futex: Validate atomic acquisition in futex_lock_pi_atomic()
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic_inc();
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
11d4616b
LT
283 smp_mb__after_atomic_inc();
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
345 break;
346 }
347}
348
349/*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353static void drop_futex_key_refs(union futex_key *key)
354{
90621c40
DH
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
38d47c1b 358 return;
90621c40 359 }
38d47c1b
PZ
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369}
370
34f01cc1 371/**
d96ee56c
DH
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
9ea71503
SB
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
34f01cc1 378 *
6c23cbbd
RD
379 * Return: a negative error code or 0
380 *
34f01cc1 381 * The key words are stored in *key on success.
1da177e4 382 *
6131ffaa 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
b2d0994b 387 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 388 */
64d1304a 389static int
9ea71503 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 391{
e2970f2f 392 unsigned long address = (unsigned long)uaddr;
1da177e4 393 struct mm_struct *mm = current->mm;
a5b338f2 394 struct page *page, *page_head;
9ea71503 395 int err, ro = 0;
1da177e4
LT
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
e2970f2f 400 key->both.offset = address % PAGE_SIZE;
34f01cc1 401 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 402 return -EINVAL;
e2970f2f 403 address -= key->both.offset;
1da177e4 404
5cdec2d8
LT
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
34f01cc1
ED
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
34f01cc1
ED
416 key->private.mm = mm;
417 key->private.address = address;
b0c29f79 418 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
419 return 0;
420 }
1da177e4 421
38d47c1b 422again:
7485d0d3 423 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
38d47c1b
PZ
432 if (err < 0)
433 return err;
9ea71503
SB
434 else
435 err = 0;
38d47c1b 436
a5b338f2
AA
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
38d47c1b 440 put_page(page);
a5b338f2
AA
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
f12d5bfc 443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465#else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471#endif
472
473 lock_page(page_head);
e6780f72
HD
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
a5b338f2 490 if (!page_head->mapping) {
e6780f72 491 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
492 unlock_page(page_head);
493 put_page(page_head);
e6780f72
HD
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
38d47c1b 497 }
1da177e4
LT
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 504 * the object not the particular process.
1da177e4 505 */
a5b338f2 506 if (PageAnon(page_head)) {
9ea71503
SB
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
38d47c1b 516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 517 key->private.mm = mm;
e2970f2f 518 key->private.address = address;
38d47c1b
PZ
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 521 key->shared.inode = page_head->mapping->host;
13d60f4b 522 key->shared.pgoff = basepage_index(page);
1da177e4
LT
523 }
524
b0c29f79 525 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 526
9ea71503 527out:
a5b338f2
AA
528 unlock_page(page_head);
529 put_page(page_head);
9ea71503 530 return err;
1da177e4
LT
531}
532
ae791a2d 533static inline void put_futex_key(union futex_key *key)
1da177e4 534{
38d47c1b 535 drop_futex_key_refs(key);
1da177e4
LT
536}
537
d96ee56c
DH
538/**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
fb62db2b 545 * We have no generic implementation of a non-destructive write to the
d0725992
TG
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550static int fault_in_user_writeable(u32 __user *uaddr)
551{
722d0172
AK
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
2efaca92
BH
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
722d0172
AK
558 up_read(&mm->mmap_sem);
559
d0725992
TG
560 return ret < 0 ? ret : 0;
561}
562
4b1c486b
DH
563/**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
567 *
568 * Must be called with the hb lock held.
569 */
570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572{
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580}
581
37a9d912
ML
582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
36cf3b5c 584{
37a9d912 585 int ret;
36cf3b5c
TG
586
587 pagefault_disable();
37a9d912 588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
589 pagefault_enable();
590
37a9d912 591 return ret;
36cf3b5c
TG
592}
593
594static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
595{
596 int ret;
597
a866374a 598 pagefault_disable();
e2970f2f 599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 600 pagefault_enable();
1da177e4
LT
601
602 return ret ? -EFAULT : 0;
603}
604
c87e2837
IM
605
606/*
607 * PI code:
608 */
609static int refill_pi_state_cache(void)
610{
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
4668edc3 616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
617
618 if (!pi_state)
619 return -ENOMEM;
620
c87e2837
IM
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
38d47c1b 625 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630}
631
632static struct futex_pi_state * alloc_pi_state(void)
633{
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640}
641
642static void free_pi_state(struct futex_pi_state *pi_state)
643{
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
1d615482 652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 653 list_del_init(&pi_state->list);
1d615482 654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671}
672
673/*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677static struct task_struct * futex_find_get_task(pid_t pid)
678{
679 struct task_struct *p;
680
d359b549 681 rcu_read_lock();
228ebcbe 682 p = find_task_by_vpid(pid);
7a0ea09a
MH
683 if (p)
684 get_task_struct(p);
a06381fe 685
d359b549 686 rcu_read_unlock();
c87e2837
IM
687
688 return p;
689}
690
691/*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696void exit_pi_state_list(struct task_struct *curr)
697{
c87e2837
IM
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
627371d7 700 struct futex_hash_bucket *hb;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
c87e2837 702
a0c1e907
TG
703 if (!futex_cmpxchg_enabled)
704 return;
c87e2837
IM
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
627371d7 708 * versus waiters unqueueing themselves:
c87e2837 709 */
1d615482 710 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
627371d7 716 hb = hash_futex(&key);
1d615482 717 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 718
c87e2837
IM
719 spin_lock(&hb->lock);
720
1d615482 721 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
c87e2837
IM
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
c87e2837 731 WARN_ON(pi_state->owner != curr);
627371d7
IM
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
c87e2837 734 pi_state->owner = NULL;
1d615482 735 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
1d615482 741 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 742 }
1d615482 743 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
744}
745
746static int
d0aa7a70 747lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
866293ee
TG
748 union futex_key *key, struct futex_pi_state **ps,
749 struct task_struct *task)
c87e2837
IM
750{
751 struct futex_pi_state *pi_state = NULL;
752 struct futex_q *this, *next;
c87e2837 753 struct task_struct *p;
778e9a9c 754 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 755
0d00c7b2 756 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 757 if (match_futex(&this->key, key)) {
c87e2837
IM
758 /*
759 * Another waiter already exists - bump up
760 * the refcount and return its pi_state:
761 */
762 pi_state = this->pi_state;
06a9ec29 763 /*
fb62db2b 764 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
765 */
766 if (unlikely(!pi_state))
767 return -EINVAL;
768
627371d7 769 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
770
771 /*
772 * When pi_state->owner is NULL then the owner died
773 * and another waiter is on the fly. pi_state->owner
774 * is fixed up by the task which acquires
775 * pi_state->rt_mutex.
776 *
777 * We do not check for pid == 0 which can happen when
778 * the owner died and robust_list_exit() cleared the
779 * TID.
780 */
781 if (pid && pi_state->owner) {
782 /*
783 * Bail out if user space manipulated the
784 * futex value.
785 */
786 if (pid != task_pid_vnr(pi_state->owner))
787 return -EINVAL;
788 }
627371d7 789
866293ee
TG
790 /*
791 * Protect against a corrupted uval. If uval
792 * is 0x80000000 then pid is 0 and the waiter
793 * bit is set. So the deadlock check in the
794 * calling code has failed and we did not fall
795 * into the check above due to !pid.
796 */
797 if (task && pi_state->owner == task)
798 return -EDEADLK;
799
c87e2837 800 atomic_inc(&pi_state->refcount);
d0aa7a70 801 *ps = pi_state;
c87e2837
IM
802
803 return 0;
804 }
805 }
806
807 /*
e3f2ddea 808 * We are the first waiter - try to look up the real owner and attach
778e9a9c 809 * the new pi_state to it, but bail out when TID = 0
c87e2837 810 */
778e9a9c 811 if (!pid)
e3f2ddea 812 return -ESRCH;
c87e2837 813 p = futex_find_get_task(pid);
7a0ea09a
MH
814 if (!p)
815 return -ESRCH;
778e9a9c 816
f0d71b3d
TG
817 if (!p->mm) {
818 put_task_struct(p);
819 return -EPERM;
820 }
821
778e9a9c
AK
822 /*
823 * We need to look at the task state flags to figure out,
824 * whether the task is exiting. To protect against the do_exit
825 * change of the task flags, we do this protected by
826 * p->pi_lock:
827 */
1d615482 828 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
829 if (unlikely(p->flags & PF_EXITING)) {
830 /*
831 * The task is on the way out. When PF_EXITPIDONE is
832 * set, we know that the task has finished the
833 * cleanup:
834 */
835 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
836
1d615482 837 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
838 put_task_struct(p);
839 return ret;
840 }
c87e2837
IM
841
842 pi_state = alloc_pi_state();
843
844 /*
845 * Initialize the pi_mutex in locked state and make 'p'
846 * the owner of it:
847 */
848 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
849
850 /* Store the key for possible exit cleanups: */
d0aa7a70 851 pi_state->key = *key;
c87e2837 852
627371d7 853 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
854 list_add(&pi_state->list, &p->pi_state_list);
855 pi_state->owner = p;
1d615482 856 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
857
858 put_task_struct(p);
859
d0aa7a70 860 *ps = pi_state;
c87e2837
IM
861
862 return 0;
863}
864
1a52084d 865/**
d96ee56c 866 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
867 * @uaddr: the pi futex user address
868 * @hb: the pi futex hash bucket
869 * @key: the futex key associated with uaddr and hb
870 * @ps: the pi_state pointer where we store the result of the
871 * lookup
872 * @task: the task to perform the atomic lock work for. This will
873 * be "current" except in the case of requeue pi.
874 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 875 *
6c23cbbd
RD
876 * Return:
877 * 0 - ready to wait;
878 * 1 - acquired the lock;
1a52084d
DH
879 * <0 - error
880 *
881 * The hb->lock and futex_key refs shall be held by the caller.
