pid namespaces: changes to show virtual ids to user
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
1da177e4
LT
63#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
64
c87e2837
IM
65/*
66 * Priority Inheritance state:
67 */
68struct futex_pi_state {
69 /*
70 * list of 'owned' pi_state instances - these have to be
71 * cleaned up in do_exit() if the task exits prematurely:
72 */
73 struct list_head list;
74
75 /*
76 * The PI object:
77 */
78 struct rt_mutex pi_mutex;
79
80 struct task_struct *owner;
81 atomic_t refcount;
82
83 union futex_key key;
84};
85
1da177e4
LT
86/*
87 * We use this hashed waitqueue instead of a normal wait_queue_t, so
88 * we can wake only the relevant ones (hashed queues may be shared).
89 *
90 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 91 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
92 * The order of wakup is always to make the first condition true, then
93 * wake up q->waiters, then make the second condition true.
94 */
95struct futex_q {
ec92d082 96 struct plist_node list;
1da177e4
LT
97 wait_queue_head_t waiters;
98
e2970f2f 99 /* Which hash list lock to use: */
1da177e4
LT
100 spinlock_t *lock_ptr;
101
e2970f2f 102 /* Key which the futex is hashed on: */
1da177e4
LT
103 union futex_key key;
104
e2970f2f 105 /* For fd, sigio sent using these: */
1da177e4
LT
106 int fd;
107 struct file *filp;
c87e2837
IM
108
109 /* Optional priority inheritance state: */
110 struct futex_pi_state *pi_state;
111 struct task_struct *task;
1da177e4
LT
112};
113
114/*
115 * Split the global futex_lock into every hash list lock.
116 */
117struct futex_hash_bucket {
ec92d082
PP
118 spinlock_t lock;
119 struct plist_head chain;
1da177e4
LT
120};
121
122static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
123
124/* Futex-fs vfsmount entry: */
125static struct vfsmount *futex_mnt;
126
36cf3b5c
TG
127/*
128 * Take mm->mmap_sem, when futex is shared
129 */
130static inline void futex_lock_mm(struct rw_semaphore *fshared)
131{
132 if (fshared)
133 down_read(fshared);
134}
135
136/*
137 * Release mm->mmap_sem, when the futex is shared
138 */
139static inline void futex_unlock_mm(struct rw_semaphore *fshared)
140{
141 if (fshared)
142 up_read(fshared);
143}
144
1da177e4
LT
145/*
146 * We hash on the keys returned from get_futex_key (see below).
147 */
148static struct futex_hash_bucket *hash_futex(union futex_key *key)
149{
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154}
155
156/*
157 * Return 1 if two futex_keys are equal, 0 otherwise.
158 */
159static inline int match_futex(union futex_key *key1, union futex_key *key2)
160{
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
164}
165
34f01cc1
ED
166/**
167 * get_futex_key - Get parameters which are the keys for a futex.
168 * @uaddr: virtual address of the futex
169 * @shared: NULL for a PROCESS_PRIVATE futex,
170 * &current->mm->mmap_sem for a PROCESS_SHARED futex
171 * @key: address where result is stored.
172 *
173 * Returns a negative error code or 0
174 * The key words are stored in *key on success.
1da177e4 175 *
f3a43f3f 176 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
177 * offset_within_page). For private mappings, it's (uaddr, current->mm).
178 * We can usually work out the index without swapping in the page.
179 *
34f01cc1
ED
180 * fshared is NULL for PROCESS_PRIVATE futexes
181 * For other futexes, it points to &current->mm->mmap_sem and
182 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 183 */
34f01cc1
ED
184int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
185 union futex_key *key)
1da177e4 186{
e2970f2f 187 unsigned long address = (unsigned long)uaddr;
1da177e4
LT
188 struct mm_struct *mm = current->mm;
189 struct vm_area_struct *vma;
190 struct page *page;
191 int err;
192
193 /*
194 * The futex address must be "naturally" aligned.
195 */
e2970f2f 196 key->both.offset = address % PAGE_SIZE;
34f01cc1 197 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 198 return -EINVAL;
e2970f2f 199 address -= key->both.offset;
1da177e4 200
34f01cc1
ED
201 /*
202 * PROCESS_PRIVATE futexes are fast.
203 * As the mm cannot disappear under us and the 'key' only needs
204 * virtual address, we dont even have to find the underlying vma.
205 * Note : We do have to check 'uaddr' is a valid user address,
206 * but access_ok() should be faster than find_vma()
207 */
208 if (!fshared) {
209 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
210 return -EFAULT;
211 key->private.mm = mm;
212 key->private.address = address;
213 return 0;
214 }
1da177e4
LT
215 /*
216 * The futex is hashed differently depending on whether
217 * it's in a shared or private mapping. So check vma first.
218 */
e2970f2f 219 vma = find_extend_vma(mm, address);
1da177e4
LT
220 if (unlikely(!vma))
221 return -EFAULT;
222
223 /*
224 * Permissions.
225 */
226 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
227 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
228
229 /*
230 * Private mappings are handled in a simple way.
231 *
232 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
233 * it's a read-only handle, it's expected that futexes attach to
234 * the object not the particular process. Therefore we use
235 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
236 * mappings of _writable_ handles.
237 */
238 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
34f01cc1 239 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
1da177e4 240 key->private.mm = mm;
e2970f2f 241 key->private.address = address;
1da177e4
LT
242 return 0;
243 }
244
245 /*
246 * Linear file mappings are also simple.
247 */
f3a43f3f 248 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
34f01cc1 249 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
1da177e4 250 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
e2970f2f 251 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
1da177e4
LT
252 + vma->vm_pgoff);
253 return 0;
254 }
255
256 /*
257 * We could walk the page table to read the non-linear
258 * pte, and get the page index without fetching the page
259 * from swap. But that's a lot of code to duplicate here
260 * for a rare case, so we simply fetch the page.
261 */
e2970f2f 262 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
1da177e4
LT
263 if (err >= 0) {
264 key->shared.pgoff =
265 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
266 put_page(page);
267 return 0;
268 }
269 return err;
270}
9adef58b 271EXPORT_SYMBOL_GPL(get_futex_key);
1da177e4
LT
272
273/*
274 * Take a reference to the resource addressed by a key.
275 * Can be called while holding spinlocks.
276 *
1da177e4 277 */
9adef58b 278inline void get_futex_key_refs(union futex_key *key)
1da177e4 279{
34f01cc1
ED
280 if (key->both.ptr == 0)
281 return;
282 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
283 case FUT_OFF_INODE:
1da177e4 284 atomic_inc(&key->shared.inode->i_count);
34f01cc1
ED
285 break;
286 case FUT_OFF_MMSHARED:
1da177e4 287 atomic_inc(&key->private.mm->mm_count);
34f01cc1 288 break;
1da177e4
LT
289 }
290}
9adef58b 291EXPORT_SYMBOL_GPL(get_futex_key_refs);
1da177e4
LT
292
293/*
294 * Drop a reference to the resource addressed by a key.
295 * The hash bucket spinlock must not be held.
296 */
9adef58b 297void drop_futex_key_refs(union futex_key *key)
1da177e4 298{
c80544dc 299 if (!key->both.ptr)
34f01cc1
ED
300 return;
301 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
302 case FUT_OFF_INODE:
1da177e4 303 iput(key->shared.inode);
34f01cc1
ED
304 break;
305 case FUT_OFF_MMSHARED:
1da177e4 306 mmdrop(key->private.mm);
34f01cc1 307 break;
1da177e4
LT
308 }
309}
9adef58b 310EXPORT_SYMBOL_GPL(drop_futex_key_refs);
1da177e4 311
36cf3b5c
TG
312static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
313{
314 u32 curval;
315
316 pagefault_disable();
317 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
318 pagefault_enable();
319
320 return curval;
321}
322
323static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
324{
325 int ret;
326
a866374a 327 pagefault_disable();
e2970f2f 328 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 329 pagefault_enable();
1da177e4
LT
330
331 return ret ? -EFAULT : 0;
332}
333
c87e2837 334/*
34f01cc1
ED
335 * Fault handling.
