dma-mapping: implement dma_map_single_attrs using dma_map_page_attrs
[linux-2.6-block.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
04e7712f 47#include <linux/compat.h>
1da177e4
LT
48#include <linux/slab.h>
49#include <linux/poll.h>
50#include <linux/fs.h>
51#include <linux/file.h>
52#include <linux/jhash.h>
53#include <linux/init.h>
54#include <linux/futex.h>
55#include <linux/mount.h>
56#include <linux/pagemap.h>
57#include <linux/syscalls.h>
7ed20e1a 58#include <linux/signal.h>
9984de1a 59#include <linux/export.h>
fd5eea42 60#include <linux/magic.h>
b488893a
PE
61#include <linux/pid.h>
62#include <linux/nsproxy.h>
bdbb776f 63#include <linux/ptrace.h>
8bd75c77 64#include <linux/sched/rt.h>
84f001e1 65#include <linux/sched/wake_q.h>
6e84f315 66#include <linux/sched/mm.h>
13d60f4b 67#include <linux/hugetlb.h>
88c8004f 68#include <linux/freezer.h>
57c8a661 69#include <linux/memblock.h>
ab51fbab 70#include <linux/fault-inject.h>
b488893a 71
4732efbe 72#include <asm/futex.h>
1da177e4 73
1696a8be 74#include "locking/rtmutex_common.h"
c87e2837 75
99b60ce6 76/*
d7e8af1a
DB
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
99b60ce6
TG
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
99b60ce6
TG
88 *
89 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
99b60ce6 93 *
b0c29f79
DB
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 119 *
b0c29f79
DB
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
99b60ce6
TG
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
b0c29f79 128 *
d7e8af1a 129 * waiters++; (a)
8ad7b378
DB
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
99b60ce6 140 * if (uval == val)
b0c29f79 141 * queue();
99b60ce6 142 * unlock(hash_bucket(futex));
b0c29f79
DB
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
d7e8af1a
DB
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 147 *
d7e8af1a
DB
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
d7e8af1a
DB
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
175 */
176
04e7712f
AB
177#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178#define futex_cmpxchg_enabled 1
179#else
180static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 181#endif
a0c1e907 182
b41277dc
DH
183/*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
784bdf3b
TG
187#ifdef CONFIG_MMU
188# define FLAGS_SHARED 0x01
189#else
190/*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194# define FLAGS_SHARED 0x00
195#endif
b41277dc
DH
196#define FLAGS_CLOCKRT 0x02
197#define FLAGS_HAS_TIMEOUT 0x04
198
c87e2837
IM
199/*
200 * Priority Inheritance state:
201 */
202struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
3859a271 218} __randomize_layout;
c87e2837 219
d8d88fbb
DH
220/**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 222 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
ac6424b9 231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 236 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
241 */
242struct futex_q {
ec92d082 243 struct plist_node list;
1da177e4 244
d8d88fbb 245 struct task_struct *task;
1da177e4 246 spinlock_t *lock_ptr;
1da177e4 247 union futex_key key;
c87e2837 248 struct futex_pi_state *pi_state;
52400ba9 249 struct rt_mutex_waiter *rt_waiter;
84bc4af5 250 union futex_key *requeue_pi_key;
cd689985 251 u32 bitset;
3859a271 252} __randomize_layout;
1da177e4 253
5bdb05f9
DH
254static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258};
259
1da177e4 260/*
b2d0994b
DH
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
1da177e4
LT
264 */
265struct futex_hash_bucket {
11d4616b 266 atomic_t waiters;
ec92d082
PP
267 spinlock_t lock;
268 struct plist_head chain;
a52b89eb 269} ____cacheline_aligned_in_smp;
1da177e4 270
ac742d37
RV
271/*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279} __futex_data __read_mostly __aligned(2*sizeof(long));
280#define futex_queues (__futex_data.queues)
281#define futex_hashsize (__futex_data.hashsize)
a52b89eb 282
1da177e4 283
ab51fbab
DB
284/*
285 * Fault injections for futexes.
286 */
287#ifdef CONFIG_FAIL_FUTEX
288
289static struct {
290 struct fault_attr attr;
291
621a5f7a 292 bool ignore_private;
ab51fbab
DB
293} fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 295 .ignore_private = false,
ab51fbab
DB
296};
297
298static int __init setup_fail_futex(char *str)
299{
300 return setup_fault_attr(&fail_futex.attr, str);
301}
302__setup("fail_futex=", setup_fail_futex);
303
5d285a7f 304static bool should_fail_futex(bool fshared)
ab51fbab
DB
305{
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310}
311
312#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314static int __init fail_futex_debugfs(void)
315{
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331}
332
333late_initcall(fail_futex_debugfs);
334
335#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337#else
338static inline bool should_fail_futex(bool fshared)
339{
340 return false;
341}
342#endif /* CONFIG_FAIL_FUTEX */
343
b0c29f79
DB
344static inline void futex_get_mm(union futex_key *key)
345{
f1f10076 346 mmgrab(key->private.mm);
b0c29f79
DB
347 /*
348 * Ensure futex_get_mm() implies a full barrier such that
349 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 350 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 351 */
4e857c58 352 smp_mb__after_atomic();
b0c29f79
DB
353}
354
11d4616b
LT
355/*
356 * Reflects a new waiter being added to the waitqueue.
357 */
358static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
359{
360#ifdef CONFIG_SMP
11d4616b 361 atomic_inc(&hb->waiters);
b0c29f79 362 /*
11d4616b 363 * Full barrier (A), see the ordering comment above.
b0c29f79 364 */
4e857c58 365 smp_mb__after_atomic();
11d4616b
LT
366#endif
367}
368
369/*
370 * Reflects a waiter being removed from the waitqueue by wakeup
371 * paths.
372 */
373static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374{
375#ifdef CONFIG_SMP
376 atomic_dec(&hb->waiters);
377#endif
378}
b0c29f79 379
11d4616b
LT
380static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381{
382#ifdef CONFIG_SMP
383 return atomic_read(&hb->waiters);
b0c29f79 384#else
11d4616b 385 return 1;
b0c29f79
DB
386#endif
387}
388
e8b61b3f
TG
389/**
390 * hash_futex - Return the hash bucket in the global hash
391 * @key: Pointer to the futex key for which the hash is calculated
392 *
393 * We hash on the keys returned from get_futex_key (see below) and return the
394 * corresponding hash bucket in the global hash.
1da177e4
LT
395 */
396static struct futex_hash_bucket *hash_futex(union futex_key *key)
397{
398 u32 hash = jhash2((u32*)&key->both.word,
399 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400 key->both.offset);
a52b89eb 401 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
402}
403
e8b61b3f
TG
404
405/**
406 * match_futex - Check whether two futex keys are equal
407 * @key1: Pointer to key1
408 * @key2: Pointer to key2
409 *
1da177e4
LT
410 * Return 1 if two futex_keys are equal, 0 otherwise.
411 */
412static inline int match_futex(union futex_key *key1, union futex_key *key2)
413{
2bc87203
DH
414 return (key1 && key2
415 && key1->both.word == key2->both.word
1da177e4
LT
416 && key1->both.ptr == key2->both.ptr
417 && key1->both.offset == key2->both.offset);
418}
419
38d47c1b
PZ
420/*
421 * Take a reference to the resource addressed by a key.
422 * Can be called while holding spinlocks.
423 *
424 */
425static void get_futex_key_refs(union futex_key *key)
426{
427 if (!key->both.ptr)
428 return;
429
784bdf3b
TG
430 /*
431 * On MMU less systems futexes are always "private" as there is no per
432 * process address space. We need the smp wmb nevertheless - yes,
433 * arch/blackfin has MMU less SMP ...
434 */
435 if (!IS_ENABLED(CONFIG_MMU)) {
436 smp_mb(); /* explicit smp_mb(); (B) */
437 return;
438 }
439
38d47c1b
PZ
440 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441 case FUT_OFF_INODE:
8ad7b378 442 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
443 break;
444 case FUT_OFF_MMSHARED:
8ad7b378 445 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 446 break;
76835b0e 447 default:
993b2ff2
DB
448 /*
449 * Private futexes do not hold reference on an inode or
450 * mm, therefore the only purpose of calling get_futex_key_refs
451 * is because we need the barrier for the lockless waiter check.
452 */
8ad7b378 453 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
454 }
455}
456
457/*
458 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
459 * The hash bucket spinlock must not be held. This is
460 * a no-op for private futexes, see comment in the get
461 * counterpart.
38d47c1b
PZ
462 */
463static void drop_futex_key_refs(union futex_key *key)
464{
90621c40
DH
465 if (!key->both.ptr) {
466 /* If we're here then we tried to put a key we failed to get */
467 WARN_ON_ONCE(1);
38d47c1b 468 return;
90621c40 469 }
38d47c1b 470
784bdf3b
TG
471 if (!IS_ENABLED(CONFIG_MMU))
472 return;
473
38d47c1b
PZ
474 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475 case FUT_OFF_INODE:
476 iput(key->shared.inode);
477 break;
478 case FUT_OFF_MMSHARED:
479 mmdrop(key->private.mm);
480 break;
481 }
482}
483
96d4f267
LT
484enum futex_access {
485 FUTEX_READ,
486 FUTEX_WRITE
487};
488
34f01cc1 489/**
d96ee56c
DH
490 * get_futex_key() - Get parameters which are the keys for a futex
491 * @uaddr: virtual address of the futex
492 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
493 * @key: address where result is stored.
96d4f267
LT
494 * @rw: mapping needs to be read/write (values: FUTEX_READ,
495 * FUTEX_WRITE)
34f01cc1 496 *
6c23cbbd
RD
497 * Return: a negative error code or 0
498 *
7b4ff1ad 499 * The key words are stored in @key on success.
1da177e4 500 *
6131ffaa 501 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
502 * offset_within_page). For private mappings, it's (uaddr, current->mm).
503 * We can usually work out the index without swapping in the page.
504 *
b2d0994b 505 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 506 */
64d1304a 507static int
96d4f267 508get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
1da177e4 509{
e2970f2f 510 unsigned long address = (unsigned long)uaddr;
1da177e4 511 struct mm_struct *mm = current->mm;
077fa7ae 512 struct page *page, *tail;
14d27abd 513 struct address_space *mapping;
9ea71503 514 int err, ro = 0;
1da177e4
LT
515
516 /*
517 * The futex address must be "naturally" aligned.
518 */
e2970f2f 519 key->both.offset = address % PAGE_SIZE;
34f01cc1 520 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 521 return -EINVAL;
e2970f2f 522 address -= key->both.offset;
1da177e4 523
96d4f267 524 if (unlikely(!access_ok(uaddr, sizeof(u32))))
5cdec2d8
LT
525 return -EFAULT;
526
ab51fbab
DB
527 if (unlikely(should_fail_futex(fshared)))
528 return -EFAULT;
529
34f01cc1
ED
530 /*
531 * PROCESS_PRIVATE futexes are fast.
532 * As the mm cannot disappear under us and the 'key' only needs
533 * virtual address, we dont even have to find the underlying vma.
534 * Note : We do have to check 'uaddr' is a valid user address,
535 * but access_ok() should be faster than find_vma()
536 */
537 if (!fshared) {
34f01cc1
ED
538 key->private.mm = mm;
539 key->private.address = address;
8ad7b378 540 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
541 return 0;
542 }
1da177e4 543
38d47c1b 544again:
ab51fbab
DB
545 /* Ignore any VERIFY_READ mapping (futex common case) */
546 if (unlikely(should_fail_futex(fshared)))
547 return -EFAULT;
548
7485d0d3 549 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
550 /*
551 * If write access is not required (eg. FUTEX_WAIT), try
552 * and get read-only access.
553 */
96d4f267 554 if (err == -EFAULT && rw == FUTEX_READ) {
9ea71503
SB
555 err = get_user_pages_fast(address, 1, 0, &page);
556 ro = 1;
557 }
38d47c1b
PZ
558 if (err < 0)
559 return err;
9ea71503
SB
560 else
561 err = 0;
38d47c1b 562
65d8fc77
MG
563 /*
564 * The treatment of mapping from this point on is critical. The page
565 * lock protects many things but in this context the page lock
566 * stabilizes mapping, prevents inode freeing in the shared
567 * file-backed region case and guards against movement to swap cache.
568 *
569 * Strictly speaking the page lock is not needed in all cases being
570 * considered here and page lock forces unnecessarily serialization
571 * From this point on, mapping will be re-verified if necessary and
572 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
573 *
574 * Mapping checks require the head page for any compound page so the
575 * head page and mapping is looked up now. For anonymous pages, it
576 * does not matter if the page splits in the future as the key is
577 * based on the address. For filesystem-backed pages, the tail is
578 * required as the index of the page determines the key. For
579 * base pages, there is no tail page and tail == page.
65d8fc77 580 */
077fa7ae 581 tail = page;
65d8fc77
MG
582 page = compound_head(page);
583 mapping = READ_ONCE(page->mapping);
584
e6780f72 585 /*
14d27abd 586 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
587 * page; but it might be the ZERO_PAGE or in the gate area or
588 * in a special mapping (all cases which we are happy to fail);
589 * or it may have been a good file page when get_user_pages_fast
590 * found it, but truncated or holepunched or subjected to
591 * invalidate_complete_page2 before we got the page lock (also
592 * cases which we are happy to fail). And we hold a reference,
593 * so refcount care in invalidate_complete_page's remove_mapping
594 * prevents drop_caches from setting mapping to NULL beneath us.
595 *
596 * The case we do have to guard against is when memory pressure made
597 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 598 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 599 */
65d8fc77
MG
600 if (unlikely(!mapping)) {
601 int shmem_swizzled;
602
603 /*
604 * Page lock is required to identify which special case above
605 * applies. If this is really a shmem page then the page lock
606 * will prevent unexpected transitions.
607 */
608 lock_page(page);
609 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
610 unlock_page(page);
611 put_page(page);
65d8fc77 612
e6780f72
HD
613 if (shmem_swizzled)
614 goto again;
65d8fc77 615
e6780f72 616 return -EFAULT;
38d47c1b 617 }
1da177e4
LT
618
619 /*
620 * Private mappings are handled in a simple way.
621 *
65d8fc77
MG
622 * If the futex key is stored on an anonymous page, then the associated
623 * object is the mm which is implicitly pinned by the calling process.
624 *
1da177e4
LT
625 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
626 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 627 * the object not the particular process.
1da177e4 628 */
14d27abd 629 if (PageAnon(page)) {
9ea71503
SB
630 /*
631 * A RO anonymous page will never change and thus doesn't make
632 * sense for futex operations.
633 */
ab51fbab 634 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
635 err = -EFAULT;
636 goto out;
637 }
638
38d47c1b 639 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 640 key->private.mm = mm;
e2970f2f 641 key->private.address = address;
65d8fc77
MG
642
643 get_futex_key_refs(key); /* implies smp_mb(); (B) */
644
38d47c1b 645 } else {
65d8fc77
MG
646 struct inode *inode;
647
648 /*
649 * The associated futex object in this case is the inode and
650 * the page->mapping must be traversed. Ordinarily this should
651 * be stabilised under page lock but it's not strictly
652 * necessary in this case as we just want to pin the inode, not
653 * update the radix tree or anything like that.
654 *
655 * The RCU read lock is taken as the inode is finally freed
656 * under RCU. If the mapping still matches expectations then the
657 * mapping->host can be safely accessed as being a valid inode.