882 */
883static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
884 union futex_key *key,
885 struct futex_pi_state **ps,
bab5bc9e 886 struct task_struct *task, int set_waiters)
1a52084d 887{
59fa6245 888 int lock_taken, ret, force_take = 0;
c0c9ed15 889 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
890
891retry:
892 ret = lock_taken = 0;
893
894 /*
895 * To avoid races, we attempt to take the lock here again
896 * (by doing a 0 -> TID atomic cmpxchg), while holding all
897 * the locks. It will most likely not succeed.
898 */
c0c9ed15 899 newval = vpid;
bab5bc9e
DH
900 if (set_waiters)
901 newval |= FUTEX_WAITERS;
1a52084d 902
37a9d912 903 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
904 return -EFAULT;
905
906 /*
907 * Detect deadlocks.
908 */
c0c9ed15 909 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
910 return -EDEADLK;
911
912 /*
b3eaa9fc 913 * Surprise - we got the lock, but we do not trust user space at all.
1a52084d 914 */
b3eaa9fc
TG
915 if (unlikely(!curval)) {
916 /*
917 * We verify whether there is kernel state for this
918 * futex. If not, we can safely assume, that the 0 ->
919 * TID transition is correct. If state exists, we do
920 * not bother to fixup the user space state as it was
921 * corrupted already.
922 */
923 return futex_top_waiter(hb, key) ? -EINVAL : 1;
924 }
1a52084d
DH
925
926 uval = curval;
927
928 /*
929 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
930 * to wake at the next unlock.
931 */
932 newval = curval | FUTEX_WAITERS;
933
934 /*
59fa6245 935 * Should we force take the futex? See below.
1a52084d 936 */
59fa6245
TG
937 if (unlikely(force_take)) {
938 /*
939 * Keep the OWNER_DIED and the WAITERS bit and set the
940 * new TID value.
941 */
c0c9ed15 942 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 943 force_take = 0;
1a52084d
DH
944 lock_taken = 1;
945 }
946
37a9d912 947 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
948 return -EFAULT;
949 if (unlikely(curval != uval))
950 goto retry;
951
952 /*
59fa6245 953 * We took the lock due to forced take over.
1a52084d
DH
954 */
955 if (unlikely(lock_taken))
956 return 1;
957
958 /*
959 * We dont have the lock. Look up the PI state (or create it if
960 * we are the first waiter):
961 */
866293ee 962 ret = lookup_pi_state(uval, hb, key, ps, task);
1a52084d
DH
963
964 if (unlikely(ret)) {
965 switch (ret) {
966 case -ESRCH:
967 /*
59fa6245
TG
968 * We failed to find an owner for this
969 * futex. So we have no pi_state to block
970 * on. This can happen in two cases:
971 *
972 * 1) The owner died
973 * 2) A stale FUTEX_WAITERS bit
974 *
975 * Re-read the futex value.
1a52084d
DH
976 */
977 if (get_futex_value_locked(&curval, uaddr))
978 return -EFAULT;
979
980 /*
59fa6245
TG
981 * If the owner died or we have a stale
982 * WAITERS bit the owner TID in the user space
983 * futex is 0.
1a52084d 984 */
59fa6245
TG
985 if (!(curval & FUTEX_TID_MASK)) {
986 force_take = 1;
1a52084d
DH
987 goto retry;
988 }
989 default:
990 break;
991 }
992 }
993
994 return ret;
995}
996
2e12978a
LJ
997/**
998 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
999 * @q: The futex_q to unqueue
1000 *
1001 * The q->lock_ptr must not be NULL and must be held by the caller.
1002 */
1003static void __unqueue_futex(struct futex_q *q)
1004{
1005 struct futex_hash_bucket *hb;
1006
29096202
SR
1007 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1008 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1009 return;
1010
1011 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1012 plist_del(&q->list, &hb->chain);
11d4616b 1013 hb_waiters_dec(hb);
2e12978a
LJ
1014}
1015
1da177e4
LT
1016/*
1017 * The hash bucket lock must be held when this is called.
1018 * Afterwards, the futex_q must not be accessed.
1019 */
1020static void wake_futex(struct futex_q *q)
1021{
f1a11e05
TG
1022 struct task_struct *p = q->task;
1023
aa10990e
DH
1024 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1025 return;
1026
1da177e4 1027 /*
f1a11e05 1028 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1029 * a non-futex wake up happens on another CPU then the task
1030 * might exit and p would dereference a non-existing task
f1a11e05
TG
1031 * struct. Prevent this by holding a reference on p across the
1032 * wake up.
1da177e4 1033 */
f1a11e05
TG
1034 get_task_struct(p);
1035
2e12978a 1036 __unqueue_futex(q);
1da177e4 1037 /*
f1a11e05
TG
1038 * The waiting task can free the futex_q as soon as
1039 * q->lock_ptr = NULL is written, without taking any locks. A
1040 * memory barrier is required here to prevent the following
1041 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1042 */
ccdea2f8 1043 smp_wmb();
1da177e4 1044 q->lock_ptr = NULL;
f1a11e05
TG
1045
1046 wake_up_state(p, TASK_NORMAL);
1047 put_task_struct(p);
1da177e4
LT
1048}
1049
c87e2837
IM
1050static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1051{
1052 struct task_struct *new_owner;
1053 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1054 u32 uninitialized_var(curval), newval;
c87e2837
IM
1055
1056 if (!pi_state)
1057 return -EINVAL;
1058
51246bfd
TG
1059 /*
1060 * If current does not own the pi_state then the futex is
1061 * inconsistent and user space fiddled with the futex value.
1062 */
1063 if (pi_state->owner != current)
1064 return -EINVAL;
1065
d209d74d 1066 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1067 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1068
1069 /*
f123c98e
SR
1070 * It is possible that the next waiter (the one that brought
1071 * this owner to the kernel) timed out and is no longer
1072 * waiting on the lock.
c87e2837
IM
1073 */
1074 if (!new_owner)
1075 new_owner = this->task;
1076
1077 /*
1078 * We pass it to the next owner. (The WAITERS bit is always
1079 * kept enabled while there is PI state around. We must also
1080 * preserve the owner died bit.)
1081 */
e3f2ddea 1082 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
1083 int ret = 0;
1084
b488893a 1085 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1086
37a9d912 1087 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 1088 ret = -EFAULT;
cde898fa 1089 else if (curval != uval)
778e9a9c
AK
1090 ret = -EINVAL;
1091 if (ret) {
d209d74d 1092 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
1093 return ret;
1094 }
e3f2ddea 1095 }
c87e2837 1096
1d615482 1097 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1098 WARN_ON(list_empty(&pi_state->list));
1099 list_del_init(&pi_state->list);
1d615482 1100 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1101
1d615482 1102 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1103 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1104 list_add(&pi_state->list, &new_owner->pi_state_list);
1105 pi_state->owner = new_owner;
1d615482 1106 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1107
d209d74d 1108 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1109 rt_mutex_unlock(&pi_state->pi_mutex);
1110
1111 return 0;
1112}
1113
1114static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1115{
7cfdaf38 1116 u32 uninitialized_var(oldval);
c87e2837
IM
1117
1118 /*
1119 * There is no waiter, so we unlock the futex. The owner died
1120 * bit has not to be preserved here. We are the owner:
1121 */
37a9d912
ML
1122 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1123 return -EFAULT;
c87e2837
IM
1124 if (oldval != uval)
1125 return -EAGAIN;
1126
1127 return 0;
1128}
1129
8b8f319f
IM
1130/*
1131 * Express the locking dependencies for lockdep:
1132 */
1133static inline void
1134double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1135{
1136 if (hb1 <= hb2) {
1137 spin_lock(&hb1->lock);
1138 if (hb1 < hb2)
1139 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1140 } else { /* hb1 > hb2 */
1141 spin_lock(&hb2->lock);
1142 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1143 }
1144}
1145
5eb3dc62
DH
1146static inline void
1147double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1148{
f061d351 1149 spin_unlock(&hb1->lock);
88f502fe
IM
1150 if (hb1 != hb2)
1151 spin_unlock(&hb2->lock);
5eb3dc62
DH
1152}
1153
1da177e4 1154/*
b2d0994b 1155 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1156 */
b41277dc
DH
1157static int
1158futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1159{
e2970f2f 1160 struct futex_hash_bucket *hb;
1da177e4 1161 struct futex_q *this, *next;
38d47c1b 1162 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1163 int ret;
1164
cd689985
TG
1165 if (!bitset)
1166 return -EINVAL;
1167
9ea71503 1168 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1169 if (unlikely(ret != 0))
1170 goto out;
1171
e2970f2f 1172 hb = hash_futex(&key);
b0c29f79
DB
1173
1174 /* Make sure we really have tasks to wakeup */
1175 if (!hb_waiters_pending(hb))
1176 goto out_put_key;
1177
e2970f2f 1178 spin_lock(&hb->lock);
1da177e4 1179
0d00c7b2 1180 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1181 if (match_futex (&this->key, &key)) {
52400ba9 1182 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1183 ret = -EINVAL;
1184 break;
1185 }
cd689985
TG
1186
1187 /* Check if one of the bits is set in both bitsets */
1188 if (!(this->bitset & bitset))
1189 continue;
1190
1da177e4
LT
1191 wake_futex(this);
1192 if (++ret >= nr_wake)
1193 break;
1194 }
1195 }
1196
e2970f2f 1197 spin_unlock(&hb->lock);
b0c29f79 1198out_put_key:
ae791a2d 1199 put_futex_key(&key);
42d35d48 1200out:
1da177e4
LT
1201 return ret;
1202}
1203
4732efbe
JJ
1204/*
1205 * Wake up all waiters hashed on the physical page that is mapped
1206 * to this virtual address:
1207 */
e2970f2f 1208static int
b41277dc 1209futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1210 int nr_wake, int nr_wake2, int op)
4732efbe 1211{
38d47c1b 1212 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1213 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1214 struct futex_q *this, *next;
e4dc5b7a 1215 int ret, op_ret;
4732efbe 1216
e4dc5b7a 1217retry:
9ea71503 1218 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1219 if (unlikely(ret != 0))
1220 goto out;
9ea71503 1221 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1222 if (unlikely(ret != 0))
42d35d48 1223 goto out_put_key1;
4732efbe 1224
e2970f2f
IM
1225 hb1 = hash_futex(&key1);
1226 hb2 = hash_futex(&key2);
4732efbe 1227
e4dc5b7a 1228retry_private:
eaaea803 1229 double_lock_hb(hb1, hb2);
e2970f2f 1230 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1231 if (unlikely(op_ret < 0)) {
