futex: reduce mmap_sem usage
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4
LT
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
1da177e4
LT
99 wait_queue_head_t waiters;
100
e2970f2f 101 /* Which hash list lock to use: */
1da177e4
LT
102 spinlock_t *lock_ptr;
103
e2970f2f 104 /* Key which the futex is hashed on: */
1da177e4
LT
105 union futex_key key;
106
c87e2837
IM
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
cd689985
TG
110
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
1da177e4
LT
113};
114
115/*
116 * Split the global futex_lock into every hash list lock.
117 */
118struct futex_hash_bucket {
ec92d082
PP
119 spinlock_t lock;
120 struct plist_head chain;
1da177e4
LT
121};
122
123static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
1da177e4
LT
125/*
126 * We hash on the keys returned from get_futex_key (see below).
127 */
128static struct futex_hash_bucket *hash_futex(union futex_key *key)
129{
130 u32 hash = jhash2((u32*)&key->both.word,
131 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
132 key->both.offset);
133 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
134}
135
136/*
137 * Return 1 if two futex_keys are equal, 0 otherwise.
138 */
139static inline int match_futex(union futex_key *key1, union futex_key *key2)
140{
141 return (key1->both.word == key2->both.word
142 && key1->both.ptr == key2->both.ptr
143 && key1->both.offset == key2->both.offset);
144}
145
38d47c1b
PZ
146/*
147 * Take a reference to the resource addressed by a key.
148 * Can be called while holding spinlocks.
149 *
150 */
151static void get_futex_key_refs(union futex_key *key)
152{
153 if (!key->both.ptr)
154 return;
155
156 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
157 case FUT_OFF_INODE:
158 atomic_inc(&key->shared.inode->i_count);
159 break;
160 case FUT_OFF_MMSHARED:
161 atomic_inc(&key->private.mm->mm_count);
162 break;
163 }
164}
165
166/*
167 * Drop a reference to the resource addressed by a key.
168 * The hash bucket spinlock must not be held.
169 */
170static void drop_futex_key_refs(union futex_key *key)
171{
172 if (!key->both.ptr)
173 return;
174
175 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
176 case FUT_OFF_INODE:
177 iput(key->shared.inode);
178 break;
179 case FUT_OFF_MMSHARED:
180 mmdrop(key->private.mm);
181 break;
182 }
183}
184
34f01cc1
ED
185/**
186 * get_futex_key - Get parameters which are the keys for a futex.
187 * @uaddr: virtual address of the futex
188 * @shared: NULL for a PROCESS_PRIVATE futex,
189 * &current->mm->mmap_sem for a PROCESS_SHARED futex
190 * @key: address where result is stored.
191 *
192 * Returns a negative error code or 0
193 * The key words are stored in *key on success.
1da177e4 194 *
f3a43f3f 195 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
196 * offset_within_page). For private mappings, it's (uaddr, current->mm).
197 * We can usually work out the index without swapping in the page.
198 *
34f01cc1
ED
199 * fshared is NULL for PROCESS_PRIVATE futexes
200 * For other futexes, it points to &current->mm->mmap_sem and
201 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 202 */
fad23fc7
AB
203static int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
204 union futex_key *key)
1da177e4 205{
e2970f2f 206 unsigned long address = (unsigned long)uaddr;
1da177e4 207 struct mm_struct *mm = current->mm;
1da177e4
LT
208 struct page *page;
209 int err;
210
211 /*
212 * The futex address must be "naturally" aligned.
213 */
e2970f2f 214 key->both.offset = address % PAGE_SIZE;
34f01cc1 215 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 216 return -EINVAL;
e2970f2f 217 address -= key->both.offset;
1da177e4 218
34f01cc1
ED
219 /*
220 * PROCESS_PRIVATE futexes are fast.
221 * As the mm cannot disappear under us and the 'key' only needs
222 * virtual address, we dont even have to find the underlying vma.
223 * Note : We do have to check 'uaddr' is a valid user address,
224 * but access_ok() should be faster than find_vma()
225 */
226 if (!fshared) {
227 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228 return -EFAULT;
229 key->private.mm = mm;
230 key->private.address = address;
231 return 0;
232 }
1da177e4 233
38d47c1b 234again:
61270708 235 down_read(&mm->mmap_sem);
38d47c1b 236 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
61270708 237 up_read(&mm->mmap_sem);
38d47c1b
PZ
238 if (err < 0)
239 return err;
240
241 lock_page(page);
242 if (!page->mapping) {
243 unlock_page(page);
244 put_page(page);
245 goto again;
246 }
1da177e4
LT
247
248 /*
249 * Private mappings are handled in a simple way.
250 *
251 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
252 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 253 * the object not the particular process.
1da177e4 254 */
38d47c1b
PZ
255 if (PageAnon(page)) {
256 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 257 key->private.mm = mm;
e2970f2f 258 key->private.address = address;
38d47c1b
PZ
259 } else {
260 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
261 key->shared.inode = page->mapping->host;
262 key->shared.pgoff = page->index;
1da177e4
LT
263 }
264
38d47c1b 265 get_futex_key_refs(key);
1da177e4 266
38d47c1b
PZ
267 unlock_page(page);
268 put_page(page);
269 return 0;
1da177e4
LT
270}
271
38d47c1b
PZ
272static inline
273void put_futex_key(struct rw_semaphore *fshared, union futex_key *key)
1da177e4 274{
38d47c1b 275 drop_futex_key_refs(key);
1da177e4
LT
276}
277
36cf3b5c
TG
278static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
279{
280 u32 curval;
281
282 pagefault_disable();
283 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
284 pagefault_enable();
285
286 return curval;
287}
288
289static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
290{
291 int ret;
292
a866374a 293 pagefault_disable();
e2970f2f 294 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 295 pagefault_enable();
1da177e4
LT
296
297 return ret ? -EFAULT : 0;
298}
299
c87e2837 300/*
34f01cc1
ED
301 * Fault handling.
302 * if fshared is non NULL, current->mm->mmap_sem is already held
c87e2837 303 */
34f01cc1
ED
304static int futex_handle_fault(unsigned long address,
305 struct rw_semaphore *fshared, int attempt)
c87e2837
IM
306{
307 struct vm_area_struct * vma;
308 struct mm_struct *mm = current->mm;
34f01cc1 309 int ret = -EFAULT;
c87e2837 310
34f01cc1
ED
311 if (attempt > 2)
312 return ret;
c87e2837 313
61270708 314 down_read(&mm->mmap_sem);
34f01cc1
ED
315 vma = find_vma(mm, address);
316 if (vma && address >= vma->vm_start &&
317 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
318 int fault;
319 fault = handle_mm_fault(mm, vma, address, 1);
320 if (unlikely((fault & VM_FAULT_ERROR))) {
321#if 0
322 /* XXX: let's do this when we verify it is OK */
323 if (ret & VM_FAULT_OOM)
324 ret = -ENOMEM;
325#endif
326 } else {
34f01cc1 327 ret = 0;
83c54070
NP
328 if (fault & VM_FAULT_MAJOR)
329 current->maj_flt++;
330 else
331 current->min_flt++;
34f01cc1 332 }
c87e2837 333 }
61270708 334 up_read(&mm->mmap_sem);
34f01cc1 335 return ret;
c87e2837
IM
336}
337
338/*
339 * PI code:
340 */
341static int refill_pi_state_cache(void)
342{
343 struct futex_pi_state *pi_state;
344
345 if (likely(current->pi_state_cache))
346 return 0;
347
4668edc3 348 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
349
350 if (!pi_state)
351 return -ENOMEM;
352
c87e2837
IM
353 INIT_LIST_HEAD(&pi_state->list);
354 /* pi_mutex gets initialized later */
355 pi_state->owner = NULL;
356 atomic_set(&pi_state->refcount, 1);
38d47c1b 357 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
358
359 current->pi_state_cache = pi_state;
360
361 return 0;
362}
363
364static struct futex_pi_state * alloc_pi_state(void)
365{
366 struct futex_pi_state *pi_state = current->pi_state_cache;
367
368 WARN_ON(!pi_state);
369 current->pi_state_cache = NULL;
370
371 return pi_state;
372}
373
374static void free_pi_state(struct futex_pi_state *pi_state)
375{
376 if (!atomic_dec_and_test(&pi_state->refcount))
377 return;
378
379 /*
380 * If pi_state->owner is NULL, the owner is most probably dying
381 * and has cleaned up the pi_state already
382 */
383 if (pi_state->owner) {
384 spin_lock_irq(&pi_state->owner->pi_lock);
385 list_del_init(&pi_state->list);
386 spin_unlock_irq(&pi_state->owner->pi_lock);
387
388 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
389 }
390
391 if (current->pi_state_cache)
392 kfree(pi_state);
393 else {
394 /*
395 * pi_state->list is already empty.