336 * if fshared is non NULL, current->mm->mmap_sem is already held
c87e2837 337 */
34f01cc1
ED
338static int futex_handle_fault(unsigned long address,
339 struct rw_semaphore *fshared, int attempt)
c87e2837
IM
340{
341 struct vm_area_struct * vma;
342 struct mm_struct *mm = current->mm;
34f01cc1 343 int ret = -EFAULT;
c87e2837 344
34f01cc1
ED
345 if (attempt > 2)
346 return ret;
c87e2837 347
34f01cc1
ED
348 if (!fshared)
349 down_read(&mm->mmap_sem);
350 vma = find_vma(mm, address);
351 if (vma && address >= vma->vm_start &&
352 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
353 int fault;
354 fault = handle_mm_fault(mm, vma, address, 1);
355 if (unlikely((fault & VM_FAULT_ERROR))) {
356#if 0
357 /* XXX: let's do this when we verify it is OK */
358 if (ret & VM_FAULT_OOM)
359 ret = -ENOMEM;
360#endif
361 } else {
34f01cc1 362 ret = 0;
83c54070
NP
363 if (fault & VM_FAULT_MAJOR)
364 current->maj_flt++;
365 else
366 current->min_flt++;
34f01cc1 367 }
c87e2837 368 }
34f01cc1
ED
369 if (!fshared)
370 up_read(&mm->mmap_sem);
371 return ret;
c87e2837
IM
372}
373
374/*
375 * PI code:
376 */
377static int refill_pi_state_cache(void)
378{
379 struct futex_pi_state *pi_state;
380
381 if (likely(current->pi_state_cache))
382 return 0;
383
4668edc3 384 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
385
386 if (!pi_state)
387 return -ENOMEM;
388
c87e2837
IM
389 INIT_LIST_HEAD(&pi_state->list);
390 /* pi_mutex gets initialized later */
391 pi_state->owner = NULL;
392 atomic_set(&pi_state->refcount, 1);
393
394 current->pi_state_cache = pi_state;
395
396 return 0;
397}
398
399static struct futex_pi_state * alloc_pi_state(void)
400{
401 struct futex_pi_state *pi_state = current->pi_state_cache;
402
403 WARN_ON(!pi_state);
404 current->pi_state_cache = NULL;
405
406 return pi_state;
407}
408
409static void free_pi_state(struct futex_pi_state *pi_state)
410{
411 if (!atomic_dec_and_test(&pi_state->refcount))
412 return;
413
414 /*
415 * If pi_state->owner is NULL, the owner is most probably dying
416 * and has cleaned up the pi_state already
417 */
418 if (pi_state->owner) {
419 spin_lock_irq(&pi_state->owner->pi_lock);
420 list_del_init(&pi_state->list);
421 spin_unlock_irq(&pi_state->owner->pi_lock);
422
423 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
424 }
425
426 if (current->pi_state_cache)
427 kfree(pi_state);
428 else {
429 /*
430 * pi_state->list is already empty.
431 * clear pi_state->owner.
432 * refcount is at 0 - put it back to 1.
433 */
434 pi_state->owner = NULL;
435 atomic_set(&pi_state->refcount, 1);
436 current->pi_state_cache = pi_state;
437 }
438}
439
440/*
441 * Look up the task based on what TID userspace gave us.
442 * We dont trust it.
443 */
444static struct task_struct * futex_find_get_task(pid_t pid)
445{
446 struct task_struct *p;
447
d359b549 448 rcu_read_lock();
b488893a
PE
449 p = find_task_by_pid_ns(pid,
450 current->nsproxy->pid_ns);
a06381fe
TG
451
452 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
453 p = ERR_PTR(-ESRCH);
454 else
455 get_task_struct(p);
456
d359b549 457 rcu_read_unlock();
c87e2837
IM
458
459 return p;
460}
461
462/*
463 * This task is holding PI mutexes at exit time => bad.
464 * Kernel cleans up PI-state, but userspace is likely hosed.
465 * (Robust-futex cleanup is separate and might save the day for userspace.)
466 */
467void exit_pi_state_list(struct task_struct *curr)
468{
c87e2837
IM
469 struct list_head *next, *head = &curr->pi_state_list;
470 struct futex_pi_state *pi_state;
627371d7 471 struct futex_hash_bucket *hb;
c87e2837
IM
472 union futex_key key;
473
474 /*
475 * We are a ZOMBIE and nobody can enqueue itself on
476 * pi_state_list anymore, but we have to be careful
627371d7 477 * versus waiters unqueueing themselves:
c87e2837
IM
478 */
479 spin_lock_irq(&curr->pi_lock);
480 while (!list_empty(head)) {
481
482 next = head->next;
483 pi_state = list_entry(next, struct futex_pi_state, list);
484 key = pi_state->key;
627371d7 485 hb = hash_futex(&key);
c87e2837
IM
486 spin_unlock_irq(&curr->pi_lock);
487
c87e2837
IM
488 spin_lock(&hb->lock);
489
490 spin_lock_irq(&curr->pi_lock);
627371d7
IM
491 /*
492 * We dropped the pi-lock, so re-check whether this
493 * task still owns the PI-state:
494 */
c87e2837
IM
495 if (head->next != next) {
496 spin_unlock(&hb->lock);
497 continue;
498 }
499
c87e2837 500 WARN_ON(pi_state->owner != curr);
627371d7
IM
501 WARN_ON(list_empty(&pi_state->list));
502 list_del_init(&pi_state->list);
c87e2837
IM
503 pi_state->owner = NULL;
504 spin_unlock_irq(&curr->pi_lock);
505
506 rt_mutex_unlock(&pi_state->pi_mutex);
507
508 spin_unlock(&hb->lock);
509
510 spin_lock_irq(&curr->pi_lock);
511 }
512 spin_unlock_irq(&curr->pi_lock);
513}
514
515static int
d0aa7a70
PP
516lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
517 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
518{
519 struct futex_pi_state *pi_state = NULL;
520 struct futex_q *this, *next;
ec92d082 521 struct plist_head *head;
c87e2837 522 struct task_struct *p;
778e9a9c 523 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
524
525 head = &hb->chain;
526
ec92d082 527 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 528 if (match_futex(&this->key, key)) {
c87e2837
IM
529 /*
530 * Another waiter already exists - bump up
531 * the refcount and return its pi_state:
532 */
533 pi_state = this->pi_state;
06a9ec29
TG
534 /*
535 * Userspace might have messed up non PI and PI futexes
536 */
537 if (unlikely(!pi_state))
538 return -EINVAL;
539
627371d7 540 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
541 WARN_ON(pid && pi_state->owner &&
542 pi_state->owner->pid != pid);
627371d7 543
c87e2837 544 atomic_inc(&pi_state->refcount);
d0aa7a70 545 *ps = pi_state;
c87e2837
IM
546
547 return 0;
548 }
549 }
550
551 /*
e3f2ddea 552 * We are the first waiter - try to look up the real owner and attach
778e9a9c 553 * the new pi_state to it, but bail out when TID = 0
c87e2837 554 */
778e9a9c 555 if (!pid)
e3f2ddea 556 return -ESRCH;
c87e2837 557 p = futex_find_get_task(pid);
778e9a9c
AK
558 if (IS_ERR(p))
559 return PTR_ERR(p);
560
561 /*
562 * We need to look at the task state flags to figure out,
563 * whether the task is exiting. To protect against the do_exit
564 * change of the task flags, we do this protected by
565 * p->pi_lock:
566 */
567 spin_lock_irq(&p->pi_lock);
568 if (unlikely(p->flags & PF_EXITING)) {
569 /*
570 * The task is on the way out. When PF_EXITPIDONE is
571 * set, we know that the task has finished the
572 * cleanup:
573 */
574 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
575
576 spin_unlock_irq(&p->pi_lock);
577 put_task_struct(p);
578 return ret;
579 }
c87e2837
IM
580
581 pi_state = alloc_pi_state();
582
583 /*
584 * Initialize the pi_mutex in locked state and make 'p'
585 * the owner of it:
586 */
587 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
588
589 /* Store the key for possible exit cleanups: */
d0aa7a70 590 pi_state->key = *key;
c87e2837 591
627371d7 592 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
593 list_add(&pi_state->list, &p->pi_state_list);
594 pi_state->owner = p;
595 spin_unlock_irq(&p->pi_lock);
596
597 put_task_struct(p);
598
d0aa7a70 599 *ps = pi_state;
c87e2837
IM
600
601 return 0;
602}
603
1da177e4
LT
604/*
605 * The hash bucket lock must be held when this is called.
606 * Afterwards, the futex_q must not be accessed.
607 */
608static void wake_futex(struct futex_q *q)
609{
ec92d082 610 plist_del(&q->list, &q->list.plist);
1da177e4
LT
611 if (q->filp)
612 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
613 /*
614 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 615 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
616 */
617 wake_up_all(&q->waiters);
618 /*
619 * The waiting task can free the futex_q as soon as this is written,
620 * without taking any locks. This must come last.