4732efbe 1232
5eb3dc62 1233 double_unlock_hb(hb1, hb2);
4732efbe 1234
7ee1dd3f 1235#ifndef CONFIG_MMU
e2970f2f
IM
1236 /*
1237 * we don't get EFAULT from MMU faults if we don't have an MMU,
1238 * but we might get them from range checking
1239 */
7ee1dd3f 1240 ret = op_ret;
42d35d48 1241 goto out_put_keys;
7ee1dd3f
DH
1242#endif
1243
796f8d9b
DG
1244 if (unlikely(op_ret != -EFAULT)) {
1245 ret = op_ret;
42d35d48 1246 goto out_put_keys;
796f8d9b
DG
1247 }
1248
d0725992 1249 ret = fault_in_user_writeable(uaddr2);
4732efbe 1250 if (ret)
de87fcc1 1251 goto out_put_keys;
4732efbe 1252
b41277dc 1253 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1254 goto retry_private;
1255
ae791a2d
TG
1256 put_futex_key(&key2);
1257 put_futex_key(&key1);
e4dc5b7a 1258 goto retry;
4732efbe
JJ
1259 }
1260
0d00c7b2 1261 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1262 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1263 if (this->pi_state || this->rt_waiter) {
1264 ret = -EINVAL;
1265 goto out_unlock;
1266 }
4732efbe
JJ
1267 wake_futex(this);
1268 if (++ret >= nr_wake)
1269 break;
1270 }
1271 }
1272
1273 if (op_ret > 0) {
4732efbe 1274 op_ret = 0;
0d00c7b2 1275 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1276 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1277 if (this->pi_state || this->rt_waiter) {
1278 ret = -EINVAL;
1279 goto out_unlock;
1280 }
4732efbe
JJ
1281 wake_futex(this);
1282 if (++op_ret >= nr_wake2)
1283 break;
1284 }
1285 }
1286 ret += op_ret;
1287 }
1288
aa10990e 1289out_unlock:
5eb3dc62 1290 double_unlock_hb(hb1, hb2);
42d35d48 1291out_put_keys:
ae791a2d 1292 put_futex_key(&key2);
42d35d48 1293out_put_key1:
ae791a2d 1294 put_futex_key(&key1);
42d35d48 1295out:
4732efbe
JJ
1296 return ret;
1297}
1298
9121e478
DH
1299/**
1300 * requeue_futex() - Requeue a futex_q from one hb to another
1301 * @q: the futex_q to requeue
1302 * @hb1: the source hash_bucket
1303 * @hb2: the target hash_bucket
1304 * @key2: the new key for the requeued futex_q
1305 */
1306static inline
1307void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1308 struct futex_hash_bucket *hb2, union futex_key *key2)
1309{
1310
1311 /*
1312 * If key1 and key2 hash to the same bucket, no need to
1313 * requeue.
1314 */
1315 if (likely(&hb1->chain != &hb2->chain)) {
1316 plist_del(&q->list, &hb1->chain);
11d4616b 1317 hb_waiters_dec(hb1);
9121e478 1318 plist_add(&q->list, &hb2->chain);
11d4616b 1319 hb_waiters_inc(hb2);
9121e478 1320 q->lock_ptr = &hb2->lock;
9121e478
DH
1321 }
1322 get_futex_key_refs(key2);
1323 q->key = *key2;
1324}
1325
52400ba9
DH
1326/**
1327 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1328 * @q: the futex_q
1329 * @key: the key of the requeue target futex
1330 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1331 *
1332 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1333 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1334 * to the requeue target futex so the waiter can detect the wakeup on the right
1335 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1336 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1337 * to protect access to the pi_state to fixup the owner later. Must be called
1338 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1339 */
1340static inline
beda2c7e
DH
1341void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1342 struct futex_hash_bucket *hb)
52400ba9 1343{
52400ba9
DH
1344 get_futex_key_refs(key);
1345 q->key = *key;
1346
2e12978a 1347 __unqueue_futex(q);
52400ba9
DH
1348
1349 WARN_ON(!q->rt_waiter);
1350 q->rt_waiter = NULL;
1351
beda2c7e 1352 q->lock_ptr = &hb->lock;
beda2c7e 1353
f1a11e05 1354 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1355}
1356
1357/**
1358 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1359 * @pifutex: the user address of the to futex
1360 * @hb1: the from futex hash bucket, must be locked by the caller
1361 * @hb2: the to futex hash bucket, must be locked by the caller
1362 * @key1: the from futex key
1363 * @key2: the to futex key
1364 * @ps: address to store the pi_state pointer
1365 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1366 *
1367 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1368 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1369 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1370 * hb1 and hb2 must be held by the caller.
52400ba9 1371 *
6c23cbbd
RD
1372 * Return:
1373 * 0 - failed to acquire the lock atomically;
866293ee 1374 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1375 * <0 - error
1376 */
1377static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1378 struct futex_hash_bucket *hb1,
1379 struct futex_hash_bucket *hb2,
1380 union futex_key *key1, union futex_key *key2,
bab5bc9e 1381 struct futex_pi_state **ps, int set_waiters)
52400ba9 1382{
bab5bc9e 1383 struct futex_q *top_waiter = NULL;
52400ba9 1384 u32 curval;
866293ee 1385 int ret, vpid;
52400ba9
DH
1386
1387 if (get_futex_value_locked(&curval, pifutex))
1388 return -EFAULT;
1389
bab5bc9e
DH
1390 /*
1391 * Find the top_waiter and determine if there are additional waiters.
1392 * If the caller intends to requeue more than 1 waiter to pifutex,
1393 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1394 * as we have means to handle the possible fault. If not, don't set
1395 * the bit unecessarily as it will force the subsequent unlock to enter
1396 * the kernel.
1397 */
52400ba9
DH
1398 top_waiter = futex_top_waiter(hb1, key1);
1399
1400 /* There are no waiters, nothing for us to do. */
1401 if (!top_waiter)
1402 return 0;
1403
84bc4af5
DH
1404 /* Ensure we requeue to the expected futex. */
1405 if (!match_futex(top_waiter->requeue_pi_key, key2))
1406 return -EINVAL;
1407
52400ba9 1408 /*
bab5bc9e
DH
1409 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1410 * the contended case or if set_waiters is 1. The pi_state is returned
1411 * in ps in contended cases.
52400ba9 1412 */
866293ee 1413 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1414 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1415 set_waiters);
866293ee 1416 if (ret == 1) {
beda2c7e 1417 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1418 return vpid;
1419 }
52400ba9
DH
1420 return ret;
1421}
1422
1423/**
1424 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1425 * @uaddr1: source futex user address
b41277dc 1426 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1427 * @uaddr2: target futex user address
1428 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1429 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1430 * @cmpval: @uaddr1 expected value (or %NULL)
1431 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1432 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1433 *
1434 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1435 * uaddr2 atomically on behalf of the top waiter.
1436 *
6c23cbbd
RD
1437 * Return:
1438 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1439 * <0 - on error
1da177e4 1440 */
b41277dc
DH
1441static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1442 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1443 u32 *cmpval, int requeue_pi)
1da177e4 1444{
38d47c1b 1445 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1446 int drop_count = 0, task_count = 0, ret;
1447 struct futex_pi_state *pi_state = NULL;
e2970f2f 1448 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1449 struct futex_q *this, *next;
52400ba9
DH
1450
1451 if (requeue_pi) {
e9c243a5
TG
1452 /*
1453 * Requeue PI only works on two distinct uaddrs. This
1454 * check is only valid for private futexes. See below.
1455 */
1456 if (uaddr1 == uaddr2)
1457 return -EINVAL;
1458
52400ba9
DH
1459 /*
1460 * requeue_pi requires a pi_state, try to allocate it now
1461 * without any locks in case it fails.
1462 */
1463 if (refill_pi_state_cache())
1464 return -ENOMEM;
1465 /*
1466 * requeue_pi must wake as many tasks as it can, up to nr_wake
1467 * + nr_requeue, since it acquires the rt_mutex prior to
1468 * returning to userspace, so as to not leave the rt_mutex with
1469 * waiters and no owner. However, second and third wake-ups
1470 * cannot be predicted as they involve race conditions with the
1471 * first wake and a fault while looking up the pi_state. Both
1472 * pthread_cond_signal() and pthread_cond_broadcast() should
1473 * use nr_wake=1.
1474 */
1475 if (nr_wake != 1)
1476 return -EINVAL;
1477 }
1da177e4 1478
42d35d48 1479retry:
52400ba9
DH
1480 if (pi_state != NULL) {
1481 /*
1482 * We will have to lookup the pi_state again, so free this one
1483 * to keep the accounting correct.
1484 */
1485 free_pi_state(pi_state);
1486 pi_state = NULL;
1487 }
1488
9ea71503 1489 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1490 if (unlikely(ret != 0))
1491 goto out;
9ea71503
SB
1492 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1493 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1494 if (unlikely(ret != 0))
42d35d48 1495 goto out_put_key1;
1da177e4 1496
e9c243a5
TG
1497 /*
1498 * The check above which compares uaddrs is not sufficient for
1499 * shared futexes. We need to compare the keys:
1500 */
1501 if (requeue_pi && match_futex(&key1, &key2)) {
1502 ret = -EINVAL;
1503 goto out_put_keys;
1504 }
1505
e2970f2f
IM
1506 hb1 = hash_futex(&key1);
1507 hb2 = hash_futex(&key2);
1da177e4 1508
e4dc5b7a 1509retry_private:
69cd9eba 1510 hb_waiters_inc(hb2);
8b8f319f 1511 double_lock_hb(hb1, hb2);
1da177e4 1512
e2970f2f
IM
1513 if (likely(cmpval != NULL)) {
1514 u32 curval;
1da177e4 1515
e2970f2f 1516 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1517
1518 if (unlikely(ret)) {
5eb3dc62 1519 double_unlock_hb(hb1, hb2);
69cd9eba 1520 hb_waiters_dec(hb2);
1da177e4 1521
e2970f2f 1522 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1523 if (ret)
1524 goto out_put_keys;
1da177e4 1525
b41277dc 1526 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1527 goto retry_private;
1da177e4 1528
ae791a2d
TG
1529 put_futex_key(&key2);
1530 put_futex_key(&key1);
e4dc5b7a 1531 goto retry;
1da177e4 1532 }
e2970f2f 1533 if (curval != *cmpval) {
1da177e4
LT
1534 ret = -EAGAIN;
1535 goto out_unlock;
1536 }
1537 }
1538
52400ba9 1539 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1540 /*
1541 * Attempt to acquire uaddr2 and wake the top waiter. If we
1542 * intend to requeue waiters, force setting the FUTEX_WAITERS
1543 * bit. We force this here where we are able to easily handle
1544 * faults rather in the requeue loop below.
