475
1476 BUG_ON(q->pi_state);
1477
1da177e4
LT
1478 spin_unlock(lock_ptr);
1479 ret = 1;
1480 }
1481
9adef58b 1482 drop_futex_key_refs(&q->key);
1da177e4
LT
1483 return ret;
1484}
1485
c87e2837
IM
1486/*
1487 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1488 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1489 * and dropped here.
c87e2837 1490 */
d0aa7a70 1491static void unqueue_me_pi(struct futex_q *q)
15e408cd 1492 __releases(q->lock_ptr)
c87e2837 1493{
ec92d082
PP
1494 WARN_ON(plist_node_empty(&q->list));
1495 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1496
1497 BUG_ON(!q->pi_state);
1498 free_pi_state(q->pi_state);
1499 q->pi_state = NULL;
1500
d0aa7a70 1501 spin_unlock(q->lock_ptr);
c87e2837
IM
1502}
1503
d0aa7a70 1504/*
cdf71a10 1505 * Fixup the pi_state owner with the new owner.
d0aa7a70 1506 *
778e9a9c
AK
1507 * Must be called with hash bucket lock held and mm->sem held for non
1508 * private futexes.
d0aa7a70 1509 */
778e9a9c 1510static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1511 struct task_struct *newowner)
d0aa7a70 1512{
cdf71a10 1513 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1514 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1515 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1516 u32 uval, curval, newval;
e4dc5b7a 1517 int ret;
d0aa7a70
PP
1518
1519 /* Owner died? */
1b7558e4
TG
1520 if (!pi_state->owner)
1521 newtid |= FUTEX_OWNER_DIED;
1522
1523 /*
1524 * We are here either because we stole the rtmutex from the
1525 * pending owner or we are the pending owner which failed to
1526 * get the rtmutex. We have to replace the pending owner TID
1527 * in the user space variable. This must be atomic as we have
1528 * to preserve the owner died bit here.
1529 *
b2d0994b
DH
1530 * Note: We write the user space value _before_ changing the pi_state
1531 * because we can fault here. Imagine swapped out pages or a fork
1532 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1533 *
1534 * Modifying pi_state _before_ the user space value would
1535 * leave the pi_state in an inconsistent state when we fault
1536 * here, because we need to drop the hash bucket lock to
1537 * handle the fault. This might be observed in the PID check
1538 * in lookup_pi_state.
1539 */
1540retry:
1541 if (get_futex_value_locked(&uval, uaddr))
1542 goto handle_fault;
1543
1544 while (1) {
1545 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1546
1547 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1548
1549 if (curval == -EFAULT)
1550 goto handle_fault;
1551 if (curval == uval)
1552 break;
1553 uval = curval;
1554 }
1555
1556 /*
1557 * We fixed up user space. Now we need to fix the pi_state
1558 * itself.
1559 */
d0aa7a70 1560 if (pi_state->owner != NULL) {
1d615482 1561 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1562 WARN_ON(list_empty(&pi_state->list));
1563 list_del_init(&pi_state->list);
1d615482 1564 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1565 }
d0aa7a70 1566
cdf71a10 1567 pi_state->owner = newowner;
d0aa7a70 1568
1d615482 1569 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1570 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1571 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1572 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1573 return 0;
d0aa7a70 1574
d0aa7a70 1575 /*
1b7558e4
TG
1576 * To handle the page fault we need to drop the hash bucket
1577 * lock here. That gives the other task (either the pending
1578 * owner itself or the task which stole the rtmutex) the
1579 * chance to try the fixup of the pi_state. So once we are
1580 * back from handling the fault we need to check the pi_state
1581 * after reacquiring the hash bucket lock and before trying to
1582 * do another fixup. When the fixup has been done already we
1583 * simply return.
d0aa7a70 1584 */
1b7558e4
TG
1585handle_fault:
1586 spin_unlock(q->lock_ptr);
778e9a9c 1587
d0725992 1588 ret = fault_in_user_writeable(uaddr);
778e9a9c 1589
1b7558e4 1590 spin_lock(q->lock_ptr);
778e9a9c 1591
1b7558e4
TG
1592 /*
1593 * Check if someone else fixed it for us:
1594 */
1595 if (pi_state->owner != oldowner)
1596 return 0;
1597
1598 if (ret)
1599 return ret;
1600
1601 goto retry;
d0aa7a70
PP
1602}
1603
72c1bbf3 1604static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1605
dd973998
DH
1606/**
1607 * fixup_owner() - Post lock pi_state and corner case management
1608 * @uaddr: user address of the futex
dd973998
DH
1609 * @q: futex_q (contains pi_state and access to the rt_mutex)
1610 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1611 *
1612 * After attempting to lock an rt_mutex, this function is called to cleanup
1613 * the pi_state owner as well as handle race conditions that may allow us to
1614 * acquire the lock. Must be called with the hb lock held.