8e31108b
AM
621 *
622 * A memory barrier is required here to prevent the following store
623 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
624 * at the end of wake_up_all() does not prevent this store from
625 * moving.
1da177e4 626 */
ccdea2f8 627 smp_wmb();
1da177e4
LT
628 q->lock_ptr = NULL;
629}
630
c87e2837
IM
631static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
632{
633 struct task_struct *new_owner;
634 struct futex_pi_state *pi_state = this->pi_state;
635 u32 curval, newval;
636
637 if (!pi_state)
638 return -EINVAL;
639
21778867 640 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
641 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
642
643 /*
644 * This happens when we have stolen the lock and the original
645 * pending owner did not enqueue itself back on the rt_mutex.
646 * Thats not a tragedy. We know that way, that a lock waiter
647 * is on the fly. We make the futex_q waiter the pending owner.
648 */
649 if (!new_owner)
650 new_owner = this->task;
651
652 /*
653 * We pass it to the next owner. (The WAITERS bit is always
654 * kept enabled while there is PI state around. We must also
655 * preserve the owner died bit.)
656 */
e3f2ddea 657 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
658 int ret = 0;
659
b488893a 660 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 661
36cf3b5c 662 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 663
e3f2ddea 664 if (curval == -EFAULT)
778e9a9c 665 ret = -EFAULT;
e3f2ddea 666 if (curval != uval)
778e9a9c
AK
667 ret = -EINVAL;
668 if (ret) {
669 spin_unlock(&pi_state->pi_mutex.wait_lock);
670 return ret;
671 }
e3f2ddea 672 }
c87e2837 673
627371d7
IM
674 spin_lock_irq(&pi_state->owner->pi_lock);
675 WARN_ON(list_empty(&pi_state->list));
676 list_del_init(&pi_state->list);
677 spin_unlock_irq(&pi_state->owner->pi_lock);
678
679 spin_lock_irq(&new_owner->pi_lock);
680 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
681 list_add(&pi_state->list, &new_owner->pi_state_list);
682 pi_state->owner = new_owner;
627371d7
IM
683 spin_unlock_irq(&new_owner->pi_lock);
684
21778867 685 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
686 rt_mutex_unlock(&pi_state->pi_mutex);
687
688 return 0;
689}
690
691static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
692{
693 u32 oldval;
694
695 /*
696 * There is no waiter, so we unlock the futex. The owner died
697 * bit has not to be preserved here. We are the owner:
698 */
36cf3b5c 699 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
700
701 if (oldval == -EFAULT)
702 return oldval;
703 if (oldval != uval)
704 return -EAGAIN;
705
706 return 0;
707}
708
8b8f319f
IM
709/*
710 * Express the locking dependencies for lockdep:
711 */
712static inline void
713double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
714{
715 if (hb1 <= hb2) {
716 spin_lock(&hb1->lock);
717 if (hb1 < hb2)
718 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
719 } else { /* hb1 > hb2 */
720 spin_lock(&hb2->lock);
721 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
722 }
723}
724
1da177e4
LT
725/*
726 * Wake up all waiters hashed on the physical page that is mapped
727 * to this virtual address:
728 */
34f01cc1
ED
729static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
730 int nr_wake)
1da177e4 731{
e2970f2f 732 struct futex_hash_bucket *hb;
1da177e4 733 struct futex_q *this, *next;
ec92d082 734 struct plist_head *head;
e2970f2f 735 union futex_key key;
1da177e4
LT
736 int ret;
737
36cf3b5c 738 futex_lock_mm(fshared);
1da177e4 739
34f01cc1 740 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
741 if (unlikely(ret != 0))
742 goto out;
743
e2970f2f
IM
744 hb = hash_futex(&key);
745 spin_lock(&hb->lock);
746 head = &hb->chain;
1da177e4 747
ec92d082 748 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 749 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
750 if (this->pi_state) {
751 ret = -EINVAL;
752 break;
753 }
1da177e4
LT
754 wake_futex(this);
755 if (++ret >= nr_wake)
756 break;
757 }
758 }
759
e2970f2f 760 spin_unlock(&hb->lock);
1da177e4 761out:
36cf3b5c 762 futex_unlock_mm(fshared);
1da177e4
LT
763 return ret;
764}
765
4732efbe
JJ
766/*
767 * Wake up all waiters hashed on the physical page that is mapped
768 * to this virtual address:
769 */
e2970f2f 770static int
34f01cc1
ED
771futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
772 u32 __user *uaddr2,
e2970f2f 773 int nr_wake, int nr_wake2, int op)
4732efbe
JJ
774{
775 union futex_key key1, key2;
e2970f2f 776 struct futex_hash_bucket *hb1, *hb2;
ec92d082 777 struct plist_head *head;
4732efbe
JJ
778 struct futex_q *this, *next;
779 int ret, op_ret, attempt = 0;
780
781retryfull:
36cf3b5c 782 futex_lock_mm(fshared);
4732efbe 783
34f01cc1 784 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
785 if (unlikely(ret != 0))
786 goto out;
34f01cc1 787 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
788 if (unlikely(ret != 0))
789 goto out;
790
e2970f2f
IM
791 hb1 = hash_futex(&key1);
792 hb2 = hash_futex(&key2);
4732efbe
JJ
793
794retry:
8b8f319f 795 double_lock_hb(hb1, hb2);
4732efbe 796
e2970f2f 797 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 798 if (unlikely(op_ret < 0)) {
e2970f2f 799 u32 dummy;
4732efbe 800
e2970f2f
IM
801 spin_unlock(&hb1->lock);
802 if (hb1 != hb2)
803 spin_unlock(&hb2->lock);
4732efbe 804
7ee1dd3f 805#ifndef CONFIG_MMU
e2970f2f
IM
806 /*
807 * we don't get EFAULT from MMU faults if we don't have an MMU,
808 * but we might get them from range checking
809 */
7ee1dd3f
DH
810 ret = op_ret;
811 goto out;
812#endif
813
796f8d9b
DG
814 if (unlikely(op_ret != -EFAULT)) {
815 ret = op_ret;
816 goto out;
817 }
818
e2970f2f
IM
819 /*
820 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
821 * *(int __user *)uaddr2, but we can't modify it
822 * non-atomically. Therefore, if get_user below is not
823 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
824 * still holding the mmap_sem.
825 */
4732efbe 826 if (attempt++) {
34f01cc1 827 ret = futex_handle_fault((unsigned long)uaddr2,
36cf3b5c 828 fshared, attempt);
34f01cc1 829 if (ret)
4732efbe 830 goto out;
4732efbe
JJ
831 goto retry;
832 }
833
e2970f2f
IM
834 /*
835 * If we would have faulted, release mmap_sem,
836 * fault it in and start all over again.
837 */
36cf3b5c 838 futex_unlock_mm(fshared);
4732efbe 839
e2970f2f 840 ret = get_user(dummy, uaddr2);
4732efbe
JJ
841 if (ret)
842 return ret;
843
844 goto retryfull;
845 }
846
e2970f2f 847 head = &hb1->chain;
4732efbe 848
ec92d082 849 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
850 if (match_futex (&this->key, &key1)) {
851 wake_futex(this);
852 if (++ret >= nr_wake)
853 break;
854 }
855 }
856
857 if (op_ret > 0) {
e2970f2f 858 head = &hb2->chain;
4732efbe
JJ
859
860 op_ret = 0;
ec92d082 861 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
862 if (match_futex (&this->key, &key2)) {
863 wake_futex(this);
864 if (++op_ret >= nr_wake2)
865 break;
866 }
867 }
868 ret += op_ret;
869 }
870
e2970f2f
IM
871 spin_unlock(&hb1->lock);
872 if (hb1 != hb2)
873 spin_unlock(&hb2->lock);
4732efbe 874out:
36cf3b5c
TG
875 futex_unlock_mm(fshared);
876
4732efbe
JJ
877 return ret;
878}
879
1da177e4
LT
880/*
881 * Requeue all waiters hashed on one physical page to another
882 * physical page.