1545 */
52400ba9 1546 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1547 &key2, &pi_state, nr_requeue);
52400ba9
DH
1548
1549 /*
1550 * At this point the top_waiter has either taken uaddr2 or is
1551 * waiting on it. If the former, then the pi_state will not
1552 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1553 * reference to it. If the lock was taken, ret contains the
1554 * vpid of the top waiter task.
52400ba9 1555 */
866293ee 1556 if (ret > 0) {
52400ba9 1557 WARN_ON(pi_state);
89061d3d 1558 drop_count++;
52400ba9 1559 task_count++;
866293ee
TG
1560 /*
1561 * If we acquired the lock, then the user
1562 * space value of uaddr2 should be vpid. It
1563 * cannot be changed by the top waiter as it
1564 * is blocked on hb2 lock if it tries to do
1565 * so. If something fiddled with it behind our
1566 * back the pi state lookup might unearth
1567 * it. So we rather use the known value than
1568 * rereading and handing potential crap to
1569 * lookup_pi_state.
1570 */
1571 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
52400ba9
DH
1572 }
1573
1574 switch (ret) {
1575 case 0:
1576 break;
1577 case -EFAULT:
1578 double_unlock_hb(hb1, hb2);
69cd9eba 1579 hb_waiters_dec(hb2);
ae791a2d
TG
1580 put_futex_key(&key2);
1581 put_futex_key(&key1);
d0725992 1582 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1583 if (!ret)
1584 goto retry;
1585 goto out;
1586 case -EAGAIN:
1587 /* The owner was exiting, try again. */
1588 double_unlock_hb(hb1, hb2);
69cd9eba 1589 hb_waiters_dec(hb2);
ae791a2d
TG
1590 put_futex_key(&key2);
1591 put_futex_key(&key1);
52400ba9
DH
1592 cond_resched();
1593 goto retry;
1594 default:
1595 goto out_unlock;
1596 }
1597 }
1598
0d00c7b2 1599 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1600 if (task_count - nr_wake >= nr_requeue)
1601 break;
1602
1603 if (!match_futex(&this->key, &key1))
1da177e4 1604 continue;
52400ba9 1605
392741e0
DH
1606 /*
1607 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1608 * be paired with each other and no other futex ops.
aa10990e
DH
1609 *
1610 * We should never be requeueing a futex_q with a pi_state,
1611 * which is awaiting a futex_unlock_pi().
392741e0
DH
1612 */
1613 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1614 (!requeue_pi && this->rt_waiter) ||
1615 this->pi_state) {
392741e0
DH
1616 ret = -EINVAL;
1617 break;
1618 }
52400ba9
DH
1619
1620 /*
1621 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1622 * lock, we already woke the top_waiter. If not, it will be
1623 * woken by futex_unlock_pi().
1624 */
1625 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1626 wake_futex(this);
52400ba9
DH
1627 continue;
1628 }
1da177e4 1629
84bc4af5
DH
1630 /* Ensure we requeue to the expected futex for requeue_pi. */
1631 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1632 ret = -EINVAL;
1633 break;
1634 }
1635
52400ba9
DH
1636 /*
1637 * Requeue nr_requeue waiters and possibly one more in the case
1638 * of requeue_pi if we couldn't acquire the lock atomically.
1639 */
1640 if (requeue_pi) {
1641 /* Prepare the waiter to take the rt_mutex. */
1642 atomic_inc(&pi_state->refcount);
1643 this->pi_state = pi_state;
1644 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1645 this->rt_waiter,
1646 this->task, 1);
1647 if (ret == 1) {
1648 /* We got the lock. */
beda2c7e 1649 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1650 drop_count++;
52400ba9
DH
1651 continue;
1652 } else if (ret) {
1653 /* -EDEADLK */
1654 this->pi_state = NULL;
1655 free_pi_state(pi_state);
1656 goto out_unlock;
1657 }
1da177e4 1658 }
52400ba9
DH
1659 requeue_futex(this, hb1, hb2, &key2);
1660 drop_count++;
1da177e4
LT
1661 }
1662
1663out_unlock:
5eb3dc62 1664 double_unlock_hb(hb1, hb2);
69cd9eba 1665 hb_waiters_dec(hb2);
1da177e4 1666
cd84a42f
DH
1667 /*
1668 * drop_futex_key_refs() must be called outside the spinlocks. During
1669 * the requeue we moved futex_q's from the hash bucket at key1 to the
1670 * one at key2 and updated their key pointer. We no longer need to
1671 * hold the references to key1.
1672 */
1da177e4 1673 while (--drop_count >= 0)
9adef58b 1674 drop_futex_key_refs(&key1);
1da177e4 1675
42d35d48 1676out_put_keys:
ae791a2d 1677 put_futex_key(&key2);
42d35d48 1678out_put_key1:
ae791a2d 1679 put_futex_key(&key1);
42d35d48 1680out:
52400ba9
DH
1681 if (pi_state != NULL)
1682 free_pi_state(pi_state);
1683 return ret ? ret : task_count;
1da177e4
LT
1684}
1685
1686/* The key must be already stored in q->key. */
82af7aca 1687static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1688 __acquires(&hb->lock)
1da177e4 1689{
e2970f2f 1690 struct futex_hash_bucket *hb;
1da177e4 1691
e2970f2f 1692 hb = hash_futex(&q->key);
11d4616b
LT
1693
1694 /*
1695 * Increment the counter before taking the lock so that
1696 * a potential waker won't miss a to-be-slept task that is
1697 * waiting for the spinlock. This is safe as all queue_lock()
1698 * users end up calling queue_me(). Similarly, for housekeeping,
1699 * decrement the counter at queue_unlock() when some error has
1700 * occurred and we don't end up adding the task to the list.
1701 */
1702 hb_waiters_inc(hb);
1703
e2970f2f 1704 q->lock_ptr = &hb->lock;
1da177e4 1705
b0c29f79 1706 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1707 return hb;
1da177e4
LT
1708}
1709
d40d65c8 1710static inline void
0d00c7b2 1711queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1712 __releases(&hb->lock)
d40d65c8
DH
1713{
1714 spin_unlock(&hb->lock);
11d4616b 1715 hb_waiters_dec(hb);
d40d65c8
DH
1716}
1717
1718/**
1719 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1720 * @q: The futex_q to enqueue
1721 * @hb: The destination hash bucket
1722 *
1723 * The hb->lock must be held by the caller, and is released here. A call to
1724 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1725 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1726 * or nothing if the unqueue is done as part of the wake process and the unqueue
1727 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1728 * an example).
1729 */
82af7aca 1730static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1731 __releases(&hb->lock)
1da177e4 1732{
ec92d082
PP
1733 int prio;
1734
1735 /*
1736 * The priority used to register this element is
1737 * - either the real thread-priority for the real-time threads
1738 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1739 * - or MAX_RT_PRIO for non-RT threads.
1740 * Thus, all RT-threads are woken first in priority order, and
1741 * the others are woken last, in FIFO order.
1742 */
1743 prio = min(current->normal_prio, MAX_RT_PRIO);
1744
1745 plist_node_init(&q->list, prio);
ec92d082 1746 plist_add(&q->list, &hb->chain);
c87e2837 1747 q->task = current;
e2970f2f 1748 spin_unlock(&hb->lock);
1da177e4
LT
1749}
1750
d40d65c8
DH
1751/**
1752 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1753 * @q: The futex_q to unqueue
1754 *
1755 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1756 * be paired with exactly one earlier call to queue_me().
1757 *
6c23cbbd
RD
1758 * Return:
1759 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1760 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1761 */
1da177e4
LT
1762static int unqueue_me(struct futex_q *q)
1763{
1da177e4 1764 spinlock_t *lock_ptr;
e2970f2f 1765 int ret = 0;
1da177e4
LT
1766
1767 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1768retry:
1da177e4 1769 lock_ptr = q->lock_ptr;
e91467ec 1770 barrier();
c80544dc 1771 if (lock_ptr != NULL) {
1da177e4
LT
1772 spin_lock(lock_ptr);
1773 /*
1774 * q->lock_ptr can change between reading it and
1775 * spin_lock(), causing us to take the wrong lock. This
1776 * corrects the race condition.
1777 *
1778 * Reasoning goes like this: if we have the wrong lock,
1779 * q->lock_ptr must have changed (maybe several times)
1780 * between reading it and the spin_lock(). It can
1781 * change again after the spin_lock() but only if it was
1782 * already changed before the spin_lock(). It cannot,
1783 * however, change back to the original value. Therefore
1784 * we can detect whether we acquired the correct lock.