1615 *
1616 * Returns:
1617 * 1 - success, lock taken
1618 * 0 - success, lock not taken
1619 * <0 - on error (-EFAULT)
1620 */
ae791a2d 1621static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1622{
1623 struct task_struct *owner;
1624 int ret = 0;
1625
1626 if (locked) {
1627 /*
1628 * Got the lock. We might not be the anticipated owner if we
1629 * did a lock-steal - fix up the PI-state in that case:
1630 */
1631 if (q->pi_state->owner != current)
ae791a2d 1632 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1633 goto out;
1634 }
1635
1636 /*
1637 * Catch the rare case, where the lock was released when we were on the
1638 * way back before we locked the hash bucket.
1639 */
1640 if (q->pi_state->owner == current) {
1641 /*
1642 * Try to get the rt_mutex now. This might fail as some other
1643 * task acquired the rt_mutex after we removed ourself from the
1644 * rt_mutex waiters list.
1645 */
1646 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1647 locked = 1;
1648 goto out;
1649 }
1650
1651 /*
1652 * pi_state is incorrect, some other task did a lock steal and
1653 * we returned due to timeout or signal without taking the
1654 * rt_mutex. Too late. We can access the rt_mutex_owner without
1655 * locking, as the other task is now blocked on the hash bucket
1656 * lock. Fix the state up.
1657 */
1658 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
ae791a2d 1659 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1660 goto out;
1661 }
1662
1663 /*
1664 * Paranoia check. If we did not take the lock, then we should not be
1665 * the owner, nor the pending owner, of the rt_mutex.
1666 */
1667 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1668 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1669 "pi-state %p\n", ret,
1670 q->pi_state->pi_mutex.owner,
1671 q->pi_state->owner);
1672
1673out:
1674 return ret ? ret : locked;
1675}
1676
ca5f9524
DH
1677/**
1678 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1679 * @hb: the futex hash bucket, must be locked by the caller
1680 * @q: the futex_q to queue up on
1681 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1682 */
1683static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1684 struct hrtimer_sleeper *timeout)
ca5f9524 1685{
9beba3c5
DH
1686 /*
1687 * The task state is guaranteed to be set before another task can
1688 * wake it. set_current_state() is implemented using set_mb() and
1689 * queue_me() calls spin_unlock() upon completion, both serializing
1690 * access to the hash list and forcing another memory barrier.
1691 */
f1a11e05 1692 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1693 queue_me(q, hb);
ca5f9524
DH
1694
1695 /* Arm the timer */
1696 if (timeout) {
1697 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1698 if (!hrtimer_active(&timeout->timer))
1699 timeout->task = NULL;
1700 }
1701
1702 /*
0729e196
DH
1703 * If we have been removed from the hash list, then another task
1704 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1705 */
1706 if (likely(!plist_node_empty(&q->list))) {
1707 /*
1708 * If the timer has already expired, current will already be
1709 * flagged for rescheduling. Only call schedule if there
1710 * is no timeout, or if it has yet to expire.
1711 */
1712 if (!timeout || timeout->task)
1713 schedule();
1714 }
1715 __set_current_state(TASK_RUNNING);
1716}
1717
f801073f
DH
1718/**
1719 * futex_wait_setup() - Prepare to wait on a futex
1720 * @uaddr: the futex userspace address
1721 * @val: the expected value
b41277dc 1722 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1723 * @q: the associated futex_q
1724 * @hb: storage for hash_bucket pointer to be returned to caller
1725 *
1726 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1727 * compare it with the expected value. Handle atomic faults internally.
1728 * Return with the hb lock held and a q.key reference on success, and unlocked
1729 * with no q.key reference on failure.
1730 *
1731 * Returns:
1732 * 0 - uaddr contains val and hb has been locked
1733 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1734 */
b41277dc 1735static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1736 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1737{
e2970f2f
IM
1738 u32 uval;
1739 int ret;
1da177e4 1740
1da177e4 1741 /*
b2d0994b 1742 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1743 * Order is important:
1744 *
1745 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1746 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1747 *
1748 * The basic logical guarantee of a futex is that it blocks ONLY
1749 * if cond(var) is known to be true at the time of blocking, for
1750 * any cond. If we queued after testing *uaddr, that would open
1751 * a race condition where we could block indefinitely with
1752 * cond(var) false, which would violate the guarantee.
1753 *
1754 * A consequence is that futex_wait() can return zero and absorb
1755 * a wakeup when *uaddr != val on entry to the syscall. This is
1756 * rare, but normal.