883 */
34f01cc1
ED
884static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
885 u32 __user *uaddr2,
e2970f2f 886 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4
LT
887{
888 union futex_key key1, key2;
e2970f2f 889 struct futex_hash_bucket *hb1, *hb2;
ec92d082 890 struct plist_head *head1;
1da177e4
LT
891 struct futex_q *this, *next;
892 int ret, drop_count = 0;
893
894 retry:
36cf3b5c 895 futex_lock_mm(fshared);
1da177e4 896
34f01cc1 897 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
898 if (unlikely(ret != 0))
899 goto out;
34f01cc1 900 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
901 if (unlikely(ret != 0))
902 goto out;
903
e2970f2f
IM
904 hb1 = hash_futex(&key1);
905 hb2 = hash_futex(&key2);
1da177e4 906
8b8f319f 907 double_lock_hb(hb1, hb2);
1da177e4 908
e2970f2f
IM
909 if (likely(cmpval != NULL)) {
910 u32 curval;
1da177e4 911
e2970f2f 912 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
913
914 if (unlikely(ret)) {
e2970f2f
IM
915 spin_unlock(&hb1->lock);
916 if (hb1 != hb2)
917 spin_unlock(&hb2->lock);
1da177e4 918
e2970f2f
IM
919 /*
920 * If we would have faulted, release mmap_sem, fault
1da177e4
LT
921 * it in and start all over again.
922 */
36cf3b5c 923 futex_unlock_mm(fshared);
1da177e4 924
e2970f2f 925 ret = get_user(curval, uaddr1);
1da177e4
LT
926
927 if (!ret)
928 goto retry;
929
930 return ret;
931 }
e2970f2f 932 if (curval != *cmpval) {
1da177e4
LT
933 ret = -EAGAIN;
934 goto out_unlock;
935 }
936 }
937
e2970f2f 938 head1 = &hb1->chain;
ec92d082 939 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
940 if (!match_futex (&this->key, &key1))
941 continue;
942 if (++ret <= nr_wake) {
943 wake_futex(this);
944 } else {
59e0e0ac
SD
945 /*
946 * If key1 and key2 hash to the same bucket, no need to
947 * requeue.
948 */
949 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
950 plist_del(&this->list, &hb1->chain);
951 plist_add(&this->list, &hb2->chain);
59e0e0ac 952 this->lock_ptr = &hb2->lock;
ec92d082
PP
953#ifdef CONFIG_DEBUG_PI_LIST
954 this->list.plist.lock = &hb2->lock;
955#endif
778e9a9c 956 }
1da177e4 957 this->key = key2;
9adef58b 958 get_futex_key_refs(&key2);
1da177e4
LT
959 drop_count++;
960
961 if (ret - nr_wake >= nr_requeue)
962 break;
1da177e4
LT
963 }
964 }
965
966out_unlock:
e2970f2f
IM
967 spin_unlock(&hb1->lock);
968 if (hb1 != hb2)
969 spin_unlock(&hb2->lock);
1da177e4 970
9adef58b 971 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 972 while (--drop_count >= 0)
9adef58b 973 drop_futex_key_refs(&key1);
1da177e4
LT
974
975out:
36cf3b5c 976 futex_unlock_mm(fshared);
1da177e4
LT
977 return ret;
978}
979
980/* The key must be already stored in q->key. */
981static inline struct futex_hash_bucket *
982queue_lock(struct futex_q *q, int fd, struct file *filp)
983{
e2970f2f 984 struct futex_hash_bucket *hb;
1da177e4
LT
985
986 q->fd = fd;
987 q->filp = filp;
988
989 init_waitqueue_head(&q->waiters);
990
9adef58b 991 get_futex_key_refs(&q->key);
e2970f2f
IM
992 hb = hash_futex(&q->key);
993 q->lock_ptr = &hb->lock;
1da177e4 994
e2970f2f
IM
995 spin_lock(&hb->lock);
996 return hb;
1da177e4
LT
997}
998
e2970f2f 999static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1000{
ec92d082
PP
1001 int prio;
1002
1003 /*
1004 * The priority used to register this element is
1005 * - either the real thread-priority for the real-time threads
1006 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1007 * - or MAX_RT_PRIO for non-RT threads.
1008 * Thus, all RT-threads are woken first in priority order, and
1009 * the others are woken last, in FIFO order.
1010 */
1011 prio = min(current->normal_prio, MAX_RT_PRIO);
1012
1013 plist_node_init(&q->list, prio);
1014#ifdef CONFIG_DEBUG_PI_LIST
1015 q->list.plist.lock = &hb->lock;
1016#endif
1017 plist_add(&q->list, &hb->chain);
c87e2837 1018 q->task = current;
e2970f2f 1019 spin_unlock(&hb->lock);
1da177e4
LT
1020}
1021
1022static inline void
e2970f2f 1023queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1024{
e2970f2f 1025 spin_unlock(&hb->lock);
9adef58b 1026 drop_futex_key_refs(&q->key);
1da177e4
LT
1027}
1028
1029/*
1030 * queue_me and unqueue_me must be called as a pair, each
1031 * exactly once. They are called with the hashed spinlock held.
1032 */
1033
1034/* The key must be already stored in q->key. */
1035static void queue_me(struct futex_q *q, int fd, struct file *filp)
1036{
e2970f2f
IM
1037 struct futex_hash_bucket *hb;
1038
1039 hb = queue_lock(q, fd, filp);
1040 __queue_me(q, hb);
1da177e4
LT
1041}
1042
1043/* Return 1 if we were still queued (ie. 0 means we were woken) */
1044static int unqueue_me(struct futex_q *q)
1045{
1da177e4 1046 spinlock_t *lock_ptr;
e2970f2f 1047 int ret = 0;
1da177e4
LT
1048
1049 /* In the common case we don't take the spinlock, which is nice. */
1050 retry:
1051 lock_ptr = q->lock_ptr;
e91467ec 1052 barrier();
c80544dc 1053 if (lock_ptr != NULL) {
1da177e4
LT
1054 spin_lock(lock_ptr);
1055 /*
1056 * q->lock_ptr can change between reading it and
1057 * spin_lock(), causing us to take the wrong lock. This
1058 * corrects the race condition.
1059 *
1060 * Reasoning goes like this: if we have the wrong lock,
1061 * q->lock_ptr must have changed (maybe several times)
1062 * between reading it and the spin_lock(). It can
1063 * change again after the spin_lock() but only if it was
1064 * already changed before the spin_lock(). It cannot,
1065 * however, change back to the original value. Therefore
1066 * we can detect whether we acquired the correct lock.
1067 */
1068 if (unlikely(lock_ptr != q->lock_ptr)) {
1069 spin_unlock(lock_ptr);
1070 goto retry;
1071 }
ec92d082
PP
1072 WARN_ON(plist_node_empty(&q->list));
1073 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1074
1075 BUG_ON(q->pi_state);
1076
1da177e4
LT
1077 spin_unlock(lock_ptr);
1078 ret = 1;
1079 }
1080
9adef58b 1081 drop_futex_key_refs(&q->key);
1da177e4
LT
1082 return ret;
1083}
1084
c87e2837
IM
1085/*
1086 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1087 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1088 * and dropped here.
c87e2837 1089 */
d0aa7a70 1090static void unqueue_me_pi(struct futex_q *q)
c87e2837 1091{
ec92d082
PP
1092 WARN_ON(plist_node_empty(&q->list));
1093 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1094
1095 BUG_ON(!q->pi_state);
1096 free_pi_state(q->pi_state);
1097 q->pi_state = NULL;
1098
d0aa7a70 1099 spin_unlock(q->lock_ptr);
c87e2837 1100
9adef58b 1101 drop_futex_key_refs(&q->key);
c87e2837
IM
1102}
1103
d0aa7a70
PP
1104/*
1105 * Fixup the pi_state owner with current.
1106 *
778e9a9c
AK
1107 * Must be called with hash bucket lock held and mm->sem held for non
1108 * private futexes.
d0aa7a70 1109 */
778e9a9c 1110static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
d0aa7a70
PP
1111 struct task_struct *curr)
1112{
b488893a 1113 u32 newtid = task_pid_vnr(curr) | FUTEX_WAITERS;
d0aa7a70
PP
1114 struct futex_pi_state *pi_state = q->pi_state;
1115 u32 uval, curval, newval;
1116 int ret;
1117
1118 /* Owner died? */
1119 if (pi_state->owner != NULL) {
1120 spin_lock_irq(&pi_state->owner->pi_lock);
1121 WARN_ON(list_empty(&pi_state->list));
1122 list_del_init(&pi_state->list);
1123 spin_unlock_irq(&pi_state->owner->pi_lock);
1124 } else
1125 newtid |= FUTEX_OWNER_DIED;
1126
1127 pi_state->owner = curr;
1128
1129 spin_lock_irq(&curr->pi_lock);
1130 WARN_ON(!list_empty(&pi_state->list));
1131 list_add(&pi_state->list, &curr->pi_state_list);
1132 spin_unlock_irq(&curr->pi_lock);
1133
d0aa7a70
PP
1134 /*
1135 * We own it, so we have to replace the pending owner
1136 * TID. This must be atomic as we have preserve the
1137 * owner died bit here.