396 * clear pi_state->owner.
397 * refcount is at 0 - put it back to 1.
398 */
399 pi_state->owner = NULL;
400 atomic_set(&pi_state->refcount, 1);
401 current->pi_state_cache = pi_state;
402 }
403}
404
405/*
406 * Look up the task based on what TID userspace gave us.
407 * We dont trust it.
408 */
409static struct task_struct * futex_find_get_task(pid_t pid)
410{
411 struct task_struct *p;
412
d359b549 413 rcu_read_lock();
228ebcbe 414 p = find_task_by_vpid(pid);
a06381fe
TG
415 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
416 p = ERR_PTR(-ESRCH);
417 else
418 get_task_struct(p);
419
d359b549 420 rcu_read_unlock();
c87e2837
IM
421
422 return p;
423}
424
425/*
426 * This task is holding PI mutexes at exit time => bad.
427 * Kernel cleans up PI-state, but userspace is likely hosed.
428 * (Robust-futex cleanup is separate and might save the day for userspace.)
429 */
430void exit_pi_state_list(struct task_struct *curr)
431{
c87e2837
IM
432 struct list_head *next, *head = &curr->pi_state_list;
433 struct futex_pi_state *pi_state;
627371d7 434 struct futex_hash_bucket *hb;
38d47c1b 435 union futex_key key = FUTEX_KEY_INIT;
c87e2837 436
a0c1e907
TG
437 if (!futex_cmpxchg_enabled)
438 return;
c87e2837
IM
439 /*
440 * We are a ZOMBIE and nobody can enqueue itself on
441 * pi_state_list anymore, but we have to be careful
627371d7 442 * versus waiters unqueueing themselves:
c87e2837
IM
443 */
444 spin_lock_irq(&curr->pi_lock);
445 while (!list_empty(head)) {
446
447 next = head->next;
448 pi_state = list_entry(next, struct futex_pi_state, list);
449 key = pi_state->key;
627371d7 450 hb = hash_futex(&key);
c87e2837
IM
451 spin_unlock_irq(&curr->pi_lock);
452
c87e2837
IM
453 spin_lock(&hb->lock);
454
455 spin_lock_irq(&curr->pi_lock);
627371d7
IM
456 /*
457 * We dropped the pi-lock, so re-check whether this
458 * task still owns the PI-state:
459 */
c87e2837
IM
460 if (head->next != next) {
461 spin_unlock(&hb->lock);
462 continue;
463 }
464
c87e2837 465 WARN_ON(pi_state->owner != curr);
627371d7
IM
466 WARN_ON(list_empty(&pi_state->list));
467 list_del_init(&pi_state->list);
c87e2837
IM
468 pi_state->owner = NULL;
469 spin_unlock_irq(&curr->pi_lock);
470
471 rt_mutex_unlock(&pi_state->pi_mutex);
472
473 spin_unlock(&hb->lock);
474
475 spin_lock_irq(&curr->pi_lock);
476 }
477 spin_unlock_irq(&curr->pi_lock);
478}
479
480static int
d0aa7a70
PP
481lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
482 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
483{
484 struct futex_pi_state *pi_state = NULL;
485 struct futex_q *this, *next;
ec92d082 486 struct plist_head *head;
c87e2837 487 struct task_struct *p;
778e9a9c 488 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
489
490 head = &hb->chain;
491
ec92d082 492 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 493 if (match_futex(&this->key, key)) {
c87e2837
IM
494 /*
495 * Another waiter already exists - bump up
496 * the refcount and return its pi_state:
497 */
498 pi_state = this->pi_state;
06a9ec29
TG
499 /*
500 * Userspace might have messed up non PI and PI futexes
501 */
502 if (unlikely(!pi_state))
503 return -EINVAL;
504
627371d7 505 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
506 WARN_ON(pid && pi_state->owner &&
507 pi_state->owner->pid != pid);
627371d7 508
c87e2837 509 atomic_inc(&pi_state->refcount);
d0aa7a70 510 *ps = pi_state;
c87e2837
IM
511
512 return 0;
513 }
514 }
515
516 /*
e3f2ddea 517 * We are the first waiter - try to look up the real owner and attach
778e9a9c 518 * the new pi_state to it, but bail out when TID = 0
c87e2837 519 */
778e9a9c 520 if (!pid)
e3f2ddea 521 return -ESRCH;
c87e2837 522 p = futex_find_get_task(pid);
778e9a9c
AK
523 if (IS_ERR(p))
524 return PTR_ERR(p);
525
526 /*
527 * We need to look at the task state flags to figure out,
528 * whether the task is exiting. To protect against the do_exit
529 * change of the task flags, we do this protected by
530 * p->pi_lock:
531 */
532 spin_lock_irq(&p->pi_lock);
533 if (unlikely(p->flags & PF_EXITING)) {
534 /*
535 * The task is on the way out. When PF_EXITPIDONE is
536 * set, we know that the task has finished the
537 * cleanup:
538 */
539 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
540
541 spin_unlock_irq(&p->pi_lock);
542 put_task_struct(p);
543 return ret;
544 }
c87e2837
IM
545
546 pi_state = alloc_pi_state();
547
548 /*
549 * Initialize the pi_mutex in locked state and make 'p'
550 * the owner of it:
551 */
552 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
553
554 /* Store the key for possible exit cleanups: */
d0aa7a70 555 pi_state->key = *key;
c87e2837 556
627371d7 557 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
558 list_add(&pi_state->list, &p->pi_state_list);
559 pi_state->owner = p;
560 spin_unlock_irq(&p->pi_lock);
561
562 put_task_struct(p);
563
d0aa7a70 564 *ps = pi_state;
c87e2837
IM
565
566 return 0;
567}
568
1da177e4
LT
569/*
570 * The hash bucket lock must be held when this is called.
571 * Afterwards, the futex_q must not be accessed.
572 */
573static void wake_futex(struct futex_q *q)
574{
ec92d082 575 plist_del(&q->list, &q->list.plist);
1da177e4
LT
576 /*
577 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 578 * plist_del() and also before assigning to q->lock_ptr.
1da177e4
LT
579 */
580 wake_up_all(&q->waiters);
581 /*
582 * The waiting task can free the futex_q as soon as this is written,
583 * without taking any locks. This must come last.
8e31108b
AM
584 *
585 * A memory barrier is required here to prevent the following store
586 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
587 * at the end of wake_up_all() does not prevent this store from
588 * moving.
1da177e4 589 */
ccdea2f8 590 smp_wmb();
1da177e4
LT
591 q->lock_ptr = NULL;
592}
593
c87e2837
IM
594static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
595{
596 struct task_struct *new_owner;
597 struct futex_pi_state *pi_state = this->pi_state;
598 u32 curval, newval;
599
600 if (!pi_state)
601 return -EINVAL;
602
21778867 603 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
604 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
605
606 /*
607 * This happens when we have stolen the lock and the original
608 * pending owner did not enqueue itself back on the rt_mutex.
609 * Thats not a tragedy. We know that way, that a lock waiter
610 * is on the fly. We make the futex_q waiter the pending owner.