658 */
659 rcu_read_lock();
660
661 if (READ_ONCE(page->mapping) != mapping) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 inode = READ_ONCE(mapping->host);
669 if (!inode) {
670 rcu_read_unlock();
671 put_page(page);
672
673 goto again;
674 }
675
676 /*
677 * Take a reference unless it is about to be freed. Previously
678 * this reference was taken by ihold under the page lock
679 * pinning the inode in place so i_lock was unnecessary. The
680 * only way for this check to fail is if the inode was
48fb6f4d
MG
681 * truncated in parallel which is almost certainly an
682 * application bug. In such a case, just retry.
65d8fc77
MG
683 *
684 * We are not calling into get_futex_key_refs() in file-backed
685 * cases, therefore a successful atomic_inc return below will
686 * guarantee that get_futex_key() will still imply smp_mb(); (B).
687 */
48fb6f4d 688 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
689 rcu_read_unlock();
690 put_page(page);
691
692 goto again;
693 }
694
695 /* Should be impossible but lets be paranoid for now */
696 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
697 err = -EFAULT;
698 rcu_read_unlock();
699 iput(inode);
700
701 goto out;
702 }
703
38d47c1b 704 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 705 key->shared.inode = inode;
077fa7ae 706 key->shared.pgoff = basepage_index(tail);
65d8fc77 707 rcu_read_unlock();
1da177e4
LT
708 }
709
9ea71503 710out:
14d27abd 711 put_page(page);
9ea71503 712 return err;
1da177e4
LT
713}
714
ae791a2d 715static inline void put_futex_key(union futex_key *key)
1da177e4 716{
38d47c1b 717 drop_futex_key_refs(key);
1da177e4
LT
718}
719
d96ee56c
DH
720/**
721 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
722 * @uaddr: pointer to faulting user space address
723 *
724 * Slow path to fixup the fault we just took in the atomic write
725 * access to @uaddr.
726 *
fb62db2b 727 * We have no generic implementation of a non-destructive write to the
d0725992
TG
728 * user address. We know that we faulted in the atomic pagefault
729 * disabled section so we can as well avoid the #PF overhead by
730 * calling get_user_pages() right away.
731 */
732static int fault_in_user_writeable(u32 __user *uaddr)
733{
722d0172
AK
734 struct mm_struct *mm = current->mm;
735 int ret;
736
737 down_read(&mm->mmap_sem);
2efaca92 738 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 739 FAULT_FLAG_WRITE, NULL);
722d0172
AK
740 up_read(&mm->mmap_sem);
741
d0725992
TG
742 return ret < 0 ? ret : 0;
743}
744
4b1c486b
DH
745/**
746 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
747 * @hb: the hash bucket the futex_q's reside in
748 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
749 *
750 * Must be called with the hb lock held.
751 */
752static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
753 union futex_key *key)
754{
755 struct futex_q *this;
756
757 plist_for_each_entry(this, &hb->chain, list) {
758 if (match_futex(&this->key, key))
759 return this;
760 }
761 return NULL;
762}
763
37a9d912
ML
764static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
765 u32 uval, u32 newval)
36cf3b5c 766{
37a9d912 767 int ret;
36cf3b5c
TG
768
769 pagefault_disable();
37a9d912 770 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
771 pagefault_enable();
772
37a9d912 773 return ret;
36cf3b5c
TG
774}
775
776static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
777{
778 int ret;
779
a866374a 780 pagefault_disable();
bd28b145 781 ret = __get_user(*dest, from);
a866374a 782 pagefault_enable();
1da177e4
LT
783
784 return ret ? -EFAULT : 0;
785}
786
c87e2837
IM
787
788/*
789 * PI code:
790 */
791static int refill_pi_state_cache(void)
792{
793 struct futex_pi_state *pi_state;
794
795 if (likely(current->pi_state_cache))
796 return 0;
797
4668edc3 798 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
799
800 if (!pi_state)
801 return -ENOMEM;
802
c87e2837
IM
803 INIT_LIST_HEAD(&pi_state->list);
804 /* pi_mutex gets initialized later */
805 pi_state->owner = NULL;
806 atomic_set(&pi_state->refcount, 1);
38d47c1b 807 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
808
809 current->pi_state_cache = pi_state;
810
811 return 0;
812}
813
bf92cf3a 814static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
815{
816 struct futex_pi_state *pi_state = current->pi_state_cache;
817
818 WARN_ON(!pi_state);
819 current->pi_state_cache = NULL;
820
821 return pi_state;
822}
823
bf92cf3a
PZ
824static void get_pi_state(struct futex_pi_state *pi_state)
825{
826 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
827}
828
30a6b803 829/*
29e9ee5d
TG
830 * Drops a reference to the pi_state object and frees or caches it
831 * when the last reference is gone.
30a6b803 832 */
29e9ee5d 833static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 834{
30a6b803
BS
835 if (!pi_state)
836 return;
837
c87e2837
IM
838 if (!atomic_dec_and_test(&pi_state->refcount))
839 return;
840
841 /*
842 * If pi_state->owner is NULL, the owner is most probably dying
843 * and has cleaned up the pi_state already
844 */
845 if (pi_state->owner) {
c74aef2d 846 struct task_struct *owner;
c87e2837 847
c74aef2d
PZ
848 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
849 owner = pi_state->owner;
850 if (owner) {
851 raw_spin_lock(&owner->pi_lock);
852 list_del_init(&pi_state->list);
853 raw_spin_unlock(&owner->pi_lock);
854 }
855 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
856 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
857 }
858
c74aef2d 859 if (current->pi_state_cache) {
c87e2837 860 kfree(pi_state);
c74aef2d 861 } else {
c87e2837
IM
862 /*
863 * pi_state->list is already empty.
864 * clear pi_state->owner.
865 * refcount is at 0 - put it back to 1.
866 */
867 pi_state->owner = NULL;
868 atomic_set(&pi_state->refcount, 1);
869 current->pi_state_cache = pi_state;
870 }
871}
872
bc2eecd7
NP
873#ifdef CONFIG_FUTEX_PI
874
c87e2837
IM
875/*
876 * This task is holding PI mutexes at exit time => bad.
877 * Kernel cleans up PI-state, but userspace is likely hosed.
878 * (Robust-futex cleanup is separate and might save the day for userspace.)
879 */
880void exit_pi_state_list(struct task_struct *curr)
881{
c87e2837
IM
882 struct list_head *next, *head = &curr->pi_state_list;
883 struct futex_pi_state *pi_state;
627371d7 884 struct futex_hash_bucket *hb;
38d47c1b 885 union futex_key key = FUTEX_KEY_INIT;
c87e2837 886
a0c1e907
TG
887 if (!futex_cmpxchg_enabled)
888 return;
c87e2837
IM
889 /*
890 * We are a ZOMBIE and nobody can enqueue itself on
891 * pi_state_list anymore, but we have to be careful
627371d7 892 * versus waiters unqueueing themselves:
c87e2837 893 */
1d615482 894 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 895 while (!list_empty(head)) {
c87e2837
IM
896 next = head->next;
897 pi_state = list_entry(next, struct futex_pi_state, list);
898 key = pi_state->key;
627371d7 899 hb = hash_futex(&key);
153fbd12
PZ
900
901 /*
902 * We can race against put_pi_state() removing itself from the
903 * list (a waiter going away). put_pi_state() will first
904 * decrement the reference count and then modify the list, so
905 * its possible to see the list entry but fail this reference
906 * acquire.
907 *
908 * In that case; drop the locks to let put_pi_state() make
909 * progress and retry the loop.
910 */
911 if (!atomic_inc_not_zero(&pi_state->refcount)) {
912 raw_spin_unlock_irq(&curr->pi_lock);
913 cpu_relax();
914 raw_spin_lock_irq(&curr->pi_lock);
915 continue;
916 }
1d615482 917 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 918
c87e2837 919 spin_lock(&hb->lock);
c74aef2d
PZ
920 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
921 raw_spin_lock(&curr->pi_lock);
627371d7
IM
922 /*
923 * We dropped the pi-lock, so re-check whether this
924 * task still owns the PI-state:
925 */
c87e2837 926 if (head->next != next) {
153fbd12 927 /* retain curr->pi_lock for the loop invariant */
c74aef2d 928 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 929 spin_unlock(&hb->lock);
153fbd12 930 put_pi_state(pi_state);
c87e2837
IM
931 continue;
932 }
933
c87e2837 934 WARN_ON(pi_state->owner != curr);
627371d7
IM
935 WARN_ON(list_empty(&pi_state->list));
936 list_del_init(&pi_state->list);
c87e2837 937 pi_state->owner = NULL;
c87e2837 938
153fbd12 939 raw_spin_unlock(&curr->pi_lock);
c74aef2d 940 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
941 spin_unlock(&hb->lock);
942
16ffa12d
PZ
943 rt_mutex_futex_unlock(&pi_state->pi_mutex);
944 put_pi_state(pi_state);
945
1d615482 946 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 947 }
1d615482 948 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
949}
950
bc2eecd7
NP
951#endif
952
54a21788
TG
953/*
954 * We need to check the following states:
955 *
956 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
957 *
958 * [1] NULL | --- | --- | 0 | 0/1 | Valid
959 * [2] NULL | --- | --- | >0 | 0/1 | Valid
960 *
961 * [3] Found | NULL | -- | Any | 0/1 | Invalid
962 *
963 * [4] Found | Found | NULL | 0 | 1 | Valid
964 * [5] Found | Found | NULL | >0 | 1 | Invalid
965 *
966 * [6] Found | Found | task | 0 | 1 | Valid
967 *
968 * [7] Found | Found | NULL | Any | 0 | Invalid
969 *
970 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
971 * [9] Found | Found | task | 0 | 0 | Invalid
972 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
973 *
974 * [1] Indicates that the kernel can acquire the futex atomically. We
975 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
976 *
977 * [2] Valid, if TID does not belong to a kernel thread. If no matching
978 * thread is found then it indicates that the owner TID has died.
979 *
980 * [3] Invalid. The waiter is queued on a non PI futex
981 *
982 * [4] Valid state after exit_robust_list(), which sets the user space
983 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
984 *
985 * [5] The user space value got manipulated between exit_robust_list()
986 * and exit_pi_state_list()
987 *
988 * [6] Valid state after exit_pi_state_list() which sets the new owner in
989 * the pi_state but cannot access the user space value.
990 *
991 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
992 *
993 * [8] Owner and user space value match
994 *
995 * [9] There is no transient state which sets the user space TID to 0
996 * except exit_robust_list(), but this is indicated by the
997 * FUTEX_OWNER_DIED bit. See [4]
998 *
999 * [10] There is no transient state which leaves owner and user space
1000 * TID out of sync.
734009e9
PZ
1001 *
1002 *
1003 * Serialization and lifetime rules:
1004 *
1005 * hb->lock:
1006 *
1007 * hb -> futex_q, relation
1008 * futex_q -> pi_state, relation
1009 *
1010 * (cannot be raw because hb can contain arbitrary amount
1011 * of futex_q's)
1012 *
1013 * pi_mutex->wait_lock:
1014 *
1015 * {uval, pi_state}
1016 *
1017 * (and pi_mutex 'obviously')
1018 *
1019 * p->pi_lock:
1020 *
1021 * p->pi_state_list -> pi_state->list, relation
1022 *
1023 * pi_state->refcount:
1024 *
1025 * pi_state lifetime
1026 *
1027 *
1028 * Lock order:
1029 *
1030 * hb->lock
1031 * pi_mutex->wait_lock
1032 * p->pi_lock
1033 *
54a21788 1034 */
e60cbc5c
TG
1035
1036/*
1037 * Validate that the existing waiter has a pi_state and sanity check
1038 * the pi_state against the user space value. If correct, attach to
1039 * it.
1040 */
734009e9
PZ
1041static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1042 struct futex_pi_state *pi_state,
e60cbc5c 1043 struct futex_pi_state **ps)
c87e2837 1044{
778e9a9c 1045 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1046 u32 uval2;
1047 int ret;
c87e2837 1048
e60cbc5c
TG
1049 /*
1050 * Userspace might have messed up non-PI and PI futexes [3]
1051 */
1052 if (unlikely(!pi_state))
1053 return -EINVAL;
06a9ec29 1054
734009e9
PZ
1055 /*
1056 * We get here with hb->lock held, and having found a
1057 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1058 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1059 * which in turn means that futex_lock_pi() still has a reference on
1060 * our pi_state.
16ffa12d
PZ
1061 *
1062 * The waiter holding a reference on @pi_state also protects against
1063 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1064 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1065 * free pi_state before we can take a reference ourselves.
734009e9 1066 */
e60cbc5c 1067 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1068
734009e9
PZ
1069 /*
1070 * Now that we have a pi_state, we can acquire wait_lock
1071 * and do the state validation.
1072 */
1073 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1074
1075 /*
1076 * Since {uval, pi_state} is serialized by wait_lock, and our current
1077 * uval was read without holding it, it can have changed. Verify it
1078 * still is what we expect it to be, otherwise retry the entire
1079 * operation.
1080 */
1081 if (get_futex_value_locked(&uval2, uaddr))
1082 goto out_efault;
1083
1084 if (uval != uval2)
1085 goto out_eagain;
1086
e60cbc5c
TG
1087 /*
1088 * Handle the owner died case:
1089 */
1090 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1091 /*
e60cbc5c
TG
1092 * exit_pi_state_list sets owner to NULL and wakes the
1093 * topmost waiter. The task which acquires the
1094 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1095 */
e60cbc5c 1096 if (!pi_state->owner) {
59647b6a 1097 /*
e60cbc5c
TG
1098 * No pi state owner, but the user space TID
1099 * is not 0. Inconsistent state. [5]
59647b6a 1100 */
e60cbc5c 1101 if (pid)
734009e9 1102 goto out_einval;
bd1dbcc6 1103 /*
e60cbc5c 1104 * Take a ref on the state and return success. [4]
866293ee 1105 */
734009e9 1106 goto out_attach;
c87e2837 1107 }
bd1dbcc6
TG
1108
1109 /*
e60cbc5c
TG
1110 * If TID is 0, then either the dying owner has not
1111 * yet executed exit_pi_state_list() or some waiter
1112 * acquired the rtmutex in the pi state, but did not
1113 * yet fixup the TID in user space.
1114 *
1115 * Take a ref on the state and return success. [6]
1116 */
1117 if (!pid)
734009e9 1118 goto out_attach;
e60cbc5c
TG
1119 } else {
1120 /*
1121 * If the owner died bit is not set, then the pi_state
1122 * must have an owner. [7]
bd1dbcc6 1123 */
e60cbc5c 1124 if (!pi_state->owner)
734009e9 1125 goto out_einval;
c87e2837
IM
1126 }
1127
e60cbc5c
TG
1128 /*
1129 * Bail out if user space manipulated the futex value. If pi
1130 * state exists then the owner TID must be the same as the
1131 * user space TID. [9/10]
1132 */
1133 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1134 goto out_einval;
1135
1136out_attach:
bf92cf3a 1137 get_pi_state(pi_state);
734009e9 1138 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1139 *ps = pi_state;
1140 return 0;
734009e9
PZ
1141
1142out_einval:
1143 ret = -EINVAL;
1144 goto out_error;
1145
1146out_eagain:
1147 ret = -EAGAIN;
1148 goto out_error;
1149
1150out_efault:
1151 ret = -EFAULT;
1152 goto out_error;
1153
1154out_error:
1155 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1156 return ret;
e60cbc5c
TG
1157}
1158
da791a66
TG
1159static int handle_exit_race(u32 __user *uaddr, u32 uval,
1160 struct task_struct *tsk)
1161{
1162 u32 uval2;
1163
1164 /*
1165 * If PF_EXITPIDONE is not yet set, then try again.