1138 */
778e9a9c
AK
1139 ret = get_futex_value_locked(&uval, uaddr);
1140
d0aa7a70
PP
1141 while (!ret) {
1142 newval = (uval & FUTEX_OWNER_DIED) | newtid;
778e9a9c 1143
36cf3b5c 1144 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 1145
d0aa7a70 1146 if (curval == -EFAULT)
778e9a9c 1147 ret = -EFAULT;
d0aa7a70
PP
1148 if (curval == uval)
1149 break;
1150 uval = curval;
1151 }
1152 return ret;
1153}
1154
34f01cc1
ED
1155/*
1156 * In case we must use restart_block to restart a futex_wait,
1157 * we encode in the 'arg3' shared capability
1158 */
1159#define ARG3_SHARED 1
1160
72c1bbf3 1161static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1162
34f01cc1
ED
1163static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1164 u32 val, ktime_t *abs_time)
1da177e4 1165{
c87e2837
IM
1166 struct task_struct *curr = current;
1167 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1168 struct futex_hash_bucket *hb;
1da177e4 1169 struct futex_q q;
e2970f2f
IM
1170 u32 uval;
1171 int ret;
bd197234 1172 struct hrtimer_sleeper t;
c19384b5 1173 int rem = 0;
1da177e4 1174
c87e2837 1175 q.pi_state = NULL;
1da177e4 1176 retry:
36cf3b5c 1177 futex_lock_mm(fshared);
1da177e4 1178
34f01cc1 1179 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1180 if (unlikely(ret != 0))
1181 goto out_release_sem;
1182
e2970f2f 1183 hb = queue_lock(&q, -1, NULL);
1da177e4
LT
1184
1185 /*
1186 * Access the page AFTER the futex is queued.
1187 * Order is important:
1188 *
1189 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1190 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1191 *
1192 * The basic logical guarantee of a futex is that it blocks ONLY
1193 * if cond(var) is known to be true at the time of blocking, for
1194 * any cond. If we queued after testing *uaddr, that would open
1195 * a race condition where we could block indefinitely with
1196 * cond(var) false, which would violate the guarantee.
1197 *
1198 * A consequence is that futex_wait() can return zero and absorb
1199 * a wakeup when *uaddr != val on entry to the syscall. This is
1200 * rare, but normal.
1201 *
34f01cc1
ED
1202 * for shared futexes, we hold the mmap semaphore, so the mapping
1203 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1204 */
e2970f2f 1205 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1206
1207 if (unlikely(ret)) {
e2970f2f 1208 queue_unlock(&q, hb);
1da177e4 1209
e2970f2f
IM
1210 /*
1211 * If we would have faulted, release mmap_sem, fault it in and
1da177e4
LT
1212 * start all over again.
1213 */
36cf3b5c 1214 futex_unlock_mm(fshared);
1da177e4 1215
e2970f2f 1216 ret = get_user(uval, uaddr);
1da177e4
LT
1217
1218 if (!ret)
1219 goto retry;
1220 return ret;
1221 }
c87e2837
IM
1222 ret = -EWOULDBLOCK;
1223 if (uval != val)
1224 goto out_unlock_release_sem;
1da177e4
LT
1225
1226 /* Only actually queue if *uaddr contained val. */
e2970f2f 1227 __queue_me(&q, hb);
1da177e4
LT
1228
1229 /*
1230 * Now the futex is queued and we have checked the data, we
1231 * don't want to hold mmap_sem while we sleep.
c87e2837 1232 */
36cf3b5c 1233 futex_unlock_mm(fshared);
1da177e4
LT
1234
1235 /*
1236 * There might have been scheduling since the queue_me(), as we
1237 * cannot hold a spinlock across the get_user() in case it
1238 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1239 * queueing ourselves into the futex hash. This code thus has to
1240 * rely on the futex_wake() code removing us from hash when it
1241 * wakes us up.
1242 */
1243
1244 /* add_wait_queue is the barrier after __set_current_state. */
1245 __set_current_state(TASK_INTERRUPTIBLE);
1246 add_wait_queue(&q.waiters, &wait);
1247 /*
ec92d082 1248 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1249 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1250 */
ec92d082 1251 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1252 if (!abs_time)
1253 schedule();
1254 else {
1255 hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1256 hrtimer_init_sleeper(&t, current);
1257 t.timer.expires = *abs_time;
1258
1259 hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1260
1261 /*
1262 * the timer could have already expired, in which
1263 * case current would be flagged for rescheduling.
1264 * Don't bother calling schedule.
1265 */
1266 if (likely(t.task))
1267 schedule();
1268
1269 hrtimer_cancel(&t.timer);
72c1bbf3 1270
c19384b5
PP
1271 /* Flag if a timeout occured */
1272 rem = (t.task == NULL);
1273 }
72c1bbf3 1274 }
1da177e4
LT
1275 __set_current_state(TASK_RUNNING);
1276
1277 /*
1278 * NOTE: we don't remove ourselves from the waitqueue because
1279 * we are the only user of it.
1280 */
1281
1282 /* If we were woken (and unqueued), we succeeded, whatever. */
1283 if (!unqueue_me(&q))
1284 return 0;
c19384b5 1285 if (rem)
1da177e4 1286 return -ETIMEDOUT;
72c1bbf3 1287
e2970f2f
IM
1288 /*
1289 * We expect signal_pending(current), but another thread may
1290 * have handled it for us already.
1291 */
c19384b5 1292 if (!abs_time)
72c1bbf3
NP
1293 return -ERESTARTSYS;
1294 else {
1295 struct restart_block *restart;
1296 restart = &current_thread_info()->restart_block;
1297 restart->fn = futex_wait_restart;
1298 restart->arg0 = (unsigned long)uaddr;
1299 restart->arg1 = (unsigned long)val;
c19384b5 1300 restart->arg2 = (unsigned long)abs_time;
34f01cc1
ED
1301 restart->arg3 = 0;
1302 if (fshared)
1303 restart->arg3 |= ARG3_SHARED;
72c1bbf3
NP
1304 return -ERESTART_RESTARTBLOCK;
1305 }
1da177e4 1306
c87e2837
IM
1307 out_unlock_release_sem:
1308 queue_unlock(&q, hb);
1309
1da177e4 1310 out_release_sem:
36cf3b5c 1311 futex_unlock_mm(fshared);
c87e2837
IM
1312 return ret;
1313}
1314
72c1bbf3
NP
1315
1316static long futex_wait_restart(struct restart_block *restart)
1317{
1318 u32 __user *uaddr = (u32 __user *)restart->arg0;
1319 u32 val = (u32)restart->arg1;
c19384b5 1320 ktime_t *abs_time = (ktime_t *)restart->arg2;
34f01cc1 1321 struct rw_semaphore *fshared = NULL;
72c1bbf3
NP
1322
1323 restart->fn = do_no_restart_syscall;
34f01cc1
ED
1324 if (restart->arg3 & ARG3_SHARED)
1325 fshared = &current->mm->mmap_sem;
1326 return (long)futex_wait(uaddr, fshared, val, abs_time);
72c1bbf3
NP
1327}
1328
1329
c87e2837
IM
1330/*
1331 * Userspace tried a 0 -> TID atomic transition of the futex value
1332 * and failed. The kernel side here does the whole locking operation:
1333 * if there are waiters then it will block, it does PI, etc. (Due to
1334 * races the kernel might see a 0 value of the futex too.)