611 */
612 if (!new_owner)
613 new_owner = this->task;
614
615 /*
616 * We pass it to the next owner. (The WAITERS bit is always
617 * kept enabled while there is PI state around. We must also
618 * preserve the owner died bit.)
619 */
e3f2ddea 620 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
621 int ret = 0;
622
b488893a 623 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 624
36cf3b5c 625 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 626
e3f2ddea 627 if (curval == -EFAULT)
778e9a9c 628 ret = -EFAULT;
cde898fa 629 else if (curval != uval)
778e9a9c
AK
630 ret = -EINVAL;
631 if (ret) {
632 spin_unlock(&pi_state->pi_mutex.wait_lock);
633 return ret;
634 }
e3f2ddea 635 }
c87e2837 636
627371d7
IM
637 spin_lock_irq(&pi_state->owner->pi_lock);
638 WARN_ON(list_empty(&pi_state->list));
639 list_del_init(&pi_state->list);
640 spin_unlock_irq(&pi_state->owner->pi_lock);
641
642 spin_lock_irq(&new_owner->pi_lock);
643 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
644 list_add(&pi_state->list, &new_owner->pi_state_list);
645 pi_state->owner = new_owner;
627371d7
IM
646 spin_unlock_irq(&new_owner->pi_lock);
647
21778867 648 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
649 rt_mutex_unlock(&pi_state->pi_mutex);
650
651 return 0;
652}
653
654static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
655{
656 u32 oldval;
657
658 /*
659 * There is no waiter, so we unlock the futex. The owner died
660 * bit has not to be preserved here. We are the owner:
661 */
36cf3b5c 662 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
663
664 if (oldval == -EFAULT)
665 return oldval;
666 if (oldval != uval)
667 return -EAGAIN;
668
669 return 0;
670}
671
8b8f319f
IM
672/*
673 * Express the locking dependencies for lockdep:
674 */
675static inline void
676double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
677{
678 if (hb1 <= hb2) {
679 spin_lock(&hb1->lock);
680 if (hb1 < hb2)
681 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
682 } else { /* hb1 > hb2 */
683 spin_lock(&hb2->lock);
684 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
685 }
686}
687
1da177e4
LT
688/*
689 * Wake up all waiters hashed on the physical page that is mapped
690 * to this virtual address:
691 */
34f01cc1 692static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
cd689985 693 int nr_wake, u32 bitset)
1da177e4 694{
e2970f2f 695 struct futex_hash_bucket *hb;
1da177e4 696 struct futex_q *this, *next;
ec92d082 697 struct plist_head *head;
38d47c1b 698 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
699 int ret;
700
cd689985
TG
701 if (!bitset)
702 return -EINVAL;
703
34f01cc1 704 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
705 if (unlikely(ret != 0))
706 goto out;
707
e2970f2f
IM
708 hb = hash_futex(&key);
709 spin_lock(&hb->lock);
710 head = &hb->chain;
1da177e4 711
ec92d082 712 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 713 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
714 if (this->pi_state) {
715 ret = -EINVAL;
716 break;
717 }
cd689985
TG
718
719 /* Check if one of the bits is set in both bitsets */
720 if (!(this->bitset & bitset))
721 continue;
722
1da177e4
LT
723 wake_futex(this);
724 if (++ret >= nr_wake)
725 break;
726 }
727 }
728
e2970f2f 729 spin_unlock(&hb->lock);
1da177e4 730out:
38d47c1b 731 put_futex_key(fshared, &key);
1da177e4
LT
732 return ret;
733}
734
4732efbe
JJ
735/*
736 * Wake up all waiters hashed on the physical page that is mapped
737 * to this virtual address:
738 */
e2970f2f 739static int
34f01cc1
ED
740futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
741 u32 __user *uaddr2,
e2970f2f 742 int nr_wake, int nr_wake2, int op)
4732efbe 743{
38d47c1b 744 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 745 struct futex_hash_bucket *hb1, *hb2;
ec92d082 746 struct plist_head *head;
4732efbe
JJ
747 struct futex_q *this, *next;
748 int ret, op_ret, attempt = 0;
749
750retryfull:
34f01cc1 751 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
752 if (unlikely(ret != 0))
753 goto out;
34f01cc1 754 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
755 if (unlikely(ret != 0))
756 goto out;
757
e2970f2f
IM
758 hb1 = hash_futex(&key1);
759 hb2 = hash_futex(&key2);
4732efbe
JJ
760
761retry:
8b8f319f 762 double_lock_hb(hb1, hb2);
4732efbe 763
e2970f2f 764 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 765 if (unlikely(op_ret < 0)) {
e2970f2f 766 u32 dummy;
4732efbe 767
e2970f2f
IM
768 spin_unlock(&hb1->lock);
769 if (hb1 != hb2)
770 spin_unlock(&hb2->lock);
4732efbe 771
7ee1dd3f 772#ifndef CONFIG_MMU
e2970f2f
IM
773 /*
774 * we don't get EFAULT from MMU faults if we don't have an MMU,
775 * but we might get them from range checking
776 */
7ee1dd3f
DH
777 ret = op_ret;
778 goto out;
779#endif
780
796f8d9b
DG
781 if (unlikely(op_ret != -EFAULT)) {
782 ret = op_ret;
783 goto out;
784 }
785
e2970f2f
IM
786 /*
787 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
788 * *(int __user *)uaddr2, but we can't modify it
789 * non-atomically. Therefore, if get_user below is not
790 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
791 * still holding the mmap_sem.
792 */
4732efbe 793 if (attempt++) {
34f01cc1 794 ret = futex_handle_fault((unsigned long)uaddr2,
36cf3b5c 795 fshared, attempt);
34f01cc1 796 if (ret)
4732efbe 797 goto out;
4732efbe
JJ
798 goto retry;
799 }
800
e2970f2f 801 ret = get_user(dummy, uaddr2);
4732efbe
JJ
802 if (ret)
803 return ret;
804
805 goto retryfull;
806 }
807
e2970f2f 808 head = &hb1->chain;
4732efbe 809
ec92d082 810 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
811 if (match_futex (&this->key, &key1)) {
812 wake_futex(this);
813 if (++ret >= nr_wake)
814 break;
815 }
816 }
817
818 if (op_ret > 0) {
e2970f2f 819 head = &hb2->chain;
4732efbe
JJ
820
821 op_ret = 0;
ec92d082 822 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
823 if (match_futex (&this->key, &key2)) {
824 wake_futex(this);
825 if (++op_ret >= nr_wake2)
826 break;
827 }
828 }
829 ret += op_ret;
830 }
831
e2970f2f
IM
832 spin_unlock(&hb1->lock);
833 if (hb1 != hb2)
834 spin_unlock(&hb2->lock);
4732efbe 835out:
38d47c1b
PZ
836 put_futex_key(fshared, &key2);
837 put_futex_key(fshared, &key1);
36cf3b5c 838
4732efbe
JJ
839 return ret;
840}
841
1da177e4
LT
842/*
843 * Requeue all waiters hashed on one physical page to another
844 * physical page.