1785 */
1786 if (unlikely(lock_ptr != q->lock_ptr)) {
1787 spin_unlock(lock_ptr);
1788 goto retry;
1789 }
2e12978a 1790 __unqueue_futex(q);
c87e2837
IM
1791
1792 BUG_ON(q->pi_state);
1793
1da177e4
LT
1794 spin_unlock(lock_ptr);
1795 ret = 1;
1796 }
1797
9adef58b 1798 drop_futex_key_refs(&q->key);
1da177e4
LT
1799 return ret;
1800}
1801
c87e2837
IM
1802/*
1803 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1804 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1805 * and dropped here.
c87e2837 1806 */
d0aa7a70 1807static void unqueue_me_pi(struct futex_q *q)
15e408cd 1808 __releases(q->lock_ptr)
c87e2837 1809{
2e12978a 1810 __unqueue_futex(q);
c87e2837
IM
1811
1812 BUG_ON(!q->pi_state);
1813 free_pi_state(q->pi_state);
1814 q->pi_state = NULL;
1815
d0aa7a70 1816 spin_unlock(q->lock_ptr);
c87e2837
IM
1817}
1818
d0aa7a70 1819/*
cdf71a10 1820 * Fixup the pi_state owner with the new owner.
d0aa7a70 1821 *
778e9a9c
AK
1822 * Must be called with hash bucket lock held and mm->sem held for non
1823 * private futexes.
d0aa7a70 1824 */
778e9a9c 1825static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1826 struct task_struct *newowner)
d0aa7a70 1827{
cdf71a10 1828 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1829 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1830 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1831 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1832 int ret;
d0aa7a70
PP
1833
1834 /* Owner died? */
1b7558e4
TG
1835 if (!pi_state->owner)
1836 newtid |= FUTEX_OWNER_DIED;
1837
1838 /*
1839 * We are here either because we stole the rtmutex from the
8161239a
LJ
1840 * previous highest priority waiter or we are the highest priority
1841 * waiter but failed to get the rtmutex the first time.
1842 * We have to replace the newowner TID in the user space variable.
1843 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1844 *
b2d0994b
DH
1845 * Note: We write the user space value _before_ changing the pi_state
1846 * because we can fault here. Imagine swapped out pages or a fork
1847 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1848 *
1849 * Modifying pi_state _before_ the user space value would
1850 * leave the pi_state in an inconsistent state when we fault
1851 * here, because we need to drop the hash bucket lock to
1852 * handle the fault. This might be observed in the PID check
1853 * in lookup_pi_state.
1854 */
1855retry:
1856 if (get_futex_value_locked(&uval, uaddr))
1857 goto handle_fault;
1858
1859 while (1) {
1860 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1861
37a9d912 1862 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1863 goto handle_fault;
1864 if (curval == uval)
1865 break;
1866 uval = curval;
1867 }
1868
1869 /*
1870 * We fixed up user space. Now we need to fix the pi_state
1871 * itself.
1872 */
d0aa7a70 1873 if (pi_state->owner != NULL) {
1d615482 1874 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1875 WARN_ON(list_empty(&pi_state->list));
1876 list_del_init(&pi_state->list);
1d615482 1877 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1878 }
d0aa7a70 1879
cdf71a10 1880 pi_state->owner = newowner;
d0aa7a70 1881
1d615482 1882 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1883 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1884 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1885 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1886 return 0;
d0aa7a70 1887
d0aa7a70 1888 /*
1b7558e4 1889 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1890 * lock here. That gives the other task (either the highest priority
1891 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1892 * chance to try the fixup of the pi_state. So once we are
1893 * back from handling the fault we need to check the pi_state
1894 * after reacquiring the hash bucket lock and before trying to
1895 * do another fixup. When the fixup has been done already we
1896 * simply return.
d0aa7a70 1897 */
1b7558e4
TG
1898handle_fault:
1899 spin_unlock(q->lock_ptr);
778e9a9c 1900
d0725992 1901 ret = fault_in_user_writeable(uaddr);
778e9a9c 1902
1b7558e4 1903 spin_lock(q->lock_ptr);
778e9a9c 1904
1b7558e4
TG
1905 /*
1906 * Check if someone else fixed it for us:
1907 */
1908 if (pi_state->owner != oldowner)
1909 return 0;
1910
1911 if (ret)
1912 return ret;
1913
1914 goto retry;
d0aa7a70
PP
1915}
1916
72c1bbf3 1917static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1918
dd973998
DH
1919/**
1920 * fixup_owner() - Post lock pi_state and corner case management
1921 * @uaddr: user address of the futex
dd973998
DH
1922 * @q: futex_q (contains pi_state and access to the rt_mutex)
1923 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1924 *
1925 * After attempting to lock an rt_mutex, this function is called to cleanup
1926 * the pi_state owner as well as handle race conditions that may allow us to
1927 * acquire the lock. Must be called with the hb lock held.
1928 *
6c23cbbd
RD
1929 * Return:
1930 * 1 - success, lock taken;
1931 * 0 - success, lock not taken;
dd973998
DH
1932 * <0 - on error (-EFAULT)
1933 */
ae791a2d 1934static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1935{
1936 struct task_struct *owner;
1937 int ret = 0;
1938
1939 if (locked) {
1940 /*
1941 * Got the lock. We might not be the anticipated owner if we
1942 * did a lock-steal - fix up the PI-state in that case:
1943 */
1944 if (q->pi_state->owner != current)
ae791a2d 1945 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1946 goto out;
1947 }
1948
1949 /*
1950 * Catch the rare case, where the lock was released when we were on the
1951 * way back before we locked the hash bucket.
1952 */
1953 if (q->pi_state->owner == current) {
1954 /*
1955 * Try to get the rt_mutex now. This might fail as some other
1956 * task acquired the rt_mutex after we removed ourself from the
1957 * rt_mutex waiters list.
1958 */
1959 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1960 locked = 1;
1961 goto out;
1962 }
1963
1964 /*
1965 * pi_state is incorrect, some other task did a lock steal and
1966 * we returned due to timeout or signal without taking the
8161239a 1967 * rt_mutex. Too late.
dd973998 1968 */
8161239a 1969 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1970 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1971 if (!owner)
1972 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1973 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1974 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1975 goto out;
1976 }
1977
1978 /*
1979 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1980 * the owner of the rt_mutex.
dd973998
DH
1981 */
1982 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1983 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1984 "pi-state %p\n", ret,
1985 q->pi_state->pi_mutex.owner,
1986 q->pi_state->owner);
1987
1988out:
1989 return ret ? ret : locked;
1990}
1991
ca5f9524
DH
1992/**
1993 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1994 * @hb: the futex hash bucket, must be locked by the caller
1995 * @q: the futex_q to queue up on
1996 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1997 */
1998static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1999 struct hrtimer_sleeper *timeout)
ca5f9524 2000{
9beba3c5
DH
2001 /*
2002 * The task state is guaranteed to be set before another task can
2003 * wake it. set_current_state() is implemented using set_mb() and
2004 * queue_me() calls spin_unlock() upon completion, both serializing
2005 * access to the hash list and forcing another memory barrier.
2006 */
f1a11e05 2007 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2008 queue_me(q, hb);
ca5f9524
DH
2009
2010 /* Arm the timer */
2011 if (timeout) {
2012 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2013 if (!hrtimer_active(&timeout->timer))
2014 timeout->task = NULL;
2015 }
2016
2017 /*
0729e196
DH
2018 * If we have been removed from the hash list, then another task
2019 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2020 */
2021 if (likely(!plist_node_empty(&q->list))) {
2022 /*
2023 * If the timer has already expired, current will already be
2024 * flagged for rescheduling. Only call schedule if there
2025 * is no timeout, or if it has yet to expire.
2026 */
2027 if (!timeout || timeout->task)
88c8004f 2028 freezable_schedule();
ca5f9524
DH
2029 }
2030 __set_current_state(TASK_RUNNING);
2031}
2032
f801073f
DH
2033/**
2034 * futex_wait_setup() - Prepare to wait on a futex
2035 * @uaddr: the futex userspace address
2036 * @val: the expected value
b41277dc 2037 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2038 * @q: the associated futex_q
2039 * @hb: storage for hash_bucket pointer to be returned to caller
2040 *
2041 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2042 * compare it with the expected value. Handle atomic faults internally.
2043 * Return with the hb lock held and a q.key reference on success, and unlocked
2044 * with no q.key reference on failure.
2045 *
6c23cbbd
RD
2046 * Return:
2047 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2048 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2049 */
b41277dc 2050static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2051 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2052{
e2970f2f
IM
2053 u32 uval;
2054 int ret;
1da177e4 2055
1da177e4 2056 /*
b2d0994b 2057 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2058 * Order is important:
2059 *
2060 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2061 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2062 *
2063 * The basic logical guarantee of a futex is that it blocks ONLY
2064 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2065 * any cond. If we locked the hash-bucket after testing *uaddr, that
2066 * would open a race condition where we could block indefinitely with
1da177e4
LT
2067 * cond(var) false, which would violate the guarantee.
2068 *
8fe8f545
ML
2069 * On the other hand, we insert q and release the hash-bucket only
2070 * after testing *uaddr. This guarantees that futex_wait() will NOT
2071 * absorb a wakeup if *uaddr does not match the desired values
2072 * while the syscall executes.
1da177e4 2073 */
f801073f 2074retry:
9ea71503 2075 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2076 if (unlikely(ret != 0))
a5a2a0c7 2077 return ret;
f801073f
DH
2078
2079retry_private:
2080 *hb = queue_lock(q);
2081
e2970f2f 2082 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2083
f801073f 2084 if (ret) {
0d00c7b2 2085 queue_unlock(*hb);
1da177e4 2086
e2970f2f 2087 ret = get_user(uval, uaddr);
e4dc5b7a 2088 if (ret)
f801073f 2089 goto out;
1da177e4 2090
b41277dc 2091 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2092 goto retry_private;
2093
ae791a2d 2094 put_futex_key(&q->key);
e4dc5b7a 2095 goto retry;
1da177e4 2096 }
ca5f9524 2097
f801073f 2098 if (uval != val) {
0d00c7b2 2099 queue_unlock(*hb);
f801073f 2100 ret = -EWOULDBLOCK;
2fff78c7 2101 }
1da177e4 2102
f801073f
DH
2103out:
2104 if (ret)
ae791a2d 2105 put_futex_key(&q->key);
f801073f
DH
2106 return ret;
2107}
2108
b41277dc
DH
2109static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2110 ktime_t *abs_time, u32 bitset)
f801073f
DH
2111{
2112 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2113 struct restart_block *restart;
2114 struct futex_hash_bucket *hb;
5bdb05f9 2115 struct futex_q q = futex_q_init;
f801073f
DH
2116 int ret;
2117
2118 if (!bitset)
2119 return -EINVAL;
f801073f
DH
2120 q.bitset = bitset;
2121
2122 if (abs_time) {
2123 to = &timeout;
2124
b41277dc
DH
2125 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2126 CLOCK_REALTIME : CLOCK_MONOTONIC,
2127 HRTIMER_MODE_ABS);
f801073f
DH
2128 hrtimer_init_sleeper(to, current);
2129 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2130 current->timer_slack_ns);
2131 }
2132
d58e6576 2133retry:
7ada876a
DH
2134 /*
2135 * Prepare to wait on uaddr. On success, holds hb lock and increments
2136 * q.key refs.