1da177e4 1757 */
f801073f 1758retry:
b41277dc 1759 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
f801073f 1760 if (unlikely(ret != 0))
a5a2a0c7 1761 return ret;
f801073f
DH
1762
1763retry_private:
1764 *hb = queue_lock(q);
1765
e2970f2f 1766 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1767
f801073f
DH
1768 if (ret) {
1769 queue_unlock(q, *hb);
1da177e4 1770
e2970f2f 1771 ret = get_user(uval, uaddr);
e4dc5b7a 1772 if (ret)
f801073f 1773 goto out;
1da177e4 1774
b41277dc 1775 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1776 goto retry_private;
1777
ae791a2d 1778 put_futex_key(&q->key);
e4dc5b7a 1779 goto retry;
1da177e4 1780 }
ca5f9524 1781
f801073f
DH
1782 if (uval != val) {
1783 queue_unlock(q, *hb);
1784 ret = -EWOULDBLOCK;
2fff78c7 1785 }
1da177e4 1786
f801073f
DH
1787out:
1788 if (ret)
ae791a2d 1789 put_futex_key(&q->key);
f801073f
DH
1790 return ret;
1791}
1792
b41277dc
DH
1793static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1794 ktime_t *abs_time, u32 bitset)
f801073f
DH
1795{
1796 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1797 struct restart_block *restart;
1798 struct futex_hash_bucket *hb;
5bdb05f9 1799 struct futex_q q = futex_q_init;
f801073f
DH
1800 int ret;
1801
1802 if (!bitset)
1803 return -EINVAL;
f801073f
DH
1804 q.bitset = bitset;
1805
1806 if (abs_time) {
1807 to = &timeout;
1808
b41277dc
DH
1809 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1810 CLOCK_REALTIME : CLOCK_MONOTONIC,
1811 HRTIMER_MODE_ABS);
f801073f
DH
1812 hrtimer_init_sleeper(to, current);
1813 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1814 current->timer_slack_ns);
1815 }
1816
d58e6576 1817retry:
7ada876a
DH
1818 /*
1819 * Prepare to wait on uaddr. On success, holds hb lock and increments
1820 * q.key refs.
1821 */
b41277dc 1822 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
1823 if (ret)
1824 goto out;
1825
ca5f9524 1826 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1827 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1828
1829 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1830 ret = 0;
7ada876a 1831 /* unqueue_me() drops q.key ref */
1da177e4 1832 if (!unqueue_me(&q))
7ada876a 1833 goto out;
2fff78c7 1834 ret = -ETIMEDOUT;
ca5f9524 1835 if (to && !to->task)
7ada876a 1836 goto out;
72c1bbf3 1837
e2970f2f 1838 /*
d58e6576
TG
1839 * We expect signal_pending(current), but we might be the
1840 * victim of a spurious wakeup as well.
e2970f2f 1841 */
7ada876a 1842 if (!signal_pending(current))
d58e6576 1843 goto retry;
d58e6576 1844
2fff78c7 1845 ret = -ERESTARTSYS;
c19384b5 1846 if (!abs_time)
7ada876a 1847 goto out;
1da177e4 1848
2fff78c7
PZ
1849 restart = &current_thread_info()->restart_block;
1850 restart->fn = futex_wait_restart;
a3c74c52 1851 restart->futex.uaddr = uaddr;
2fff78c7
PZ
1852 restart->futex.val = val;
1853 restart->futex.time = abs_time->tv64;
1854 restart->futex.bitset = bitset;
b41277dc 1855 restart->futex.flags = flags;
42d35d48 1856
2fff78c7
PZ
1857 ret = -ERESTART_RESTARTBLOCK;
1858
42d35d48 1859out:
ca5f9524
DH
1860 if (to) {
1861 hrtimer_cancel(&to->timer);
1862 destroy_hrtimer_on_stack(&to->timer);
1863 }
c87e2837
IM
1864 return ret;
1865}
1866
72c1bbf3
NP
1867
1868static long futex_wait_restart(struct restart_block *restart)
1869{
a3c74c52 1870 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 1871 ktime_t t, *tp = NULL;
72c1bbf3 1872
a72188d8
DH
1873 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1874 t.tv64 = restart->futex.time;
1875 tp = &t;
1876 }
72c1bbf3 1877 restart->fn = do_no_restart_syscall;
b41277dc
DH
1878
1879 return (long)futex_wait(uaddr, restart->futex.flags,
1880 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
1881}
1882
1883
c87e2837
IM
1884/*
1885 * Userspace tried a 0 -> TID atomic transition of the futex value
1886 * and failed. The kernel side here does the whole locking operation:
1887 * if there are waiters then it will block, it does PI, etc. (Due to
1888 * races the kernel might see a 0 value of the futex too.)
1889 */
b41277dc
DH
1890static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1891 ktime_t *time, int trylock)
c87e2837 1892{
c5780e97 1893 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1894 struct futex_hash_bucket *hb;
5bdb05f9 1895 struct futex_q q = futex_q_init;
dd973998 1896 int res, ret;
c87e2837
IM
1897
1898 if (refill_pi_state_cache())
1899 return -ENOMEM;
1900
c19384b5 1901 if (time) {
c5780e97 1902 to = &timeout;
237fc6e7
TG
1903 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1904 HRTIMER_MODE_ABS);
c5780e97 1905 hrtimer_init_sleeper(to, current);
cc584b21 1906 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1907 }
1908
42d35d48 1909retry:
b41277dc 1910 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
c87e2837 1911 if (unlikely(ret != 0))
42d35d48 1912 goto out;
c87e2837 1913
e4dc5b7a 1914retry_private:
82af7aca 1915 hb = queue_lock(&q);
c87e2837 1916
bab5bc9e 1917 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1918 if (unlikely(ret)) {
778e9a9c 1919 switch (ret) {
1a52084d
DH
1920 case 1:
1921 /* We got the lock. */
1922 ret = 0;
1923 goto out_unlock_put_key;
1924 case -EFAULT:
1925 goto uaddr_faulted;
778e9a9c
AK
1926 case -EAGAIN:
1927 /*
1928 * Task is exiting and we just wait for the
1929 * exit to complete.