845 */
34f01cc1
ED
846static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
847 u32 __user *uaddr2,
e2970f2f 848 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 849{
38d47c1b 850 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 851 struct futex_hash_bucket *hb1, *hb2;
ec92d082 852 struct plist_head *head1;
1da177e4
LT
853 struct futex_q *this, *next;
854 int ret, drop_count = 0;
855
856 retry:
34f01cc1 857 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
858 if (unlikely(ret != 0))
859 goto out;
34f01cc1 860 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
861 if (unlikely(ret != 0))
862 goto out;
863
e2970f2f
IM
864 hb1 = hash_futex(&key1);
865 hb2 = hash_futex(&key2);
1da177e4 866
8b8f319f 867 double_lock_hb(hb1, hb2);
1da177e4 868
e2970f2f
IM
869 if (likely(cmpval != NULL)) {
870 u32 curval;
1da177e4 871
e2970f2f 872 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
873
874 if (unlikely(ret)) {
e2970f2f
IM
875 spin_unlock(&hb1->lock);
876 if (hb1 != hb2)
877 spin_unlock(&hb2->lock);
1da177e4 878
e2970f2f 879 ret = get_user(curval, uaddr1);
1da177e4
LT
880
881 if (!ret)
882 goto retry;
883
884 return ret;
885 }
e2970f2f 886 if (curval != *cmpval) {
1da177e4
LT
887 ret = -EAGAIN;
888 goto out_unlock;
889 }
890 }
891
e2970f2f 892 head1 = &hb1->chain;
ec92d082 893 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
894 if (!match_futex (&this->key, &key1))
895 continue;
896 if (++ret <= nr_wake) {
897 wake_futex(this);
898 } else {
59e0e0ac
SD
899 /*
900 * If key1 and key2 hash to the same bucket, no need to
901 * requeue.
902 */
903 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
904 plist_del(&this->list, &hb1->chain);
905 plist_add(&this->list, &hb2->chain);
59e0e0ac 906 this->lock_ptr = &hb2->lock;
ec92d082
PP
907#ifdef CONFIG_DEBUG_PI_LIST
908 this->list.plist.lock = &hb2->lock;
909#endif
778e9a9c 910 }
1da177e4 911 this->key = key2;
9adef58b 912 get_futex_key_refs(&key2);
1da177e4
LT
913 drop_count++;
914
915 if (ret - nr_wake >= nr_requeue)
916 break;
1da177e4
LT
917 }
918 }
919
920out_unlock:
e2970f2f
IM
921 spin_unlock(&hb1->lock);
922 if (hb1 != hb2)
923 spin_unlock(&hb2->lock);
1da177e4 924
9adef58b 925 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 926 while (--drop_count >= 0)
9adef58b 927 drop_futex_key_refs(&key1);
1da177e4
LT
928
929out:
38d47c1b
PZ
930 put_futex_key(fshared, &key2);
931 put_futex_key(fshared, &key1);
1da177e4
LT
932 return ret;
933}
934
935/* The key must be already stored in q->key. */
82af7aca 936static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 937{
e2970f2f 938 struct futex_hash_bucket *hb;
1da177e4 939
1da177e4
LT
940 init_waitqueue_head(&q->waiters);
941
9adef58b 942 get_futex_key_refs(&q->key);
e2970f2f
IM
943 hb = hash_futex(&q->key);
944 q->lock_ptr = &hb->lock;
1da177e4 945
e2970f2f
IM
946 spin_lock(&hb->lock);
947 return hb;
1da177e4
LT
948}
949
82af7aca 950static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 951{
ec92d082
PP
952 int prio;
953
954 /*
955 * The priority used to register this element is
956 * - either the real thread-priority for the real-time threads
957 * (i.e. threads with a priority lower than MAX_RT_PRIO)
958 * - or MAX_RT_PRIO for non-RT threads.
959 * Thus, all RT-threads are woken first in priority order, and
960 * the others are woken last, in FIFO order.
961 */
962 prio = min(current->normal_prio, MAX_RT_PRIO);
963
964 plist_node_init(&q->list, prio);
965#ifdef CONFIG_DEBUG_PI_LIST
966 q->list.plist.lock = &hb->lock;
967#endif
968 plist_add(&q->list, &hb->chain);
c87e2837 969 q->task = current;
e2970f2f 970 spin_unlock(&hb->lock);
1da177e4
LT
971}
972
973static inline void
e2970f2f 974queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 975{
e2970f2f 976 spin_unlock(&hb->lock);
9adef58b 977 drop_futex_key_refs(&q->key);
1da177e4
LT
978}
979
980/*
981 * queue_me and unqueue_me must be called as a pair, each
982 * exactly once. They are called with the hashed spinlock held.
983 */
984
1da177e4
LT
985/* Return 1 if we were still queued (ie. 0 means we were woken) */
986static int unqueue_me(struct futex_q *q)
987{
1da177e4 988 spinlock_t *lock_ptr;
e2970f2f 989 int ret = 0;
1da177e4
LT
990
991 /* In the common case we don't take the spinlock, which is nice. */
992 retry:
993 lock_ptr = q->lock_ptr;
e91467ec 994 barrier();
c80544dc 995 if (lock_ptr != NULL) {
1da177e4
LT
996 spin_lock(lock_ptr);
997 /*
998 * q->lock_ptr can change between reading it and
999 * spin_lock(), causing us to take the wrong lock. This
1000 * corrects the race condition.
1001 *
1002 * Reasoning goes like this: if we have the wrong lock,
1003 * q->lock_ptr must have changed (maybe several times)
1004 * between reading it and the spin_lock(). It can
1005 * change again after the spin_lock() but only if it was
1006 * already changed before the spin_lock(). It cannot,
1007 * however, change back to the original value. Therefore
1008 * we can detect whether we acquired the correct lock.
1009 */
1010 if (unlikely(lock_ptr != q->lock_ptr)) {
1011 spin_unlock(lock_ptr);
1012 goto retry;
1013 }
ec92d082
PP
1014 WARN_ON(plist_node_empty(&q->list));
1015 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1016
1017 BUG_ON(q->pi_state);
1018
1da177e4
LT
1019 spin_unlock(lock_ptr);
1020 ret = 1;
1021 }
1022
9adef58b 1023 drop_futex_key_refs(&q->key);
1da177e4
LT
1024 return ret;
1025}
1026
c87e2837
IM
1027/*
1028 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1029 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1030 * and dropped here.
c87e2837 1031 */
d0aa7a70 1032static void unqueue_me_pi(struct futex_q *q)
c87e2837 1033{
ec92d082
PP
1034 WARN_ON(plist_node_empty(&q->list));
1035 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1036
1037 BUG_ON(!q->pi_state);
1038 free_pi_state(q->pi_state);
1039 q->pi_state = NULL;
1040
d0aa7a70 1041 spin_unlock(q->lock_ptr);
c87e2837 1042
9adef58b 1043 drop_futex_key_refs(&q->key);
c87e2837
IM
1044}
1045
d0aa7a70 1046/*
cdf71a10 1047 * Fixup the pi_state owner with the new owner.
d0aa7a70 1048 *
778e9a9c
AK
1049 * Must be called with hash bucket lock held and mm->sem held for non
1050 * private futexes.
d0aa7a70 1051 */
778e9a9c 1052static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1b7558e4
TG
1053 struct task_struct *newowner,
1054 struct rw_semaphore *fshared)
d0aa7a70 1055{
cdf71a10 1056 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1057 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1058 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1059 u32 uval, curval, newval;
1b7558e4 1060 int ret, attempt = 0;
d0aa7a70
PP
1061
1062 /* Owner died? */
1b7558e4
TG
1063 if (!pi_state->owner)
1064 newtid |= FUTEX_OWNER_DIED;
1065
1066 /*
1067 * We are here either because we stole the rtmutex from the
1068 * pending owner or we are the pending owner which failed to
1069 * get the rtmutex. We have to replace the pending owner TID
1070 * in the user space variable. This must be atomic as we have
1071 * to preserve the owner died bit here.
1072 *
1073 * Note: We write the user space value _before_ changing the
1074 * pi_state because we can fault here. Imagine swapped out
1075 * pages or a fork, which was running right before we acquired
1076 * mmap_sem, that marked all the anonymous memory readonly for
1077 * cow.
1078 *
1079 * Modifying pi_state _before_ the user space value would
1080 * leave the pi_state in an inconsistent state when we fault
1081 * here, because we need to drop the hash bucket lock to
1082 * handle the fault. This might be observed in the PID check
1083 * in lookup_pi_state.