2137 */
b41277dc 2138 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2139 if (ret)
2140 goto out;
2141
ca5f9524 2142 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2143 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2144
2145 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2146 ret = 0;
7ada876a 2147 /* unqueue_me() drops q.key ref */
1da177e4 2148 if (!unqueue_me(&q))
7ada876a 2149 goto out;
2fff78c7 2150 ret = -ETIMEDOUT;
ca5f9524 2151 if (to && !to->task)
7ada876a 2152 goto out;
72c1bbf3 2153
e2970f2f 2154 /*
d58e6576
TG
2155 * We expect signal_pending(current), but we might be the
2156 * victim of a spurious wakeup as well.
e2970f2f 2157 */
7ada876a 2158 if (!signal_pending(current))
d58e6576 2159 goto retry;
d58e6576 2160
2fff78c7 2161 ret = -ERESTARTSYS;
c19384b5 2162 if (!abs_time)
7ada876a 2163 goto out;
1da177e4 2164
2fff78c7
PZ
2165 restart = &current_thread_info()->restart_block;
2166 restart->fn = futex_wait_restart;
a3c74c52 2167 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2168 restart->futex.val = val;
2169 restart->futex.time = abs_time->tv64;
2170 restart->futex.bitset = bitset;
0cd9c649 2171 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2172
2fff78c7
PZ
2173 ret = -ERESTART_RESTARTBLOCK;
2174
42d35d48 2175out:
ca5f9524
DH
2176 if (to) {
2177 hrtimer_cancel(&to->timer);
2178 destroy_hrtimer_on_stack(&to->timer);
2179 }
c87e2837
IM
2180 return ret;
2181}
2182
72c1bbf3
NP
2183
2184static long futex_wait_restart(struct restart_block *restart)
2185{
a3c74c52 2186 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2187 ktime_t t, *tp = NULL;
72c1bbf3 2188
a72188d8
DH
2189 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2190 t.tv64 = restart->futex.time;
2191 tp = &t;
2192 }
72c1bbf3 2193 restart->fn = do_no_restart_syscall;
b41277dc
DH
2194
2195 return (long)futex_wait(uaddr, restart->futex.flags,
2196 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2197}
2198
2199
c87e2837
IM
2200/*
2201 * Userspace tried a 0 -> TID atomic transition of the futex value
2202 * and failed. The kernel side here does the whole locking operation:
2203 * if there are waiters then it will block, it does PI, etc. (Due to
2204 * races the kernel might see a 0 value of the futex too.)
2205 */
b41277dc
DH
2206static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2207 ktime_t *time, int trylock)
c87e2837 2208{
c5780e97 2209 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2210 struct futex_hash_bucket *hb;
5bdb05f9 2211 struct futex_q q = futex_q_init;
dd973998 2212 int res, ret;
c87e2837
IM
2213
2214 if (refill_pi_state_cache())
2215 return -ENOMEM;
2216
c19384b5 2217 if (time) {
c5780e97 2218 to = &timeout;
237fc6e7
TG
2219 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2220 HRTIMER_MODE_ABS);
c5780e97 2221 hrtimer_init_sleeper(to, current);
cc584b21 2222 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2223 }
2224
42d35d48 2225retry:
9ea71503 2226 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2227 if (unlikely(ret != 0))
42d35d48 2228 goto out;
c87e2837 2229
e4dc5b7a 2230retry_private:
82af7aca 2231 hb = queue_lock(&q);
c87e2837 2232
bab5bc9e 2233 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2234 if (unlikely(ret)) {
778e9a9c 2235 switch (ret) {
1a52084d
DH
2236 case 1:
2237 /* We got the lock. */
2238 ret = 0;
2239 goto out_unlock_put_key;
2240 case -EFAULT:
2241 goto uaddr_faulted;
778e9a9c
AK
2242 case -EAGAIN:
2243 /*
2244 * Task is exiting and we just wait for the
2245 * exit to complete.
2246 */
0d00c7b2 2247 queue_unlock(hb);
ae791a2d 2248 put_futex_key(&q.key);
778e9a9c
AK
2249 cond_resched();
2250 goto retry;
778e9a9c 2251 default:
42d35d48 2252 goto out_unlock_put_key;
c87e2837 2253 }
c87e2837
IM
2254 }
2255
2256 /*
2257 * Only actually queue now that the atomic ops are done:
2258 */
82af7aca 2259 queue_me(&q, hb);
c87e2837 2260
c87e2837
IM
2261 WARN_ON(!q.pi_state);
2262 /*
2263 * Block on the PI mutex:
2264 */
2265 if (!trylock)
2266 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2267 else {
2268 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2269 /* Fixup the trylock return value: */
2270 ret = ret ? 0 : -EWOULDBLOCK;
2271 }
2272
a99e4e41 2273 spin_lock(q.lock_ptr);
dd973998
DH
2274 /*
2275 * Fixup the pi_state owner and possibly acquire the lock if we
2276 * haven't already.
2277 */
ae791a2d 2278 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2279 /*
2280 * If fixup_owner() returned an error, proprogate that. If it acquired
2281 * the lock, clear our -ETIMEDOUT or -EINTR.
2282 */
2283 if (res)
2284 ret = (res < 0) ? res : 0;
c87e2837 2285
e8f6386c 2286 /*
dd973998
DH
2287 * If fixup_owner() faulted and was unable to handle the fault, unlock
2288 * it and return the fault to userspace.
e8f6386c
DH
2289 */
2290 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2291 rt_mutex_unlock(&q.pi_state->pi_mutex);
2292
778e9a9c
AK
2293 /* Unqueue and drop the lock */
2294 unqueue_me_pi(&q);
c87e2837 2295
5ecb01cf 2296 goto out_put_key;
c87e2837 2297
42d35d48 2298out_unlock_put_key:
0d00c7b2 2299 queue_unlock(hb);
c87e2837 2300
42d35d48 2301out_put_key:
ae791a2d 2302 put_futex_key(&q.key);
42d35d48 2303out:
237fc6e7
TG
2304 if (to)
2305 destroy_hrtimer_on_stack(&to->timer);
dd973998 2306 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2307
42d35d48 2308uaddr_faulted:
0d00c7b2 2309 queue_unlock(hb);
778e9a9c 2310
d0725992 2311 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2312 if (ret)
2313 goto out_put_key;
c87e2837 2314
b41277dc 2315 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2316 goto retry_private;
2317
ae791a2d 2318 put_futex_key(&q.key);
e4dc5b7a 2319 goto retry;
c87e2837
IM
2320}
2321
c87e2837
IM
2322/*
2323 * Userspace attempted a TID -> 0 atomic transition, and failed.
2324 * This is the in-kernel slowpath: we look up the PI state (if any),
2325 * and do the rt-mutex unlock.
2326 */
b41277dc 2327static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2328{
2329 struct futex_hash_bucket *hb;
2330 struct futex_q *this, *next;
38d47c1b 2331 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2332 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2333 int ret;
c87e2837
IM
2334
2335retry:
2336 if (get_user(uval, uaddr))
2337 return -EFAULT;
2338 /*
2339 * We release only a lock we actually own:
2340 */
c0c9ed15 2341 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2342 return -EPERM;
c87e2837 2343
9ea71503 2344 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2345 if (unlikely(ret != 0))
2346 goto out;
2347
2348 hb = hash_futex(&key);
2349 spin_lock(&hb->lock);
2350
c87e2837
IM
2351 /*
2352 * To avoid races, try to do the TID -> 0 atomic transition
2353 * again. If it succeeds then we can return without waking
2354 * anyone else up:
2355 */
37a9d912
ML
2356 if (!(uval & FUTEX_OWNER_DIED) &&
2357 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2358 goto pi_faulted;
2359 /*
2360 * Rare case: we managed to release the lock atomically,
2361 * no need to wake anyone else up:
2362 */
c0c9ed15 2363 if (unlikely(uval == vpid))
c87e2837
IM
2364 goto out_unlock;
2365
2366 /*
2367 * Ok, other tasks may need to be woken up - check waiters
2368 * and do the wakeup if necessary:
2369 */
0d00c7b2 2370 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2371 if (!match_futex (&this->key, &key))
2372 continue;
2373 ret = wake_futex_pi(uaddr, uval, this);
2374 /*
2375 * The atomic access to the futex value
2376 * generated a pagefault, so retry the
2377 * user-access and the wakeup:
2378 */
2379 if (ret == -EFAULT)
2380 goto pi_faulted;
2381 goto out_unlock;
2382 }
2383 /*
2384 * No waiters - kernel unlocks the futex:
2385 */
e3f2ddea
IM
2386 if (!(uval & FUTEX_OWNER_DIED)) {
2387 ret = unlock_futex_pi(uaddr, uval);
2388 if (ret == -EFAULT)
2389 goto pi_faulted;
2390 }
c87e2837
IM
2391
2392out_unlock:
2393 spin_unlock(&hb->lock);
ae791a2d 2394 put_futex_key(&key);
c87e2837 2395
42d35d48 2396out:
c87e2837
IM
2397 return ret;
2398
2399pi_faulted:
778e9a9c 2400 spin_unlock(&hb->lock);
ae791a2d 2401 put_futex_key(&key);
c87e2837 2402
d0725992 2403 ret = fault_in_user_writeable(uaddr);
b5686363 2404 if (!ret)
c87e2837
IM
2405 goto retry;
2406
1da177e4
LT
2407 return ret;
2408}
2409
52400ba9
DH
2410/**
2411 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2412 * @hb: the hash_bucket futex_q was original enqueued on
2413 * @q: the futex_q woken while waiting to be requeued
2414 * @key2: the futex_key of the requeue target futex
2415 * @timeout: the timeout associated with the wait (NULL if none)
2416 *
2417 * Detect if the task was woken on the initial futex as opposed to the requeue
2418 * target futex. If so, determine if it was a timeout or a signal that caused
2419 * the wakeup and return the appropriate error code to the caller. Must be
2420 * called with the hb lock held.