1930 */
1931 queue_unlock(&q, hb);
ae791a2d 1932 put_futex_key(&q.key);
778e9a9c
AK
1933 cond_resched();
1934 goto retry;
778e9a9c 1935 default:
42d35d48 1936 goto out_unlock_put_key;
c87e2837 1937 }
c87e2837
IM
1938 }
1939
1940 /*
1941 * Only actually queue now that the atomic ops are done:
1942 */
82af7aca 1943 queue_me(&q, hb);
c87e2837 1944
c87e2837
IM
1945 WARN_ON(!q.pi_state);
1946 /*
1947 * Block on the PI mutex:
1948 */
1949 if (!trylock)
1950 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1951 else {
1952 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1953 /* Fixup the trylock return value: */
1954 ret = ret ? 0 : -EWOULDBLOCK;
1955 }
1956
a99e4e41 1957 spin_lock(q.lock_ptr);
dd973998
DH
1958 /*
1959 * Fixup the pi_state owner and possibly acquire the lock if we
1960 * haven't already.
1961 */
ae791a2d 1962 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
1963 /*
1964 * If fixup_owner() returned an error, proprogate that. If it acquired
1965 * the lock, clear our -ETIMEDOUT or -EINTR.
1966 */
1967 if (res)
1968 ret = (res < 0) ? res : 0;
c87e2837 1969
e8f6386c 1970 /*
dd973998
DH
1971 * If fixup_owner() faulted and was unable to handle the fault, unlock
1972 * it and return the fault to userspace.
e8f6386c
DH
1973 */
1974 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1975 rt_mutex_unlock(&q.pi_state->pi_mutex);
1976
778e9a9c
AK
1977 /* Unqueue and drop the lock */
1978 unqueue_me_pi(&q);
c87e2837 1979
5ecb01cf 1980 goto out_put_key;
c87e2837 1981
42d35d48 1982out_unlock_put_key:
c87e2837
IM
1983 queue_unlock(&q, hb);
1984
42d35d48 1985out_put_key:
ae791a2d 1986 put_futex_key(&q.key);
42d35d48 1987out:
237fc6e7
TG
1988 if (to)
1989 destroy_hrtimer_on_stack(&to->timer);
dd973998 1990 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1991
42d35d48 1992uaddr_faulted:
778e9a9c
AK
1993 queue_unlock(&q, hb);
1994
d0725992 1995 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
1996 if (ret)
1997 goto out_put_key;
c87e2837 1998
b41277dc 1999 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2000 goto retry_private;
2001
ae791a2d 2002 put_futex_key(&q.key);
e4dc5b7a 2003 goto retry;
c87e2837
IM
2004}
2005
c87e2837
IM
2006/*
2007 * Userspace attempted a TID -> 0 atomic transition, and failed.
2008 * This is the in-kernel slowpath: we look up the PI state (if any),
2009 * and do the rt-mutex unlock.
2010 */
b41277dc 2011static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2012{
2013 struct futex_hash_bucket *hb;
2014 struct futex_q *this, *next;
2015 u32 uval;
ec92d082 2016 struct plist_head *head;
38d47c1b 2017 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 2018 int ret;
c87e2837
IM
2019
2020retry:
2021 if (get_user(uval, uaddr))
2022 return -EFAULT;
2023 /*
2024 * We release only a lock we actually own:
2025 */
b488893a 2026 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 2027 return -EPERM;
c87e2837 2028
b41277dc 2029 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
c87e2837
IM
2030 if (unlikely(ret != 0))
2031 goto out;
2032
2033 hb = hash_futex(&key);
2034 spin_lock(&hb->lock);
2035
c87e2837
IM
2036 /*
2037 * To avoid races, try to do the TID -> 0 atomic transition
2038 * again. If it succeeds then we can return without waking
2039 * anyone else up:
2040 */
36cf3b5c 2041 if (!(uval & FUTEX_OWNER_DIED))
b488893a 2042 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 2043
c87e2837
IM
2044
2045 if (unlikely(uval == -EFAULT))
2046 goto pi_faulted;
2047 /*
2048 * Rare case: we managed to release the lock atomically,
2049 * no need to wake anyone else up:
2050 */
b488893a 2051 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
2052 goto out_unlock;
2053
2054 /*
2055 * Ok, other tasks may need to be woken up - check waiters
2056 * and do the wakeup if necessary:
2057 */
2058 head = &hb->chain;
2059
ec92d082 2060 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2061 if (!match_futex (&this->key, &key))
2062 continue;
2063 ret = wake_futex_pi(uaddr, uval, this);
2064 /*
2065 * The atomic access to the futex value
2066 * generated a pagefault, so retry the
2067 * user-access and the wakeup:
2068 */
2069 if (ret == -EFAULT)
2070 goto pi_faulted;
2071 goto out_unlock;
2072 }
2073 /*
2074 * No waiters - kernel unlocks the futex:
2075 */
e3f2ddea
IM
2076 if (!(uval & FUTEX_OWNER_DIED)) {
2077 ret = unlock_futex_pi(uaddr, uval);
2078 if (ret == -EFAULT)
2079 goto pi_faulted;
2080 }
c87e2837
IM
2081
2082out_unlock:
2083 spin_unlock(&hb->lock);
ae791a2d 2084 put_futex_key(&key);
c87e2837 2085
42d35d48 2086out:
c87e2837
IM
2087 return ret;
2088
2089pi_faulted:
778e9a9c 2090 spin_unlock(&hb->lock);
ae791a2d 2091 put_futex_key(&key);
c87e2837 2092
d0725992 2093 ret = fault_in_user_writeable(uaddr);
b5686363 2094 if (!ret)
c87e2837
IM
2095 goto retry;
2096
1da177e4
LT
2097 return ret;
2098}
2099
52400ba9
DH
2100/**
2101 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2102 * @hb: the hash_bucket futex_q was original enqueued on
2103 * @q: the futex_q woken while waiting to be requeued
2104 * @key2: the futex_key of the requeue target futex
2105 * @timeout: the timeout associated with the wait (NULL if none)
2106 *
2107 * Detect if the task was woken on the initial futex as opposed to the requeue
2108 * target futex. If so, determine if it was a timeout or a signal that caused
2109 * the wakeup and return the appropriate error code to the caller. Must be
2110 * called with the hb lock held.