1084 */
1085retry:
1086 if (get_futex_value_locked(&uval, uaddr))
1087 goto handle_fault;
1088
1089 while (1) {
1090 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1091
1092 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1093
1094 if (curval == -EFAULT)
1095 goto handle_fault;
1096 if (curval == uval)
1097 break;
1098 uval = curval;
1099 }
1100
1101 /*
1102 * We fixed up user space. Now we need to fix the pi_state
1103 * itself.
1104 */
d0aa7a70
PP
1105 if (pi_state->owner != NULL) {
1106 spin_lock_irq(&pi_state->owner->pi_lock);
1107 WARN_ON(list_empty(&pi_state->list));
1108 list_del_init(&pi_state->list);
1109 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1110 }
d0aa7a70 1111
cdf71a10 1112 pi_state->owner = newowner;
d0aa7a70 1113
cdf71a10 1114 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1115 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1116 list_add(&pi_state->list, &newowner->pi_state_list);
1117 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1118 return 0;
d0aa7a70 1119
d0aa7a70 1120 /*
1b7558e4
TG
1121 * To handle the page fault we need to drop the hash bucket
1122 * lock here. That gives the other task (either the pending
1123 * owner itself or the task which stole the rtmutex) the
1124 * chance to try the fixup of the pi_state. So once we are
1125 * back from handling the fault we need to check the pi_state
1126 * after reacquiring the hash bucket lock and before trying to
1127 * do another fixup. When the fixup has been done already we
1128 * simply return.
d0aa7a70 1129 */
1b7558e4
TG
1130handle_fault:
1131 spin_unlock(q->lock_ptr);
778e9a9c 1132
1b7558e4 1133 ret = futex_handle_fault((unsigned long)uaddr, fshared, attempt++);
778e9a9c 1134
1b7558e4 1135 spin_lock(q->lock_ptr);
778e9a9c 1136
1b7558e4
TG
1137 /*
1138 * Check if someone else fixed it for us:
1139 */
1140 if (pi_state->owner != oldowner)
1141 return 0;
1142
1143 if (ret)
1144 return ret;
1145
1146 goto retry;
d0aa7a70
PP
1147}
1148
34f01cc1
ED
1149/*
1150 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1151 * we encode in the 'flags' shared capability
34f01cc1 1152 */
ce6bd420 1153#define FLAGS_SHARED 1
34f01cc1 1154
72c1bbf3 1155static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1156
34f01cc1 1157static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
cd689985 1158 u32 val, ktime_t *abs_time, u32 bitset)
1da177e4 1159{
c87e2837
IM
1160 struct task_struct *curr = current;
1161 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1162 struct futex_hash_bucket *hb;
1da177e4 1163 struct futex_q q;
e2970f2f
IM
1164 u32 uval;
1165 int ret;
bd197234 1166 struct hrtimer_sleeper t;
c19384b5 1167 int rem = 0;
1da177e4 1168
cd689985
TG
1169 if (!bitset)
1170 return -EINVAL;
1171
c87e2837 1172 q.pi_state = NULL;
cd689985 1173 q.bitset = bitset;
1da177e4 1174 retry:
38d47c1b 1175 q.key = FUTEX_KEY_INIT;
34f01cc1 1176 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1177 if (unlikely(ret != 0))
1178 goto out_release_sem;
1179
82af7aca 1180 hb = queue_lock(&q);
1da177e4
LT
1181
1182 /*
1183 * Access the page AFTER the futex is queued.
1184 * Order is important:
1185 *
1186 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1187 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1188 *
1189 * The basic logical guarantee of a futex is that it blocks ONLY
1190 * if cond(var) is known to be true at the time of blocking, for
1191 * any cond. If we queued after testing *uaddr, that would open
1192 * a race condition where we could block indefinitely with
1193 * cond(var) false, which would violate the guarantee.
1194 *
1195 * A consequence is that futex_wait() can return zero and absorb
1196 * a wakeup when *uaddr != val on entry to the syscall. This is
1197 * rare, but normal.
1198 *
34f01cc1
ED
1199 * for shared futexes, we hold the mmap semaphore, so the mapping
1200 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1201 */
e2970f2f 1202 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1203
1204 if (unlikely(ret)) {
e2970f2f 1205 queue_unlock(&q, hb);
1da177e4 1206
e2970f2f 1207 ret = get_user(uval, uaddr);
1da177e4
LT
1208
1209 if (!ret)
1210 goto retry;
1211 return ret;
1212 }
c87e2837
IM
1213 ret = -EWOULDBLOCK;
1214 if (uval != val)
1215 goto out_unlock_release_sem;
1da177e4
LT
1216
1217 /* Only actually queue if *uaddr contained val. */
82af7aca 1218 queue_me(&q, hb);
1da177e4 1219
1da177e4
LT
1220 /*
1221 * There might have been scheduling since the queue_me(), as we
1222 * cannot hold a spinlock across the get_user() in case it
1223 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1224 * queueing ourselves into the futex hash. This code thus has to
1225 * rely on the futex_wake() code removing us from hash when it
1226 * wakes us up.
1227 */
1228
1229 /* add_wait_queue is the barrier after __set_current_state. */
1230 __set_current_state(TASK_INTERRUPTIBLE);
1231 add_wait_queue(&q.waiters, &wait);
1232 /*
ec92d082 1233 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1234 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1235 */
ec92d082 1236 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1237 if (!abs_time)
1238 schedule();
1239 else {
237fc6e7
TG
1240 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1241 HRTIMER_MODE_ABS);
c19384b5
PP
1242 hrtimer_init_sleeper(&t, current);
1243 t.timer.expires = *abs_time;
1244
237fc6e7
TG
1245 hrtimer_start(&t.timer, t.timer.expires,
1246 HRTIMER_MODE_ABS);
3588a085
PZ
1247 if (!hrtimer_active(&t.timer))
1248 t.task = NULL;
c19384b5
PP
1249
1250 /*
1251 * the timer could have already expired, in which
1252 * case current would be flagged for rescheduling.
1253 * Don't bother calling schedule.
1254 */
1255 if (likely(t.task))
1256 schedule();
1257
1258 hrtimer_cancel(&t.timer);
72c1bbf3 1259
c19384b5
PP
1260 /* Flag if a timeout occured */
1261 rem = (t.task == NULL);
237fc6e7
TG
1262
1263 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1264 }
72c1bbf3 1265 }
1da177e4
LT
1266 __set_current_state(TASK_RUNNING);
1267
1268 /*
1269 * NOTE: we don't remove ourselves from the waitqueue because
1270 * we are the only user of it.
1271 */
1272
1273 /* If we were woken (and unqueued), we succeeded, whatever. */
1274 if (!unqueue_me(&q))
1275 return 0;
c19384b5 1276 if (rem)
1da177e4 1277 return -ETIMEDOUT;
72c1bbf3 1278
e2970f2f
IM
1279 /*
1280 * We expect signal_pending(current), but another thread may
1281 * have handled it for us already.
1282 */
c19384b5 1283 if (!abs_time)
72c1bbf3
NP
1284 return -ERESTARTSYS;
1285 else {
1286 struct restart_block *restart;
1287 restart = &current_thread_info()->restart_block;
1288 restart->fn = futex_wait_restart;
ce6bd420
SR
1289 restart->futex.uaddr = (u32 *)uaddr;
1290 restart->futex.val = val;
1291 restart->futex.time = abs_time->tv64;
cd689985 1292 restart->futex.bitset = bitset;
ce6bd420
SR
1293 restart->futex.flags = 0;
1294
34f01cc1 1295 if (fshared)
ce6bd420 1296 restart->futex.flags |= FLAGS_SHARED;
72c1bbf3
NP
1297 return -ERESTART_RESTARTBLOCK;
1298 }
1da177e4 1299
c87e2837
IM
1300 out_unlock_release_sem:
1301 queue_unlock(&q, hb);
1302
1da177e4 1303 out_release_sem:
38d47c1b 1304 put_futex_key(fshared, &q.key);
c87e2837
IM
1305 return ret;
1306}
1307
72c1bbf3
NP
1308
1309static long futex_wait_restart(struct restart_block *restart)
1310{
ce6bd420 1311 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
34f01cc1 1312 struct rw_semaphore *fshared = NULL;
ce6bd420 1313 ktime_t t;
72c1bbf3 1314
ce6bd420 1315 t.tv64 = restart->futex.time;
72c1bbf3 1316 restart->fn = do_no_restart_syscall;
ce6bd420 1317 if (restart->futex.flags & FLAGS_SHARED)
34f01cc1 1318 fshared = &current->mm->mmap_sem;
cd689985
TG
1319 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1320 restart->futex.bitset);
72c1bbf3
NP
1321}
1322
1323
c87e2837
IM
1324/*
1325 * Userspace tried a 0 -> TID atomic transition of the futex value
1326 * and failed. The kernel side here does the whole locking operation:
1327 * if there are waiters then it will block, it does PI, etc. (Due to
1328 * races the kernel might see a 0 value of the futex too.)