1166 */
1167 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1168 return -EAGAIN;
1169
1170 /*
1171 * Reread the user space value to handle the following situation:
1172 *
1173 * CPU0 CPU1
1174 *
1175 * sys_exit() sys_futex()
1176 * do_exit() futex_lock_pi()
1177 * futex_lock_pi_atomic()
1178 * exit_signals(tsk) No waiters:
1179 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1180 * mm_release(tsk) Set waiter bit
1181 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1182 * Set owner died attach_to_pi_owner() {
1183 * *uaddr = 0xC0000000; tsk = get_task(PID);
1184 * } if (!tsk->flags & PF_EXITING) {
1185 * ... attach();
1186 * tsk->flags |= PF_EXITPIDONE; } else {
1187 * if (!(tsk->flags & PF_EXITPIDONE))
1188 * return -EAGAIN;
1189 * return -ESRCH; <--- FAIL
1190 * }
1191 *
1192 * Returning ESRCH unconditionally is wrong here because the
1193 * user space value has been changed by the exiting task.
1194 *
1195 * The same logic applies to the case where the exiting task is
1196 * already gone.
1197 */
1198 if (get_futex_value_locked(&uval2, uaddr))
1199 return -EFAULT;
1200
1201 /* If the user space value has changed, try again. */
1202 if (uval2 != uval)
1203 return -EAGAIN;
1204
1205 /*
1206 * The exiting task did not have a robust list, the robust list was
1207 * corrupted or the user space value in *uaddr is simply bogus.
1208 * Give up and tell user space.
1209 */
1210 return -ESRCH;
1211}
1212
04e1b2e5
TG
1213/*
1214 * Lookup the task for the TID provided from user space and attach to
1215 * it after doing proper sanity checks.
1216 */
da791a66 1217static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1218 struct futex_pi_state **ps)
e60cbc5c 1219{
e60cbc5c 1220 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1221 struct futex_pi_state *pi_state;
1222 struct task_struct *p;
e60cbc5c 1223
c87e2837 1224 /*
e3f2ddea 1225 * We are the first waiter - try to look up the real owner and attach
54a21788 1226 * the new pi_state to it, but bail out when TID = 0 [1]
da791a66
TG
1227 *
1228 * The !pid check is paranoid. None of the call sites should end up
1229 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1230 */
778e9a9c 1231 if (!pid)
da791a66 1232 return -EAGAIN;
2ee08260 1233 p = find_get_task_by_vpid(pid);
7a0ea09a 1234 if (!p)
da791a66 1235 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1236
a2129464 1237 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1238 put_task_struct(p);
1239 return -EPERM;
1240 }
1241
778e9a9c
AK
1242 /*
1243 * We need to look at the task state flags to figure out,
1244 * whether the task is exiting. To protect against the do_exit
1245 * change of the task flags, we do this protected by
1246 * p->pi_lock:
1247 */
1d615482 1248 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1249 if (unlikely(p->flags & PF_EXITING)) {
1250 /*
1251 * The task is on the way out. When PF_EXITPIDONE is
1252 * set, we know that the task has finished the
1253 * cleanup:
1254 */
da791a66 1255 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1256
1d615482 1257 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1258 put_task_struct(p);
1259 return ret;
1260 }
c87e2837 1261
54a21788
TG
1262 /*
1263 * No existing pi state. First waiter. [2]
734009e9
PZ
1264 *
1265 * This creates pi_state, we have hb->lock held, this means nothing can
1266 * observe this state, wait_lock is irrelevant.
54a21788 1267 */
c87e2837
IM
1268 pi_state = alloc_pi_state();
1269
1270 /*
04e1b2e5 1271 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1272 * the owner of it:
1273 */
1274 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1275
1276 /* Store the key for possible exit cleanups: */
d0aa7a70 1277 pi_state->key = *key;
c87e2837 1278
627371d7 1279 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1280 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1281 /*
1282 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1283 * because there is no concurrency as the object is not published yet.
1284 */
c87e2837 1285 pi_state->owner = p;
1d615482 1286 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1287
1288 put_task_struct(p);
1289
d0aa7a70 1290 *ps = pi_state;
c87e2837
IM
1291
1292 return 0;
1293}
1294
734009e9
PZ
1295static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1296 struct futex_hash_bucket *hb,
04e1b2e5
TG
1297 union futex_key *key, struct futex_pi_state **ps)
1298{
499f5aca 1299 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1300
1301 /*
1302 * If there is a waiter on that futex, validate it and
1303 * attach to the pi_state when the validation succeeds.
1304 */
499f5aca 1305 if (top_waiter)
734009e9 1306 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1307
1308 /*
1309 * We are the first waiter - try to look up the owner based on
1310 * @uval and attach to it.
1311 */
da791a66 1312 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1313}
1314
af54d6a1
TG
1315static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1316{
1317 u32 uninitialized_var(curval);
1318
ab51fbab
DB
1319 if (unlikely(should_fail_futex(true)))
1320 return -EFAULT;
1321
af54d6a1
TG
1322 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1323 return -EFAULT;
1324
734009e9 1325 /* If user space value changed, let the caller retry */
af54d6a1
TG
1326 return curval != uval ? -EAGAIN : 0;
1327}
1328
1a52084d 1329/**
d96ee56c 1330 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1331 * @uaddr: the pi futex user address
1332 * @hb: the pi futex hash bucket
1333 * @key: the futex key associated with uaddr and hb
1334 * @ps: the pi_state pointer where we store the result of the
1335 * lookup
1336 * @task: the task to perform the atomic lock work for. This will
1337 * be "current" except in the case of requeue pi.
1338 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1339 *
6c23cbbd 1340 * Return:
7b4ff1ad
MCC
1341 * - 0 - ready to wait;
1342 * - 1 - acquired the lock;
1343 * - <0 - error
1a52084d
DH
1344 *
1345 * The hb->lock and futex_key refs shall be held by the caller.
1346 */
1347static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1348 union futex_key *key,
1349 struct futex_pi_state **ps,
bab5bc9e 1350 struct task_struct *task, int set_waiters)
1a52084d 1351{
af54d6a1 1352 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1353 struct futex_q *top_waiter;
af54d6a1 1354 int ret;
1a52084d
DH
1355
1356 /*
af54d6a1
TG
1357 * Read the user space value first so we can validate a few
1358 * things before proceeding further.
1a52084d 1359 */
af54d6a1 1360 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1361 return -EFAULT;
1362
ab51fbab
DB
1363 if (unlikely(should_fail_futex(true)))
1364 return -EFAULT;
1365
1a52084d
DH
1366 /*
1367 * Detect deadlocks.
1368 */
af54d6a1 1369 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1370 return -EDEADLK;
1371
ab51fbab
DB
1372 if ((unlikely(should_fail_futex(true))))
1373 return -EDEADLK;
1374
1a52084d 1375 /*
af54d6a1
TG
1376 * Lookup existing state first. If it exists, try to attach to
1377 * its pi_state.
1a52084d 1378 */
499f5aca
PZ
1379 top_waiter = futex_top_waiter(hb, key);
1380 if (top_waiter)
734009e9 1381 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1382
1383 /*
af54d6a1
TG
1384 * No waiter and user TID is 0. We are here because the
1385 * waiters or the owner died bit is set or called from
1386 * requeue_cmp_pi or for whatever reason something took the
1387 * syscall.
1a52084d 1388 */
af54d6a1 1389 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1390 /*
af54d6a1
TG
1391 * We take over the futex. No other waiters and the user space
1392 * TID is 0. We preserve the owner died bit.
59fa6245 1393 */
af54d6a1
TG
1394 newval = uval & FUTEX_OWNER_DIED;
1395 newval |= vpid;
1a52084d 1396
af54d6a1
TG
1397 /* The futex requeue_pi code can enforce the waiters bit */
1398 if (set_waiters)
1399 newval |= FUTEX_WAITERS;
1400
1401 ret = lock_pi_update_atomic(uaddr, uval, newval);
1402 /* If the take over worked, return 1 */
1403 return ret < 0 ? ret : 1;
1404 }
1a52084d
DH
1405
1406 /*
af54d6a1
TG
1407 * First waiter. Set the waiters bit before attaching ourself to
1408 * the owner. If owner tries to unlock, it will be forced into
1409 * the kernel and blocked on hb->lock.
1a52084d 1410 */
af54d6a1
TG
1411 newval = uval | FUTEX_WAITERS;
1412 ret = lock_pi_update_atomic(uaddr, uval, newval);
1413 if (ret)
1414 return ret;
1a52084d 1415 /*
af54d6a1
TG
1416 * If the update of the user space value succeeded, we try to
1417 * attach to the owner. If that fails, no harm done, we only
1418 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1419 */
da791a66 1420 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1421}
1422
2e12978a
LJ
1423/**
1424 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1425 * @q: The futex_q to unqueue
1426 *
1427 * The q->lock_ptr must not be NULL and must be held by the caller.
1428 */
1429static void __unqueue_futex(struct futex_q *q)
1430{
1431 struct futex_hash_bucket *hb;
1432
4de1a293 1433 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
2e12978a 1434 return;
4de1a293 1435 lockdep_assert_held(q->lock_ptr);
2e12978a
LJ
1436
1437 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1438 plist_del(&q->list, &hb->chain);
11d4616b 1439 hb_waiters_dec(hb);
2e12978a
LJ
1440}
1441
1da177e4
LT
1442/*
1443 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1444 * Afterwards, the futex_q must not be accessed. Callers
1445 * must ensure to later call wake_up_q() for the actual
1446 * wakeups to occur.
1da177e4 1447 */
1d0dcb3a 1448static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1449{
f1a11e05
TG
1450 struct task_struct *p = q->task;
1451
aa10990e
DH
1452 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1453 return;
1454
1da177e4 1455 /*
1d0dcb3a
DB
1456 * Queue the task for later wakeup for after we've released
1457 * the hb->lock. wake_q_add() grabs reference to p.
1da177e4 1458 */
1d0dcb3a 1459 wake_q_add(wake_q, p);
2e12978a 1460 __unqueue_futex(q);
1da177e4 1461 /*
38fcd06e
DHV
1462 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1463 * is written, without taking any locks. This is possible in the event
1464 * of a spurious wakeup, for example. A memory barrier is required here
1465 * to prevent the following store to lock_ptr from getting ahead of the
1466 * plist_del in __unqueue_futex().
1da177e4 1467 */
1b367ece 1468 smp_store_release(&q->lock_ptr, NULL);
1da177e4
LT
1469}
1470
16ffa12d
PZ
1471/*
1472 * Caller must hold a reference on @pi_state.
1473 */
1474static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1475{
7cfdaf38 1476 u32 uninitialized_var(curval), newval;
16ffa12d 1477 struct task_struct *new_owner;
aa2bfe55 1478 bool postunlock = false;
194a6b5b 1479 DEFINE_WAKE_Q(wake_q);
13fbca4c 1480 int ret = 0;
c87e2837 1481
c87e2837 1482 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1483 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1484 /*
bebe5b51 1485 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1486 *
1487 * When this happens, give up our locks and try again, giving
1488 * the futex_lock_pi() instance time to complete, either by
1489 * waiting on the rtmutex or removing itself from the futex
1490 * queue.
1491 */
1492 ret = -EAGAIN;
1493 goto out_unlock;
73d786bd 1494 }
c87e2837
IM
1495
1496 /*
16ffa12d
PZ
1497 * We pass it to the next owner. The WAITERS bit is always kept
1498 * enabled while there is PI state around. We cleanup the owner
1499 * died bit, because we are the owner.
c87e2837 1500 */
13fbca4c 1501 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1502
ab51fbab
DB
1503 if (unlikely(should_fail_futex(true)))
1504 ret = -EFAULT;
1505
89e9e66b 1506 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
13fbca4c 1507 ret = -EFAULT;
734009e9 1508
89e9e66b
SAS
1509 } else if (curval != uval) {
1510 /*
1511 * If a unconditional UNLOCK_PI operation (user space did not
1512 * try the TID->0 transition) raced with a waiter setting the
1513 * FUTEX_WAITERS flag between get_user() and locking the hash
1514 * bucket lock, retry the operation.
1515 */
1516 if ((FUTEX_TID_MASK & curval) == uval)
1517 ret = -EAGAIN;
1518 else
1519 ret = -EINVAL;
1520 }
734009e9 1521
16ffa12d
PZ
1522 if (ret)
1523 goto out_unlock;
c87e2837 1524
94ffac5d
PZ
1525 /*
1526 * This is a point of no return; once we modify the uval there is no
1527 * going back and subsequent operations must not fail.