2111 *
2112 * Returns
2113 * 0 - no early wakeup detected
1c840c14 2114 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2115 */
2116static inline
2117int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2118 struct futex_q *q, union futex_key *key2,
2119 struct hrtimer_sleeper *timeout)
2120{
2121 int ret = 0;
2122
2123 /*
2124 * With the hb lock held, we avoid races while we process the wakeup.
2125 * We only need to hold hb (and not hb2) to ensure atomicity as the
2126 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2127 * It can't be requeued from uaddr2 to something else since we don't
2128 * support a PI aware source futex for requeue.
2129 */
2130 if (!match_futex(&q->key, key2)) {
2131 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2132 /*
2133 * We were woken prior to requeue by a timeout or a signal.
2134 * Unqueue the futex_q and determine which it was.
2135 */
2136 plist_del(&q->list, &q->list.plist);
52400ba9 2137
d58e6576 2138 /* Handle spurious wakeups gracefully */
11df6ddd 2139 ret = -EWOULDBLOCK;
52400ba9
DH
2140 if (timeout && !timeout->task)
2141 ret = -ETIMEDOUT;
d58e6576 2142 else if (signal_pending(current))
1c840c14 2143 ret = -ERESTARTNOINTR;
52400ba9
DH
2144 }
2145 return ret;
2146}
2147
2148/**
2149 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2150 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2151 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2152 * the same type, no requeueing from private to shared, etc.
2153 * @val: the expected value of uaddr
2154 * @abs_time: absolute timeout
56ec1607 2155 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2156 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2157 * @uaddr2: the pi futex we will take prior to returning to user-space
2158 *
2159 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2160 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2161 * complete the acquisition of the rt_mutex prior to returning to userspace.
2162 * This ensures the rt_mutex maintains an owner when it has waiters; without
2163 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2164 * need to.
2165 *
2166 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2167 * via the following:
2168 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2169 * 2) wakeup on uaddr2 after a requeue
2170 * 3) signal
2171 * 4) timeout
52400ba9 2172 *
cc6db4e6 2173 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2174 *
2175 * If 2, we may then block on trying to take the rt_mutex and return via:
2176 * 5) successful lock
2177 * 6) signal
2178 * 7) timeout
2179 * 8) other lock acquisition failure
2180 *
cc6db4e6 2181 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2182 *
2183 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2184 *
2185 * Returns:
2186 * 0 - On success
2187 * <0 - On error
2188 */
b41277dc 2189static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2190 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2191 u32 __user *uaddr2)
52400ba9
DH
2192{
2193 struct hrtimer_sleeper timeout, *to = NULL;
2194 struct rt_mutex_waiter rt_waiter;
2195 struct rt_mutex *pi_mutex = NULL;
52400ba9 2196 struct futex_hash_bucket *hb;
5bdb05f9
DH
2197 union futex_key key2 = FUTEX_KEY_INIT;
2198 struct futex_q q = futex_q_init;
52400ba9 2199 int res, ret;
52400ba9
DH
2200
2201 if (!bitset)
2202 return -EINVAL;
2203
2204 if (abs_time) {
2205 to = &timeout;
b41277dc
DH
2206 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2207 CLOCK_REALTIME : CLOCK_MONOTONIC,
2208 HRTIMER_MODE_ABS);
52400ba9
DH
2209 hrtimer_init_sleeper(to, current);
2210 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2211 current->timer_slack_ns);
2212 }
2213
2214 /*
2215 * The waiter is allocated on our stack, manipulated by the requeue
2216 * code while we sleep on uaddr.