1329 */
34f01cc1
ED
1330static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1331 int detect, ktime_t *time, int trylock)
c87e2837 1332{
c5780e97 1333 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1334 struct task_struct *curr = current;
1335 struct futex_hash_bucket *hb;
1336 u32 uval, newval, curval;
1337 struct futex_q q;
778e9a9c 1338 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1339
1340 if (refill_pi_state_cache())
1341 return -ENOMEM;
1342
c19384b5 1343 if (time) {
c5780e97 1344 to = &timeout;
237fc6e7
TG
1345 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1346 HRTIMER_MODE_ABS);
c5780e97 1347 hrtimer_init_sleeper(to, current);
c19384b5 1348 to->timer.expires = *time;
c5780e97
TG
1349 }
1350
c87e2837
IM
1351 q.pi_state = NULL;
1352 retry:
38d47c1b 1353 q.key = FUTEX_KEY_INIT;
34f01cc1 1354 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1355 if (unlikely(ret != 0))
1356 goto out_release_sem;
1357
778e9a9c 1358 retry_unlocked:
82af7aca 1359 hb = queue_lock(&q);
c87e2837
IM
1360
1361 retry_locked:
778e9a9c 1362 ret = lock_taken = 0;
d0aa7a70 1363
c87e2837
IM
1364 /*
1365 * To avoid races, we attempt to take the lock here again
1366 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1367 * the locks. It will most likely not succeed.
1368 */
b488893a 1369 newval = task_pid_vnr(current);
c87e2837 1370
36cf3b5c 1371 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1372
1373 if (unlikely(curval == -EFAULT))
1374 goto uaddr_faulted;
1375
778e9a9c
AK
1376 /*
1377 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1378 * situation and we return success to user space.
1379 */
b488893a 1380 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1381 ret = -EDEADLK;
c87e2837
IM
1382 goto out_unlock_release_sem;
1383 }
1384
1385 /*
778e9a9c 1386 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1387 */
1388 if (unlikely(!curval))
1389 goto out_unlock_release_sem;
1390
1391 uval = curval;
778e9a9c 1392
d0aa7a70 1393 /*
778e9a9c
AK
1394 * Set the WAITERS flag, so the owner will know it has someone
1395 * to wake at next unlock
d0aa7a70 1396 */
778e9a9c
AK
1397 newval = curval | FUTEX_WAITERS;
1398
1399 /*
1400 * There are two cases, where a futex might have no owner (the
bd197234
TG
1401 * owner TID is 0): OWNER_DIED. We take over the futex in this
1402 * case. We also do an unconditional take over, when the owner
1403 * of the futex died.
778e9a9c
AK
1404 *
1405 * This is safe as we are protected by the hash bucket lock !
1406 */
1407 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1408 /* Keep the OWNER_DIED bit */
b488893a 1409 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1410 ownerdied = 0;
1411 lock_taken = 1;
1412 }
c87e2837 1413
36cf3b5c 1414 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1415
1416 if (unlikely(curval == -EFAULT))
1417 goto uaddr_faulted;
1418 if (unlikely(curval != uval))
1419 goto retry_locked;
1420
778e9a9c 1421 /*
bd197234 1422 * We took the lock due to owner died take over.
778e9a9c 1423 */
bd197234 1424 if (unlikely(lock_taken))
d0aa7a70 1425 goto out_unlock_release_sem;
d0aa7a70 1426
c87e2837
IM
1427 /*
1428 * We dont have the lock. Look up the PI state (or create it if
1429 * we are the first waiter):
1430 */
d0aa7a70 1431 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1432
1433 if (unlikely(ret)) {
778e9a9c 1434 switch (ret) {
c87e2837 1435
778e9a9c
AK
1436 case -EAGAIN:
1437 /*
1438 * Task is exiting and we just wait for the
1439 * exit to complete.
1440 */
1441 queue_unlock(&q, hb);
778e9a9c
AK
1442 cond_resched();
1443 goto retry;
c87e2837 1444
778e9a9c
AK
1445 case -ESRCH:
1446 /*
1447 * No owner found for this futex. Check if the
1448 * OWNER_DIED bit is set to figure out whether
1449 * this is a robust futex or not.
1450 */
1451 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1452 goto uaddr_faulted;
778e9a9c
AK
1453
1454 /*
1455 * We simply start over in case of a robust
1456 * futex. The code above will take the futex
1457 * and return happy.
1458 */
1459 if (curval & FUTEX_OWNER_DIED) {
1460 ownerdied = 1;
c87e2837 1461 goto retry_locked;
778e9a9c
AK
1462 }
1463 default:
1464 goto out_unlock_release_sem;
c87e2837 1465 }
c87e2837
IM
1466 }
1467
1468 /*
1469 * Only actually queue now that the atomic ops are done:
1470 */
82af7aca 1471 queue_me(&q, hb);
c87e2837 1472
c87e2837
IM
1473 WARN_ON(!q.pi_state);
1474 /*
1475 * Block on the PI mutex:
1476 */
1477 if (!trylock)
1478 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1479 else {
1480 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1481 /* Fixup the trylock return value: */
1482 ret = ret ? 0 : -EWOULDBLOCK;
1483 }
1484
a99e4e41 1485 spin_lock(q.lock_ptr);
c87e2837 1486
778e9a9c
AK
1487 if (!ret) {
1488 /*
1489 * Got the lock. We might not be the anticipated owner
1490 * if we did a lock-steal - fix up the PI-state in
1491 * that case:
1492 */
1493 if (q.pi_state->owner != curr)
1b7558e4 1494 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1495 } else {
c87e2837
IM
1496 /*
1497 * Catch the rare case, where the lock was released
778e9a9c
AK
1498 * when we were on the way back before we locked the
1499 * hash bucket.
c87e2837 1500 */
cdf71a10
TG
1501 if (q.pi_state->owner == curr) {
1502 /*
1503 * Try to get the rt_mutex now. This might
1504 * fail as some other task acquired the
1505 * rt_mutex after we removed ourself from the
1506 * rt_mutex waiters list.
1507 */
1508 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1509 ret = 0;
1510 else {
1511 /*
1512 * pi_state is incorrect, some other
1513 * task did a lock steal and we
1514 * returned due to timeout or signal
1515 * without taking the rt_mutex. Too
1516 * late. We can access the
1517 * rt_mutex_owner without locking, as
1518 * the other task is now blocked on
1519 * the hash bucket lock. Fix the state
1520 * up.