1528 */
1529
b4abf910 1530 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1531 WARN_ON(list_empty(&pi_state->list));
1532 list_del_init(&pi_state->list);
b4abf910 1533 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1534
b4abf910 1535 raw_spin_lock(&new_owner->pi_lock);
627371d7 1536 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1537 list_add(&pi_state->list, &new_owner->pi_state_list);
1538 pi_state->owner = new_owner;
b4abf910 1539 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1540
aa2bfe55 1541 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1542
16ffa12d 1543out_unlock:
5293c2ef 1544 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1545
aa2bfe55
PZ
1546 if (postunlock)
1547 rt_mutex_postunlock(&wake_q);
c87e2837 1548
16ffa12d 1549 return ret;
c87e2837
IM
1550}
1551
8b8f319f
IM
1552/*
1553 * Express the locking dependencies for lockdep:
1554 */
1555static inline void
1556double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1557{
1558 if (hb1 <= hb2) {
1559 spin_lock(&hb1->lock);
1560 if (hb1 < hb2)
1561 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1562 } else { /* hb1 > hb2 */
1563 spin_lock(&hb2->lock);
1564 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1565 }
1566}
1567
5eb3dc62
DH
1568static inline void
1569double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570{
f061d351 1571 spin_unlock(&hb1->lock);
88f502fe
IM
1572 if (hb1 != hb2)
1573 spin_unlock(&hb2->lock);
5eb3dc62
DH
1574}
1575
1da177e4 1576/*
b2d0994b 1577 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1578 */
b41277dc
DH
1579static int
1580futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1581{
e2970f2f 1582 struct futex_hash_bucket *hb;
1da177e4 1583 struct futex_q *this, *next;
38d47c1b 1584 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1585 int ret;
194a6b5b 1586 DEFINE_WAKE_Q(wake_q);
1da177e4 1587
cd689985
TG
1588 if (!bitset)
1589 return -EINVAL;
1590
96d4f267 1591 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1da177e4
LT
1592 if (unlikely(ret != 0))
1593 goto out;
1594
e2970f2f 1595 hb = hash_futex(&key);
b0c29f79
DB
1596
1597 /* Make sure we really have tasks to wakeup */
1598 if (!hb_waiters_pending(hb))
1599 goto out_put_key;
1600
e2970f2f 1601 spin_lock(&hb->lock);
1da177e4 1602
0d00c7b2 1603 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1604 if (match_futex (&this->key, &key)) {
52400ba9 1605 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1606 ret = -EINVAL;
1607 break;
1608 }
cd689985
TG
1609
1610 /* Check if one of the bits is set in both bitsets */
1611 if (!(this->bitset & bitset))
1612 continue;
1613
1d0dcb3a 1614 mark_wake_futex(&wake_q, this);
1da177e4
LT
1615 if (++ret >= nr_wake)
1616 break;
1617 }
1618 }
1619
e2970f2f 1620 spin_unlock(&hb->lock);
1d0dcb3a 1621 wake_up_q(&wake_q);
b0c29f79 1622out_put_key:
ae791a2d 1623 put_futex_key(&key);
42d35d48 1624out:
1da177e4
LT
1625 return ret;
1626}
1627
30d6e0a4
JS
1628static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1629{
1630 unsigned int op = (encoded_op & 0x70000000) >> 28;
1631 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1632 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1633 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1634 int oldval, ret;
1635
1636 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1637 if (oparg < 0 || oparg > 31) {
1638 char comm[sizeof(current->comm)];
1639 /*
1640 * kill this print and return -EINVAL when userspace
1641 * is sane again
1642 */
1643 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1644 get_task_comm(comm, current), oparg);
1645 oparg &= 31;
1646 }
30d6e0a4
JS
1647 oparg = 1 << oparg;
1648 }
1649
96d4f267 1650 if (!access_ok(uaddr, sizeof(u32)))
30d6e0a4
JS
1651 return -EFAULT;
1652
1653 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1654 if (ret)
1655 return ret;
1656
1657 switch (cmp) {
1658 case FUTEX_OP_CMP_EQ:
1659 return oldval == cmparg;
1660 case FUTEX_OP_CMP_NE:
1661 return oldval != cmparg;
1662 case FUTEX_OP_CMP_LT:
1663 return oldval < cmparg;
1664 case FUTEX_OP_CMP_GE:
1665 return oldval >= cmparg;
1666 case FUTEX_OP_CMP_LE:
1667 return oldval <= cmparg;
1668 case FUTEX_OP_CMP_GT:
1669 return oldval > cmparg;
1670 default:
1671 return -ENOSYS;
1672 }
1673}
1674
4732efbe
JJ
1675/*
1676 * Wake up all waiters hashed on the physical page that is mapped
1677 * to this virtual address:
1678 */
e2970f2f 1679static int
b41277dc 1680futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1681 int nr_wake, int nr_wake2, int op)
4732efbe 1682{
38d47c1b 1683 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1684 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1685 struct futex_q *this, *next;
e4dc5b7a 1686 int ret, op_ret;
194a6b5b 1687 DEFINE_WAKE_Q(wake_q);
4732efbe 1688
e4dc5b7a 1689retry:
96d4f267 1690 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
4732efbe
JJ
1691 if (unlikely(ret != 0))
1692 goto out;
96d4f267 1693 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
4732efbe 1694 if (unlikely(ret != 0))
42d35d48 1695 goto out_put_key1;
4732efbe 1696
e2970f2f
IM
1697 hb1 = hash_futex(&key1);
1698 hb2 = hash_futex(&key2);
4732efbe 1699
e4dc5b7a 1700retry_private:
eaaea803 1701 double_lock_hb(hb1, hb2);
e2970f2f 1702 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1703 if (unlikely(op_ret < 0)) {
4732efbe 1704
5eb3dc62 1705 double_unlock_hb(hb1, hb2);
4732efbe 1706
7ee1dd3f 1707#ifndef CONFIG_MMU
e2970f2f
IM
1708 /*
1709 * we don't get EFAULT from MMU faults if we don't have an MMU,
1710 * but we might get them from range checking
1711 */
7ee1dd3f 1712 ret = op_ret;
42d35d48 1713 goto out_put_keys;
7ee1dd3f
DH
1714#endif
1715
796f8d9b
DG
1716 if (unlikely(op_ret != -EFAULT)) {
1717 ret = op_ret;
42d35d48 1718 goto out_put_keys;
796f8d9b
DG
1719 }
1720
d0725992 1721 ret = fault_in_user_writeable(uaddr2);
4732efbe 1722 if (ret)
de87fcc1 1723 goto out_put_keys;
4732efbe 1724
b41277dc 1725 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1726 goto retry_private;
1727
ae791a2d
TG
1728 put_futex_key(&key2);
1729 put_futex_key(&key1);
e4dc5b7a 1730 goto retry;
4732efbe
JJ
1731 }
1732
0d00c7b2 1733 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1734 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1735 if (this->pi_state || this->rt_waiter) {
1736 ret = -EINVAL;
1737 goto out_unlock;
1738 }
1d0dcb3a 1739 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1740 if (++ret >= nr_wake)
1741 break;
1742 }
1743 }
1744
1745 if (op_ret > 0) {
4732efbe 1746 op_ret = 0;
0d00c7b2 1747 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1748 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1749 if (this->pi_state || this->rt_waiter) {
1750 ret = -EINVAL;
1751 goto out_unlock;
1752 }
1d0dcb3a 1753 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1754 if (++op_ret >= nr_wake2)
1755 break;
1756 }
1757 }
1758 ret += op_ret;
1759 }
1760
aa10990e 1761out_unlock:
5eb3dc62 1762 double_unlock_hb(hb1, hb2);
1d0dcb3a 1763 wake_up_q(&wake_q);
42d35d48 1764out_put_keys:
ae791a2d 1765 put_futex_key(&key2);
42d35d48 1766out_put_key1:
ae791a2d 1767 put_futex_key(&key1);
42d35d48 1768out:
4732efbe
JJ
1769 return ret;
1770}
1771
9121e478
DH
1772/**
1773 * requeue_futex() - Requeue a futex_q from one hb to another
1774 * @q: the futex_q to requeue
1775 * @hb1: the source hash_bucket
1776 * @hb2: the target hash_bucket
1777 * @key2: the new key for the requeued futex_q
1778 */
1779static inline
1780void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1781 struct futex_hash_bucket *hb2, union futex_key *key2)
1782{
1783
1784 /*
1785 * If key1 and key2 hash to the same bucket, no need to
1786 * requeue.
1787 */
1788 if (likely(&hb1->chain != &hb2->chain)) {
1789 plist_del(&q->list, &hb1->chain);
11d4616b 1790 hb_waiters_dec(hb1);
11d4616b 1791 hb_waiters_inc(hb2);
fe1bce9e 1792 plist_add(&q->list, &hb2->chain);
9121e478 1793 q->lock_ptr = &hb2->lock;
9121e478
DH
1794 }
1795 get_futex_key_refs(key2);
1796 q->key = *key2;
1797}
1798
52400ba9
DH
1799/**
1800 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1801 * @q: the futex_q
1802 * @key: the key of the requeue target futex
1803 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1804 *
1805 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1807 * to the requeue target futex so the waiter can detect the wakeup on the right
1808 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1809 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1810 * to protect access to the pi_state to fixup the owner later. Must be called
1811 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1812 */
1813static inline
beda2c7e
DH
1814void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815 struct futex_hash_bucket *hb)
52400ba9 1816{
52400ba9
DH
1817 get_futex_key_refs(key);
1818 q->key = *key;
1819
2e12978a 1820 __unqueue_futex(q);
52400ba9
DH
1821
1822 WARN_ON(!q->rt_waiter);
1823 q->rt_waiter = NULL;
1824
beda2c7e 1825 q->lock_ptr = &hb->lock;
beda2c7e 1826
f1a11e05 1827 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1828}
1829
1830/**
1831 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1832 * @pifutex: the user address of the to futex
1833 * @hb1: the from futex hash bucket, must be locked by the caller
1834 * @hb2: the to futex hash bucket, must be locked by the caller
1835 * @key1: the from futex key
1836 * @key2: the to futex key
1837 * @ps: address to store the pi_state pointer
1838 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1839 *
1840 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1841 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1842 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1843 * hb1 and hb2 must be held by the caller.
52400ba9 1844 *
6c23cbbd 1845 * Return:
7b4ff1ad
MCC
1846 * - 0 - failed to acquire the lock atomically;
1847 * - >0 - acquired the lock, return value is vpid of the top_waiter
1848 * - <0 - error
52400ba9
DH
1849 */
1850static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1851 struct futex_hash_bucket *hb1,
1852 struct futex_hash_bucket *hb2,
1853 union futex_key *key1, union futex_key *key2,
bab5bc9e 1854 struct futex_pi_state **ps, int set_waiters)
52400ba9 1855{
bab5bc9e 1856 struct futex_q *top_waiter = NULL;
52400ba9 1857 u32 curval;
866293ee 1858 int ret, vpid;
52400ba9
DH
1859
1860 if (get_futex_value_locked(&curval, pifutex))
1861 return -EFAULT;
1862
ab51fbab
DB
1863 if (unlikely(should_fail_futex(true)))
1864 return -EFAULT;
1865
bab5bc9e
DH
1866 /*
1867 * Find the top_waiter and determine if there are additional waiters.
1868 * If the caller intends to requeue more than 1 waiter to pifutex,
1869 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1870 * as we have means to handle the possible fault. If not, don't set
1871 * the bit unecessarily as it will force the subsequent unlock to enter
1872 * the kernel.
1873 */
52400ba9
DH
1874 top_waiter = futex_top_waiter(hb1, key1);
1875
1876 /* There are no waiters, nothing for us to do. */
1877 if (!top_waiter)
1878 return 0;
1879
84bc4af5
DH
1880 /* Ensure we requeue to the expected futex. */
1881 if (!match_futex(top_waiter->requeue_pi_key, key2))
1882 return -EINVAL;
1883
52400ba9 1884 /*
bab5bc9e
DH
1885 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1886 * the contended case or if set_waiters is 1. The pi_state is returned
1887 * in ps in contended cases.
52400ba9 1888 */
866293ee 1889 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1890 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1891 set_waiters);
866293ee 1892 if (ret == 1) {
beda2c7e 1893 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1894 return vpid;
1895 }
52400ba9
DH
1896 return ret;
1897}
1898
1899/**
1900 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1901 * @uaddr1: source futex user address
b41277dc 1902 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1903 * @uaddr2: target futex user address
1904 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1905 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1906 * @cmpval: @uaddr1 expected value (or %NULL)
1907 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1908 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1909 *
1910 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1911 * uaddr2 atomically on behalf of the top waiter.
1912 *
6c23cbbd 1913 * Return:
7b4ff1ad
MCC
1914 * - >=0 - on success, the number of tasks requeued or woken;
1915 * - <0 - on error
1da177e4 1916 */
b41277dc
DH
1917static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1918 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1919 u32 *cmpval, int requeue_pi)
1da177e4 1920{
38d47c1b 1921 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1922 int drop_count = 0, task_count = 0, ret;
1923 struct futex_pi_state *pi_state = NULL;
e2970f2f 1924 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1925 struct futex_q *this, *next;
194a6b5b 1926 DEFINE_WAKE_Q(wake_q);
52400ba9 1927
fbe0e839
LJ
1928 if (nr_wake < 0 || nr_requeue < 0)
1929 return -EINVAL;
1930
bc2eecd7
NP
1931 /*
1932 * When PI not supported: return -ENOSYS if requeue_pi is true,
1933 * consequently the compiler knows requeue_pi is always false past
1934 * this point which will optimize away all the conditional code
1935 * further down.
1936 */
1937 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1938 return -ENOSYS;
1939
52400ba9 1940 if (requeue_pi) {
e9c243a5
TG
1941 /*
1942 * Requeue PI only works on two distinct uaddrs. This
1943 * check is only valid for private futexes. See below.
1944 */
1945 if (uaddr1 == uaddr2)
1946 return -EINVAL;
1947
52400ba9
DH
1948 /*
1949 * requeue_pi requires a pi_state, try to allocate it now
1950 * without any locks in case it fails.
1951 */
1952 if (refill_pi_state_cache())
1953 return -ENOMEM;
1954 /*
1955 * requeue_pi must wake as many tasks as it can, up to nr_wake
1956 * + nr_requeue, since it acquires the rt_mutex prior to
1957 * returning to userspace, so as to not leave the rt_mutex with
1958 * waiters and no owner. However, second and third wake-ups
1959 * cannot be predicted as they involve race conditions with the
1960 * first wake and a fault while looking up the pi_state. Both
1961 * pthread_cond_signal() and pthread_cond_broadcast() should
1962 * use nr_wake=1.
1963 */
1964 if (nr_wake != 1)
1965 return -EINVAL;
1966 }
1da177e4 1967
42d35d48 1968retry:
96d4f267 1969 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1da177e4
LT
1970 if (unlikely(ret != 0))
1971 goto out;
9ea71503 1972 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
96d4f267 1973 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1da177e4 1974 if (unlikely(ret != 0))
42d35d48 1975 goto out_put_key1;
1da177e4 1976
e9c243a5
TG
1977 /*
1978 * The check above which compares uaddrs is not sufficient for
1979 * shared futexes. We need to compare the keys:
1980 */
1981 if (requeue_pi && match_futex(&key1, &key2)) {
1982 ret = -EINVAL;
1983 goto out_put_keys;
1984 }
1985
e2970f2f
IM
1986 hb1 = hash_futex(&key1);
1987 hb2 = hash_futex(&key2);
1da177e4 1988
e4dc5b7a 1989retry_private:
69cd9eba 1990 hb_waiters_inc(hb2);
8b8f319f 1991 double_lock_hb(hb1, hb2);
1da177e4 1992
e2970f2f
IM
1993 if (likely(cmpval != NULL)) {
1994 u32 curval;
1da177e4 1995
e2970f2f 1996 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1997
1998 if (unlikely(ret)) {
5eb3dc62 1999 double_unlock_hb(hb1, hb2);
69cd9eba 2000 hb_waiters_dec(hb2);
1da177e4 2001
e2970f2f 2002 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2003 if (ret)
2004 goto out_put_keys;
1da177e4 2005
b41277dc 2006 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2007 goto retry_private;
1da177e4 2008
ae791a2d
TG
2009 put_futex_key(&key2);
2010 put_futex_key(&key1);
e4dc5b7a 2011 goto retry;
1da177e4 2012 }
e2970f2f 2013 if (curval != *cmpval) {
1da177e4
LT
2014 ret = -EAGAIN;
2015 goto out_unlock;
2016 }
2017 }
2018
52400ba9 2019 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2020 /*
2021 * Attempt to acquire uaddr2 and wake the top waiter. If we
2022 * intend to requeue waiters, force setting the FUTEX_WAITERS
2023 * bit. We force this here where we are able to easily handle
2024 * faults rather in the requeue loop below.
2025 */
52400ba9 2026 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2027 &key2, &pi_state, nr_requeue);
52400ba9
DH
2028
2029 /*
2030 * At this point the top_waiter has either taken uaddr2 or is
2031 * waiting on it. If the former, then the pi_state will not
2032 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2033 * reference to it. If the lock was taken, ret contains the
2034 * vpid of the top waiter task.
ecb38b78
TG
2035 * If the lock was not taken, we have pi_state and an initial
2036 * refcount on it. In case of an error we have nothing.
52400ba9 2037 */
866293ee 2038 if (ret > 0) {
52400ba9 2039 WARN_ON(pi_state);
89061d3d 2040 drop_count++;
52400ba9 2041 task_count++;
866293ee 2042 /*
ecb38b78
TG
2043 * If we acquired the lock, then the user space value
2044 * of uaddr2 should be vpid. It cannot be changed by
2045 * the top waiter as it is blocked on hb2 lock if it
2046 * tries to do so. If something fiddled with it behind
2047 * our back the pi state lookup might unearth it. So
2048 * we rather use the known value than rereading and
2049 * handing potential crap to lookup_pi_state.