1335 */
34f01cc1
ED
1336static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1337 int detect, ktime_t *time, int trylock)
c87e2837 1338{
c5780e97 1339 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1340 struct task_struct *curr = current;
1341 struct futex_hash_bucket *hb;
1342 u32 uval, newval, curval;
1343 struct futex_q q;
778e9a9c 1344 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1345
1346 if (refill_pi_state_cache())
1347 return -ENOMEM;
1348
c19384b5 1349 if (time) {
c5780e97 1350 to = &timeout;
c9cb2e3d 1351 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
c5780e97 1352 hrtimer_init_sleeper(to, current);
c19384b5 1353 to->timer.expires = *time;
c5780e97
TG
1354 }
1355
c87e2837
IM
1356 q.pi_state = NULL;
1357 retry:
36cf3b5c 1358 futex_lock_mm(fshared);
c87e2837 1359
34f01cc1 1360 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1361 if (unlikely(ret != 0))
1362 goto out_release_sem;
1363
778e9a9c 1364 retry_unlocked:
c87e2837
IM
1365 hb = queue_lock(&q, -1, NULL);
1366
1367 retry_locked:
778e9a9c 1368 ret = lock_taken = 0;
d0aa7a70 1369
c87e2837
IM
1370 /*
1371 * To avoid races, we attempt to take the lock here again
1372 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1373 * the locks. It will most likely not succeed.
1374 */
b488893a 1375 newval = task_pid_vnr(current);
c87e2837 1376
36cf3b5c 1377 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1378
1379 if (unlikely(curval == -EFAULT))
1380 goto uaddr_faulted;
1381
778e9a9c
AK
1382 /*
1383 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1384 * situation and we return success to user space.
1385 */
b488893a 1386 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1387 ret = -EDEADLK;
c87e2837
IM
1388 goto out_unlock_release_sem;
1389 }
1390
1391 /*
778e9a9c 1392 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1393 */
1394 if (unlikely(!curval))
1395 goto out_unlock_release_sem;
1396
1397 uval = curval;
778e9a9c 1398
d0aa7a70 1399 /*
778e9a9c
AK
1400 * Set the WAITERS flag, so the owner will know it has someone
1401 * to wake at next unlock
d0aa7a70 1402 */
778e9a9c
AK
1403 newval = curval | FUTEX_WAITERS;
1404
1405 /*
1406 * There are two cases, where a futex might have no owner (the
bd197234
TG
1407 * owner TID is 0): OWNER_DIED. We take over the futex in this
1408 * case. We also do an unconditional take over, when the owner
1409 * of the futex died.
778e9a9c
AK
1410 *
1411 * This is safe as we are protected by the hash bucket lock !
1412 */
1413 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1414 /* Keep the OWNER_DIED bit */
b488893a 1415 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1416 ownerdied = 0;
1417 lock_taken = 1;
1418 }
c87e2837 1419
36cf3b5c 1420 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1421
1422 if (unlikely(curval == -EFAULT))
1423 goto uaddr_faulted;
1424 if (unlikely(curval != uval))
1425 goto retry_locked;
1426
778e9a9c 1427 /*
bd197234 1428 * We took the lock due to owner died take over.
778e9a9c 1429 */
bd197234 1430 if (unlikely(lock_taken))
d0aa7a70 1431 goto out_unlock_release_sem;
d0aa7a70 1432
c87e2837
IM
1433 /*
1434 * We dont have the lock. Look up the PI state (or create it if
1435 * we are the first waiter):
1436 */
d0aa7a70 1437 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1438
1439 if (unlikely(ret)) {
778e9a9c 1440 switch (ret) {
c87e2837 1441
778e9a9c
AK
1442 case -EAGAIN:
1443 /*
1444 * Task is exiting and we just wait for the
1445 * exit to complete.
1446 */
1447 queue_unlock(&q, hb);
36cf3b5c 1448 futex_unlock_mm(fshared);
778e9a9c
AK
1449 cond_resched();
1450 goto retry;
c87e2837 1451
778e9a9c
AK
1452 case -ESRCH:
1453 /*
1454 * No owner found for this futex. Check if the
1455 * OWNER_DIED bit is set to figure out whether
1456 * this is a robust futex or not.
1457 */
1458 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1459 goto uaddr_faulted;
778e9a9c
AK
1460
1461 /*
1462 * We simply start over in case of a robust
1463 * futex. The code above will take the futex
1464 * and return happy.
1465 */
1466 if (curval & FUTEX_OWNER_DIED) {
1467 ownerdied = 1;
c87e2837 1468 goto retry_locked;
778e9a9c
AK
1469 }
1470 default:
1471 goto out_unlock_release_sem;
c87e2837 1472 }
c87e2837
IM
1473 }
1474
1475 /*
1476 * Only actually queue now that the atomic ops are done:
1477 */
1478 __queue_me(&q, hb);
1479
1480 /*
1481 * Now the futex is queued and we have checked the data, we
1482 * don't want to hold mmap_sem while we sleep.
1483 */
36cf3b5c 1484 futex_unlock_mm(fshared);
c87e2837
IM
1485
1486 WARN_ON(!q.pi_state);
1487 /*
1488 * Block on the PI mutex:
1489 */
1490 if (!trylock)
1491 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1492 else {
1493 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1494 /* Fixup the trylock return value: */
1495 ret = ret ? 0 : -EWOULDBLOCK;
1496 }
1497
36cf3b5c 1498 futex_lock_mm(fshared);
a99e4e41 1499 spin_lock(q.lock_ptr);
c87e2837 1500
778e9a9c
AK
1501 if (!ret) {
1502 /*
1503 * Got the lock. We might not be the anticipated owner
1504 * if we did a lock-steal - fix up the PI-state in
1505 * that case:
1506 */
1507 if (q.pi_state->owner != curr)
1508 ret = fixup_pi_state_owner(uaddr, &q, curr);
1509 } else {
c87e2837
IM
1510 /*
1511 * Catch the rare case, where the lock was released
778e9a9c
AK
1512 * when we were on the way back before we locked the
1513 * hash bucket.
c87e2837 1514 */
778e9a9c
AK
1515 if (q.pi_state->owner == curr &&
1516 rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1517 ret = 0;
1518 } else {
1519 /*
1520 * Paranoia check. If we did not take the lock
1521 * in the trylock above, then we should not be
1522 * the owner of the rtmutex, neither the real
1523 * nor the pending one:
1524 */
1525 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1526 printk(KERN_ERR "futex_lock_pi: ret = %d "
1527 "pi-mutex: %p pi-state %p\n", ret,
1528 q.pi_state->pi_mutex.owner,
1529 q.pi_state->owner);
c87e2837 1530 }
c87e2837
IM
1531 }
1532
778e9a9c
AK
1533 /* Unqueue and drop the lock */
1534 unqueue_me_pi(&q);
36cf3b5c 1535 futex_unlock_mm(fshared);
c87e2837 1536
c5780e97 1537 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1538
1539 out_unlock_release_sem:
1540 queue_unlock(&q, hb);
1541
1542 out_release_sem:
36cf3b5c 1543 futex_unlock_mm(fshared);
c87e2837
IM
1544 return ret;
1545
1546 uaddr_faulted:
1547 /*
1548 * We have to r/w *(int __user *)uaddr, but we can't modify it
1549 * non-atomically. Therefore, if get_user below is not
1550 * enough, we need to handle the fault ourselves, while
1551 * still holding the mmap_sem.
778e9a9c
AK
1552 *
1553 * ... and hb->lock. :-) --ANK
c87e2837 1554 */
778e9a9c
AK
1555 queue_unlock(&q, hb);
1556
c87e2837 1557 if (attempt++) {
34f01cc1
ED
1558 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1559 attempt);
1560 if (ret)
778e9a9c
AK
1561 goto out_release_sem;
1562 goto retry_unlocked;
c87e2837
IM
1563 }
1564
36cf3b5c 1565 futex_unlock_mm(fshared);
c87e2837
IM
1566
1567 ret = get_user(uval, uaddr);
1568 if (!ret && (uval != -EFAULT))
1569 goto retry;
1570
1571 return ret;
1572}
1573
c87e2837
IM
1574/*
1575 * Userspace attempted a TID -> 0 atomic transition, and failed.
1576 * This is the in-kernel slowpath: we look up the PI state (if any),
1577 * and do the rt-mutex unlock.