2217 */
2218 debug_rt_mutex_init_waiter(&rt_waiter);
2219 rt_waiter.task = NULL;
2220
b41277dc 2221 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
52400ba9
DH
2222 if (unlikely(ret != 0))
2223 goto out;
2224
84bc4af5
DH
2225 q.bitset = bitset;
2226 q.rt_waiter = &rt_waiter;
2227 q.requeue_pi_key = &key2;
2228
7ada876a
DH
2229 /*
2230 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2231 * count.
2232 */
b41277dc 2233 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2234 if (ret)
2235 goto out_key2;
52400ba9
DH
2236
2237 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2238 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2239
2240 spin_lock(&hb->lock);
2241 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2242 spin_unlock(&hb->lock);
2243 if (ret)
2244 goto out_put_keys;
2245
2246 /*
2247 * In order for us to be here, we know our q.key == key2, and since
2248 * we took the hb->lock above, we also know that futex_requeue() has
2249 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2250 * race with the atomic proxy lock acquisition by the requeue code. The
2251 * futex_requeue dropped our key1 reference and incremented our key2
2252 * reference count.
52400ba9
DH
2253 */
2254
2255 /* Check if the requeue code acquired the second futex for us. */
2256 if (!q.rt_waiter) {
2257 /*
2258 * Got the lock. We might not be the anticipated owner if we
2259 * did a lock-steal - fix up the PI-state in that case.
2260 */
2261 if (q.pi_state && (q.pi_state->owner != current)) {
2262 spin_lock(q.lock_ptr);
ae791a2d 2263 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2264 spin_unlock(q.lock_ptr);
2265 }
2266 } else {
2267 /*
2268 * We have been woken up by futex_unlock_pi(), a timeout, or a
2269 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2270 * the pi_state.
2271 */
2272 WARN_ON(!&q.pi_state);
2273 pi_mutex = &q.pi_state->pi_mutex;
2274 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2275 debug_rt_mutex_free_waiter(&rt_waiter);
2276
2277 spin_lock(q.lock_ptr);
2278 /*
2279 * Fixup the pi_state owner and possibly acquire the lock if we
2280 * haven't already.
2281 */
ae791a2d 2282 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2283 /*
2284 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2285 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2286 */
2287 if (res)
2288 ret = (res < 0) ? res : 0;
2289
2290 /* Unqueue and drop the lock. */
2291 unqueue_me_pi(&q);
2292 }
2293
2294 /*
2295 * If fixup_pi_state_owner() faulted and was unable to handle the
2296 * fault, unlock the rt_mutex and return the fault to userspace.
2297 */
2298 if (ret == -EFAULT) {
2299 if (rt_mutex_owner(pi_mutex) == current)
2300 rt_mutex_unlock(pi_mutex);
2301 } else if (ret == -EINTR) {
52400ba9 2302 /*
cc6db4e6
DH
2303 * We've already been requeued, but cannot restart by calling
2304 * futex_lock_pi() directly. We could restart this syscall, but
2305 * it would detect that the user space "val" changed and return
2306 * -EWOULDBLOCK. Save the overhead of the restart and return
2307 * -EWOULDBLOCK directly.
52400ba9 2308 */
2070887f 2309 ret = -EWOULDBLOCK;
52400ba9
DH
2310 }
2311
2312out_put_keys:
ae791a2d 2313 put_futex_key(&q.key);
c8b15a70 2314out_key2:
ae791a2d 2315 put_futex_key(&key2);
52400ba9
DH
2316
2317out:
2318 if (to) {
2319 hrtimer_cancel(&to->timer);
2320 destroy_hrtimer_on_stack(&to->timer);
2321 }
2322 return ret;
2323}
2324
0771dfef
IM
2325/*
2326 * Support for robust futexes: the kernel cleans up held futexes at
2327 * thread exit time.
2328 *
2329 * Implementation: user-space maintains a per-thread list of locks it
2330 * is holding. Upon do_exit(), the kernel carefully walks this list,
2331 * and marks all locks that are owned by this thread with the
c87e2837 2332 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2333 * always manipulated with the lock held, so the list is private and
2334 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2335 * field, to allow the kernel to clean up if the thread dies after
2336 * acquiring the lock, but just before it could have added itself to
2337 * the list. There can only be one such pending lock.