2050 *
2051 * If that call succeeds then we have pi_state and an
2052 * initial refcount on it.
866293ee 2053 */
734009e9 2054 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2055 }
2056
2057 switch (ret) {
2058 case 0:
ecb38b78 2059 /* We hold a reference on the pi state. */
52400ba9 2060 break;
4959f2de
TG
2061
2062 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2063 case -EFAULT:
2064 double_unlock_hb(hb1, hb2);
69cd9eba 2065 hb_waiters_dec(hb2);
ae791a2d
TG
2066 put_futex_key(&key2);
2067 put_futex_key(&key1);
d0725992 2068 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2069 if (!ret)
2070 goto retry;
2071 goto out;
2072 case -EAGAIN:
af54d6a1
TG
2073 /*
2074 * Two reasons for this:
2075 * - Owner is exiting and we just wait for the
2076 * exit to complete.
2077 * - The user space value changed.
2078 */
52400ba9 2079 double_unlock_hb(hb1, hb2);
69cd9eba 2080 hb_waiters_dec(hb2);
ae791a2d
TG
2081 put_futex_key(&key2);
2082 put_futex_key(&key1);
52400ba9
DH
2083 cond_resched();
2084 goto retry;
2085 default:
2086 goto out_unlock;
2087 }
2088 }
2089
0d00c7b2 2090 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2091 if (task_count - nr_wake >= nr_requeue)
2092 break;
2093
2094 if (!match_futex(&this->key, &key1))
1da177e4 2095 continue;
52400ba9 2096
392741e0
DH
2097 /*
2098 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2099 * be paired with each other and no other futex ops.
aa10990e
DH
2100 *
2101 * We should never be requeueing a futex_q with a pi_state,
2102 * which is awaiting a futex_unlock_pi().
392741e0
DH
2103 */
2104 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2105 (!requeue_pi && this->rt_waiter) ||
2106 this->pi_state) {
392741e0
DH
2107 ret = -EINVAL;
2108 break;
2109 }
52400ba9
DH
2110
2111 /*
2112 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2113 * lock, we already woke the top_waiter. If not, it will be
2114 * woken by futex_unlock_pi().
2115 */
2116 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2117 mark_wake_futex(&wake_q, this);
52400ba9
DH
2118 continue;
2119 }
1da177e4 2120
84bc4af5
DH
2121 /* Ensure we requeue to the expected futex for requeue_pi. */
2122 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2123 ret = -EINVAL;
2124 break;
2125 }
2126
52400ba9
DH
2127 /*
2128 * Requeue nr_requeue waiters and possibly one more in the case
2129 * of requeue_pi if we couldn't acquire the lock atomically.
2130 */
2131 if (requeue_pi) {
ecb38b78
TG
2132 /*
2133 * Prepare the waiter to take the rt_mutex. Take a
2134 * refcount on the pi_state and store the pointer in
2135 * the futex_q object of the waiter.
2136 */
bf92cf3a 2137 get_pi_state(pi_state);
52400ba9
DH
2138 this->pi_state = pi_state;
2139 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2140 this->rt_waiter,
c051b21f 2141 this->task);
52400ba9 2142 if (ret == 1) {
ecb38b78
TG
2143 /*
2144 * We got the lock. We do neither drop the
2145 * refcount on pi_state nor clear
2146 * this->pi_state because the waiter needs the
2147 * pi_state for cleaning up the user space
2148 * value. It will drop the refcount after
2149 * doing so.
2150 */
beda2c7e 2151 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2152 drop_count++;
52400ba9
DH
2153 continue;
2154 } else if (ret) {
ecb38b78
TG
2155 /*
2156 * rt_mutex_start_proxy_lock() detected a
2157 * potential deadlock when we tried to queue
2158 * that waiter. Drop the pi_state reference
2159 * which we took above and remove the pointer
2160 * to the state from the waiters futex_q
2161 * object.
2162 */
52400ba9 2163 this->pi_state = NULL;
29e9ee5d 2164 put_pi_state(pi_state);
885c2cb7
TG
2165 /*
2166 * We stop queueing more waiters and let user
2167 * space deal with the mess.
2168 */
2169 break;
52400ba9 2170 }
1da177e4 2171 }
52400ba9
DH
2172 requeue_futex(this, hb1, hb2, &key2);
2173 drop_count++;
1da177e4
LT
2174 }
2175
ecb38b78
TG
2176 /*
2177 * We took an extra initial reference to the pi_state either
2178 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2179 * need to drop it here again.
2180 */
29e9ee5d 2181 put_pi_state(pi_state);
885c2cb7
TG
2182
2183out_unlock:
5eb3dc62 2184 double_unlock_hb(hb1, hb2);
1d0dcb3a 2185 wake_up_q(&wake_q);
69cd9eba 2186 hb_waiters_dec(hb2);
1da177e4 2187
cd84a42f
DH
2188 /*
2189 * drop_futex_key_refs() must be called outside the spinlocks. During
2190 * the requeue we moved futex_q's from the hash bucket at key1 to the
2191 * one at key2 and updated their key pointer. We no longer need to
2192 * hold the references to key1.
2193 */
1da177e4 2194 while (--drop_count >= 0)
9adef58b 2195 drop_futex_key_refs(&key1);
1da177e4 2196
42d35d48 2197out_put_keys:
ae791a2d 2198 put_futex_key(&key2);
42d35d48 2199out_put_key1:
ae791a2d 2200 put_futex_key(&key1);
42d35d48 2201out:
52400ba9 2202 return ret ? ret : task_count;
1da177e4
LT
2203}
2204
2205/* The key must be already stored in q->key. */
82af7aca 2206static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2207 __acquires(&hb->lock)
1da177e4 2208{
e2970f2f 2209 struct futex_hash_bucket *hb;
1da177e4 2210
e2970f2f 2211 hb = hash_futex(&q->key);
11d4616b
LT
2212
2213 /*
2214 * Increment the counter before taking the lock so that
2215 * a potential waker won't miss a to-be-slept task that is
2216 * waiting for the spinlock. This is safe as all queue_lock()
2217 * users end up calling queue_me(). Similarly, for housekeeping,
2218 * decrement the counter at queue_unlock() when some error has
2219 * occurred and we don't end up adding the task to the list.
2220 */
2221 hb_waiters_inc(hb);
2222
e2970f2f 2223 q->lock_ptr = &hb->lock;
1da177e4 2224
8ad7b378 2225 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2226 return hb;
1da177e4
LT
2227}
2228
d40d65c8 2229static inline void
0d00c7b2 2230queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2231 __releases(&hb->lock)
d40d65c8
DH
2232{
2233 spin_unlock(&hb->lock);
11d4616b 2234 hb_waiters_dec(hb);
d40d65c8
DH
2235}
2236
cfafcd11 2237static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2238{
ec92d082
PP
2239 int prio;
2240
2241 /*
2242 * The priority used to register this element is
2243 * - either the real thread-priority for the real-time threads
2244 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2245 * - or MAX_RT_PRIO for non-RT threads.
2246 * Thus, all RT-threads are woken first in priority order, and
2247 * the others are woken last, in FIFO order.
2248 */
2249 prio = min(current->normal_prio, MAX_RT_PRIO);
2250
2251 plist_node_init(&q->list, prio);
ec92d082 2252 plist_add(&q->list, &hb->chain);
c87e2837 2253 q->task = current;
cfafcd11
PZ
2254}
2255
2256/**
2257 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2258 * @q: The futex_q to enqueue
2259 * @hb: The destination hash bucket
2260 *
2261 * The hb->lock must be held by the caller, and is released here. A call to
2262 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2263 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2264 * or nothing if the unqueue is done as part of the wake process and the unqueue
2265 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2266 * an example).
2267 */
2268static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2269 __releases(&hb->lock)
2270{
2271 __queue_me(q, hb);
e2970f2f 2272 spin_unlock(&hb->lock);
1da177e4
LT
2273}
2274
d40d65c8
DH
2275/**
2276 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2277 * @q: The futex_q to unqueue
2278 *
2279 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2280 * be paired with exactly one earlier call to queue_me().
2281 *
6c23cbbd 2282 * Return:
7b4ff1ad
MCC
2283 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2284 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2285 */
1da177e4
LT
2286static int unqueue_me(struct futex_q *q)
2287{
1da177e4 2288 spinlock_t *lock_ptr;
e2970f2f 2289 int ret = 0;
1da177e4
LT
2290
2291 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2292retry:
29b75eb2
JZ
2293 /*
2294 * q->lock_ptr can change between this read and the following spin_lock.
2295 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2296 * optimizing lock_ptr out of the logic below.
2297 */
2298 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2299 if (lock_ptr != NULL) {
1da177e4
LT
2300 spin_lock(lock_ptr);
2301 /*
2302 * q->lock_ptr can change between reading it and
2303 * spin_lock(), causing us to take the wrong lock. This
2304 * corrects the race condition.
2305 *
2306 * Reasoning goes like this: if we have the wrong lock,
2307 * q->lock_ptr must have changed (maybe several times)
2308 * between reading it and the spin_lock(). It can
2309 * change again after the spin_lock() but only if it was
2310 * already changed before the spin_lock(). It cannot,
2311 * however, change back to the original value. Therefore
2312 * we can detect whether we acquired the correct lock.
2313 */
2314 if (unlikely(lock_ptr != q->lock_ptr)) {
2315 spin_unlock(lock_ptr);
2316 goto retry;
2317 }
2e12978a 2318 __unqueue_futex(q);
c87e2837
IM
2319
2320 BUG_ON(q->pi_state);
2321
1da177e4
LT
2322 spin_unlock(lock_ptr);
2323 ret = 1;
2324 }
2325
9adef58b 2326 drop_futex_key_refs(&q->key);
1da177e4
LT
2327 return ret;
2328}
2329
c87e2837
IM
2330/*
2331 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2332 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2333 * and dropped here.
c87e2837 2334 */
d0aa7a70 2335static void unqueue_me_pi(struct futex_q *q)
15e408cd 2336 __releases(q->lock_ptr)
c87e2837 2337{
2e12978a 2338 __unqueue_futex(q);
c87e2837
IM
2339
2340 BUG_ON(!q->pi_state);
29e9ee5d 2341 put_pi_state(q->pi_state);
c87e2837
IM
2342 q->pi_state = NULL;
2343
d0aa7a70 2344 spin_unlock(q->lock_ptr);
c87e2837
IM
2345}
2346
778e9a9c 2347static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2348 struct task_struct *argowner)
d0aa7a70 2349{
d0aa7a70 2350 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2351 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2352 struct task_struct *oldowner, *newowner;
2353 u32 newtid;
e4dc5b7a 2354 int ret;
d0aa7a70 2355
c1e2f0ea
PZ
2356 lockdep_assert_held(q->lock_ptr);
2357
734009e9
PZ
2358 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2359
2360 oldowner = pi_state->owner;
1b7558e4
TG
2361
2362 /*
c1e2f0ea 2363 * We are here because either:
16ffa12d 2364 *
c1e2f0ea
PZ
2365 * - we stole the lock and pi_state->owner needs updating to reflect
2366 * that (@argowner == current),
2367 *
2368 * or:
2369 *
2370 * - someone stole our lock and we need to fix things to point to the
2371 * new owner (@argowner == NULL).
2372 *
2373 * Either way, we have to replace the TID in the user space variable.
8161239a 2374 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2375 *
b2d0994b
DH
2376 * Note: We write the user space value _before_ changing the pi_state
2377 * because we can fault here. Imagine swapped out pages or a fork
2378 * that marked all the anonymous memory readonly for cow.
1b7558e4 2379 *
734009e9
PZ
2380 * Modifying pi_state _before_ the user space value would leave the
2381 * pi_state in an inconsistent state when we fault here, because we
2382 * need to drop the locks to handle the fault. This might be observed
2383 * in the PID check in lookup_pi_state.
1b7558e4
TG
2384 */
2385retry:
c1e2f0ea
PZ
2386 if (!argowner) {
2387 if (oldowner != current) {
2388 /*
2389 * We raced against a concurrent self; things are
2390 * already fixed up. Nothing to do.
2391 */
2392 ret = 0;
2393 goto out_unlock;
2394 }
2395
2396 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2397 /* We got the lock after all, nothing to fix. */
2398 ret = 0;
2399 goto out_unlock;
2400 }
2401
2402 /*
2403 * Since we just failed the trylock; there must be an owner.
2404 */
2405 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2406 BUG_ON(!newowner);
2407 } else {
2408 WARN_ON_ONCE(argowner != current);
2409 if (oldowner == current) {
2410 /*
2411 * We raced against a concurrent self; things are
2412 * already fixed up. Nothing to do.
2413 */
2414 ret = 0;
2415 goto out_unlock;
2416 }
2417 newowner = argowner;
2418 }
2419
2420 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2421 /* Owner died? */
2422 if (!pi_state->owner)
2423 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2424
1b7558e4
TG
2425 if (get_futex_value_locked(&uval, uaddr))
2426 goto handle_fault;
2427
16ffa12d 2428 for (;;) {
1b7558e4
TG
2429 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2430
37a9d912 2431 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
2432 goto handle_fault;
2433 if (curval == uval)
2434 break;
2435 uval = curval;
2436 }
2437
2438 /*
2439 * We fixed up user space. Now we need to fix the pi_state
2440 * itself.
2441 */
d0aa7a70 2442 if (pi_state->owner != NULL) {
734009e9 2443 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2444 WARN_ON(list_empty(&pi_state->list));
2445 list_del_init(&pi_state->list);
734009e9 2446 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2447 }
d0aa7a70 2448
cdf71a10 2449 pi_state->owner = newowner;
d0aa7a70 2450
734009e9 2451 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2452 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2453 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2454 raw_spin_unlock(&newowner->pi_lock);
2455 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2456
1b7558e4 2457 return 0;
d0aa7a70 2458
d0aa7a70 2459 /*
734009e9
PZ
2460 * To handle the page fault we need to drop the locks here. That gives
2461 * the other task (either the highest priority waiter itself or the
2462 * task which stole the rtmutex) the chance to try the fixup of the
2463 * pi_state. So once we are back from handling the fault we need to
2464 * check the pi_state after reacquiring the locks and before trying to
2465 * do another fixup. When the fixup has been done already we simply
2466 * return.
2467 *
2468 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2469 * drop hb->lock since the caller owns the hb -> futex_q relation.
2470 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2471 */
1b7558e4 2472handle_fault:
734009e9 2473 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2474 spin_unlock(q->lock_ptr);
778e9a9c 2475
d0725992 2476 ret = fault_in_user_writeable(uaddr);
778e9a9c 2477
1b7558e4 2478 spin_lock(q->lock_ptr);
734009e9 2479 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2480
1b7558e4
TG
2481 /*
2482 * Check if someone else fixed it for us:
2483 */
734009e9
PZ
2484 if (pi_state->owner != oldowner) {
2485 ret = 0;
2486 goto out_unlock;
2487 }
1b7558e4
TG
2488
2489 if (ret)
734009e9 2490 goto out_unlock;
1b7558e4
TG
2491
2492 goto retry;
734009e9
PZ
2493
2494out_unlock:
2495 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2496 return ret;
d0aa7a70
PP
2497}
2498
72c1bbf3 2499static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2500
dd973998
DH
2501/**
2502 * fixup_owner() - Post lock pi_state and corner case management
2503 * @uaddr: user address of the futex
dd973998
DH
2504 * @q: futex_q (contains pi_state and access to the rt_mutex)
2505 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2506 *
2507 * After attempting to lock an rt_mutex, this function is called to cleanup
2508 * the pi_state owner as well as handle race conditions that may allow us to
2509 * acquire the lock. Must be called with the hb lock held.