1521 */
1522 struct task_struct *owner;
1523 int res;
1524
1525 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1526 res = fixup_pi_state_owner(uaddr, &q, owner,
1527 fshared);
cdf71a10 1528
cdf71a10
TG
1529 /* propagate -EFAULT, if the fixup failed */
1530 if (res)
1531 ret = res;
1532 }
778e9a9c
AK
1533 } else {
1534 /*
1535 * Paranoia check. If we did not take the lock
1536 * in the trylock above, then we should not be
1537 * the owner of the rtmutex, neither the real
1538 * nor the pending one:
1539 */
1540 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1541 printk(KERN_ERR "futex_lock_pi: ret = %d "
1542 "pi-mutex: %p pi-state %p\n", ret,
1543 q.pi_state->pi_mutex.owner,
1544 q.pi_state->owner);
c87e2837 1545 }
c87e2837
IM
1546 }
1547
778e9a9c
AK
1548 /* Unqueue and drop the lock */
1549 unqueue_me_pi(&q);
c87e2837 1550
237fc6e7
TG
1551 if (to)
1552 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1553 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1554
1555 out_unlock_release_sem:
1556 queue_unlock(&q, hb);
1557
1558 out_release_sem:
38d47c1b 1559 put_futex_key(fshared, &q.key);
237fc6e7
TG
1560 if (to)
1561 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1562 return ret;
1563
1564 uaddr_faulted:
1565 /*
1566 * We have to r/w *(int __user *)uaddr, but we can't modify it
1567 * non-atomically. Therefore, if get_user below is not
1568 * enough, we need to handle the fault ourselves, while
1569 * still holding the mmap_sem.
778e9a9c
AK
1570 *
1571 * ... and hb->lock. :-) --ANK
c87e2837 1572 */
778e9a9c
AK
1573 queue_unlock(&q, hb);
1574
c87e2837 1575 if (attempt++) {
34f01cc1
ED
1576 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1577 attempt);
1578 if (ret)
778e9a9c
AK
1579 goto out_release_sem;
1580 goto retry_unlocked;
c87e2837
IM
1581 }
1582
c87e2837
IM
1583 ret = get_user(uval, uaddr);
1584 if (!ret && (uval != -EFAULT))
1585 goto retry;
1586
237fc6e7
TG
1587 if (to)
1588 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1589 return ret;
1590}
1591
c87e2837
IM
1592/*
1593 * Userspace attempted a TID -> 0 atomic transition, and failed.
1594 * This is the in-kernel slowpath: we look up the PI state (if any),
1595 * and do the rt-mutex unlock.
1596 */
34f01cc1 1597static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
c87e2837
IM
1598{
1599 struct futex_hash_bucket *hb;
1600 struct futex_q *this, *next;
1601 u32 uval;
ec92d082 1602 struct plist_head *head;
38d47c1b 1603 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1604 int ret, attempt = 0;
1605
1606retry:
1607 if (get_user(uval, uaddr))
1608 return -EFAULT;
1609 /*
1610 * We release only a lock we actually own:
1611 */
b488893a 1612 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1613 return -EPERM;
c87e2837 1614
34f01cc1 1615 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1616 if (unlikely(ret != 0))
1617 goto out;
1618
1619 hb = hash_futex(&key);
778e9a9c 1620retry_unlocked:
c87e2837
IM
1621 spin_lock(&hb->lock);
1622
c87e2837
IM
1623 /*
1624 * To avoid races, try to do the TID -> 0 atomic transition
1625 * again. If it succeeds then we can return without waking
1626 * anyone else up:
1627 */
36cf3b5c 1628 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1629 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1630
c87e2837
IM
1631
1632 if (unlikely(uval == -EFAULT))
1633 goto pi_faulted;
1634 /*
1635 * Rare case: we managed to release the lock atomically,
1636 * no need to wake anyone else up:
1637 */
b488893a 1638 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1639 goto out_unlock;
1640
1641 /*
1642 * Ok, other tasks may need to be woken up - check waiters
1643 * and do the wakeup if necessary:
1644 */
1645 head = &hb->chain;
1646
ec92d082 1647 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1648 if (!match_futex (&this->key, &key))
1649 continue;
1650 ret = wake_futex_pi(uaddr, uval, this);
1651 /*
1652 * The atomic access to the futex value
1653 * generated a pagefault, so retry the
1654 * user-access and the wakeup:
1655 */
1656 if (ret == -EFAULT)
1657 goto pi_faulted;
1658 goto out_unlock;
1659 }
1660 /*
1661 * No waiters - kernel unlocks the futex:
1662 */
e3f2ddea
IM
1663 if (!(uval & FUTEX_OWNER_DIED)) {
1664 ret = unlock_futex_pi(uaddr, uval);
1665 if (ret == -EFAULT)
1666 goto pi_faulted;
1667 }
c87e2837
IM
1668
1669out_unlock:
1670 spin_unlock(&hb->lock);
1671out:
38d47c1b 1672 put_futex_key(fshared, &key);
c87e2837
IM
1673
1674 return ret;
1675
1676pi_faulted:
1677 /*
1678 * We have to r/w *(int __user *)uaddr, but we can't modify it
1679 * non-atomically. Therefore, if get_user below is not
1680 * enough, we need to handle the fault ourselves, while
1681 * still holding the mmap_sem.
778e9a9c
AK
1682 *
1683 * ... and hb->lock. --ANK
c87e2837 1684 */
778e9a9c
AK
1685 spin_unlock(&hb->lock);
1686
c87e2837 1687 if (attempt++) {
34f01cc1
ED
1688 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1689 attempt);
1690 if (ret)
778e9a9c 1691 goto out;
187226f5 1692 uval = 0;
778e9a9c 1693 goto retry_unlocked;
c87e2837
IM
1694 }
1695
c87e2837
IM
1696 ret = get_user(uval, uaddr);
1697 if (!ret && (uval != -EFAULT))
1698 goto retry;
1699
1da177e4
LT
1700 return ret;
1701}
1702
0771dfef
IM
1703/*
1704 * Support for robust futexes: the kernel cleans up held futexes at
1705 * thread exit time.
1706 *
1707 * Implementation: user-space maintains a per-thread list of locks it
1708 * is holding. Upon do_exit(), the kernel carefully walks this list,
1709 * and marks all locks that are owned by this thread with the
c87e2837 1710 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1711 * always manipulated with the lock held, so the list is private and
1712 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1713 * field, to allow the kernel to clean up if the thread dies after
1714 * acquiring the lock, but just before it could have added itself to
1715 * the list. There can only be one such pending lock.
1716 */
1717
1718/**
1719 * sys_set_robust_list - set the robust-futex list head of a task
1720 * @head: pointer to the list-head
1721 * @len: length of the list-head, as userspace expects
1722 */
1723asmlinkage long
1724sys_set_robust_list(struct robust_list_head __user *head,
1725 size_t len)
1726{
a0c1e907
TG
1727 if (!futex_cmpxchg_enabled)
1728 return -ENOSYS;
0771dfef
IM
1729 /*
1730 * The kernel knows only one size for now:
1731 */
1732 if (unlikely(len != sizeof(*head)))
1733 return -EINVAL;
1734
1735 current->robust_list = head;
1736
1737 return 0;
1738}
1739
1740/**
1741 * sys_get_robust_list - get the robust-futex list head of a task
1742 * @pid: pid of the process [zero for current task]
1743 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1744 * @len_ptr: pointer to a length field, the kernel fills in the header size
1745 */
1746asmlinkage long
ba46df98 1747sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1748 size_t __user *len_ptr)
1749{
ba46df98 1750 struct robust_list_head __user *head;
0771dfef
IM
1751 unsigned long ret;
1752
a0c1e907
TG
1753 if (!futex_cmpxchg_enabled)
1754 return -ENOSYS;
1755
0771dfef
IM
1756 if (!pid)
1757 head = current->robust_list;
1758 else {
1759 struct task_struct *p;
1760
1761 ret = -ESRCH;
aaa2a97e 1762 rcu_read_lock();
228ebcbe 1763 p = find_task_by_vpid(pid);
0771dfef
IM
1764 if (!p)
1765 goto err_unlock;
1766 ret = -EPERM;
1767 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1768 !capable(CAP_SYS_PTRACE))
1769 goto err_unlock;
1770 head = p->robust_list;
aaa2a97e 1771 rcu_read_unlock();
0771dfef
IM
1772 }
1773
1774 if (put_user(sizeof(*head), len_ptr))
1775 return -EFAULT;
1776 return put_user(head, head_ptr);
1777
1778err_unlock:
aaa2a97e 1779 rcu_read_unlock();
0771dfef
IM
1780
1781 return ret;
1782}
1783
1784/*
1785 * Process a futex-list entry, check whether it's owned by the
1786 * dying task, and do notification if so:
1787 */
e3f2ddea 1788int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1789{
e3f2ddea 1790 u32 uval, nval, mval;
0771dfef 1791
8f17d3a5
IM
1792retry:
1793 if (get_user(uval, uaddr))
0771dfef
IM
1794 return -1;
1795
b488893a 1796 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1797 /*
1798 * Ok, this dying thread is truly holding a futex
1799 * of interest. Set the OWNER_DIED bit atomically
1800 * via cmpxchg, and if the value had FUTEX_WAITERS
1801 * set, wake up a waiter (if any). (We have to do a
1802 * futex_wake() even if OWNER_DIED is already set -
1803 * to handle the rare but possible case of recursive
1804 * thread-death.) The rest of the cleanup is done in
1805 * userspace.