2421 *
6c23cbbd
RD
2422 * Return:
2423 * 0 = no early wakeup detected;
2424 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2425 */
2426static inline
2427int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2428 struct futex_q *q, union futex_key *key2,
2429 struct hrtimer_sleeper *timeout)
2430{
2431 int ret = 0;
2432
2433 /*
2434 * With the hb lock held, we avoid races while we process the wakeup.
2435 * We only need to hold hb (and not hb2) to ensure atomicity as the
2436 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2437 * It can't be requeued from uaddr2 to something else since we don't
2438 * support a PI aware source futex for requeue.
2439 */
2440 if (!match_futex(&q->key, key2)) {
2441 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2442 /*
2443 * We were woken prior to requeue by a timeout or a signal.
2444 * Unqueue the futex_q and determine which it was.
2445 */
2e12978a 2446 plist_del(&q->list, &hb->chain);
11d4616b 2447 hb_waiters_dec(hb);
52400ba9 2448
d58e6576 2449 /* Handle spurious wakeups gracefully */
11df6ddd 2450 ret = -EWOULDBLOCK;
52400ba9
DH
2451 if (timeout && !timeout->task)
2452 ret = -ETIMEDOUT;
d58e6576 2453 else if (signal_pending(current))
1c840c14 2454 ret = -ERESTARTNOINTR;
52400ba9
DH
2455 }
2456 return ret;
2457}
2458
2459/**
2460 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2461 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2462 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2463 * the same type, no requeueing from private to shared, etc.
2464 * @val: the expected value of uaddr
2465 * @abs_time: absolute timeout
56ec1607 2466 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2467 * @uaddr2: the pi futex we will take prior to returning to user-space
2468 *
2469 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2470 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2471 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2472 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2473 * without one, the pi logic would not know which task to boost/deboost, if
2474 * there was a need to.
52400ba9
DH
2475 *
2476 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2477 * via the following--
52400ba9 2478 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2479 * 2) wakeup on uaddr2 after a requeue
2480 * 3) signal
2481 * 4) timeout
52400ba9 2482 *
cc6db4e6 2483 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2484 *
2485 * If 2, we may then block on trying to take the rt_mutex and return via:
2486 * 5) successful lock
2487 * 6) signal
2488 * 7) timeout
2489 * 8) other lock acquisition failure
2490 *
cc6db4e6 2491 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2492 *
2493 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2494 *
6c23cbbd
RD
2495 * Return:
2496 * 0 - On success;
52400ba9
DH
2497 * <0 - On error
2498 */
b41277dc 2499static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2500 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2501 u32 __user *uaddr2)
52400ba9
DH
2502{
2503 struct hrtimer_sleeper timeout, *to = NULL;
2504 struct rt_mutex_waiter rt_waiter;
2505 struct rt_mutex *pi_mutex = NULL;
52400ba9 2506 struct futex_hash_bucket *hb;
5bdb05f9
DH
2507 union futex_key key2 = FUTEX_KEY_INIT;
2508 struct futex_q q = futex_q_init;
52400ba9 2509 int res, ret;
52400ba9 2510
6f7b0a2a
DH
2511 if (uaddr == uaddr2)
2512 return -EINVAL;
2513
52400ba9
DH
2514 if (!bitset)
2515 return -EINVAL;
2516
2517 if (abs_time) {
2518 to = &timeout;
b41277dc
DH
2519 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2520 CLOCK_REALTIME : CLOCK_MONOTONIC,
2521 HRTIMER_MODE_ABS);
52400ba9
DH
2522 hrtimer_init_sleeper(to, current);
2523 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2524 current->timer_slack_ns);
2525 }
2526
2527 /*
2528 * The waiter is allocated on our stack, manipulated by the requeue
2529 * code while we sleep on uaddr.
2530 */
2531 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2532 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2533 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2534 rt_waiter.task = NULL;
2535
9ea71503 2536 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2537 if (unlikely(ret != 0))
2538 goto out;
2539
84bc4af5
DH
2540 q.bitset = bitset;
2541 q.rt_waiter = &rt_waiter;
2542 q.requeue_pi_key = &key2;
2543
7ada876a
DH
2544 /*
2545 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2546 * count.
2547 */
b41277dc 2548 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2549 if (ret)
2550 goto out_key2;
52400ba9 2551
e9c243a5
TG
2552 /*
2553 * The check above which compares uaddrs is not sufficient for
2554 * shared futexes. We need to compare the keys:
2555 */
2556 if (match_futex(&q.key, &key2)) {
2557 ret = -EINVAL;
2558 goto out_put_keys;
2559 }
2560
52400ba9 2561 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2562 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2563
2564 spin_lock(&hb->lock);
2565 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2566 spin_unlock(&hb->lock);
2567 if (ret)
2568 goto out_put_keys;
2569
2570 /*
2571 * In order for us to be here, we know our q.key == key2, and since
2572 * we took the hb->lock above, we also know that futex_requeue() has
2573 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2574 * race with the atomic proxy lock acquisition by the requeue code. The
2575 * futex_requeue dropped our key1 reference and incremented our key2
2576 * reference count.
52400ba9
DH
2577 */
2578
2579 /* Check if the requeue code acquired the second futex for us. */
2580 if (!q.rt_waiter) {
2581 /*
2582 * Got the lock. We might not be the anticipated owner if we
2583 * did a lock-steal - fix up the PI-state in that case.
2584 */
2585 if (q.pi_state && (q.pi_state->owner != current)) {
2586 spin_lock(q.lock_ptr);
ae791a2d 2587 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2588 spin_unlock(q.lock_ptr);
2589 }
2590 } else {
2591 /*
2592 * We have been woken up by futex_unlock_pi(), a timeout, or a
2593 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2594 * the pi_state.
2595 */
f27071cb 2596 WARN_ON(!q.pi_state);
52400ba9
DH
2597 pi_mutex = &q.pi_state->pi_mutex;
2598 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2599 debug_rt_mutex_free_waiter(&rt_waiter);
2600
2601 spin_lock(q.lock_ptr);
2602 /*
2603 * Fixup the pi_state owner and possibly acquire the lock if we
2604 * haven't already.
2605 */
ae791a2d 2606 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2607 /*
2608 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2609 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2610 */
2611 if (res)
2612 ret = (res < 0) ? res : 0;
2613
2614 /* Unqueue and drop the lock. */
2615 unqueue_me_pi(&q);
2616 }
2617
2618 /*
2619 * If fixup_pi_state_owner() faulted and was unable to handle the
2620 * fault, unlock the rt_mutex and return the fault to userspace.
2621 */
2622 if (ret == -EFAULT) {
b6070a8d 2623 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2624 rt_mutex_unlock(pi_mutex);
2625 } else if (ret == -EINTR) {
52400ba9 2626 /*
cc6db4e6
DH
2627 * We've already been requeued, but cannot restart by calling
2628 * futex_lock_pi() directly. We could restart this syscall, but
2629 * it would detect that the user space "val" changed and return
2630 * -EWOULDBLOCK. Save the overhead of the restart and return
2631 * -EWOULDBLOCK directly.
52400ba9 2632 */
2070887f 2633 ret = -EWOULDBLOCK;
52400ba9
DH
2634 }
2635
2636out_put_keys:
ae791a2d 2637 put_futex_key(&q.key);
c8b15a70 2638out_key2:
ae791a2d 2639 put_futex_key(&key2);
52400ba9
DH
2640
2641out:
2642 if (to) {
2643 hrtimer_cancel(&to->timer);
2644 destroy_hrtimer_on_stack(&to->timer);
2645 }
2646 return ret;
2647}
2648
0771dfef
IM
2649/*
2650 * Support for robust futexes: the kernel cleans up held futexes at
2651 * thread exit time.
2652 *
2653 * Implementation: user-space maintains a per-thread list of locks it
2654 * is holding. Upon do_exit(), the kernel carefully walks this list,
2655 * and marks all locks that are owned by this thread with the
c87e2837 2656 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2657 * always manipulated with the lock held, so the list is private and
2658 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2659 * field, to allow the kernel to clean up if the thread dies after
2660 * acquiring the lock, but just before it could have added itself to
2661 * the list. There can only be one such pending lock.