2510 *
6c23cbbd 2511 * Return:
7b4ff1ad
MCC
2512 * - 1 - success, lock taken;
2513 * - 0 - success, lock not taken;
2514 * - <0 - on error (-EFAULT)
dd973998 2515 */
ae791a2d 2516static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2517{
dd973998
DH
2518 int ret = 0;
2519
2520 if (locked) {
2521 /*
2522 * Got the lock. We might not be the anticipated owner if we
2523 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2524 *
c1e2f0ea
PZ
2525 * Speculative pi_state->owner read (we don't hold wait_lock);
2526 * since we own the lock pi_state->owner == current is the
2527 * stable state, anything else needs more attention.
dd973998
DH
2528 */
2529 if (q->pi_state->owner != current)
ae791a2d 2530 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2531 goto out;
2532 }
2533
c1e2f0ea
PZ
2534 /*
2535 * If we didn't get the lock; check if anybody stole it from us. In
2536 * that case, we need to fix up the uval to point to them instead of
2537 * us, otherwise bad things happen. [10]
2538 *
2539 * Another speculative read; pi_state->owner == current is unstable
2540 * but needs our attention.
2541 */
2542 if (q->pi_state->owner == current) {
2543 ret = fixup_pi_state_owner(uaddr, q, NULL);
2544 goto out;
2545 }
2546
dd973998
DH
2547 /*
2548 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2549 * the owner of the rt_mutex.
dd973998 2550 */
73d786bd 2551 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2552 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2553 "pi-state %p\n", ret,
2554 q->pi_state->pi_mutex.owner,
2555 q->pi_state->owner);
73d786bd 2556 }
dd973998
DH
2557
2558out:
2559 return ret ? ret : locked;
2560}
2561
ca5f9524
DH
2562/**
2563 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2564 * @hb: the futex hash bucket, must be locked by the caller
2565 * @q: the futex_q to queue up on
2566 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2567 */
2568static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2569 struct hrtimer_sleeper *timeout)
ca5f9524 2570{
9beba3c5
DH
2571 /*
2572 * The task state is guaranteed to be set before another task can
b92b8b35 2573 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2574 * queue_me() calls spin_unlock() upon completion, both serializing
2575 * access to the hash list and forcing another memory barrier.
2576 */
f1a11e05 2577 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2578 queue_me(q, hb);
ca5f9524
DH
2579
2580 /* Arm the timer */
2e4b0d3f 2581 if (timeout)
ca5f9524 2582 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2583
2584 /*
0729e196
DH
2585 * If we have been removed from the hash list, then another task
2586 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2587 */
2588 if (likely(!plist_node_empty(&q->list))) {
2589 /*
2590 * If the timer has already expired, current will already be
2591 * flagged for rescheduling. Only call schedule if there
2592 * is no timeout, or if it has yet to expire.
2593 */
2594 if (!timeout || timeout->task)
88c8004f 2595 freezable_schedule();
ca5f9524
DH
2596 }
2597 __set_current_state(TASK_RUNNING);
2598}
2599
f801073f
DH
2600/**
2601 * futex_wait_setup() - Prepare to wait on a futex
2602 * @uaddr: the futex userspace address
2603 * @val: the expected value
b41277dc 2604 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2605 * @q: the associated futex_q
2606 * @hb: storage for hash_bucket pointer to be returned to caller
2607 *
2608 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2609 * compare it with the expected value. Handle atomic faults internally.
2610 * Return with the hb lock held and a q.key reference on success, and unlocked
2611 * with no q.key reference on failure.
2612 *
6c23cbbd 2613 * Return:
7b4ff1ad
MCC
2614 * - 0 - uaddr contains val and hb has been locked;
2615 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2616 */
b41277dc 2617static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2618 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2619{
e2970f2f
IM
2620 u32 uval;
2621 int ret;
1da177e4 2622
1da177e4 2623 /*
b2d0994b 2624 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2625 * Order is important:
2626 *
2627 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2628 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2629 *
2630 * The basic logical guarantee of a futex is that it blocks ONLY
2631 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2632 * any cond. If we locked the hash-bucket after testing *uaddr, that
2633 * would open a race condition where we could block indefinitely with
1da177e4
LT
2634 * cond(var) false, which would violate the guarantee.
2635 *
8fe8f545
ML
2636 * On the other hand, we insert q and release the hash-bucket only
2637 * after testing *uaddr. This guarantees that futex_wait() will NOT
2638 * absorb a wakeup if *uaddr does not match the desired values
2639 * while the syscall executes.
1da177e4 2640 */
f801073f 2641retry:
96d4f267 2642 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
f801073f 2643 if (unlikely(ret != 0))
a5a2a0c7 2644 return ret;
f801073f
DH
2645
2646retry_private:
2647 *hb = queue_lock(q);
2648
e2970f2f 2649 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2650
f801073f 2651 if (ret) {
0d00c7b2 2652 queue_unlock(*hb);
1da177e4 2653
e2970f2f 2654 ret = get_user(uval, uaddr);
e4dc5b7a 2655 if (ret)
f801073f 2656 goto out;
1da177e4 2657
b41277dc 2658 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2659 goto retry_private;
2660
ae791a2d 2661 put_futex_key(&q->key);
e4dc5b7a 2662 goto retry;
1da177e4 2663 }
ca5f9524 2664
f801073f 2665 if (uval != val) {
0d00c7b2 2666 queue_unlock(*hb);
f801073f 2667 ret = -EWOULDBLOCK;
2fff78c7 2668 }
1da177e4 2669
f801073f
DH
2670out:
2671 if (ret)
ae791a2d 2672 put_futex_key(&q->key);
f801073f
DH
2673 return ret;
2674}
2675
b41277dc
DH
2676static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2677 ktime_t *abs_time, u32 bitset)
f801073f
DH
2678{
2679 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2680 struct restart_block *restart;
2681 struct futex_hash_bucket *hb;
5bdb05f9 2682 struct futex_q q = futex_q_init;
f801073f
DH
2683 int ret;
2684
2685 if (!bitset)
2686 return -EINVAL;
f801073f
DH
2687 q.bitset = bitset;
2688
2689 if (abs_time) {
2690 to = &timeout;
2691
b41277dc
DH
2692 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2693 CLOCK_REALTIME : CLOCK_MONOTONIC,
2694 HRTIMER_MODE_ABS);
f801073f
DH
2695 hrtimer_init_sleeper(to, current);
2696 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2697 current->timer_slack_ns);
2698 }
2699
d58e6576 2700retry:
7ada876a
DH
2701 /*
2702 * Prepare to wait on uaddr. On success, holds hb lock and increments
2703 * q.key refs.
2704 */
b41277dc 2705 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2706 if (ret)
2707 goto out;
2708
ca5f9524 2709 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2710 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2711
2712 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2713 ret = 0;
7ada876a 2714 /* unqueue_me() drops q.key ref */
1da177e4 2715 if (!unqueue_me(&q))
7ada876a 2716 goto out;
2fff78c7 2717 ret = -ETIMEDOUT;
ca5f9524 2718 if (to && !to->task)
7ada876a 2719 goto out;
72c1bbf3 2720
e2970f2f 2721 /*
d58e6576
TG
2722 * We expect signal_pending(current), but we might be the
2723 * victim of a spurious wakeup as well.
e2970f2f 2724 */
7ada876a 2725 if (!signal_pending(current))
d58e6576 2726 goto retry;
d58e6576 2727
2fff78c7 2728 ret = -ERESTARTSYS;
c19384b5 2729 if (!abs_time)
7ada876a 2730 goto out;
1da177e4 2731
f56141e3 2732 restart = &current->restart_block;
2fff78c7 2733 restart->fn = futex_wait_restart;
a3c74c52 2734 restart->futex.uaddr = uaddr;
2fff78c7 2735 restart->futex.val = val;
2456e855 2736 restart->futex.time = *abs_time;
2fff78c7 2737 restart->futex.bitset = bitset;
0cd9c649 2738 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2739
2fff78c7
PZ
2740 ret = -ERESTART_RESTARTBLOCK;
2741
42d35d48 2742out:
ca5f9524
DH
2743 if (to) {
2744 hrtimer_cancel(&to->timer);
2745 destroy_hrtimer_on_stack(&to->timer);
2746 }
c87e2837
IM
2747 return ret;
2748}
2749
72c1bbf3
NP
2750
2751static long futex_wait_restart(struct restart_block *restart)
2752{
a3c74c52 2753 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2754 ktime_t t, *tp = NULL;
72c1bbf3 2755
a72188d8 2756 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2757 t = restart->futex.time;
a72188d8
DH
2758 tp = &t;
2759 }
72c1bbf3 2760 restart->fn = do_no_restart_syscall;
b41277dc
DH
2761
2762 return (long)futex_wait(uaddr, restart->futex.flags,
2763 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2764}
2765
2766
c87e2837
IM
2767/*
2768 * Userspace tried a 0 -> TID atomic transition of the futex value
2769 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2770 * if there are waiters then it will block as a consequence of relying
2771 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2772 * a 0 value of the futex too.).
2773 *
2774 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2775 */
996636dd 2776static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2777 ktime_t *time, int trylock)
c87e2837 2778{
c5780e97 2779 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2780 struct futex_pi_state *pi_state = NULL;
cfafcd11 2781 struct rt_mutex_waiter rt_waiter;
c87e2837 2782 struct futex_hash_bucket *hb;
5bdb05f9 2783 struct futex_q q = futex_q_init;
dd973998 2784 int res, ret;
c87e2837 2785
bc2eecd7
NP
2786 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2787 return -ENOSYS;
2788
c87e2837
IM
2789 if (refill_pi_state_cache())
2790 return -ENOMEM;
2791
c19384b5 2792 if (time) {
c5780e97 2793 to = &timeout;
237fc6e7
TG
2794 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2795 HRTIMER_MODE_ABS);
c5780e97 2796 hrtimer_init_sleeper(to, current);
cc584b21 2797 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2798 }
2799
42d35d48 2800retry:
96d4f267 2801 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
c87e2837 2802 if (unlikely(ret != 0))
42d35d48 2803 goto out;
c87e2837 2804
e4dc5b7a 2805retry_private:
82af7aca 2806 hb = queue_lock(&q);
c87e2837 2807
bab5bc9e 2808 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2809 if (unlikely(ret)) {
767f509c
DB
2810 /*
2811 * Atomic work succeeded and we got the lock,
2812 * or failed. Either way, we do _not_ block.
2813 */
778e9a9c 2814 switch (ret) {
1a52084d
DH
2815 case 1:
2816 /* We got the lock. */
2817 ret = 0;
2818 goto out_unlock_put_key;
2819 case -EFAULT:
2820 goto uaddr_faulted;
778e9a9c
AK
2821 case -EAGAIN:
2822 /*
af54d6a1
TG
2823 * Two reasons for this:
2824 * - Task is exiting and we just wait for the
2825 * exit to complete.
2826 * - The user space value changed.
778e9a9c 2827 */
0d00c7b2 2828 queue_unlock(hb);
ae791a2d 2829 put_futex_key(&q.key);
778e9a9c
AK
2830 cond_resched();
2831 goto retry;
778e9a9c 2832 default:
42d35d48 2833 goto out_unlock_put_key;
c87e2837 2834 }
c87e2837
IM
2835 }
2836
cfafcd11
PZ
2837 WARN_ON(!q.pi_state);
2838
c87e2837
IM
2839 /*
2840 * Only actually queue now that the atomic ops are done:
2841 */
cfafcd11 2842 __queue_me(&q, hb);
c87e2837 2843
cfafcd11 2844 if (trylock) {
5293c2ef 2845 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2846 /* Fixup the trylock return value: */
2847 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2848 goto no_block;
c87e2837
IM
2849 }
2850
56222b21
PZ
2851 rt_mutex_init_waiter(&rt_waiter);
2852
cfafcd11 2853 /*
56222b21
PZ
2854 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2855 * hold it while doing rt_mutex_start_proxy(), because then it will
2856 * include hb->lock in the blocking chain, even through we'll not in
2857 * fact hold it while blocking. This will lead it to report -EDEADLK
2858 * and BUG when futex_unlock_pi() interleaves with this.
2859 *
2860 * Therefore acquire wait_lock while holding hb->lock, but drop the
2861 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2862 * serializes against futex_unlock_pi() as that does the exact same
2863 * lock handoff sequence.
cfafcd11 2864 */
56222b21
PZ
2865 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2866 spin_unlock(q.lock_ptr);
2867 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2868 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2869
cfafcd11
PZ
2870 if (ret) {
2871 if (ret == 1)
2872 ret = 0;
2873
56222b21 2874 spin_lock(q.lock_ptr);
cfafcd11
PZ
2875 goto no_block;
2876 }
2877
cfafcd11
PZ
2878
2879 if (unlikely(to))
2880 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2881
2882 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2883
a99e4e41 2884 spin_lock(q.lock_ptr);
cfafcd11
PZ
2885 /*
2886 * If we failed to acquire the lock (signal/timeout), we must
2887 * first acquire the hb->lock before removing the lock from the
2888 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2889 * wait lists consistent.
56222b21
PZ
2890 *
2891 * In particular; it is important that futex_unlock_pi() can not
2892 * observe this inconsistency.
cfafcd11
PZ
2893 */
2894 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2895 ret = 0;
2896
2897no_block:
dd973998
DH
2898 /*
2899 * Fixup the pi_state owner and possibly acquire the lock if we
2900 * haven't already.
2901 */
ae791a2d 2902 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2903 /*
2904 * If fixup_owner() returned an error, proprogate that. If it acquired
2905 * the lock, clear our -ETIMEDOUT or -EINTR.
2906 */
2907 if (res)
2908 ret = (res < 0) ? res : 0;
c87e2837 2909
e8f6386c 2910 /*
dd973998
DH
2911 * If fixup_owner() faulted and was unable to handle the fault, unlock
2912 * it and return the fault to userspace.
e8f6386c 2913 */
16ffa12d
PZ
2914 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2915 pi_state = q.pi_state;
2916 get_pi_state(pi_state);
2917 }
e8f6386c 2918
778e9a9c
AK
2919 /* Unqueue and drop the lock */
2920 unqueue_me_pi(&q);
c87e2837 2921
16ffa12d
PZ
2922 if (pi_state) {
2923 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2924 put_pi_state(pi_state);
2925 }
2926
5ecb01cf 2927 goto out_put_key;
c87e2837 2928
42d35d48 2929out_unlock_put_key:
0d00c7b2 2930 queue_unlock(hb);
c87e2837 2931
42d35d48 2932out_put_key:
ae791a2d 2933 put_futex_key(&q.key);
42d35d48 2934out:
97181f9b
TG
2935 if (to) {
2936 hrtimer_cancel(&to->timer);
237fc6e7 2937 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2938 }
dd973998 2939 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2940
42d35d48 2941uaddr_faulted:
0d00c7b2 2942 queue_unlock(hb);
778e9a9c 2943
d0725992 2944 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2945 if (ret)
2946 goto out_put_key;
c87e2837 2947
b41277dc 2948 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2949 goto retry_private;
2950
ae791a2d 2951 put_futex_key(&q.key);
e4dc5b7a 2952 goto retry;
c87e2837
IM
2953}
2954
c87e2837
IM
2955/*
2956 * Userspace attempted a TID -> 0 atomic transition, and failed.