2338 */
2339
2340/**
d96ee56c
DH
2341 * sys_set_robust_list() - Set the robust-futex list head of a task
2342 * @head: pointer to the list-head
2343 * @len: length of the list-head, as userspace expects
0771dfef 2344 */
836f92ad
HC
2345SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2346 size_t, len)
0771dfef 2347{
a0c1e907
TG
2348 if (!futex_cmpxchg_enabled)
2349 return -ENOSYS;
0771dfef
IM
2350 /*
2351 * The kernel knows only one size for now:
2352 */
2353 if (unlikely(len != sizeof(*head)))
2354 return -EINVAL;
2355
2356 current->robust_list = head;
2357
2358 return 0;
2359}
2360
2361/**
d96ee56c
DH
2362 * sys_get_robust_list() - Get the robust-futex list head of a task
2363 * @pid: pid of the process [zero for current task]
2364 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2365 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2366 */
836f92ad
HC
2367SYSCALL_DEFINE3(get_robust_list, int, pid,
2368 struct robust_list_head __user * __user *, head_ptr,
2369 size_t __user *, len_ptr)
0771dfef 2370{
ba46df98 2371 struct robust_list_head __user *head;
0771dfef 2372 unsigned long ret;
c69e8d9c 2373 const struct cred *cred = current_cred(), *pcred;
0771dfef 2374
a0c1e907
TG
2375 if (!futex_cmpxchg_enabled)
2376 return -ENOSYS;
2377
0771dfef
IM
2378 if (!pid)
2379 head = current->robust_list;
2380 else {
2381 struct task_struct *p;
2382
2383 ret = -ESRCH;
aaa2a97e 2384 rcu_read_lock();
228ebcbe 2385 p = find_task_by_vpid(pid);
0771dfef
IM
2386 if (!p)
2387 goto err_unlock;
2388 ret = -EPERM;
c69e8d9c
DH
2389 pcred = __task_cred(p);
2390 if (cred->euid != pcred->euid &&
2391 cred->euid != pcred->uid &&
76aac0e9 2392 !capable(CAP_SYS_PTRACE))
0771dfef
IM
2393 goto err_unlock;
2394 head = p->robust_list;
aaa2a97e 2395 rcu_read_unlock();
0771dfef
IM
2396 }
2397
2398 if (put_user(sizeof(*head), len_ptr))
2399 return -EFAULT;
2400 return put_user(head, head_ptr);
2401
2402err_unlock:
aaa2a97e 2403 rcu_read_unlock();
0771dfef
IM
2404
2405 return ret;
2406}
2407
2408/*
2409 * Process a futex-list entry, check whether it's owned by the
2410 * dying task, and do notification if so:
2411 */
e3f2ddea 2412int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2413{
e3f2ddea 2414 u32 uval, nval, mval;
0771dfef 2415
8f17d3a5
IM
2416retry:
2417 if (get_user(uval, uaddr))
0771dfef
IM
2418 return -1;
2419
b488893a 2420 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2421 /*
2422 * Ok, this dying thread is truly holding a futex
2423 * of interest. Set the OWNER_DIED bit atomically
2424 * via cmpxchg, and if the value had FUTEX_WAITERS
2425 * set, wake up a waiter (if any). (We have to do a
2426 * futex_wake() even if OWNER_DIED is already set -
2427 * to handle the rare but possible case of recursive
2428 * thread-death.) The rest of the cleanup is done in
2429 * userspace.
2430 */
e3f2ddea
IM
2431 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2432 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2433
c87e2837
IM
2434 if (nval == -EFAULT)
2435 return -1;
2436
2437 if (nval != uval)
8f17d3a5 2438 goto retry;
0771dfef 2439
e3f2ddea
IM
2440 /*
2441 * Wake robust non-PI futexes here. The wakeup of
2442 * PI futexes happens in exit_pi_state():
2443 */
36cf3b5c 2444 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2445 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2446 }
2447 return 0;
2448}
2449
e3f2ddea
IM
2450/*
2451 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2452 */
2453static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2454 struct robust_list __user * __user *head,
1dcc41bb 2455 unsigned int *pi)
e3f2ddea
IM
2456{
2457 unsigned long uentry;
2458
ba46df98 2459 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2460 return -EFAULT;
2461
ba46df98 2462 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2463 *pi = uentry & 1;
2464
2465 return 0;
2466}
2467
0771dfef
IM
2468/*
2469 * Walk curr->robust_list (very carefully, it's a userspace list!)
2470 * and mark any locks found there dead, and notify any waiters.
2471 *
2472 * We silently return on any sign of list-walking problem.