1578 */
34f01cc1 1579static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
c87e2837
IM
1580{
1581 struct futex_hash_bucket *hb;
1582 struct futex_q *this, *next;
1583 u32 uval;
ec92d082 1584 struct plist_head *head;
c87e2837
IM
1585 union futex_key key;
1586 int ret, attempt = 0;
1587
1588retry:
1589 if (get_user(uval, uaddr))
1590 return -EFAULT;
1591 /*
1592 * We release only a lock we actually own:
1593 */
b488893a 1594 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837
IM
1595 return -EPERM;
1596 /*
1597 * First take all the futex related locks:
1598 */
36cf3b5c 1599 futex_lock_mm(fshared);
c87e2837 1600
34f01cc1 1601 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1602 if (unlikely(ret != 0))
1603 goto out;
1604
1605 hb = hash_futex(&key);
778e9a9c 1606retry_unlocked:
c87e2837
IM
1607 spin_lock(&hb->lock);
1608
c87e2837
IM
1609 /*
1610 * To avoid races, try to do the TID -> 0 atomic transition
1611 * again. If it succeeds then we can return without waking
1612 * anyone else up:
1613 */
36cf3b5c 1614 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1615 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1616
c87e2837
IM
1617
1618 if (unlikely(uval == -EFAULT))
1619 goto pi_faulted;
1620 /*
1621 * Rare case: we managed to release the lock atomically,
1622 * no need to wake anyone else up:
1623 */
b488893a 1624 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1625 goto out_unlock;
1626
1627 /*
1628 * Ok, other tasks may need to be woken up - check waiters
1629 * and do the wakeup if necessary:
1630 */
1631 head = &hb->chain;
1632
ec92d082 1633 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1634 if (!match_futex (&this->key, &key))
1635 continue;
1636 ret = wake_futex_pi(uaddr, uval, this);
1637 /*
1638 * The atomic access to the futex value
1639 * generated a pagefault, so retry the
1640 * user-access and the wakeup:
1641 */
1642 if (ret == -EFAULT)
1643 goto pi_faulted;
1644 goto out_unlock;
1645 }
1646 /*
1647 * No waiters - kernel unlocks the futex:
1648 */
e3f2ddea
IM
1649 if (!(uval & FUTEX_OWNER_DIED)) {
1650 ret = unlock_futex_pi(uaddr, uval);
1651 if (ret == -EFAULT)
1652 goto pi_faulted;
1653 }
c87e2837
IM
1654
1655out_unlock:
1656 spin_unlock(&hb->lock);
1657out:
36cf3b5c 1658 futex_unlock_mm(fshared);
c87e2837
IM
1659
1660 return ret;
1661
1662pi_faulted:
1663 /*
1664 * We have to r/w *(int __user *)uaddr, but we can't modify it
1665 * non-atomically. Therefore, if get_user below is not
1666 * enough, we need to handle the fault ourselves, while
1667 * still holding the mmap_sem.
778e9a9c
AK
1668 *
1669 * ... and hb->lock. --ANK
c87e2837 1670 */
778e9a9c
AK
1671 spin_unlock(&hb->lock);
1672
c87e2837 1673 if (attempt++) {
34f01cc1
ED
1674 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1675 attempt);
1676 if (ret)
778e9a9c 1677 goto out;
187226f5 1678 uval = 0;
778e9a9c 1679 goto retry_unlocked;
c87e2837
IM
1680 }
1681
36cf3b5c 1682 futex_unlock_mm(fshared);
c87e2837
IM
1683
1684 ret = get_user(uval, uaddr);
1685 if (!ret && (uval != -EFAULT))
1686 goto retry;
1687
1da177e4
LT
1688 return ret;
1689}
1690
1691static int futex_close(struct inode *inode, struct file *filp)
1692{
1693 struct futex_q *q = filp->private_data;
1694
1695 unqueue_me(q);
1696 kfree(q);
e2970f2f 1697
1da177e4
LT
1698 return 0;
1699}
1700
1701/* This is one-shot: once it's gone off you need a new fd */
1702static unsigned int futex_poll(struct file *filp,
1703 struct poll_table_struct *wait)
1704{
1705 struct futex_q *q = filp->private_data;
1706 int ret = 0;
1707
1708 poll_wait(filp, &q->waiters, wait);
1709
1710 /*
ec92d082 1711 * plist_node_empty() is safe here without any lock.
1da177e4
LT
1712 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1713 */
ec92d082 1714 if (plist_node_empty(&q->list))
1da177e4
LT
1715 ret = POLLIN | POLLRDNORM;
1716
1717 return ret;
1718}
1719
15ad7cdc 1720static const struct file_operations futex_fops = {
1da177e4
LT
1721 .release = futex_close,
1722 .poll = futex_poll,
1723};
1724
1725/*
1726 * Signal allows caller to avoid the race which would occur if they
1727 * set the sigio stuff up afterwards.
1728 */
e2970f2f 1729static int futex_fd(u32 __user *uaddr, int signal)
1da177e4
LT
1730{
1731 struct futex_q *q;
1732 struct file *filp;
1733 int ret, err;
34f01cc1 1734 struct rw_semaphore *fshared;
19c6b6ed
AM
1735 static unsigned long printk_interval;
1736
1737 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1738 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
36cf3b5c
TG
1739 "will be removed from the kernel in June 2007\n",
1740 current->comm);
19c6b6ed 1741 }
1da177e4
LT
1742
1743 ret = -EINVAL;
7ed20e1a 1744 if (!valid_signal(signal))
1da177e4
LT
1745 goto out;
1746
1747 ret = get_unused_fd();
1748 if (ret < 0)
1749 goto out;
1750 filp = get_empty_filp();
1751 if (!filp) {
1752 put_unused_fd(ret);
1753 ret = -ENFILE;
1754 goto out;
1755 }
1756 filp->f_op = &futex_fops;
f3a43f3f
JJS
1757 filp->f_path.mnt = mntget(futex_mnt);
1758 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1759 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1da177e4
LT
1760
1761 if (signal) {
609d7fa9 1762 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1da177e4 1763 if (err < 0) {
39ed3fde 1764 goto error;
1da177e4
LT
1765 }
1766 filp->f_owner.signum = signal;
1767 }
1768
1769 q = kmalloc(sizeof(*q), GFP_KERNEL);
1770 if (!q) {
39ed3fde
PE
1771 err = -ENOMEM;
1772 goto error;
1da177e4 1773 }
c87e2837 1774 q->pi_state = NULL;
1da177e4 1775
34f01cc1
ED
1776 fshared = &current->mm->mmap_sem;
1777 down_read(fshared);
1778 err = get_futex_key(uaddr, fshared, &q->key);
1da177e4
LT
1779
1780 if (unlikely(err != 0)) {
34f01cc1 1781 up_read(fshared);
1da177e4 1782 kfree(q);
39ed3fde 1783 goto error;
1da177e4
LT
1784 }
1785
1786 /*
1787 * queue_me() must be called before releasing mmap_sem, because
1788 * key->shared.inode needs to be referenced while holding it.
1789 */
1790 filp->private_data = q;
1791
1792 queue_me(q, ret, filp);
34f01cc1 1793 up_read(fshared);
1da177e4
LT
1794
1795 /* Now we map fd to filp, so userspace can access it */
1796 fd_install(ret, filp);
1797out:
1798 return ret;
39ed3fde
PE
1799error:
1800 put_unused_fd(ret);
1801 put_filp(filp);
1802 ret = err;
1803 goto out;
1da177e4
LT
1804}
1805
0771dfef
IM
1806/*
1807 * Support for robust futexes: the kernel cleans up held futexes at
1808 * thread exit time.
1809 *
1810 * Implementation: user-space maintains a per-thread list of locks it
1811 * is holding. Upon do_exit(), the kernel carefully walks this list,
1812 * and marks all locks that are owned by this thread with the
c87e2837 1813 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1814 * always manipulated with the lock held, so the list is private and
1815 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1816 * field, to allow the kernel to clean up if the thread dies after
1817 * acquiring the lock, but just before it could have added itself to
1818 * the list. There can only be one such pending lock.