2957 * This is the in-kernel slowpath: we look up the PI state (if any),
2958 * and do the rt-mutex unlock.
2959 */
b41277dc 2960static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 2961{
ccf9e6a8 2962 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 2963 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 2964 struct futex_hash_bucket *hb;
499f5aca 2965 struct futex_q *top_waiter;
e4dc5b7a 2966 int ret;
c87e2837 2967
bc2eecd7
NP
2968 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2969 return -ENOSYS;
2970
c87e2837
IM
2971retry:
2972 if (get_user(uval, uaddr))
2973 return -EFAULT;
2974 /*
2975 * We release only a lock we actually own:
2976 */
c0c9ed15 2977 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2978 return -EPERM;
c87e2837 2979
96d4f267 2980 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
ccf9e6a8
TG
2981 if (ret)
2982 return ret;
c87e2837
IM
2983
2984 hb = hash_futex(&key);
2985 spin_lock(&hb->lock);
2986
c87e2837 2987 /*
ccf9e6a8
TG
2988 * Check waiters first. We do not trust user space values at
2989 * all and we at least want to know if user space fiddled
2990 * with the futex value instead of blindly unlocking.
c87e2837 2991 */
499f5aca
PZ
2992 top_waiter = futex_top_waiter(hb, &key);
2993 if (top_waiter) {
16ffa12d
PZ
2994 struct futex_pi_state *pi_state = top_waiter->pi_state;
2995
2996 ret = -EINVAL;
2997 if (!pi_state)
2998 goto out_unlock;
2999
3000 /*
3001 * If current does not own the pi_state then the futex is
3002 * inconsistent and user space fiddled with the futex value.
3003 */
3004 if (pi_state->owner != current)
3005 goto out_unlock;
3006
bebe5b51 3007 get_pi_state(pi_state);
802ab58d 3008 /*
bebe5b51
PZ
3009 * By taking wait_lock while still holding hb->lock, we ensure
3010 * there is no point where we hold neither; and therefore
3011 * wake_futex_pi() must observe a state consistent with what we
3012 * observed.
16ffa12d 3013 */
bebe5b51 3014 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3015 spin_unlock(&hb->lock);
3016
c74aef2d 3017 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3018 ret = wake_futex_pi(uaddr, uval, pi_state);
3019
3020 put_pi_state(pi_state);
3021
3022 /*
3023 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3024 */
3025 if (!ret)
3026 goto out_putkey;
c87e2837 3027 /*
ccf9e6a8
TG
3028 * The atomic access to the futex value generated a
3029 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3030 */
3031 if (ret == -EFAULT)
3032 goto pi_faulted;
89e9e66b
SAS
3033 /*
3034 * A unconditional UNLOCK_PI op raced against a waiter
3035 * setting the FUTEX_WAITERS bit. Try again.
3036 */
3037 if (ret == -EAGAIN) {
89e9e66b
SAS
3038 put_futex_key(&key);
3039 goto retry;
3040 }
802ab58d
SAS
3041 /*
3042 * wake_futex_pi has detected invalid state. Tell user
3043 * space.
3044 */
16ffa12d 3045 goto out_putkey;
c87e2837 3046 }
ccf9e6a8 3047
c87e2837 3048 /*
ccf9e6a8
TG
3049 * We have no kernel internal state, i.e. no waiters in the
3050 * kernel. Waiters which are about to queue themselves are stuck
3051 * on hb->lock. So we can safely ignore them. We do neither
3052 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3053 * owner.
c87e2837 3054 */
16ffa12d
PZ
3055 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3056 spin_unlock(&hb->lock);
13fbca4c 3057 goto pi_faulted;
16ffa12d 3058 }
c87e2837 3059
ccf9e6a8
TG
3060 /*
3061 * If uval has changed, let user space handle it.
3062 */
3063 ret = (curval == uval) ? 0 : -EAGAIN;
3064
c87e2837
IM
3065out_unlock:
3066 spin_unlock(&hb->lock);
802ab58d 3067out_putkey:
ae791a2d 3068 put_futex_key(&key);
c87e2837
IM
3069 return ret;
3070
3071pi_faulted:
ae791a2d 3072 put_futex_key(&key);
c87e2837 3073
d0725992 3074 ret = fault_in_user_writeable(uaddr);
b5686363 3075 if (!ret)
c87e2837
IM
3076 goto retry;
3077
1da177e4
LT
3078 return ret;
3079}
3080
52400ba9
DH
3081/**
3082 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3083 * @hb: the hash_bucket futex_q was original enqueued on
3084 * @q: the futex_q woken while waiting to be requeued
3085 * @key2: the futex_key of the requeue target futex
3086 * @timeout: the timeout associated with the wait (NULL if none)
3087 *
3088 * Detect if the task was woken on the initial futex as opposed to the requeue
3089 * target futex. If so, determine if it was a timeout or a signal that caused
3090 * the wakeup and return the appropriate error code to the caller. Must be
3091 * called with the hb lock held.
3092 *
6c23cbbd 3093 * Return:
7b4ff1ad
MCC
3094 * - 0 = no early wakeup detected;
3095 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3096 */
3097static inline
3098int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3099 struct futex_q *q, union futex_key *key2,
3100 struct hrtimer_sleeper *timeout)
3101{
3102 int ret = 0;
3103
3104 /*
3105 * With the hb lock held, we avoid races while we process the wakeup.
3106 * We only need to hold hb (and not hb2) to ensure atomicity as the
3107 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3108 * It can't be requeued from uaddr2 to something else since we don't
3109 * support a PI aware source futex for requeue.
3110 */
3111 if (!match_futex(&q->key, key2)) {
3112 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3113 /*
3114 * We were woken prior to requeue by a timeout or a signal.
3115 * Unqueue the futex_q and determine which it was.
3116 */
2e12978a 3117 plist_del(&q->list, &hb->chain);
11d4616b 3118 hb_waiters_dec(hb);
52400ba9 3119
d58e6576 3120 /* Handle spurious wakeups gracefully */
11df6ddd 3121 ret = -EWOULDBLOCK;
52400ba9
DH
3122 if (timeout && !timeout->task)
3123 ret = -ETIMEDOUT;
d58e6576 3124 else if (signal_pending(current))
1c840c14 3125 ret = -ERESTARTNOINTR;
52400ba9
DH
3126 }
3127 return ret;
3128}
3129
3130/**
3131 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3132 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3133 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3134 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3135 * @val: the expected value of uaddr
3136 * @abs_time: absolute timeout
56ec1607 3137 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3138 * @uaddr2: the pi futex we will take prior to returning to user-space
3139 *
3140 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3141 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3142 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3143 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3144 * without one, the pi logic would not know which task to boost/deboost, if
3145 * there was a need to.
52400ba9
DH
3146 *
3147 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3148 * via the following--
52400ba9 3149 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3150 * 2) wakeup on uaddr2 after a requeue
3151 * 3) signal
3152 * 4) timeout
52400ba9 3153 *
cc6db4e6 3154 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3155 *
3156 * If 2, we may then block on trying to take the rt_mutex and return via:
3157 * 5) successful lock
3158 * 6) signal
3159 * 7) timeout
3160 * 8) other lock acquisition failure
3161 *
cc6db4e6 3162 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3163 *
3164 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3165 *
6c23cbbd 3166 * Return:
7b4ff1ad
MCC
3167 * - 0 - On success;
3168 * - <0 - On error
52400ba9 3169 */
b41277dc 3170static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3171 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3172 u32 __user *uaddr2)
52400ba9
DH
3173{
3174 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3175 struct futex_pi_state *pi_state = NULL;
52400ba9 3176 struct rt_mutex_waiter rt_waiter;
52400ba9 3177 struct futex_hash_bucket *hb;
5bdb05f9
DH
3178 union futex_key key2 = FUTEX_KEY_INIT;
3179 struct futex_q q = futex_q_init;
52400ba9 3180 int res, ret;
52400ba9 3181
bc2eecd7
NP
3182 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3183 return -ENOSYS;
3184
6f7b0a2a
DH
3185 if (uaddr == uaddr2)
3186 return -EINVAL;
3187
52400ba9
DH
3188 if (!bitset)
3189 return -EINVAL;
3190
3191 if (abs_time) {
3192 to = &timeout;
b41277dc
DH
3193 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3194 CLOCK_REALTIME : CLOCK_MONOTONIC,
3195 HRTIMER_MODE_ABS);
52400ba9
DH
3196 hrtimer_init_sleeper(to, current);
3197 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3198 current->timer_slack_ns);
3199 }
3200
3201 /*
3202 * The waiter is allocated on our stack, manipulated by the requeue
3203 * code while we sleep on uaddr.
3204 */
50809358 3205 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3206
96d4f267 3207 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
52400ba9
DH
3208 if (unlikely(ret != 0))
3209 goto out;
3210
84bc4af5
DH
3211 q.bitset = bitset;
3212 q.rt_waiter = &rt_waiter;
3213 q.requeue_pi_key = &key2;
3214
7ada876a
DH
3215 /*
3216 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3217 * count.
3218 */
b41277dc 3219 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3220 if (ret)
3221 goto out_key2;
52400ba9 3222
e9c243a5
TG
3223 /*
3224 * The check above which compares uaddrs is not sufficient for
3225 * shared futexes. We need to compare the keys:
3226 */
3227 if (match_futex(&q.key, &key2)) {
13c42c2f 3228 queue_unlock(hb);
e9c243a5
TG
3229 ret = -EINVAL;
3230 goto out_put_keys;
3231 }
3232
52400ba9 3233 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3234 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3235
3236 spin_lock(&hb->lock);
3237 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3238 spin_unlock(&hb->lock);
3239 if (ret)
3240 goto out_put_keys;
3241
3242 /*
3243 * In order for us to be here, we know our q.key == key2, and since
3244 * we took the hb->lock above, we also know that futex_requeue() has
3245 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3246 * race with the atomic proxy lock acquisition by the requeue code. The
3247 * futex_requeue dropped our key1 reference and incremented our key2
3248 * reference count.
52400ba9
DH
3249 */
3250
3251 /* Check if the requeue code acquired the second futex for us. */
3252 if (!q.rt_waiter) {
3253 /*
3254 * Got the lock. We might not be the anticipated owner if we
3255 * did a lock-steal - fix up the PI-state in that case.
3256 */
3257 if (q.pi_state && (q.pi_state->owner != current)) {
3258 spin_lock(q.lock_ptr);
ae791a2d 3259 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3260 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3261 pi_state = q.pi_state;
3262 get_pi_state(pi_state);
3263 }
fb75a428
TG
3264 /*
3265 * Drop the reference to the pi state which
3266 * the requeue_pi() code acquired for us.
3267 */
29e9ee5d 3268 put_pi_state(q.pi_state);
52400ba9
DH
3269 spin_unlock(q.lock_ptr);
3270 }
3271 } else {
c236c8e9
PZ
3272 struct rt_mutex *pi_mutex;
3273
52400ba9
DH
3274 /*
3275 * We have been woken up by futex_unlock_pi(), a timeout, or a
3276 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3277 * the pi_state.
3278 */
f27071cb 3279 WARN_ON(!q.pi_state);
52400ba9 3280 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3281 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3282
3283 spin_lock(q.lock_ptr);
38d589f2
PZ
3284 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3285 ret = 0;
3286
3287 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3288 /*
3289 * Fixup the pi_state owner and possibly acquire the lock if we
3290 * haven't already.
3291 */
ae791a2d 3292 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3293 /*
3294 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3295 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3296 */
3297 if (res)
3298 ret = (res < 0) ? res : 0;
3299
c236c8e9
PZ
3300 /*
3301 * If fixup_pi_state_owner() faulted and was unable to handle
3302 * the fault, unlock the rt_mutex and return the fault to
3303 * userspace.
3304 */
16ffa12d
PZ
3305 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3306 pi_state = q.pi_state;
3307 get_pi_state(pi_state);
3308 }
c236c8e9 3309
52400ba9
DH
3310 /* Unqueue and drop the lock. */
3311 unqueue_me_pi(&q);
3312 }
3313
16ffa12d
PZ
3314 if (pi_state) {
3315 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3316 put_pi_state(pi_state);
3317 }
3318
c236c8e9 3319 if (ret == -EINTR) {
52400ba9 3320 /*
cc6db4e6
DH
3321 * We've already been requeued, but cannot restart by calling
3322 * futex_lock_pi() directly. We could restart this syscall, but
3323 * it would detect that the user space "val" changed and return
3324 * -EWOULDBLOCK. Save the overhead of the restart and return
3325 * -EWOULDBLOCK directly.
52400ba9 3326 */
2070887f 3327 ret = -EWOULDBLOCK;
52400ba9
DH
3328 }
3329
3330out_put_keys:
ae791a2d 3331 put_futex_key(&q.key);
c8b15a70 3332out_key2:
ae791a2d 3333 put_futex_key(&key2);
52400ba9
DH
3334
3335out:
3336 if (to) {
3337 hrtimer_cancel(&to->timer);
3338 destroy_hrtimer_on_stack(&to->timer);
3339 }
3340 return ret;
3341}
3342
0771dfef
IM
3343/*
3344 * Support for robust futexes: the kernel cleans up held futexes at
3345 * thread exit time.
3346 *
3347 * Implementation: user-space maintains a per-thread list of locks it
3348 * is holding. Upon do_exit(), the kernel carefully walks this list,
3349 * and marks all locks that are owned by this thread with the
c87e2837 3350 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3351 * always manipulated with the lock held, so the list is private and
3352 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3353 * field, to allow the kernel to clean up if the thread dies after
3354 * acquiring the lock, but just before it could have added itself to
3355 * the list. There can only be one such pending lock.
3356 */
3357
3358/**
d96ee56c
DH
3359 * sys_set_robust_list() - Set the robust-futex list head of a task
3360 * @head: pointer to the list-head
3361 * @len: length of the list-head, as userspace expects
0771dfef 3362 */
836f92ad
HC
3363SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3364 size_t, len)
0771dfef 3365{
a0c1e907
TG
3366 if (!futex_cmpxchg_enabled)
3367 return -ENOSYS;
0771dfef
IM
3368 /*
3369 * The kernel knows only one size for now:
3370 */
3371 if (unlikely(len != sizeof(*head)))
3372 return -EINVAL;
3373
3374 current->robust_list = head;
3375
3376 return 0;
3377}
3378
3379/**
d96ee56c
DH
3380 * sys_get_robust_list() - Get the robust-futex list head of a task
3381 * @pid: pid of the process [zero for current task]
3382 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3383 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3384 */
836f92ad
HC
3385SYSCALL_DEFINE3(get_robust_list, int, pid,
3386 struct robust_list_head __user * __user *, head_ptr,
3387 size_t __user *, len_ptr)
0771dfef 3388{
ba46df98 3389 struct robust_list_head __user *head;
0771dfef 3390 unsigned long ret;
bdbb776f 3391 struct task_struct *p;
0771dfef 3392
a0c1e907
TG
3393 if (!futex_cmpxchg_enabled)
3394 return -ENOSYS;
3395
bdbb776f
KC
3396 rcu_read_lock();
3397
3398 ret = -ESRCH;
0771dfef 3399 if (!pid)
bdbb776f 3400 p = current;
0771dfef 3401 else {
228ebcbe 3402 p = find_task_by_vpid(pid);
0771dfef
IM
3403 if (!p)
3404 goto err_unlock;
0771dfef
IM
3405 }
3406
bdbb776f 3407 ret = -EPERM;
caaee623 3408 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3409 goto err_unlock;
3410
3411 head = p->robust_list;
3412 rcu_read_unlock();
3413
0771dfef
IM
3414 if (put_user(sizeof(*head), len_ptr))
3415 return -EFAULT;
3416 return put_user(head, head_ptr);
3417
3418err_unlock:
aaa2a97e 3419 rcu_read_unlock();
0771dfef
IM
3420
3421 return ret;
3422}
3423
3424/*
3425 * Process a futex-list entry, check whether it's owned by the
3426 * dying task, and do notification if so:
3427 */
04e7712f 3428static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 3429{
7cfdaf38 3430 u32 uval, uninitialized_var(nval), mval;
0771dfef 3431
8f17d3a5
IM
3432retry:
3433 if (get_user(uval, uaddr))
0771dfef
IM
3434 return -1;
3435
b488893a 3436 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
3437 /*
3438 * Ok, this dying thread is truly holding a futex
3439 * of interest. Set the OWNER_DIED bit atomically
3440 * via cmpxchg, and if the value had FUTEX_WAITERS
3441 * set, wake up a waiter (if any). (We have to do a
3442 * futex_wake() even if OWNER_DIED is already set -
3443 * to handle the rare but possible case of recursive
3444 * thread-death.) The rest of the cleanup is done in
3445 * userspace.