2473 */
2474void exit_robust_list(struct task_struct *curr)
2475{
2476 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2477 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2478 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2479 unsigned int uninitialized_var(next_pi);
0771dfef 2480 unsigned long futex_offset;
9f96cb1e 2481 int rc;
0771dfef 2482
a0c1e907
TG
2483 if (!futex_cmpxchg_enabled)
2484 return;
2485
0771dfef
IM
2486 /*
2487 * Fetch the list head (which was registered earlier, via
2488 * sys_set_robust_list()):
2489 */
e3f2ddea 2490 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2491 return;
2492 /*
2493 * Fetch the relative futex offset:
2494 */
2495 if (get_user(futex_offset, &head->futex_offset))
2496 return;
2497 /*
2498 * Fetch any possibly pending lock-add first, and handle it
2499 * if it exists:
2500 */
e3f2ddea 2501 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2502 return;
e3f2ddea 2503
9f96cb1e 2504 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2505 while (entry != &head->list) {
9f96cb1e
MS
2506 /*
2507 * Fetch the next entry in the list before calling
2508 * handle_futex_death:
2509 */
2510 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2511 /*
2512 * A pending lock might already be on the list, so
c87e2837 2513 * don't process it twice:
0771dfef
IM
2514 */
2515 if (entry != pending)
ba46df98 2516 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2517 curr, pi))
0771dfef 2518 return;
9f96cb1e 2519 if (rc)
0771dfef 2520 return;
9f96cb1e
MS
2521 entry = next_entry;
2522 pi = next_pi;
0771dfef
IM
2523 /*
2524 * Avoid excessively long or circular lists:
2525 */
2526 if (!--limit)
2527 break;
2528
2529 cond_resched();
2530 }
9f96cb1e
MS
2531
2532 if (pending)
2533 handle_futex_death((void __user *)pending + futex_offset,
2534 curr, pip);
0771dfef
IM
2535}
2536
c19384b5 2537long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2538 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2539{
b41277dc
DH
2540 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2541 unsigned int flags = 0;
34f01cc1
ED
2542
2543 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2544 flags |= FLAGS_SHARED;
1da177e4 2545
b41277dc
DH
2546 if (op & FUTEX_CLOCK_REALTIME) {
2547 flags |= FLAGS_CLOCKRT;
2548 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2549 return -ENOSYS;
2550 }
1da177e4 2551
34f01cc1 2552 switch (cmd) {
1da177e4 2553 case FUTEX_WAIT:
cd689985
TG
2554 val3 = FUTEX_BITSET_MATCH_ANY;
2555 case FUTEX_WAIT_BITSET:
b41277dc 2556 ret = futex_wait(uaddr, flags, val, timeout, val3);
1da177e4
LT
2557 break;
2558 case FUTEX_WAKE:
cd689985
TG
2559 val3 = FUTEX_BITSET_MATCH_ANY;
2560 case FUTEX_WAKE_BITSET:
b41277dc 2561 ret = futex_wake(uaddr, flags, val, val3);
1da177e4 2562 break;
1da177e4 2563 case FUTEX_REQUEUE:
b41277dc 2564 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2565 break;
2566 case FUTEX_CMP_REQUEUE:
b41277dc 2567 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
1da177e4 2568 break;
4732efbe 2569 case FUTEX_WAKE_OP:
b41277dc 2570 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
4732efbe 2571 break;
c87e2837 2572 case FUTEX_LOCK_PI:
a0c1e907 2573 if (futex_cmpxchg_enabled)
b41277dc 2574 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837
IM
2575 break;
2576 case FUTEX_UNLOCK_PI:
a0c1e907 2577 if (futex_cmpxchg_enabled)
b41277dc 2578 ret = futex_unlock_pi(uaddr, flags);
c87e2837
IM
2579 break;
2580 case FUTEX_TRYLOCK_PI:
a0c1e907 2581 if (futex_cmpxchg_enabled)
b41277dc 2582 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
c87e2837 2583 break;
52400ba9
DH
2584 case FUTEX_WAIT_REQUEUE_PI:
2585 val3 = FUTEX_BITSET_MATCH_ANY;
b41277dc
DH
2586 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2587 uaddr2);
52400ba9 2588 break;
52400ba9 2589 case FUTEX_CMP_REQUEUE_PI:
b41277dc 2590 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
52400ba9 2591 break;
1da177e4
LT
2592 default:
2593 ret = -ENOSYS;
2594 }
2595 return ret;
2596}
2597
2598
17da2bd9
HC
2599SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2600 struct timespec __user *, utime, u32 __user *, uaddr2,
2601 u32, val3)
1da177e4 2602{
c19384b5
PP
2603 struct timespec ts;
2604 ktime_t t, *tp = NULL;
e2970f2f 2605 u32 val2 = 0;
34f01cc1 2606 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2607
cd689985 2608 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2609 cmd == FUTEX_WAIT_BITSET ||
2610 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2611 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2612 return -EFAULT;
c19384b5 2613 if (!timespec_valid(&ts))
9741ef96 2614 return -EINVAL;
c19384b5
PP
2615
2616 t = timespec_to_ktime(ts);
34f01cc1 2617 if (cmd == FUTEX_WAIT)
5a7780e7 2618 t = ktime_add_safe(ktime_get(), t);
c19384b5 2619 tp = &t;
1da177e4
LT
2620 }
2621 /*
52400ba9 2622 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2623 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2624 */
f54f0986 2625 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2626 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2627 val2 = (u32) (unsigned long) utime;
1da177e4 2628
c19384b5 2629 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2630}
2631
f6d107fb 2632static int __init futex_init(void)
1da177e4 2633{
a0c1e907 2634 u32 curval;
3e4ab747 2635 int i;
95362fa9 2636
a0c1e907
TG
2637 /*
2638 * This will fail and we want it. Some arch implementations do
2639 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2640 * functionality. We want to know that before we call in any
2641 * of the complex code paths. Also we want to prevent
2642 * registration of robust lists in that case. NULL is
2643 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2644 * implementation, the non-functional ones will return
a0c1e907
TG
2645 * -ENOSYS.
2646 */
2647 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2648 if (curval == -EFAULT)
2649 futex_cmpxchg_enabled = 1;
2650
3e4ab747
TG
2651 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2652 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2653 spin_lock_init(&futex_queues[i].lock);
2654 }
2655
1da177e4
LT
2656 return 0;
2657}
f6d107fb 2658__initcall(futex_init);