1819 */
1820
1821/**
1822 * sys_set_robust_list - set the robust-futex list head of a task
1823 * @head: pointer to the list-head
1824 * @len: length of the list-head, as userspace expects
1825 */
1826asmlinkage long
1827sys_set_robust_list(struct robust_list_head __user *head,
1828 size_t len)
1829{
1830 /*
1831 * The kernel knows only one size for now:
1832 */
1833 if (unlikely(len != sizeof(*head)))
1834 return -EINVAL;
1835
1836 current->robust_list = head;
1837
1838 return 0;
1839}
1840
1841/**
1842 * sys_get_robust_list - get the robust-futex list head of a task
1843 * @pid: pid of the process [zero for current task]
1844 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1845 * @len_ptr: pointer to a length field, the kernel fills in the header size
1846 */
1847asmlinkage long
ba46df98 1848sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1849 size_t __user *len_ptr)
1850{
ba46df98 1851 struct robust_list_head __user *head;
0771dfef
IM
1852 unsigned long ret;
1853
1854 if (!pid)
1855 head = current->robust_list;
1856 else {
1857 struct task_struct *p;
1858
1859 ret = -ESRCH;
aaa2a97e 1860 rcu_read_lock();
b488893a
PE
1861 p = find_task_by_pid_ns(pid,
1862 current->nsproxy->pid_ns);
0771dfef
IM
1863 if (!p)
1864 goto err_unlock;
1865 ret = -EPERM;
1866 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1867 !capable(CAP_SYS_PTRACE))
1868 goto err_unlock;
1869 head = p->robust_list;
aaa2a97e 1870 rcu_read_unlock();
0771dfef
IM
1871 }
1872
1873 if (put_user(sizeof(*head), len_ptr))
1874 return -EFAULT;
1875 return put_user(head, head_ptr);
1876
1877err_unlock:
aaa2a97e 1878 rcu_read_unlock();
0771dfef
IM
1879
1880 return ret;
1881}
1882
1883/*
1884 * Process a futex-list entry, check whether it's owned by the
1885 * dying task, and do notification if so:
1886 */
e3f2ddea 1887int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1888{
e3f2ddea 1889 u32 uval, nval, mval;
0771dfef 1890
8f17d3a5
IM
1891retry:
1892 if (get_user(uval, uaddr))
0771dfef
IM
1893 return -1;
1894
b488893a 1895 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1896 /*
1897 * Ok, this dying thread is truly holding a futex
1898 * of interest. Set the OWNER_DIED bit atomically
1899 * via cmpxchg, and if the value had FUTEX_WAITERS
1900 * set, wake up a waiter (if any). (We have to do a
1901 * futex_wake() even if OWNER_DIED is already set -
1902 * to handle the rare but possible case of recursive
1903 * thread-death.) The rest of the cleanup is done in
1904 * userspace.
1905 */
e3f2ddea
IM
1906 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1907 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1908
c87e2837
IM
1909 if (nval == -EFAULT)
1910 return -1;
1911
1912 if (nval != uval)
8f17d3a5 1913 goto retry;
0771dfef 1914
e3f2ddea
IM
1915 /*
1916 * Wake robust non-PI futexes here. The wakeup of
1917 * PI futexes happens in exit_pi_state():
1918 */
36cf3b5c 1919 if (!pi && (uval & FUTEX_WAITERS))
34f01cc1 1920 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
0771dfef
IM
1921 }
1922 return 0;
1923}
1924
e3f2ddea
IM
1925/*
1926 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1927 */
1928static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1929 struct robust_list __user * __user *head,
1930 int *pi)
e3f2ddea
IM
1931{
1932 unsigned long uentry;
1933
ba46df98 1934 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1935 return -EFAULT;
1936
ba46df98 1937 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1938 *pi = uentry & 1;
1939
1940 return 0;
1941}
1942
0771dfef
IM
1943/*
1944 * Walk curr->robust_list (very carefully, it's a userspace list!)
1945 * and mark any locks found there dead, and notify any waiters.
1946 *
1947 * We silently return on any sign of list-walking problem.
1948 */
1949void exit_robust_list(struct task_struct *curr)
1950{
1951 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1952 struct robust_list __user *entry, *next_entry, *pending;
1953 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1954 unsigned long futex_offset;
9f96cb1e 1955 int rc;
0771dfef
IM
1956
1957 /*
1958 * Fetch the list head (which was registered earlier, via
1959 * sys_set_robust_list()):
1960 */
e3f2ddea 1961 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1962 return;
1963 /*
1964 * Fetch the relative futex offset:
1965 */
1966 if (get_user(futex_offset, &head->futex_offset))
1967 return;
1968 /*
1969 * Fetch any possibly pending lock-add first, and handle it
1970 * if it exists:
1971 */
e3f2ddea 1972 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1973 return;
e3f2ddea 1974
9f96cb1e 1975 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1976 while (entry != &head->list) {
9f96cb1e
MS
1977 /*
1978 * Fetch the next entry in the list before calling
1979 * handle_futex_death:
1980 */
1981 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1982 /*
1983 * A pending lock might already be on the list, so
c87e2837 1984 * don't process it twice:
0771dfef
IM
1985 */
1986 if (entry != pending)
ba46df98 1987 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1988 curr, pi))
0771dfef 1989 return;
9f96cb1e 1990 if (rc)
0771dfef 1991 return;
9f96cb1e
MS
1992 entry = next_entry;
1993 pi = next_pi;
0771dfef
IM
1994 /*
1995 * Avoid excessively long or circular lists:
1996 */
1997 if (!--limit)
1998 break;
1999
2000 cond_resched();
2001 }
9f96cb1e
MS
2002
2003 if (pending)
2004 handle_futex_death((void __user *)pending + futex_offset,
2005 curr, pip);
0771dfef
IM
2006}
2007
c19384b5 2008long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2009 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4
LT
2010{
2011 int ret;
34f01cc1
ED
2012 int cmd = op & FUTEX_CMD_MASK;
2013 struct rw_semaphore *fshared = NULL;
2014
2015 if (!(op & FUTEX_PRIVATE_FLAG))
2016 fshared = &current->mm->mmap_sem;
1da177e4 2017
34f01cc1 2018 switch (cmd) {
1da177e4 2019 case FUTEX_WAIT:
34f01cc1 2020 ret = futex_wait(uaddr, fshared, val, timeout);
1da177e4
LT
2021 break;
2022 case FUTEX_WAKE:
34f01cc1 2023 ret = futex_wake(uaddr, fshared, val);
1da177e4
LT
2024 break;
2025 case FUTEX_FD:
2026 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2027 ret = futex_fd(uaddr, val);
2028 break;
2029 case FUTEX_REQUEUE:
34f01cc1 2030 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
2031 break;
2032 case FUTEX_CMP_REQUEUE:
34f01cc1 2033 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 2034 break;
4732efbe 2035 case FUTEX_WAKE_OP:
34f01cc1 2036 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2037 break;
c87e2837 2038 case FUTEX_LOCK_PI:
34f01cc1 2039 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2040 break;
2041 case FUTEX_UNLOCK_PI:
34f01cc1 2042 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2043 break;
2044 case FUTEX_TRYLOCK_PI:
34f01cc1 2045 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2046 break;
1da177e4
LT
2047 default:
2048 ret = -ENOSYS;
2049 }
2050 return ret;
2051}
2052
2053
e2970f2f 2054asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 2055 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 2056 u32 val3)
1da177e4 2057{
c19384b5
PP
2058 struct timespec ts;
2059 ktime_t t, *tp = NULL;
e2970f2f 2060 u32 val2 = 0;
34f01cc1 2061 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2062
34f01cc1 2063 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
c19384b5 2064 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2065 return -EFAULT;
c19384b5 2066 if (!timespec_valid(&ts))
9741ef96 2067 return -EINVAL;
c19384b5
PP
2068
2069 t = timespec_to_ktime(ts);
34f01cc1 2070 if (cmd == FUTEX_WAIT)
c19384b5
PP
2071 t = ktime_add(ktime_get(), t);
2072 tp = &t;
1da177e4
LT
2073 }
2074 /*
34f01cc1 2075 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2076 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2077 */
f54f0986
AS
2078 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2079 cmd == FUTEX_WAKE_OP)
e2970f2f 2080 val2 = (u32) (unsigned long) utime;
1da177e4 2081
c19384b5 2082 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2083}
2084
454e2398
DH
2085static int futexfs_get_sb(struct file_system_type *fs_type,
2086 int flags, const char *dev_name, void *data,
2087 struct vfsmount *mnt)
1da177e4 2088{
fd5eea42 2089 return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
1da177e4
LT
2090}
2091
2092static struct file_system_type futex_fs_type = {
2093 .name = "futexfs",
2094 .get_sb = futexfs_get_sb,
2095 .kill_sb = kill_anon_super,
2096};
2097
2098static int __init init(void)
2099{
95362fa9
AM
2100 int i = register_filesystem(&futex_fs_type);
2101
2102 if (i)
2103 return i;
1da177e4 2104
1da177e4 2105 futex_mnt = kern_mount(&futex_fs_type);
95362fa9
AM
2106 if (IS_ERR(futex_mnt)) {
2107 unregister_filesystem(&futex_fs_type);
2108 return PTR_ERR(futex_mnt);
2109 }
1da177e4
LT
2110
2111 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
ec92d082 2112 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
1da177e4
LT
2113 spin_lock_init(&futex_queues[i].lock);
2114 }
2115 return 0;
2116}
2117__initcall(init);