3446 */
e3f2ddea 3447 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
3448 /*
3449 * We are not holding a lock here, but we want to have
3450 * the pagefault_disable/enable() protection because
3451 * we want to handle the fault gracefully. If the
3452 * access fails we try to fault in the futex with R/W
3453 * verification via get_user_pages. get_user() above
3454 * does not guarantee R/W access. If that fails we
3455 * give up and leave the futex locked.
3456 */
3457 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3458 if (fault_in_user_writeable(uaddr))
3459 return -1;
3460 goto retry;
3461 }
c87e2837 3462 if (nval != uval)
8f17d3a5 3463 goto retry;
0771dfef 3464
e3f2ddea
IM
3465 /*
3466 * Wake robust non-PI futexes here. The wakeup of
3467 * PI futexes happens in exit_pi_state():
3468 */
36cf3b5c 3469 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 3470 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
3471 }
3472 return 0;
3473}
3474
e3f2ddea
IM
3475/*
3476 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3477 */
3478static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3479 struct robust_list __user * __user *head,
1dcc41bb 3480 unsigned int *pi)
e3f2ddea
IM
3481{
3482 unsigned long uentry;
3483
ba46df98 3484 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3485 return -EFAULT;
3486
ba46df98 3487 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3488 *pi = uentry & 1;
3489
3490 return 0;
3491}
3492
0771dfef
IM
3493/*
3494 * Walk curr->robust_list (very carefully, it's a userspace list!)
3495 * and mark any locks found there dead, and notify any waiters.
3496 *
3497 * We silently return on any sign of list-walking problem.
3498 */
3499void exit_robust_list(struct task_struct *curr)
3500{
3501 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3502 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3503 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3504 unsigned int uninitialized_var(next_pi);
0771dfef 3505 unsigned long futex_offset;
9f96cb1e 3506 int rc;
0771dfef 3507
a0c1e907
TG
3508 if (!futex_cmpxchg_enabled)
3509 return;
3510
0771dfef
IM
3511 /*
3512 * Fetch the list head (which was registered earlier, via
3513 * sys_set_robust_list()):
3514 */
e3f2ddea 3515 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3516 return;
3517 /*
3518 * Fetch the relative futex offset:
3519 */
3520 if (get_user(futex_offset, &head->futex_offset))
3521 return;
3522 /*
3523 * Fetch any possibly pending lock-add first, and handle it
3524 * if it exists:
3525 */
e3f2ddea 3526 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3527 return;
e3f2ddea 3528
9f96cb1e 3529 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3530 while (entry != &head->list) {
9f96cb1e
MS
3531 /*
3532 * Fetch the next entry in the list before calling
3533 * handle_futex_death:
3534 */
3535 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3536 /*
3537 * A pending lock might already be on the list, so
c87e2837 3538 * don't process it twice:
0771dfef
IM
3539 */
3540 if (entry != pending)
ba46df98 3541 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 3542 curr, pi))
0771dfef 3543 return;
9f96cb1e 3544 if (rc)
0771dfef 3545 return;
9f96cb1e
MS
3546 entry = next_entry;
3547 pi = next_pi;
0771dfef
IM
3548 /*
3549 * Avoid excessively long or circular lists:
3550 */
3551 if (!--limit)
3552 break;
3553
3554 cond_resched();
3555 }
9f96cb1e
MS
3556
3557 if (pending)
3558 handle_futex_death((void __user *)pending + futex_offset,
3559 curr, pip);
0771dfef
IM
3560}
3561
c19384b5 3562long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3563 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3564{
81b40539 3565 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3566 unsigned int flags = 0;
34f01cc1
ED
3567
3568 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3569 flags |= FLAGS_SHARED;
1da177e4 3570
b41277dc
DH
3571 if (op & FUTEX_CLOCK_REALTIME) {
3572 flags |= FLAGS_CLOCKRT;
337f1304
DH
3573 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3574 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3575 return -ENOSYS;
3576 }
1da177e4 3577
59263b51
TG
3578 switch (cmd) {
3579 case FUTEX_LOCK_PI:
3580 case FUTEX_UNLOCK_PI:
3581 case FUTEX_TRYLOCK_PI:
3582 case FUTEX_WAIT_REQUEUE_PI:
3583 case FUTEX_CMP_REQUEUE_PI:
3584 if (!futex_cmpxchg_enabled)
3585 return -ENOSYS;
3586 }
3587
34f01cc1 3588 switch (cmd) {
1da177e4 3589 case FUTEX_WAIT:
cd689985 3590 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3591 /* fall through */
cd689985 3592 case FUTEX_WAIT_BITSET:
81b40539 3593 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3594 case FUTEX_WAKE:
cd689985 3595 val3 = FUTEX_BITSET_MATCH_ANY;
b639186f 3596 /* fall through */
cd689985 3597 case FUTEX_WAKE_BITSET:
81b40539 3598 return futex_wake(uaddr, flags, val, val3);
1da177e4 3599 case FUTEX_REQUEUE:
81b40539 3600 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3601 case FUTEX_CMP_REQUEUE:
81b40539 3602 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3603 case FUTEX_WAKE_OP:
81b40539 3604 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3605 case FUTEX_LOCK_PI:
996636dd 3606 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3607 case FUTEX_UNLOCK_PI:
81b40539 3608 return futex_unlock_pi(uaddr, flags);
c87e2837 3609 case FUTEX_TRYLOCK_PI:
996636dd 3610 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3611 case FUTEX_WAIT_REQUEUE_PI:
3612 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3613 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3614 uaddr2);
52400ba9 3615 case FUTEX_CMP_REQUEUE_PI:
81b40539 3616 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3617 }
81b40539 3618 return -ENOSYS;
1da177e4
LT
3619}
3620
3621
17da2bd9 3622SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
bec2f7cb 3623 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
17da2bd9 3624 u32, val3)
1da177e4 3625{
bec2f7cb 3626 struct timespec64 ts;
c19384b5 3627 ktime_t t, *tp = NULL;
e2970f2f 3628 u32 val2 = 0;
34f01cc1 3629 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3630
cd689985 3631 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3632 cmd == FUTEX_WAIT_BITSET ||
3633 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3634 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3635 return -EFAULT;
bec2f7cb 3636 if (get_timespec64(&ts, utime))
1da177e4 3637 return -EFAULT;
bec2f7cb 3638 if (!timespec64_valid(&ts))
9741ef96 3639 return -EINVAL;
c19384b5 3640
bec2f7cb 3641 t = timespec64_to_ktime(ts);
34f01cc1 3642 if (cmd == FUTEX_WAIT)
5a7780e7 3643 t = ktime_add_safe(ktime_get(), t);
c19384b5 3644 tp = &t;
1da177e4
LT
3645 }
3646 /*
52400ba9 3647 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3648 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3649 */
f54f0986 3650 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3651 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3652 val2 = (u32) (unsigned long) utime;
1da177e4 3653
c19384b5 3654 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3655}
3656
04e7712f
AB
3657#ifdef CONFIG_COMPAT
3658/*
3659 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3660 */
3661static inline int
3662compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3663 compat_uptr_t __user *head, unsigned int *pi)
3664{
3665 if (get_user(*uentry, head))
3666 return -EFAULT;
3667
3668 *entry = compat_ptr((*uentry) & ~1);
3669 *pi = (unsigned int)(*uentry) & 1;
3670
3671 return 0;
3672}
3673
3674static void __user *futex_uaddr(struct robust_list __user *entry,
3675 compat_long_t futex_offset)
3676{
3677 compat_uptr_t base = ptr_to_compat(entry);
3678 void __user *uaddr = compat_ptr(base + futex_offset);
3679
3680 return uaddr;
3681}
3682
3683/*
3684 * Walk curr->robust_list (very carefully, it's a userspace list!)
3685 * and mark any locks found there dead, and notify any waiters.
3686 *
3687 * We silently return on any sign of list-walking problem.
3688 */
3689void compat_exit_robust_list(struct task_struct *curr)
3690{
3691 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3692 struct robust_list __user *entry, *next_entry, *pending;
3693 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3694 unsigned int uninitialized_var(next_pi);
3695 compat_uptr_t uentry, next_uentry, upending;
3696 compat_long_t futex_offset;
3697 int rc;
3698
3699 if (!futex_cmpxchg_enabled)
3700 return;
3701
3702 /*
3703 * Fetch the list head (which was registered earlier, via
3704 * sys_set_robust_list()):
3705 */
3706 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3707 return;
3708 /*
3709 * Fetch the relative futex offset:
3710 */
3711 if (get_user(futex_offset, &head->futex_offset))
3712 return;
3713 /*
3714 * Fetch any possibly pending lock-add first, and handle it
3715 * if it exists:
3716 */
3717 if (compat_fetch_robust_entry(&upending, &pending,
3718 &head->list_op_pending, &pip))
3719 return;
3720
3721 next_entry = NULL; /* avoid warning with gcc */
3722 while (entry != (struct robust_list __user *) &head->list) {
3723 /*
3724 * Fetch the next entry in the list before calling
3725 * handle_futex_death:
3726 */
3727 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3728 (compat_uptr_t __user *)&entry->next, &next_pi);
3729 /*
3730 * A pending lock might already be on the list, so
3731 * dont process it twice:
3732 */
3733 if (entry != pending) {
3734 void __user *uaddr = futex_uaddr(entry, futex_offset);
3735
3736 if (handle_futex_death(uaddr, curr, pi))
3737 return;
3738 }
3739 if (rc)
3740 return;
3741 uentry = next_uentry;
3742 entry = next_entry;
3743 pi = next_pi;
3744 /*
3745 * Avoid excessively long or circular lists:
3746 */
3747 if (!--limit)
3748 break;
3749
3750 cond_resched();
3751 }
3752 if (pending) {
3753 void __user *uaddr = futex_uaddr(pending, futex_offset);
3754
3755 handle_futex_death(uaddr, curr, pip);
3756 }
3757}
3758
3759COMPAT_SYSCALL_DEFINE2(set_robust_list,
3760 struct compat_robust_list_head __user *, head,
3761 compat_size_t, len)
3762{
3763 if (!futex_cmpxchg_enabled)
3764 return -ENOSYS;
3765
3766 if (unlikely(len != sizeof(*head)))
3767 return -EINVAL;
3768
3769 current->compat_robust_list = head;
3770
3771 return 0;
3772}
3773
3774COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3775 compat_uptr_t __user *, head_ptr,
3776 compat_size_t __user *, len_ptr)
3777{
3778 struct compat_robust_list_head __user *head;
3779 unsigned long ret;
3780 struct task_struct *p;
3781
3782 if (!futex_cmpxchg_enabled)
3783 return -ENOSYS;
3784
3785 rcu_read_lock();
3786
3787 ret = -ESRCH;
3788 if (!pid)
3789 p = current;
3790 else {
3791 p = find_task_by_vpid(pid);
3792 if (!p)
3793 goto err_unlock;
3794 }
3795
3796 ret = -EPERM;
3797 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3798 goto err_unlock;
3799
3800 head = p->compat_robust_list;
3801 rcu_read_unlock();
3802
3803 if (put_user(sizeof(*head), len_ptr))
3804 return -EFAULT;
3805 return put_user(ptr_to_compat(head), head_ptr);
3806
3807err_unlock:
3808 rcu_read_unlock();
3809
3810 return ret;
3811}
bec2f7cb 3812#endif /* CONFIG_COMPAT */
04e7712f 3813
bec2f7cb 3814#ifdef CONFIG_COMPAT_32BIT_TIME
04e7712f
AB
3815COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3816 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3817 u32, val3)
3818{
bec2f7cb 3819 struct timespec64 ts;
04e7712f
AB
3820 ktime_t t, *tp = NULL;
3821 int val2 = 0;
3822 int cmd = op & FUTEX_CMD_MASK;
3823
3824 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3825 cmd == FUTEX_WAIT_BITSET ||
3826 cmd == FUTEX_WAIT_REQUEUE_PI)) {
bec2f7cb 3827 if (get_old_timespec32(&ts, utime))
04e7712f 3828 return -EFAULT;
bec2f7cb 3829 if (!timespec64_valid(&ts))
04e7712f
AB
3830 return -EINVAL;
3831
bec2f7cb 3832 t = timespec64_to_ktime(ts);
04e7712f
AB
3833 if (cmd == FUTEX_WAIT)
3834 t = ktime_add_safe(ktime_get(), t);
3835 tp = &t;
3836 }
3837 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3838 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3839 val2 = (int) (unsigned long) utime;
3840
3841 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3842}
bec2f7cb 3843#endif /* CONFIG_COMPAT_32BIT_TIME */
04e7712f 3844
03b8c7b6 3845static void __init futex_detect_cmpxchg(void)
1da177e4 3846{
03b8c7b6 3847#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3848 u32 curval;
03b8c7b6
HC
3849
3850 /*
3851 * This will fail and we want it. Some arch implementations do
3852 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3853 * functionality. We want to know that before we call in any
3854 * of the complex code paths. Also we want to prevent
3855 * registration of robust lists in that case. NULL is
3856 * guaranteed to fault and we get -EFAULT on functional
3857 * implementation, the non-functional ones will return
3858 * -ENOSYS.
3859 */
3860 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3861 futex_cmpxchg_enabled = 1;
3862#endif
3863}
3864
3865static int __init futex_init(void)
3866{
63b1a816 3867 unsigned int futex_shift;
a52b89eb
DB
3868 unsigned long i;
3869
3870#if CONFIG_BASE_SMALL
3871 futex_hashsize = 16;
3872#else
3873 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3874#endif
3875
3876 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3877 futex_hashsize, 0,
3878 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
3879 &futex_shift, NULL,
3880 futex_hashsize, futex_hashsize);
3881 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
3882
3883 futex_detect_cmpxchg();
a0c1e907 3884
a52b89eb 3885 for (i = 0; i < futex_hashsize; i++) {
11d4616b 3886 atomic_set(&futex_queues[i].waiters, 0);
732375c6 3887 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
3888 spin_lock_init(&futex_queues[i].lock);
3889 }
3890
1da177e4
LT
3891 return 0;
3892}
25f71d1c 3893core_initcall(futex_init);