1806 */
e3f2ddea
IM
1807 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1808 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1809
c87e2837
IM
1810 if (nval == -EFAULT)
1811 return -1;
1812
1813 if (nval != uval)
8f17d3a5 1814 goto retry;
0771dfef 1815
e3f2ddea
IM
1816 /*
1817 * Wake robust non-PI futexes here. The wakeup of
1818 * PI futexes happens in exit_pi_state():
1819 */
36cf3b5c 1820 if (!pi && (uval & FUTEX_WAITERS))
cd689985
TG
1821 futex_wake(uaddr, &curr->mm->mmap_sem, 1,
1822 FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1823 }
1824 return 0;
1825}
1826
e3f2ddea
IM
1827/*
1828 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1829 */
1830static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1831 struct robust_list __user * __user *head,
1832 int *pi)
e3f2ddea
IM
1833{
1834 unsigned long uentry;
1835
ba46df98 1836 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1837 return -EFAULT;
1838
ba46df98 1839 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1840 *pi = uentry & 1;
1841
1842 return 0;
1843}
1844
0771dfef
IM
1845/*
1846 * Walk curr->robust_list (very carefully, it's a userspace list!)
1847 * and mark any locks found there dead, and notify any waiters.
1848 *
1849 * We silently return on any sign of list-walking problem.
1850 */
1851void exit_robust_list(struct task_struct *curr)
1852{
1853 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1854 struct robust_list __user *entry, *next_entry, *pending;
1855 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1856 unsigned long futex_offset;
9f96cb1e 1857 int rc;
0771dfef 1858
a0c1e907
TG
1859 if (!futex_cmpxchg_enabled)
1860 return;
1861
0771dfef
IM
1862 /*
1863 * Fetch the list head (which was registered earlier, via
1864 * sys_set_robust_list()):
1865 */
e3f2ddea 1866 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1867 return;
1868 /*
1869 * Fetch the relative futex offset:
1870 */
1871 if (get_user(futex_offset, &head->futex_offset))
1872 return;
1873 /*
1874 * Fetch any possibly pending lock-add first, and handle it
1875 * if it exists:
1876 */
e3f2ddea 1877 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1878 return;
e3f2ddea 1879
9f96cb1e 1880 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1881 while (entry != &head->list) {
9f96cb1e
MS
1882 /*
1883 * Fetch the next entry in the list before calling
1884 * handle_futex_death:
1885 */
1886 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1887 /*
1888 * A pending lock might already be on the list, so
c87e2837 1889 * don't process it twice:
0771dfef
IM
1890 */
1891 if (entry != pending)
ba46df98 1892 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1893 curr, pi))
0771dfef 1894 return;
9f96cb1e 1895 if (rc)
0771dfef 1896 return;
9f96cb1e
MS
1897 entry = next_entry;
1898 pi = next_pi;
0771dfef
IM
1899 /*
1900 * Avoid excessively long or circular lists:
1901 */
1902 if (!--limit)
1903 break;
1904
1905 cond_resched();
1906 }
9f96cb1e
MS
1907
1908 if (pending)
1909 handle_futex_death((void __user *)pending + futex_offset,
1910 curr, pip);
0771dfef
IM
1911}
1912
c19384b5 1913long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1914 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1915{
a0c1e907 1916 int ret = -ENOSYS;
34f01cc1
ED
1917 int cmd = op & FUTEX_CMD_MASK;
1918 struct rw_semaphore *fshared = NULL;
1919
1920 if (!(op & FUTEX_PRIVATE_FLAG))
1921 fshared = &current->mm->mmap_sem;
1da177e4 1922
34f01cc1 1923 switch (cmd) {
1da177e4 1924 case FUTEX_WAIT:
cd689985
TG
1925 val3 = FUTEX_BITSET_MATCH_ANY;
1926 case FUTEX_WAIT_BITSET:
1927 ret = futex_wait(uaddr, fshared, val, timeout, val3);
1da177e4
LT
1928 break;
1929 case FUTEX_WAKE:
cd689985
TG
1930 val3 = FUTEX_BITSET_MATCH_ANY;
1931 case FUTEX_WAKE_BITSET:
1932 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1933 break;
1da177e4 1934 case FUTEX_REQUEUE:
34f01cc1 1935 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1936 break;
1937 case FUTEX_CMP_REQUEUE:
34f01cc1 1938 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1939 break;
4732efbe 1940 case FUTEX_WAKE_OP:
34f01cc1 1941 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1942 break;
c87e2837 1943 case FUTEX_LOCK_PI:
a0c1e907
TG
1944 if (futex_cmpxchg_enabled)
1945 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1946 break;
1947 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1948 if (futex_cmpxchg_enabled)
1949 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1950 break;
1951 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1952 if (futex_cmpxchg_enabled)
1953 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1954 break;
1da177e4
LT
1955 default:
1956 ret = -ENOSYS;
1957 }
1958 return ret;
1959}
1960
1961
e2970f2f 1962asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1963 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1964 u32 val3)
1da177e4 1965{
c19384b5
PP
1966 struct timespec ts;
1967 ktime_t t, *tp = NULL;
e2970f2f 1968 u32 val2 = 0;
34f01cc1 1969 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1970
cd689985
TG
1971 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1972 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1973 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1974 return -EFAULT;
c19384b5 1975 if (!timespec_valid(&ts))
9741ef96 1976 return -EINVAL;
c19384b5
PP
1977
1978 t = timespec_to_ktime(ts);
34f01cc1 1979 if (cmd == FUTEX_WAIT)
5a7780e7 1980 t = ktime_add_safe(ktime_get(), t);
c19384b5 1981 tp = &t;
1da177e4
LT
1982 }
1983 /*
34f01cc1 1984 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 1985 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 1986 */
f54f0986
AS
1987 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1988 cmd == FUTEX_WAKE_OP)
e2970f2f 1989 val2 = (u32) (unsigned long) utime;
1da177e4 1990
c19384b5 1991 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
1992}
1993
f6d107fb 1994static int __init futex_init(void)
1da177e4 1995{
a0c1e907 1996 u32 curval;
3e4ab747 1997 int i;
95362fa9 1998
a0c1e907
TG
1999 /*
2000 * This will fail and we want it. Some arch implementations do
2001 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2002 * functionality. We want to know that before we call in any
2003 * of the complex code paths. Also we want to prevent
2004 * registration of robust lists in that case. NULL is
2005 * guaranteed to fault and we get -EFAULT on functional
2006 * implementation, the non functional ones will return
2007 * -ENOSYS.
2008 */
2009 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2010 if (curval == -EFAULT)
2011 futex_cmpxchg_enabled = 1;
2012
3e4ab747
TG
2013 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2014 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2015 spin_lock_init(&futex_queues[i].lock);
2016 }
2017
1da177e4
LT
2018 return 0;
2019}
f6d107fb 2020__initcall(futex_init);