2662 */
2663
2664/**
d96ee56c
DH
2665 * sys_set_robust_list() - Set the robust-futex list head of a task
2666 * @head: pointer to the list-head
2667 * @len: length of the list-head, as userspace expects
0771dfef 2668 */
836f92ad
HC
2669SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2670 size_t, len)
0771dfef 2671{
a0c1e907
TG
2672 if (!futex_cmpxchg_enabled)
2673 return -ENOSYS;
0771dfef
IM
2674 /*
2675 * The kernel knows only one size for now:
2676 */
2677 if (unlikely(len != sizeof(*head)))
2678 return -EINVAL;
2679
2680 current->robust_list = head;
2681
2682 return 0;
2683}
2684
2685/**
d96ee56c
DH
2686 * sys_get_robust_list() - Get the robust-futex list head of a task
2687 * @pid: pid of the process [zero for current task]
2688 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2689 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2690 */
836f92ad
HC
2691SYSCALL_DEFINE3(get_robust_list, int, pid,
2692 struct robust_list_head __user * __user *, head_ptr,
2693 size_t __user *, len_ptr)
0771dfef 2694{
ba46df98 2695 struct robust_list_head __user *head;
0771dfef 2696 unsigned long ret;
bdbb776f 2697 struct task_struct *p;
0771dfef 2698
a0c1e907
TG
2699 if (!futex_cmpxchg_enabled)
2700 return -ENOSYS;
2701
bdbb776f
KC
2702 rcu_read_lock();
2703
2704 ret = -ESRCH;
0771dfef 2705 if (!pid)
bdbb776f 2706 p = current;
0771dfef 2707 else {
228ebcbe 2708 p = find_task_by_vpid(pid);
0771dfef
IM
2709 if (!p)
2710 goto err_unlock;
0771dfef
IM
2711 }
2712
bdbb776f
KC
2713 ret = -EPERM;
2714 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2715 goto err_unlock;
2716
2717 head = p->robust_list;
2718 rcu_read_unlock();
2719
0771dfef
IM
2720 if (put_user(sizeof(*head), len_ptr))
2721 return -EFAULT;
2722 return put_user(head, head_ptr);
2723
2724err_unlock:
aaa2a97e 2725 rcu_read_unlock();
0771dfef
IM
2726
2727 return ret;
2728}
2729
2730/*
2731 * Process a futex-list entry, check whether it's owned by the
2732 * dying task, and do notification if so:
2733 */
e3f2ddea 2734int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2735{
7cfdaf38 2736 u32 uval, uninitialized_var(nval), mval;
0771dfef 2737
8f17d3a5
IM
2738retry:
2739 if (get_user(uval, uaddr))
0771dfef
IM
2740 return -1;
2741
b488893a 2742 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2743 /*
2744 * Ok, this dying thread is truly holding a futex
2745 * of interest. Set the OWNER_DIED bit atomically
2746 * via cmpxchg, and if the value had FUTEX_WAITERS
2747 * set, wake up a waiter (if any). (We have to do a
2748 * futex_wake() even if OWNER_DIED is already set -
2749 * to handle the rare but possible case of recursive
2750 * thread-death.) The rest of the cleanup is done in
2751 * userspace.
2752 */
e3f2ddea 2753 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2754 /*
2755 * We are not holding a lock here, but we want to have
2756 * the pagefault_disable/enable() protection because
2757 * we want to handle the fault gracefully. If the
2758 * access fails we try to fault in the futex with R/W
2759 * verification via get_user_pages. get_user() above
2760 * does not guarantee R/W access. If that fails we
2761 * give up and leave the futex locked.
2762 */
2763 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2764 if (fault_in_user_writeable(uaddr))
2765 return -1;
2766 goto retry;
2767 }
c87e2837 2768 if (nval != uval)
8f17d3a5 2769 goto retry;
0771dfef 2770
e3f2ddea
IM
2771 /*
2772 * Wake robust non-PI futexes here. The wakeup of
2773 * PI futexes happens in exit_pi_state():
2774 */
36cf3b5c 2775 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2776 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2777 }
2778 return 0;
2779}
2780
e3f2ddea
IM
2781/*
2782 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2783 */
2784static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2785 struct robust_list __user * __user *head,
1dcc41bb 2786 unsigned int *pi)
e3f2ddea
IM
2787{
2788 unsigned long uentry;
2789
ba46df98 2790 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2791 return -EFAULT;
2792
ba46df98 2793 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2794 *pi = uentry & 1;
2795
2796 return 0;
2797}
2798
0771dfef
IM
2799/*
2800 * Walk curr->robust_list (very carefully, it's a userspace list!)
2801 * and mark any locks found there dead, and notify any waiters.
2802 *
2803 * We silently return on any sign of list-walking problem.
2804 */
2805void exit_robust_list(struct task_struct *curr)
2806{
2807 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2808 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2809 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2810 unsigned int uninitialized_var(next_pi);
0771dfef 2811 unsigned long futex_offset;
9f96cb1e 2812 int rc;
0771dfef 2813
a0c1e907
TG
2814 if (!futex_cmpxchg_enabled)
2815 return;
2816
0771dfef
IM
2817 /*
2818 * Fetch the list head (which was registered earlier, via
2819 * sys_set_robust_list()):
2820 */
e3f2ddea 2821 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2822 return;
2823 /*
2824 * Fetch the relative futex offset:
2825 */
2826 if (get_user(futex_offset, &head->futex_offset))
2827 return;
2828 /*
2829 * Fetch any possibly pending lock-add first, and handle it
2830 * if it exists:
2831 */
e3f2ddea 2832 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2833 return;
e3f2ddea 2834
9f96cb1e 2835 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2836 while (entry != &head->list) {
9f96cb1e
MS
2837 /*
2838 * Fetch the next entry in the list before calling
2839 * handle_futex_death:
2840 */
2841 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2842 /*
2843 * A pending lock might already be on the list, so
c87e2837 2844 * don't process it twice:
0771dfef
IM
2845 */
2846 if (entry != pending)
ba46df98 2847 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2848 curr, pi))
0771dfef 2849 return;
9f96cb1e 2850 if (rc)
0771dfef 2851 return;
9f96cb1e
MS
2852 entry = next_entry;
2853 pi = next_pi;
0771dfef
IM
2854 /*
2855 * Avoid excessively long or circular lists:
2856 */
2857 if (!--limit)
2858 break;
2859
2860 cond_resched();
2861 }
9f96cb1e
MS
2862
2863 if (pending)
2864 handle_futex_death((void __user *)pending + futex_offset,
2865 curr, pip);
0771dfef
IM
2866}
2867
c19384b5 2868long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2869 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2870{
81b40539 2871 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2872 unsigned int flags = 0;
34f01cc1
ED
2873
2874 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2875 flags |= FLAGS_SHARED;
1da177e4 2876
b41277dc
DH
2877 if (op & FUTEX_CLOCK_REALTIME) {
2878 flags |= FLAGS_CLOCKRT;
2879 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2880 return -ENOSYS;
2881 }
1da177e4 2882
59263b51
TG
2883 switch (cmd) {
2884 case FUTEX_LOCK_PI:
2885 case FUTEX_UNLOCK_PI:
2886 case FUTEX_TRYLOCK_PI:
2887 case FUTEX_WAIT_REQUEUE_PI:
2888 case FUTEX_CMP_REQUEUE_PI:
2889 if (!futex_cmpxchg_enabled)
2890 return -ENOSYS;
2891 }
2892
34f01cc1 2893 switch (cmd) {
1da177e4 2894 case FUTEX_WAIT:
cd689985
TG
2895 val3 = FUTEX_BITSET_MATCH_ANY;
2896 case FUTEX_WAIT_BITSET:
81b40539 2897 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2898 case FUTEX_WAKE:
cd689985
TG
2899 val3 = FUTEX_BITSET_MATCH_ANY;
2900 case FUTEX_WAKE_BITSET:
81b40539 2901 return futex_wake(uaddr, flags, val, val3);
1da177e4 2902 case FUTEX_REQUEUE:
81b40539 2903 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2904 case FUTEX_CMP_REQUEUE:
81b40539 2905 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2906 case FUTEX_WAKE_OP:
81b40539 2907 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2908 case FUTEX_LOCK_PI:
81b40539 2909 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2910 case FUTEX_UNLOCK_PI:
81b40539 2911 return futex_unlock_pi(uaddr, flags);
c87e2837 2912 case FUTEX_TRYLOCK_PI:
81b40539 2913 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2914 case FUTEX_WAIT_REQUEUE_PI:
2915 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2916 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2917 uaddr2);
52400ba9 2918 case FUTEX_CMP_REQUEUE_PI:
81b40539 2919 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2920 }
81b40539 2921 return -ENOSYS;
1da177e4
LT
2922}
2923
2924
17da2bd9
HC
2925SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2926 struct timespec __user *, utime, u32 __user *, uaddr2,
2927 u32, val3)
1da177e4 2928{
c19384b5
PP
2929 struct timespec ts;
2930 ktime_t t, *tp = NULL;
e2970f2f 2931 u32 val2 = 0;
34f01cc1 2932 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2933
cd689985 2934 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2935 cmd == FUTEX_WAIT_BITSET ||
2936 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2937 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2938 return -EFAULT;
c19384b5 2939 if (!timespec_valid(&ts))
9741ef96 2940 return -EINVAL;
c19384b5
PP
2941
2942 t = timespec_to_ktime(ts);
34f01cc1 2943 if (cmd == FUTEX_WAIT)
5a7780e7 2944 t = ktime_add_safe(ktime_get(), t);
c19384b5 2945 tp = &t;
1da177e4
LT
2946 }
2947 /*
52400ba9 2948 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2949 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2950 */
f54f0986 2951 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2952 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2953 val2 = (u32) (unsigned long) utime;
1da177e4 2954
c19384b5 2955 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2956}
2957
03b8c7b6 2958static void __init futex_detect_cmpxchg(void)
1da177e4 2959{
03b8c7b6 2960#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2961 u32 curval;
03b8c7b6
HC
2962
2963 /*
2964 * This will fail and we want it. Some arch implementations do
2965 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2966 * functionality. We want to know that before we call in any
2967 * of the complex code paths. Also we want to prevent
2968 * registration of robust lists in that case. NULL is
2969 * guaranteed to fault and we get -EFAULT on functional
2970 * implementation, the non-functional ones will return
2971 * -ENOSYS.
2972 */
2973 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2974 futex_cmpxchg_enabled = 1;
2975#endif
2976}
2977
2978static int __init futex_init(void)
2979{
63b1a816 2980 unsigned int futex_shift;
a52b89eb
DB
2981 unsigned long i;
2982
2983#if CONFIG_BASE_SMALL
2984 futex_hashsize = 16;
2985#else
2986 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2987#endif
2988
2989 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2990 futex_hashsize, 0,
2991 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
2992 &futex_shift, NULL,
2993 futex_hashsize, futex_hashsize);
2994 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
2995
2996 futex_detect_cmpxchg();
a0c1e907 2997
a52b89eb 2998 for (i = 0; i < futex_hashsize; i++) {
11d4616b 2999 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3000 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3001 spin_lock_init(&futex_queues[i].lock);
3002 }
3003
1da177e4
LT
3004 return 0;
3005}
f6d107fb 3006__initcall(futex_init);